JP2012181060A - Spectral characteristic measuring apparatus and calibration method thereof - Google Patents

Spectral characteristic measuring apparatus and calibration method thereof Download PDF

Info

Publication number
JP2012181060A
JP2012181060A JP2011043171A JP2011043171A JP2012181060A JP 2012181060 A JP2012181060 A JP 2012181060A JP 2011043171 A JP2011043171 A JP 2011043171A JP 2011043171 A JP2011043171 A JP 2011043171A JP 2012181060 A JP2012181060 A JP 2012181060A
Authority
JP
Japan
Prior art keywords
light
angle
calibration
path length
bright spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011043171A
Other languages
Japanese (ja)
Other versions
JP5648961B2 (en
Inventor
Ichiro Ishimaru
伊知郎 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagawa University NUC
Original Assignee
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagawa University NUC filed Critical Kagawa University NUC
Priority to JP2011043171A priority Critical patent/JP5648961B2/en
Publication of JP2012181060A publication Critical patent/JP2012181060A/en
Application granted granted Critical
Publication of JP5648961B2 publication Critical patent/JP5648961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a spectral characteristic measuring apparatus which allows spectral characteristics to be precisely measured even in wide-field spectroscopic imaging, and a calibration method thereof.SOLUTION: In a measurement mode, light beams emitted from each bright spot of an object to be measured enter a first and a second reflection parts through a splitting optical system. An imaging optical system allows the light beams reflected therefrom to form an interference image. The movement of the first reflection part elongates or contracts the relative difference in optical path length between the first and the second reflected light beams proceeding from the splitting optical system through the first and the second reflection parts toward the imaging optical system. An interferogram of each bright spot of the object to be measured is obtained based on the light intensity change of the interference image on this occasion. In a calibration mode, the light beams emitted from the bright spot with a prescribed wavelength λ enter the splitting optical system so as to form a plurality of interference images corresponding to the bright spot. The movement distance of the fist reflection part corresponding to one cycle of the light intensity change is obtained based on the light intensity change on this occasion. The installation angle of the first reflection part is obtained from the wavelength λ of the bright spot, the movement distance of the first reflection part, and the field angle θ of the interference image.

Description

本発明は、広視野イメージングに有用な分光特性測定装置及びその校正方法に関する。   The present invention relates to a spectral characteristic measuring apparatus useful for wide-field imaging and a calibration method thereof.

分光特性の測定技術として、波長分散型分光法或いはフーリエ分光法と呼ばれる分光技術を用いた手法が提案されている(非特許文献1参照)。
波長分散型分光法は、測定試料を透過した光、或いは測定試料面で反射した光(以下、物体光という)を回折格子や音響光学可変波長フィルタ(AOTF;Acousto-Optic Tunable Filter)に照射したときに得られる回折光の回折角が、当該物体光の波長に応じて異なる原理を利用した分光法である。
As a technique for measuring spectral characteristics, a technique using a spectral technique called wavelength dispersion spectroscopy or Fourier spectroscopy has been proposed (see Non-Patent Document 1).
In wavelength dispersion spectroscopy, light transmitted through the measurement sample or reflected from the measurement sample surface (hereinafter referred to as object light) is irradiated onto a diffraction grating or an acousto-optic tunable filter (AOTF). This is a spectroscopic method using a principle in which the diffraction angle of diffracted light sometimes obtained differs depending on the wavelength of the object light.

一方、フーリエ分光法(FTIR(フーリエ変換赤外分光光度計:Fourier Transform Infrared Spectroscopy))は、マイケルソン型の2光束干渉光学系を用いた位相シフト干渉による分光計測技術である。物体光をハーフミラーなどのビームスプリッタにより2分岐し、それぞれの光束をミラーにより反射させて再度ハーフミラーに到達させ、2光束を合流させて干渉現象を観察する。2分岐した光束のうちの一方(参照光)を反射するミラーは参照ミラーと呼ばれる。フーリエ分光法では、参照ミラーを光の波長よりも短い分解能で高精度に移動させて干渉光強度を変化させ、いわゆるインターフェログラムを検出し、このインターフェログラムを数学的にフーリエ変換することにより分光特性を取得する。   On the other hand, Fourier spectroscopy (FTIR (Fourier Transform Infrared Spectroscopy)) is a spectroscopic measurement technique based on phase shift interference using a Michelson-type two-beam interference optical system. The object light is branched into two by a beam splitter such as a half mirror, the respective light beams are reflected by the mirror, reach the half mirror again, and the two light beams are merged to observe the interference phenomenon. A mirror that reflects one of the two branched light beams (reference light) is called a reference mirror. In Fourier spectroscopy, the reference mirror is moved with high accuracy at a resolution shorter than the wavelength of light to change the interference light intensity, so-called interferogram is detected, and this interferogram is mathematically Fourier transformed. Obtain spectral characteristics.

測定試料面から射出される物体光の光線方向は、散乱、屈折、反射等により様々な方向となる。このように多様な方向の光線成分が回折格子や参照ミラーに照射されると、分光精度が低下する。
そのため、いずれの分光法においても物体光の空間的コヒーレンシー(可干渉性)を高めるために、微小開口を有するピンホールやスリットを用いて物体光のうち特定方向の光線成分のみを回折格子や参照ミラーに照射させている。求められる分光性能にもよるが、分散型分光法では穴径が数十ミクロン程度のピンホールが用いられ、フーリエ分光法では数ミリ程度の開口幅を有するスリットが用いられる。
The direction of the light beam of the object light emitted from the measurement sample surface is varied depending on scattering, refraction, reflection, and the like. When light components in various directions are irradiated on the diffraction grating and the reference mirror in this way, the spectral accuracy is lowered.
Therefore, to increase the spatial coherency (coherence) of the object light in any spectroscopic method, only a light component in a specific direction of the object light using a pinhole or slit having a minute aperture is used as a diffraction grating or a reference. The mirror is illuminated. Although depending on the required spectral performance, a pinhole having a hole diameter of about several tens of microns is used in the dispersion type spectroscopy, and a slit having an opening width of about several millimeters is used in the Fourier spectroscopy.

このようにピンホールやスリットを用いると、大半の物体光はピンホールやスリットを通過せず測定に供しないことから、光の利用効率が低い。一方、生体膜の内部を透過あるいは反射した散乱光は極微弱光であり、従来の分光技術ではこのような生体膜内部から生じる散乱光等の分光特性を評価することが困難であった。   When pinholes and slits are used in this way, most of the object light does not pass through the pinholes and slits and is not used for measurement, so the light utilization efficiency is low. On the other hand, the scattered light transmitted or reflected through the inside of the biological membrane is extremely weak light, and it has been difficult to evaluate the spectral characteristics of the scattered light and the like generated from the inside of the biological membrane by the conventional spectroscopic technique.

そこで、本発明者は、被測定物を光学的に構成する各輝点から生じる物体光束の干渉現象を利用することにより被測定物のインターフェログラムを求める手法を提案した(特許文献1参照)。
特許文献1に記載の手法では、各輝点から生じる透過光や拡散・散乱光等の物体光は対物レンズを介して位相シフターの固定ミラー部と可動ミラー部に導かれ、これら2つのミラー部から反射される物体光束が結像面において干渉像を形成する。可動ミラー部はピエゾ素子などにより移動されるようになっており、該可動ミラー部の移動に伴い干渉像強度が変化して、いわゆるインターフェログラムを形成する。従って、このインターフェログラムをフーリエ変換することにより物体光の分光特性(スペクトル)を取得することができる。
Therefore, the present inventor has proposed a method for obtaining an interferogram of an object to be measured by utilizing an interference phenomenon of an object light beam generated from each bright spot that optically configures the object to be measured (see Patent Document 1). .
In the method described in Patent Document 1, object light such as transmitted light and diffused / scattered light generated from each bright spot is guided to a fixed mirror part and a movable mirror part of a phase shifter via an objective lens, and these two mirror parts The object light beam reflected from the light forms an interference image on the imaging surface. The movable mirror part is moved by a piezo element or the like, and the interference image intensity changes with the movement of the movable mirror part to form a so-called interferogram. Therefore, the spectral characteristic (spectrum) of the object light can be acquired by Fourier transforming the interferogram.

このように特許文献1に記載の手法では、分割光学系(対物レンズ、固定ミラー部、可動ミラー部)を通過してきた光の全てを分析に用いることができるため、光の利用効率が高く、微弱光であってもその分光特性を測定することができる。   Thus, in the method described in Patent Document 1, since all of the light that has passed through the split optical system (objective lens, fixed mirror unit, movable mirror unit) can be used for analysis, the light use efficiency is high, The spectral characteristics can be measured even with weak light.

特開2008-309706号公報JP 2008-309706 A

平石次郎編「フーリエ変換赤外分光法」学会出版センター, 1985年11月Jiro Hiraishi, "Fourier Transform Infrared Spectroscopy" Society Publishing Center, November 1985

特許文献1に記載の手法では、可動ミラーを機械的に移動させることにより、その移動量に応じた位相差を固定ミラー部と可動ミラー部で反射される物体光束に与える。このため、可動ミラー部の移動軸に対して様々な角度の光軸を有する光束が入射すると、可動ミラー部の移動量が同じであっても、各物体光に与えられる位相差量が入射角度により異なってしまう。このように異なる位相差量を与えられた物体光は受光面において干渉現象を生じ、インターフェログラムとして一括して検出される。従って、位相差量に光軸の傾き(即ち入射角度)に応じた誤差を有すると、分光特性を劣化させる。特に広視野分光イメージングを行う場合は、測定位置毎の物体光の光軸に対する傾きの変化が大きくなるため、分光特性を大きく劣化させることになる。   In the technique described in Patent Document 1, a movable mirror is mechanically moved to give a phase difference corresponding to the amount of movement to an object beam reflected by the fixed mirror and the movable mirror. For this reason, when a light beam having an optical axis of various angles with respect to the moving axis of the movable mirror unit is incident, even if the moving amount of the movable mirror unit is the same, the amount of phase difference given to each object beam is the incident angle. It will be different. In this way, the object light given different amounts of phase difference causes an interference phenomenon on the light receiving surface and is collectively detected as an interferogram. Therefore, if the phase difference has an error corresponding to the inclination of the optical axis (that is, the incident angle), the spectral characteristics are deteriorated. In particular, when performing wide-field spectroscopic imaging, the change in the inclination of the object light with respect to the optical axis at each measurement position becomes large, so that the spectral characteristics are greatly deteriorated.

本発明が解決しようとする課題は、広視野分光イメージングを行う場合であっても高精度に分光特性を測定することができる分光特性測定装置及びその校正方法を提供することである。   The problem to be solved by the present invention is to provide a spectral characteristic measuring apparatus capable of measuring spectral characteristics with high accuracy even when wide-field spectral imaging is performed, and a calibration method thereof.

上記課題を解決するために成された本発明に係る分光特性測定装置は、
a) 被測定物の測定点から出射された光を第1反射部と第2反射部に導く分割光学系と、
b) 前記第1及び第2反射部によって反射された光を同一点に導き干渉像を形成する結像光学系と、
c) 前記第1反射部を移動させることにより前記分割光学系から前記第1反射部を経て前記結像光学系に向かう第1反射光と前記分割光学系から前記第2反射部を経て前記結像光学系に向かう第2反射光の間の光路長差を伸縮する光路長差伸縮手段と、
d) 前記第1反射部の移動量を検出する移動量検出部と、
e) 前記干渉像の光強度を検出する、複数の検出素子が2次元配列された光検出部と、
f) 前記光路長差伸縮手段によって前記光路長差を伸縮させることにより前記光検出部で検出される光強度変化に基づき、前記被測定物の測定点のインターフェログラムを求め、このインターフェログラムをフーリエ変換することによりスペクトルを取得する処理部と
を備える分光特性測定装置において、
さらに、画角が既知の輝点から波長が既知の校正光を出射させる校正光出射手段と、
前記光路長差伸縮手段によって前記光路長差を伸縮させることにより前記光検出部で検出される前記輝点の干渉像の光強度変化の1周期に相当する前記第1反射部の移動量と、前記輝点の画角と、前記校正光の波長とに基づき、前記第1反射部の設置角を求める設置角算出部と、
前記被測定物の測定点の画角を求める画角検出部とを備え、
前記処理部は、前記第1反射部の設置角と前記測定点の画角とから、前記第1反射部の移動量に対応する前記光路長差を求め、該光路長差に基づきスペクトルを校正することを特徴とする。
The spectral characteristic measuring apparatus according to the present invention, which has been made to solve the above problems,
a) a splitting optical system that guides light emitted from the measurement point of the object to be measured to the first reflecting portion and the second reflecting portion;
b) an imaging optical system that guides the light reflected by the first and second reflectors to the same point to form an interference image;
c) by moving the first reflecting part, the first reflected light from the splitting optical system to the imaging optical system through the first reflecting part and the splitting optical system through the second reflecting part, Optical path length difference expansion / contraction means for expanding / contracting the optical path length difference between the second reflected light toward the image optical system;
d) a movement amount detection unit for detecting a movement amount of the first reflection unit;
e) a light detection unit in which a plurality of detection elements are two-dimensionally arranged to detect the light intensity of the interference image;
f) Obtaining an interferogram of the measurement point of the object to be measured based on the light intensity change detected by the light detection unit by expanding / contracting the optical path length difference by the optical path length difference expansion / contraction means, and this interferogram A spectral characteristic measuring apparatus comprising: a processing unit that obtains a spectrum by Fourier transforming
Further, calibration light emitting means for emitting calibration light having a known wavelength from a bright spot having a known angle of view;
The amount of movement of the first reflecting portion corresponding to one period of the light intensity change of the interference image of the bright spot detected by the light detection unit by expanding / contracting the optical path length difference by the optical path length difference expansion / contraction means, An installation angle calculation unit for obtaining an installation angle of the first reflection unit based on the angle of view of the bright spot and the wavelength of the calibration light;
An angle-of-view detector that obtains the angle of view of the measurement point of the object to be measured;
The processing unit obtains the optical path length difference corresponding to the movement amount of the first reflecting unit from the installation angle of the first reflecting unit and the angle of view of the measurement point, and calibrates the spectrum based on the optical path length difference. It is characterized by doing.

また、本発明の分光特性測定装置は、前記設置角算出部が、前記校正光の前記第1反射部への入射点を原点とするxyz座標系であって、前記第1反射部の反射面の法線を含む面をxz平面、該xz平面に垂直な軸をy軸とする校正光学座標系を定義し、当該校正光学座標系における前記設置角φy(ただし、設置角φyは前記第1反射部の反射面の法線の前記y軸回りの回転角を示す。)を以下の式
φy=(90°+θy)+cos-1{(λ/2Mλ)×θx}
(上記式において、θx及びθyは、前記輝点の干渉像の画角であって当該干渉像と前記校正光学座標系の原点とを結ぶ線とx軸及びy軸との角度、λは前記校正光の波長、Mλは前記輝点の干渉像の光強度変化の1周期に相当する前記第1反射部の移動量を示す。)
から算出することを特徴とする。
In the spectral characteristic measuring apparatus of the present invention, the installation angle calculation unit may be an xyz coordinate system having an origin at the point of incidence of the calibration light on the first reflection unit, and the reflection surface of the first reflection unit A calibration optical coordinate system is defined in which the plane including the normal line is the xz plane and the axis perpendicular to the xz plane is the y axis, and the installation angle φy in the calibration optical coordinate system (where the installation angle φy is the first angle) The rotation angle around the y-axis of the normal of the reflecting surface of the reflecting portion is shown.) Is expressed by the following equation: φy = (90 ° + θy) + cos −1 {(λ / 2M λ ) × θx}
(In the above equation, θx and θy are the angles of view of the interference image of the bright spot, the angle between the line connecting the interference image and the origin of the calibration optical coordinate system, and the x-axis and y-axis, and λ is the above-mentioned wavelength calibration light, the M lambda indicates the movement amount of the first reflecting portion corresponding to one period of the light intensity change of the interference image of the bright spot.)
It is characterized by calculating from.

さらに本発明の分光特性測定装置は、前記設置角算出部が、z軸が前記輝点の干渉像と原点とを結ぶ線となる前記校正光学座標系における前記設置角φyを算出することを特徴とする。
上記構成では、前記輝点の画角θx及びθyがそれぞれθx=0及びθy=0となり、前記設置角φyを容易に算出することができる。
Furthermore, in the spectral characteristic measuring apparatus of the present invention, the installation angle calculation unit calculates the installation angle φy in the calibration optical coordinate system in which the z-axis is a line connecting the interference image of the bright spot and the origin. And
In the above configuration, the angles of view θx and θy of the bright spot are θx = 0 and θy = 0, respectively, and the installation angle φy can be easily calculated.

また、前記処理部が、前記光路長差Lを、以下の式
L={2Mcos(φy-θ1'y)}/cos(θ1x) (ただし、θ1'y=θ1y+90°)
(上記式において、θ1x及びθ1yは前記測定点の画角、Mは前記第1反射部の移動量を示す。)
から算出するようにしても良い。
Further, the processing unit calculates the optical path length difference L by the following formula: L = {2M cos (φy−θ1′y)} / cos (θ1x) (where θ1′y = θ1y + 90 °)
(In the above equation, θ1x and θ1y are the angle of view of the measurement point, and M is the amount of movement of the first reflecting portion.)
It may be calculated from

また、校正光出射手段が、波長が既知の単色光源発せられた光をフライアイレンズに入射させることにより複数の離散輝点を形成するように構成することも可能である。   It is also possible to configure the calibration light emitting means to form a plurality of discrete bright spots by causing light emitted from a monochromatic light source having a known wavelength to enter the fly-eye lens.

本発明の分光特性測定装置の校正方法は、
a) 被測定物の測定点から出射された光を第1反射部と第2反射部に導く分割光学系と、
b) 前記第1及び第2反射部によって反射された光を同一点に導き干渉像を形成する結像光学系と、
c) 前記第1反射部を移動させることにより前記分割光学系から前記第1反射部を経て前記結像光学系に向かう第1反射光と前記分割光学系から前記第2反射部を経て前記結像光学系に向かう第2反射光の間の光路長差を伸縮する光路長差伸縮手段と、
d) 前記第1反射部の移動量を検出する移動量検出部と、
e) 前記干渉像の光強度を検出する、複数の検出素子が2次元配列された光検出部と、
f) 前記光路長差伸縮手段によって前記光路長差を伸縮させることにより前記光検出部で検出される光強度変化に基づき、前記被測定物の測定点のインターフェログラムを求め、このインターフェログラムをフーリエ変換することによりスペクトルを取得する処理部と、
前記被測定物の測定点の画角を求める画角検出部と
を備える分光特性測定装置において、
画角が既知の輝点から出射された波長が既知の校正光を前記分割光学系に入射させ、そのとき前記結像光学系によって形成される干渉像の光強度変化1周期に相当する前記第1反射部の移動量を前記移動量検出部から取得し、
当該第1反射部の移動量と、前記輝点の画角と、前記校正光の波長とに基づき、前記第1反射部の設置角を求め、
前記第1反射部の設置角と前記測定点の画角とから、前記第1反射部の移動量に対応する前記光路長差を求め、該光路長差に基づきスペクトルを校正することを特徴とする。
The calibration method of the spectral characteristic measuring apparatus of the present invention is:
a) a splitting optical system that guides light emitted from the measurement point of the object to be measured to the first reflecting portion and the second reflecting portion;
b) an imaging optical system that guides the light reflected by the first and second reflectors to the same point to form an interference image;
c) by moving the first reflecting part, the first reflected light from the splitting optical system to the imaging optical system through the first reflecting part and the splitting optical system through the second reflecting part, Optical path length difference expansion / contraction means for expanding / contracting the optical path length difference between the second reflected light toward the image optical system;
d) a movement amount detection unit for detecting a movement amount of the first reflection unit;
e) a light detection unit in which a plurality of detection elements are two-dimensionally arranged to detect the light intensity of the interference image;
f) Obtaining an interferogram of the measurement point of the object to be measured based on the light intensity change detected by the light detection unit by expanding / contracting the optical path length difference by the optical path length difference expansion / contraction means, and this interferogram A processing unit that obtains a spectrum by Fourier transforming
In a spectral characteristic measuring apparatus comprising: an angle-of-view detection unit for obtaining an angle of view of a measurement point of the object to be measured;
Calibration light having a known wavelength emitted from a bright spot having a known angle of view is incident on the splitting optical system, and the first light beam corresponding to one period of a change in light intensity of an interference image formed by the imaging optical system at that time. 1 Acquire the movement amount of the reflection part from the movement amount detection unit,
Based on the amount of movement of the first reflecting part, the angle of view of the bright spot, and the wavelength of the calibration light, the installation angle of the first reflecting part is obtained,
The optical path length difference corresponding to the amount of movement of the first reflective part is obtained from the installation angle of the first reflective part and the angle of view of the measurement point, and the spectrum is calibrated based on the optical path length difference. To do.

又、本発明の校正方法は、前記第1反射部の設置角が、前記校正光の前記第1反射部への入射点を原点とするxyz座標系であって、前記第1反射部の反射面の法線を含む面をxz平面、該xz平面に垂直な軸をy軸とする校正光学座標系における前記設置角φy(ただし、設置角φyは前記第1反射部の反射面の法線の前記y軸回りの回転角を示す。)であり、当該設置角φyを以下の式
φy=(90°+θy)+cos-1{(λ/2Mλ)×θx}
(上記式において、θx及びθyは、前記輝点の干渉像の画角であって当該干渉像と前記校正光学座標系の原点とを結ぶ線とx軸及びy軸との角度、λは前記校正光の波長、Mλは前記輝点の干渉像の光強度変化の1周期に相当する前記第1反射部の移動量を示す。)
から算出することを特徴とする。
The calibration method of the present invention is an xyz coordinate system in which an installation angle of the first reflection unit is an origin at an incident point of the calibration light to the first reflection unit, and the reflection of the first reflection unit. The installation angle φy in the calibration optical coordinate system in which the surface including the normal of the surface is the xz plane and the axis perpendicular to the xz plane is the y-axis (where the installation angle φy is the normal of the reflection surface of the first reflecting portion) And the installation angle φy is expressed by the following formula: φy = (90 ° + θy) + cos −1 {(λ / 2M λ ) × θx}
(In the above equation, θx and θy are the angles of view of the interference image of the bright spot, the angle between the line connecting the interference image and the origin of the calibration optical coordinate system, and the x-axis and y-axis, and λ is the above-mentioned wavelength calibration light, the M lambda indicates the movement amount of the first reflecting portion corresponding to one period of the light intensity change of the interference image of the bright spot.)
It is characterized by calculating from.

この場合、前記校正光学座標系は、そのz軸が前記輝点の干渉像と原点とを結ぶ線であると、前記輝点の画角θx及びθyがそれぞれθx=0及びθy=0となり、前記設置角φyを容易に算出することができる。   In this case, if the z-axis is a line connecting the interference image of the bright spot and the origin, the field angles θx and θy of the bright spot are θx = 0 and θy = 0, respectively. The installation angle φy can be easily calculated.

また、前記光路長差Lは、以下の式
L={2Mcos(φy-θ1'y)}/cos(θ1x) (ただし、θ1'y=θ1y+90°)
(上記式において、θ1x及びθ1yは前記測定点の画角、Mは前記第1反射部の移動量を示す。)
から算出することを特徴とする。
The optical path length difference L is expressed by the following equation: L = {2M cos (φy−θ1′y)} / cos (θ1x) (where θ1′y = θ1y + 90 °)
(In the above equation, θ1x and θ1y are the angle of view of the measurement point, and M is the amount of movement of the first reflecting portion.)
It is characterized by calculating from.

本発明によれば、第1反射部の設置角を予め求め、この設置角と第1反射部の移動量及び被測定物の各測定点の画角から画角毎の光路長差を求めることができるので、検出感度の低下を招くことなく高精度に被測定物の各測定点の分光特性を測定することができる。また、被測定物の測定点の画角の大小に関係なく真の光路長差を求めることができるので、広視野分光イメージングに有用な分光特性測定装置を提供することができる。   According to the present invention, the installation angle of the first reflection unit is obtained in advance, and the optical path length difference for each angle of view is obtained from the installation angle, the amount of movement of the first reflection unit, and the field angle of each measurement point of the object to be measured. Therefore, it is possible to measure the spectral characteristics at each measurement point of the object to be measured with high accuracy without causing a decrease in detection sensitivity. In addition, since the true optical path length difference can be obtained regardless of the angle of view of the measurement point of the object to be measured, it is possible to provide a spectral characteristic measuring apparatus useful for wide-field spectral imaging.

本発明の一実施形態に係る分光特性測定装置の測定モードを示す概略的なシステム構成図。1 is a schematic system configuration diagram showing a measurement mode of a spectral characteristic measurement apparatus according to an embodiment of the present invention. 分光特性測定装置のブロック図。The block diagram of a spectral-characteristics measuring apparatus. 位相シフターの動作説明図。FIG. 6 is an operation explanatory diagram of a phase shifter. インターフェログラム(a)とそれをフーリエ変換したスペクトルの波形図(b)。Interferogram (a) and a waveform diagram (b) of a spectrum obtained by Fourier transforming the interferogram (a). インターフェログラムの生成原理の説明図。Explanatory drawing of the generation principle of an interferogram. 分光特性測定装置の校正モードを示す概略的なシステム構成図。The schematic system block diagram which shows the calibration mode of a spectral characteristic measuring apparatus. 校正光学座標系と位相シフターの位置関係を示す図。The figure which shows the positional relationship of a calibration optical coordinate system and a phase shifter. xz平面が可動ミラー部の反射面の法線を含むように校正光学座標系を定義したときの校正光学座標系と位相シフターの位置関係を示す図。The figure which shows the positional relationship of a calibration optical coordinate system and a phase shifter when a calibration optical coordinate system is defined so that xz plane may include the normal line of the reflective surface of a movable mirror part. 位相シフト量と位相差との関係を説明するための図。The figure for demonstrating the relationship between a phase shift amount and a phase difference. 画角θx≠0である場合の位相差の求め方を説明するための図。The figure for demonstrating how to obtain | require a phase difference in case the angle of view θx ≠ 0. 反射の法則を説明するための図。The figure for demonstrating the law of reflection. 位相シフターの移動に伴い得られたインターフェログラム(a)、インターフェログラムをフーリエ変換して得られた分光特性(b)を示す図。The figure which shows the spectral characteristic (b) obtained by performing the Fourier-transform of the interferogram (a) obtained by the movement of a phase shifter, and an interferogram. 校正光学座標系の求め方の説明図。Explanatory drawing of how to obtain | require a calibration optical coordinate system. 干渉像の画角θx及びθyの求め方の説明図。Explanatory drawing of how to obtain | require field angle (theta) x and (theta) y of an interference image. 離散輝点像を用いて構築した校正光学座標系と画角補正幾何モデルにより測定面(結像面)全体で校正を行った実験結果を示す図。The figure which shows the experimental result which calibrated the whole measurement surface (imaging surface) by the calibration optical coordinate system constructed | assembled using the discrete luminescent point image, and a view angle correction | amendment geometric model.

以下、本発明の具体的な実施形態について説明する。
詳しくは後述するように、本実施形態に係る分光特性測定装置は測定モード及び校正モードを備えている。測定モードは被測定物の分光特性測定時に用いられるもので、まずは測定モードの装置構成を図1及び図2を参照しながら説明する。測定モードの分光特性測定装置10は、光学系20と、検出部22と、制御装置40とから構成されている。
光学系20は、光源21と検出部22を結ぶ光路上に設けられた、対物レンズ24、位相シフター25、結像レンズ26とから構成されている。対物レンズ24が分割光学系を、結像レンズ26が結像光学系をそれぞれ構成する。また、検出部22が光検出部に相当する。
Hereinafter, specific embodiments of the present invention will be described.
As will be described in detail later, the spectral characteristic measurement apparatus according to the present embodiment includes a measurement mode and a calibration mode. The measurement mode is used when measuring the spectral characteristics of the object to be measured. First, the apparatus configuration in the measurement mode will be described with reference to FIGS. The spectral characteristic measuring apparatus 10 in the measurement mode includes an optical system 20, a detection unit 22, and a control device 40.
The optical system 20 includes an objective lens 24, a phase shifter 25, and an imaging lens 26 provided on an optical path connecting the light source 21 and the detection unit 22. The objective lens 24 constitutes a splitting optical system, and the imaging lens 26 constitutes an imaging optical system. The detection unit 22 corresponds to a light detection unit.

制御装置40は、制御部41、インターフェログラム取得部42、演算処理部43、記憶部44、表示部45、操作部46等を備えて構成されている。演算処理部43は、後述する、位相シフター25の設置角度の算出、スペクトルの補正、インターフェログラムのフーリエ変換といった演算処理を実行する。従って、本実施例では、演算処理部43が処理部、設置角算出部として機能する。なお、演算処理部43の実体はCPUを中心に構成されるパーソナルコンピュータであって、該コンピュータ上で所定のプログラムを実行することにより演算処理が達成される。   The control device 40 includes a control unit 41, an interferogram acquisition unit 42, an arithmetic processing unit 43, a storage unit 44, a display unit 45, an operation unit 46, and the like. The arithmetic processing unit 43 performs arithmetic processing such as calculation of the installation angle of the phase shifter 25, correction of the spectrum, and Fourier transform of the interferogram, which will be described later. Therefore, in this embodiment, the arithmetic processing unit 43 functions as a processing unit and an installation angle calculation unit. Note that the entity of the arithmetic processing unit 43 is a personal computer mainly composed of a CPU, and arithmetic processing is achieved by executing a predetermined program on the computer.

光源21から出射された光は被測定物Sに照射され、これにより当該被測定物Sの輝点から多様な方向に向かって散乱光や蛍光発光等の光線(「物体光」ともいう)が放射状に出射する。被測定物Sから出射する光線は、対物レンズ24に入射して平行光束へ変換され、その後、位相シフター25を介して結像レンズ26に入射し、検出部22の受光面22a上に集光する。   The light emitted from the light source 21 irradiates the object S to be measured, and thereby light rays (also referred to as “object light”) such as scattered light and fluorescent light emission from the bright spot of the object S to be measured in various directions. Radiates radially. A light beam emitted from the object to be measured S enters the objective lens 24 and is converted into a parallel light beam, and then enters the imaging lens 26 via the phase shifter 25 and is condensed on the light receiving surface 22a of the detection unit 22. To do.

前記対物レンズ24は、レンズ駆動機構27によって光軸方向に移動可能に構成されている。レンズ駆動機構27は、対物レンズ24の合焦位置を走査するためのもので、例えばピエゾ素子により構成することができる。   The objective lens 24 is configured to be movable in the optical axis direction by a lens driving mechanism 27. The lens driving mechanism 27 is for scanning the in-focus position of the objective lens 24, and can be constituted by, for example, a piezo element.

なお、対物レンズ24を透過した後の光束は完全な平行光束である必要はない。後述するように、1つの輝点から生じた光束を2分割あるいはそれ以上に分割できる程度に広げることができればよい。ただし、平行光束でない場合は、後述の位相シフト量に応じて生じる位相差量に誤差を生じ易い。従って、より高い分光計測精度を得るためにはできるだけ平行光束とすることが望ましい。   The light beam after passing through the objective lens 24 does not have to be a perfect parallel light beam. As will be described later, it is sufficient that the light beam generated from one bright spot can be expanded to such a degree that it can be divided into two or more. However, if the light beam is not a parallel light beam, an error is likely to occur in the phase difference amount generated according to the phase shift amount described later. Therefore, in order to obtain higher spectroscopic measurement accuracy, it is desirable to use a parallel beam as much as possible.

対物レンズ24を透過してきた平行光束は位相シフター25に到達する。位相シフター25は、可動ミラー部251と、その左部に配置された固定ミラー部252と、可動ミラー部251を移動させる駆動ステージ253とを備えて構成されている。可動ミラー部251及び固定ミラー部252の表面(反射面)は光学的に平坦で且つ本装置10が測定対象とする光の波長帯域を反射可能な光学鏡面となっている。   The parallel light beam that has passed through the objective lens 24 reaches the phase shifter 25. The phase shifter 25 includes a movable mirror unit 251, a fixed mirror unit 252 disposed on the left side thereof, and a drive stage 253 that moves the movable mirror unit 251. The surfaces (reflective surfaces) of the movable mirror unit 251 and the fixed mirror unit 252 are optically flat and are optical mirror surfaces that can reflect the wavelength band of the light to be measured by the apparatus 10.

本実施例では、位相シフター25が本発明の光路長差伸縮手段に相当し、可動ミラー部251及び固定ミラー部252がそれぞれ第1及び第2反射部に相当する。また、ここでは、反射光としたが透過光でも良い。
なお、以下の説明では、位相シフター25に到達した光束のうち可動ミラー部251の反射面に到達して反射される光束を可動光、固定ミラー部252の反射面に到達して反射される光束を固定光ともいう。
In this embodiment, the phase shifter 25 corresponds to the optical path length difference expansion / contraction means of the present invention, and the movable mirror portion 251 and the fixed mirror portion 252 correspond to the first and second reflecting portions, respectively. In addition, although the reflected light is used here, transmitted light may be used.
In the following description, among the light beams that have reached the phase shifter 25, the light beam that has reached the reflection surface of the movable mirror unit 251 and reflected is the movable light, and the light beam that has reached the reflection surface of the fixed mirror unit 252 and is reflected. Is also called fixed light.

駆動ステージ253は、例えば静電容量センサーを具備する圧電素子から構成されており、制御装置40からの制御信号を受けて可動ミラー部251を光の波長に応じた精度で矢印A方向に移動させる。分光測定能力にもよるが、例えば可視光領域では10nm程度の高精度な位置制御が必要となる。   The drive stage 253 is composed of, for example, a piezoelectric element having a capacitance sensor, and receives the control signal from the control device 40 to move the movable mirror unit 251 in the direction of arrow A with accuracy according to the wavelength of light. . Although it depends on the spectroscopic measurement ability, for example, in the visible light region, highly accurate position control of about 10 nm is required.

また、位相シフター25は、対物レンズ24からの平行光束の光軸に対して可動ミラー部251及び固定ミラー部252の反射面が45度傾くように配置されている。駆動ステージ253は、可動ミラー部251の反射面の光軸に対する傾きを45度に維持した状態で当該可動ミラー部251を移動する。このような構成により、可動ミラー部251の光軸方向の移動量は、駆動ステージ253の移動量の√2倍となる。また、固定光と可動光の2光束間の相対的な位相変化を与える光路長差は、可動ミラー部251の光軸方向の移動量の2倍となる。   The phase shifter 25 is arranged so that the reflecting surfaces of the movable mirror unit 251 and the fixed mirror unit 252 are inclined by 45 degrees with respect to the optical axis of the parallel light flux from the objective lens 24. The drive stage 253 moves the movable mirror unit 251 while maintaining the inclination of the reflecting surface of the movable mirror unit 251 with respect to the optical axis at 45 degrees. With such a configuration, the amount of movement of the movable mirror unit 251 in the optical axis direction is √2 times the amount of movement of the drive stage 253. The optical path length difference that gives a relative phase change between the two light beams of the fixed light and the movable light is twice the amount of movement of the movable mirror 251 in the optical axis direction.

位相シフター25に到達し、可動ミラー部251及び固定ミラー部252の反射面で反射された固定光及び可動光は、それぞれ結像レンズ26により収束されて検出部22の受光面(結像面)に入る。検出部22は例えば多数のCCD撮像素子が2次元マトリックス配置された2次元CCDカメラから構成されている。可動ミラー部251の反射面と固定ミラー部252の反射面は、検出部22の結像面で2つの光束の集光位置がずれない程度の精度で平行に構成されている。   The fixed light and the movable light that reach the phase shifter 25 and are reflected by the reflecting surfaces of the movable mirror unit 251 and the fixed mirror unit 252 are converged by the imaging lens 26 and received by the light receiving surface (imaging surface) of the detection unit 22. to go into. The detection unit 22 is composed of, for example, a two-dimensional CCD camera in which a number of CCD image sensors are arranged in a two-dimensional matrix. The reflecting surface of the movable mirror unit 251 and the reflecting surface of the fixed mirror unit 252 are configured in parallel with an accuracy that does not shift the condensing position of the two light beams on the imaging surface of the detecting unit 22.

[測定原理]
次に、本実施形態に係る分光特性測定装置10の測定原理について図3〜図5を用いて説明する。ここでは蛍光や散乱光などの光線が、対物レンズ24と結像レンズ26を経て検出部22の結像面で一つの点に集光し、干渉像を形成する光学モデルに基づいて説明する。
[Measurement principle]
Next, the measurement principle of the spectral characteristic measuring apparatus 10 according to the present embodiment will be described with reference to FIGS. Here, a description will be given based on an optical model in which light rays such as fluorescence and scattered light are focused on one point on the imaging surface of the detection unit 22 via the objective lens 24 and the imaging lens 26 and form an interference image.

前述したように、被測定物Sの一輝点から発せられた物体光は、対物レンズ24を経て位相シフター25の可動ミラー部251及び固定ミラー部252の表面に到達する。このとき、物体光は可動ミラー部251及び固定ミラー部252に分割されて到達する。
なお、固定ミラー部252の表面に到達する光束即ち固定光と、可動ミラー部251の表面に到達する光束即ち可動光の光量がほぼ等しくなるように、対物レンズ24に対する可動ミラー部251及び固定ミラー部252の位置が設定されているが、固定光及び可動光の一方或いは両方の光路に減光フィルタを設置して相対的な光量差を調整し、光量の均等化を行うことも可能である。
As described above, the object light emitted from one bright spot of the measurement object S reaches the surfaces of the movable mirror portion 251 and the fixed mirror portion 252 of the phase shifter 25 through the objective lens 24. At this time, the object light reaches the movable mirror unit 251 and the fixed mirror unit 252 after being divided.
In addition, the movable mirror unit 251 and the fixed mirror with respect to the objective lens 24 are set so that the light beam reaching the surface of the fixed mirror unit 252, that is, the fixed light, and the light beam reaching the surface of the movable mirror unit 251, that is, the amount of the movable light are substantially equal. The position of the unit 252 is set, but it is also possible to equalize the light quantity by adjusting the relative light quantity difference by installing a neutral density filter in one or both of the fixed light and the movable light. .

可動ミラー部251及び固定ミラー部252の表面で反射された光は、それぞれ可動光及び固定光として結像レンズ26に入射し、検出部22の結像面において干渉像を形成する。このとき、被測定物Sから発せられる光線には様々な波長の光が含まれることから、可動ミラー部251を移動させて可動光と固定光の光路長差を変化させることにより、図4(a)に示すようなインターフェログラムと呼ばれる結像強度変化(干渉光強度変化)の波形が得られる。図4(a)は検出部22の一つの画素におけるインターフェログラムである。なお、図4(a)において、横軸は可動ミラー部251の移動に伴う可動光と固定光の間の光路長差を、縦軸は結像面上の一点における結像強度を示す。   Light reflected by the surfaces of the movable mirror unit 251 and the fixed mirror unit 252 enters the imaging lens 26 as movable light and fixed light, respectively, and forms an interference image on the imaging surface of the detection unit 22. At this time, since light of various wavelengths is included in the light beam emitted from the object S to be measured, the optical path length difference between the movable light and the fixed light is changed by moving the movable mirror 251 to change the optical path length of FIG. A waveform of an imaging intensity change (interference light intensity change) called an interferogram as shown in a) is obtained. FIG. 4A is an interferogram in one pixel of the detection unit 22. 4A, the horizontal axis indicates the optical path length difference between the movable light and the fixed light accompanying the movement of the movable mirror unit 251, and the vertical axis indicates the imaging intensity at one point on the imaging surface.

このインターフェログラムをフーリエ変換することにより、被測定物Sの一輝点から発せられた光の波長毎の相対強度である分光特性を取得することができる(図4(b)参照)。本実施形態では検出部22に2次元CCDカメラを用いていることから、被測定物Sの2次元分光測定が可能となる。   By performing a Fourier transform on the interferogram, it is possible to acquire spectral characteristics that are relative intensities for each wavelength of light emitted from one bright spot of the object S to be measured (see FIG. 4B). In the present embodiment, since a two-dimensional CCD camera is used for the detection unit 22, two-dimensional spectroscopic measurement of the object S can be performed.

図5(a)〜(c)はインターフェログラムの生成原理の説明図である。まず、測定波長が単一波長の光の場合の光路長差と干渉光強度との関係について説明する。図5において、横軸は可動ミラー部251の移動に伴う固定光と可動光間の相対的な光路長差を示し、縦軸は、検出部22の一つの画素における結像強度を示している。   FIGS. 5A to 5C are explanatory diagrams of the principle of generating the interferogram. First, the relationship between the optical path length difference and the interference light intensity when the measurement wavelength is a single wavelength will be described. In FIG. 5, the horizontal axis indicates the relative optical path length difference between the fixed light and the movable light accompanying the movement of the movable mirror unit 251, and the vertical axis indicates the imaging intensity at one pixel of the detection unit 22. .

図5(a)〜(c)は波長の長さが異なる3種類の単色光(λa>λb>λc)の光路長差と結像強度との関係を示している。図5の中央付近に示す位相シフト原点(図中、一点鎖線で示す)は、図3(b)に示す状態(可動ミラー部251の反射面が固定ミラー部252の反射面と一致している状態)をいう。可動ミラー部251と固定ミラー部252の反射面が一致しているときは、固定光と可動光に相対的な位相差が生じていない。つまり、これら2光束は結像面において位相が揃って到達するため、互いに強め合う。このため、結像面には明るい輝点が形成され、結像強度が大きくなる。   FIGS. 5A to 5C show the relationship between the optical path length difference and the imaging intensity of three types of monochromatic light (λa> λb> λc) having different wavelength lengths. The phase shift origin shown in the vicinity of the center in FIG. 5 (indicated by the alternate long and short dash line in the figure) is in the state shown in FIG. 3B (the reflecting surface of the movable mirror unit 251 matches the reflecting surface of the fixed mirror unit 252). State). When the reflecting surfaces of the movable mirror unit 251 and the fixed mirror unit 252 coincide, there is no relative phase difference between the fixed light and the movable light. That is, since these two light beams arrive at the same phase on the imaging surface, they strengthen each other. For this reason, bright bright spots are formed on the imaging surface, and the imaging intensity is increased.

これに対して、可動ミラー部251を図3(b)に示す位置から図3(a)や(c)に示す位置に移動させて固定光と可動光との間に相対的な光路長差を生じさせると、この光路長差が半波長(λ/2)の奇数倍になった時点で弱め合う干渉条件となるため結像強度は小さくなる。また、光路長差が1波長の整数倍になると、2光束間の干渉条件が強め合う状態となり、結像強度が大きくなる。
従って、可動ミラー部251を移動させて光路長差を順次変化させていくと、2光束間の干渉現象による結像強度は周期的に変化することになる。この結像強度変化の周期は、図5(a)〜(c)に示すように、波長が長い光の場合は長く、波長が短い光の場合は短くなる。
On the other hand, the movable mirror portion 251 is moved from the position shown in FIG. 3B to the position shown in FIGS. 3A and 3C, and the relative optical path length difference between the fixed light and the movable light is obtained. If this occurs, the image forming intensity is reduced because the interference condition becomes destructive when this optical path length difference becomes an odd multiple of the half wavelength (λ / 2). When the optical path length difference is an integral multiple of one wavelength, the interference condition between the two light beams is intensified, and the imaging intensity is increased.
Accordingly, when the movable mirror unit 251 is moved to sequentially change the optical path length difference, the imaging intensity due to the interference phenomenon between the two light beams changes periodically. As shown in FIGS. 5A to 5C, the cycle of the imaging intensity change is long for light having a long wavelength, and is short for light having a short wavelength.

一方、多波長の光を測定する分光特性測定装置では、多様な長さの波長の干渉光強度変化が足し合わされた輝度値変化として検出されることになる。これが図4(a)に示すインターフェログラムである。可動光と固定光の相対的な光路長差が無い位相シフト原点では、波長に依存せずに2光束は強め合うため、多波長の強度変化を足し合わせた測定値においても高い結像強度となる。しかし、光路長差が大きくなると、各波長の強度変化の周期が合わないため、多波長の強度変化を足し合わせても結像強度は大きくならない。このため、インターフェログラムは、光路長差が大きくなるに従い徐々に輝度値が小さくなっていく結像強度変化が観察される。このようにインターフェログラムは、単一波長の単周期結像強度変化が足し合わされた波形であることから、この波形データをフーリエ変換することにより図4(b)に示すような、波長ごとの相対強度である分光特性を取得することができる。   On the other hand, in a spectral characteristic measuring device that measures multi-wavelength light, changes in the intensity of interference light with various lengths of wavelengths are detected as a change in luminance value. This is the interferogram shown in FIG. At the phase shift origin where there is no relative optical path length difference between the movable light and the fixed light, the two light beams intensify without depending on the wavelength. Become. However, when the optical path length difference is increased, the period of intensity change of each wavelength does not match, so that the imaging intensity does not increase even when the intensity changes of multiple wavelengths are added. For this reason, in the interferogram, a change in imaging intensity is observed in which the luminance value gradually decreases as the optical path length difference increases. Thus, since the interferogram is a waveform in which single-wavelength imaging intensity changes of a single wavelength are added, this waveform data is subjected to Fourier transform to obtain a waveform for each wavelength as shown in FIG. Spectral characteristics that are relative intensities can be acquired.

[校正方法]
次に、本実施形態の分光特性測定装置10の校正方法について説明する。
上述したように、本実施形態の分光特性測定装置10では、可動ミラー部251を徐々に移動させて固定光と可動光との間に相対的な光路長差(位相差)を生じさせることにより、インターフェログラムと呼ばれる結像強度変化の波形を得る。そして、このインターフェログラムをフーリエ変換することにより被測定物の輝点から発せられた光の波長毎の相対強度である分光特性を取得する。分光特性を精度良く求めるためには、固定光と可動光との間の位相差を正確に求める必要がある。可動ミラー部251の移動量が同じであっても、可動光と固定光との間の位相差量は、被測定物Sの各輝点から出射した光の位相シフター25(可動ミラー部251及び固定ミラー部252)に対する入射角度により異なる。当該入射角は、各輝点位置における物体光束の光軸の画角と、位相シフター25の設置角(前記物体光の光軸に対する可動ミラー部251及び固定ミラー部252の反射面の角度)によって決まる。このことから、本装置10では、画角補正幾何モデルを構築して位相シフター25の設置角を求め、この設置角を用いて画角毎の前記位相差を求めるようにしている。校正モードとは、位相シフター25の設置角を求めるための装置構成をいう。
[Calibration method]
Next, a calibration method for the spectral characteristic measuring apparatus 10 of the present embodiment will be described.
As described above, in the spectral characteristic measuring apparatus 10 of this embodiment, the movable mirror unit 251 is gradually moved to generate a relative optical path length difference (phase difference) between the fixed light and the movable light. A waveform of an imaging intensity change called an interferogram is obtained. Then, the interferogram is subjected to Fourier transform to obtain a spectral characteristic which is a relative intensity for each wavelength of light emitted from the bright spot of the object to be measured. In order to obtain the spectral characteristics with high accuracy, it is necessary to accurately obtain the phase difference between the fixed light and the movable light. Even if the moving amount of the movable mirror unit 251 is the same, the amount of phase difference between the movable light and the fixed light is the phase shifter 25 of the light emitted from each bright spot of the object to be measured S (the movable mirror unit 251 and the movable mirror unit 251). It depends on the incident angle with respect to the fixed mirror portion 252). The incident angle depends on the angle of view of the optical axis of the object beam at each bright spot position and the installation angle of the phase shifter 25 (the angles of the reflecting surfaces of the movable mirror unit 251 and the fixed mirror unit 252 with respect to the optical axis of the object beam). Determined. Thus, in the present apparatus 10, an angle-of-view correction geometric model is constructed to obtain the installation angle of the phase shifter 25, and the phase difference for each angle of view is obtained using this installation angle. The calibration mode refers to a device configuration for obtaining the installation angle of the phase shifter 25.

図6に示すように、校正モードでは、波長が既知の単色光源から出射された平行光束がフライアイレンズ23を透過した後、対物レンズ24に入射する。つまり、フライアイレンズ23が校正光射出手段として機能する。フライアイレンズ23は小レンズが複数、碁盤目状に配列されたものから成る。光源21から出射された光束はフライアイレンズ23に入射した後、各小レンズによって集光点を形成し、その後、再び広がって対物レンズ24に入射し、該対物レンズ24を経て位相シフター25の可動ミラー部251及び固定ミラー部252の表面に到達する。そして、可動ミラー部251及び固定ミラー部252の表面で反射された後、可動光及び固定光として結像レンズ26に入射し、検出部22の結像面において干渉する。校正モードでは、照明光学系にフライアイレンズ23を用いることにより複数の離散輝点を形成している。結像面には輝点に対応して干渉像が形成されることから、校正モードでは複数の離散輝点に対応する複数の離散干渉像が結像面に形成される。   As shown in FIG. 6, in the calibration mode, a parallel light beam emitted from a monochromatic light source having a known wavelength passes through the fly-eye lens 23 and then enters the objective lens 24. That is, the fly-eye lens 23 functions as a calibration light emitting unit. The fly-eye lens 23 is composed of a plurality of small lenses arranged in a grid pattern. The light beam emitted from the light source 21 is incident on the fly-eye lens 23, and then a condensing point is formed by each small lens. Thereafter, the light beam spreads again and enters the objective lens 24. It reaches the surfaces of the movable mirror part 251 and the fixed mirror part 252. Then, after being reflected by the surfaces of the movable mirror unit 251 and the fixed mirror unit 252, the light enters the imaging lens 26 as movable light and fixed light, and interferes with the imaging surface of the detection unit 22. In the calibration mode, a plurality of discrete bright spots are formed by using the fly-eye lens 23 in the illumination optical system. Since interference images are formed on the imaging surface corresponding to the bright spots, a plurality of discrete interference images corresponding to a plurality of discrete bright spots are formed on the imaging plane in the calibration mode.

次に、画角補正幾何モデルを構築するに当たって定義する校正光学座標系について説明する。
校正光学座標系を定義するためには、位相シフター25の設置角度として3自由度(φx、φy、φz)、輝点から出射され対物レンズ24を経て位相シフター25に入射する光の画角(θx、θy)として2自由度の合計5自由度を考慮する必要がある。しかし、考慮すべきパラメータが多いと画角補正幾何モデルの構築が難しくなる。そこで、本実施形態では反射の法則に着目して校正光学座標系を定義する。すなわち、位相シフター25の可動ミラー部251及び固定ミラー部252の表面である反射面の法線で位相シフター25の設置角度φx、φy、φzを定義する。
Next, a calibration optical coordinate system defined in constructing the view angle correction geometric model will be described.
In order to define the calibration optical coordinate system, the installation angle of the phase shifter 25 has three degrees of freedom (φx, φy, φz), and the angle of view of light emitted from the bright spot and incident on the phase shifter 25 through the objective lens 24 ( It is necessary to consider a total of 5 degrees of freedom of 2 degrees of freedom as θx, θy). However, if there are many parameters to be considered, it is difficult to construct a view angle correction geometric model. Therefore, in this embodiment, the calibration optical coordinate system is defined by paying attention to the law of reflection. That is, the installation angles φx, φy, and φz of the phase shifter 25 are defined by the normal lines of the reflecting surfaces that are the surfaces of the movable mirror portion 251 and the fixed mirror portion 252 of the phase shifter 25.

図7は校正光学座標系と位相シフターとの位置関係を示す図である。この図7に示すように、設置角φxはxz平面からの仰角(つまり、可動ミラー部251の反射面の法線とxz平面のなす角度)、設置角φyはy軸回りの回転角(ここでは、前記法線のxz平面に対する投影とx軸のなす角度としている)、設置角φzは前記反射面に対する法線回りの回転角を示す。設置角φzは法線周りの回転角であるため、反射の法則では無視することができる。
また、図8に示すように、法線を含む平面をxz平面とする校正光学座標系を定義すると、設置角φxは0deg.となる。つまり、このモデルで考慮すべき設置角はφyのみとなる。
FIG. 7 is a diagram showing the positional relationship between the calibration optical coordinate system and the phase shifter. As shown in FIG. 7, the installation angle φx is an elevation angle from the xz plane (that is, the angle formed by the normal of the reflecting surface of the movable mirror portion 251 and the xz plane), and the installation angle φy is a rotation angle (here) Then, the installation angle φz indicates a rotation angle around the normal to the reflection surface. Since the installation angle φz is a rotation angle around the normal, it can be ignored in the law of reflection.
As shown in FIG. 8, when a calibration optical coordinate system is defined in which the plane including the normal line is the xz plane, the installation angle φx is 0 deg. In other words, the installation angle to be considered in this model is only φy.

このようにxz平面を定義した校正光学座標系において、フライアイレンズ23の各小レンズから放射された光が対物レンズ24を経て位相シフター25に入射すると、これらの入射光は位相シフター25の反射面で反射され、結像面上に干渉像を形成する。また、位相シフター25の可動ミラー部251は主軸(x軸)から設置角φy傾いた並進移動軸(つまり、法線)に沿って位相シフト量Mだけ機械的に移動するものとする。このとき、xz平面上に位置する輝点から出射されて位相シフター25に入射する光、つまり画角θx=0の入射光について考えると、当該入射光の波面に与えられる位相差Lは、図9に示すように位相シフト量Mによって波面に与えられる位相差L1と、初期位置にある可動ミラー部251の反射点から移動後の可動ミラー部251の反射点までの入射光に沿う方向の距離L2との差となる。以上より、θ'y=θy+90°とすると、以下の式(1)〜(3)が得られる。
L=L1−L2 ・・・ (1)
L1=M/cos(φy-θ'y) ・・・ (2)
L2=−1×L1×cos(2(φy-θ'y) ・・・ (3)
式(1)〜(3)より位相差Lは
L=M/cos(φy-θ'y){1+cos(2(φy-θ'y)}
=M/cos(φy-θ'y)×2cos2(φy-θ'y)
=2Mcos(φy-θ'y) ・・・ (4)
となる。
Thus, in the calibration optical coordinate system in which the xz plane is defined, when light emitted from each small lens of the fly-eye lens 23 enters the phase shifter 25 through the objective lens 24, these incident lights are reflected by the phase shifter 25. Reflected by the surface, an interference image is formed on the imaging surface. Further, it is assumed that the movable mirror portion 251 of the phase shifter 25 mechanically moves by a phase shift amount M along a translational movement axis (that is, a normal line) inclined by the installation angle φy from the main axis (x axis). At this time, considering the light emitted from the bright spot located on the xz plane and entering the phase shifter 25, that is, the incident light having the angle of view θx = 0, the phase difference L given to the wavefront of the incident light is As shown in FIG. 9, the phase difference L1 given to the wavefront by the phase shift amount M and the distance along the incident light from the reflection point of the movable mirror unit 251 at the initial position to the reflection point of the movable mirror unit 251 after movement. This is a difference from L2. From the above, when θ′y = θy + 90 °, the following equations (1) to (3) are obtained.
L = L1-L2 (1)
L1 = M / cos (φy−θ′y) (2)
L2 = −1 × L1 × cos (2 (φy−θ′y) (3)
From Expressions (1) to (3), the phase difference L is L = M / cos (φy−θ′y) {1 + cos (2 (φy−θ′y)}
= M / cos (φy-θ'y) x 2cos 2 (φy-θ'y)
= 2Mcos (φy-θ'y) (4)
It becomes.

位相シフター25の位相シフト量Mは、可動ミラー部251の移動軸に沿う方向の移動量を示し、例えば位相シフター25の駆動ステージ253にリニアエンコーダ等の移動量検出器255(図2参照)を設けることにより該検出器255の検出値から求めることができる。従って、本実施例では移動量検出器255が移動量検出部に相当する。   The phase shift amount M of the phase shifter 25 indicates the amount of movement in the direction along the movement axis of the movable mirror unit 251. For example, a movement amount detector 255 (see FIG. 2) such as a linear encoder is provided on the drive stage 253 of the phase shifter 25. By providing, it can obtain | require from the detection value of this detector 255. FIG. Therefore, in this embodiment, the movement amount detector 255 corresponds to a movement amount detection unit.

なお、式(4)は画角θx=0の輝点からの入射光の位相差Lであるが、画角θx≠0の輝点からの入射光の場合は、図10に示すように、予め定義したxz平面に対して画角θxだけ傾いたxz平面を考えれば良い。この場合は、上述の校正光学座標系を使って求めた位相差は、実際のxz平面における位相差Lを、予め定義したxy平面に投影した長さとなる。つまり、実際の位相差Lは、校正光学座標系で求めた位相差をcosθxで除算したものとなり、下記式(5)で表すことができる。
L={2Mcos(φy-θ'y)}/cos(θx) ・・・ (5)
式(5)より、位相シフター25の設置角φyが求まれば、位相シフト量Mから、画角θx及びθyに応じた位相差量Lが算出可能となることが分かる。
Equation (4) is the phase difference L of the incident light from the bright spot with the angle of view θx = 0, but in the case of the incident light from the bright spot with the angle of view θx ≠ 0, as shown in FIG. An xz plane inclined by the angle of view θx with respect to a previously defined xz plane may be considered. In this case, the phase difference obtained using the calibration optical coordinate system described above is a length obtained by projecting the phase difference L in the actual xz plane onto the xy plane defined in advance. That is, the actual phase difference L is obtained by dividing the phase difference obtained by the calibration optical coordinate system by cos θx, and can be expressed by the following equation (5).
L = {2Mcos (φy−θ′y)} / cos (θx) (5)
From the equation (5), it can be seen that if the installation angle φy of the phase shifter 25 is obtained, the phase difference amount L corresponding to the angles of view θx and θy can be calculated from the phase shift amount M.

逆に、位相シフト量M、位相差量L、輝点の画角、画角θx及びθyが分かれば上記した式(5)から位相シフター25の設置角φyを求めることができる。ただし、式(5)から設置角φyを求めることができるのは、上述したように法線を含む面をxz平面とする校正光学座標系を定義できることが前提となる。実験的に求めることができるデータは結像面上の離散干渉像の分光特性のみであり、法線は視認できない。そこで、結像面上の複数の離散干渉像の中の一つを通る軸をz軸と定義し、画角θx=0、θy=0として設置角φyを算出する。この画角は干渉像の画角であるが、反射の法則より位相シフター25に対する入射角と反射角は同じであることから、図11に示すように、反射光線と法線を含む面をxz平面とした場合には、離散干渉像の画角と離散輝点像の画角は同じになる。   Conversely, if the phase shift amount M, the phase difference amount L, the field angle of the bright spot, and the field angles θx and θy are known, the installation angle φy of the phase shifter 25 can be obtained from the above equation (5). However, the installation angle φy can be obtained from the equation (5) based on the premise that a calibration optical coordinate system in which the plane including the normal line is the xz plane can be defined as described above. The data that can be obtained experimentally is only the spectral characteristics of the discrete interference image on the image plane, and the normal cannot be visually recognized. Therefore, the axis passing through one of the plurality of discrete interference images on the imaging plane is defined as the z-axis, and the installation angle φy is calculated with the angles of view θx = 0 and θy = 0. Although this angle of view is the angle of view of the interference image, the angle of incidence and the angle of reflection with respect to the phase shifter 25 are the same due to the law of reflection. In the case of a plane, the angle of view of the discrete interference image and the angle of view of the discrete bright spot image are the same.

以下、位相シフター25の設置角φyを算出する手順について説明する。
位相シフター25を移動させると、結像面上では位相シフター25の位相シフト量Mに従って干渉像の結像強度が変化する。例えば図12(a)に破線で示すグラフPは、画角θx=0、θy=0、設置角φy=0のときの波長λの結像強度変化を示している。グラフPでは、結像強度変化1周期分が波長λとなる。これを理論値とする。それに対して画角及び設置角が理論値以外のときの波長λの結像強度変化は実線で示すグラフPとなり、理論値とは異なる周期で結像強度が変化する。これは、画角に応じて1周期に対する波面に与えられる位相差Lの移動軸が位相シフター25の機械的な移動軸に対して傾いていることから、実質的に波面に与えられる位相差量が異なるためである。このときの位相シフト量をMλとすると、画角及び設置角が理論値以外のときは、位相シフト量がMλのときに波長λと等しい位相差Lが与えられたことになる。このMλは、図12(b)に示すように、位相シフトに伴う結像強度変化のデータ(インターフェログラム)をフーリエ変換することにより得られる分光特性から求めることができる。単一波長の光源を用いた場合は、インターフェログラムをフーリエ変換することにより輝線スペクトルが得られ、この輝線スペクトルのピーク値としてMλを求めることができる。
Hereinafter, a procedure for calculating the installation angle φy of the phase shifter 25 will be described.
When the phase shifter 25 is moved, the imaging intensity of the interference image changes according to the phase shift amount M of the phase shifter 25 on the imaging plane. For example, a graph P 0 indicated by a broken line in FIG. 12A shows a change in imaging intensity of the wavelength λ when the field angle θx = 0, θy = 0, and the installation angle φy = 0. In the graph P 0 , one period of the imaging intensity change is the wavelength λ. This is the theoretical value. Imaging intensity change in the wavelength λ when the angle of view and installation angle other than the theoretical value whereas next graph P 1 indicated by the solid line, image intensity is changed at a pitch different from the theoretical value. This is because the movement axis of the phase difference L given to the wavefront for one period according to the angle of view is tilted with respect to the mechanical movement axis of the phase shifter 25, so that the phase difference amount substantially given to the wavefront. This is because they are different. When the phase shift amount at this time is M lambda, when the angle of view and installation angle other than the theoretical value, so that the amount of phase shift is given a phase difference L is equal to the wavelength lambda when M lambda. As shown in FIG. 12B, M λ can be obtained from the spectral characteristics obtained by Fourier transforming the image intensity change data (interferogram) accompanying the phase shift. When using a light source of a single wavelength, emission line spectrum is obtained by Fourier transform of the interferogram, it is possible to obtain the M lambda as the peak value of the emission line spectrum.

そこで、式(5)の位相差量Lに波長λを、位相シフト量Mに実験的に求めたMλを代入することにより、以下に示す設置角φyの算出式(6)を求めることができる。
φy=cos-1(λ/2Mλcosθx)+θ'y ・・・ (6)
Therefore, the wavelength lambda in the phase difference amount L of formula (5), by substituting M lambda experimentally determined phase shift amount M, be determined calculation formula of the installation angle φy shown below (6) it can.
φy = cos −1 (λ / 2M λ cos θx) + θ′y (6)

式(6)では、画角θx及びθyも未知である。しかし、上述したように、結像面上の複数の干渉像の中の1つを選択し、この干渉像を通る軸をz軸と仮定すると、画角θx及びθyはいずれも0となり、波長λ及び位相シフト量Mλが分かれば、式(6)から設置角φyを算出することができる。 In Expression (6), the angles of view θx and θy are also unknown. However, as described above, when one of a plurality of interference images on the imaging surface is selected and the axis passing through this interference image is assumed to be the z-axis, the field angles θx and θy are both 0, and the wavelength If λ and the phase shift amount M λ are known, the installation angle φy can be calculated from the equation (6).

なお、図13に示すように、法線及びz軸によって構成されるxz平面を法線を中心に回転させる。このとき、位相シフター25の設置角φyが変化しないようにすると、その円の接線が空間座標系(校正光学座標系)のy軸となる。これは、円の接線が、結像面に対するxz平面の射影であるA線(図13参照)、つまり、常に円の中心を通る線に対して垂直となるからである。取得した2次元データは設置角φyの等高線の一部である。従って、複数の離散干渉像の任意の一点をz軸が通ると決定して校正光学座標系を定義することにより、設置角φyを求めることができる。   As shown in FIG. 13, the xz plane constituted by the normal line and the z axis is rotated around the normal line. At this time, if the installation angle φy of the phase shifter 25 is not changed, the tangent line of the circle becomes the y axis of the spatial coordinate system (calibration optical coordinate system). This is because the tangent of the circle is perpendicular to the A line (see FIG. 13), which is the projection of the xz plane with respect to the imaging plane, that is, the line that always passes through the center of the circle. The acquired two-dimensional data is a part of the contour line of the installation angle φy. Therefore, the installation angle φy can be obtained by determining that the z-axis passes through one arbitrary point of the plurality of discrete interference images and defining the calibration optical coordinate system.

上記のようにして設置角φyを求めることができれば、結像面上の全ての干渉像について、その画角θx、θyと位相シフト量Mから、前述した式(5)を用いて真の位相差Lを求めることができる。この場合の干渉像の画角θx、θyは、図14に示すように、結像レンズの焦点距離と干渉像の形成位置から次の式(7)及び(8)により求めることができる。
θx=tan-1(b/f) ・・・ (7)
θy=tan-1(a/f) ・・・ (8)
ここで、fは結象レンズの焦点距離、aは図14(a)のA軸方向の距離、bはB軸方向の距離を示す。結像面に複数の画素が所定の間隔でm×n配列されたCCDカメラにおいては、その画素の位置からa及びbを求めることができる。従って、前記CCDカメラ(検出部22)及び演算処理部43が本発明の画角検出部を構成する。
If the installation angle φy can be obtained as described above, the true position of all the interference images on the imaging plane can be calculated from the field angles θx, θy and the phase shift amount M using the above-described equation (5). The phase difference L can be obtained. The field angles θx and θy of the interference image in this case can be obtained by the following equations (7) and (8) from the focal length of the imaging lens and the formation position of the interference image, as shown in FIG.
θx = tan -1 (b / f) (7)
θy = tan -1 (a / f) (8)
Here, f is the focal length of the joint lens, a is the distance in the A-axis direction of FIG. 14A, and b is the distance in the B-axis direction. In a CCD camera in which a plurality of pixels are arranged at predetermined intervals on the image plane, a and b can be obtained from the positions of the pixels. Therefore, the CCD camera (detection unit 22) and the arithmetic processing unit 43 constitute an angle of view detection unit of the present invention.

図15は物体面に形成した離散輝点像を用いて構築した校正光学座標系と画角補正幾何モデルにより測定面(結像面)全体で校正を行った実験結果を示したものである。この実験では、フライアイレンズ(焦点距離:10mm、直径:2.3mm、中心間距離:1.7mm)を用いて離散輝点像を形成し、CCDカメラ(型番:XC-75、画素サイズ:8.4μm(H)×9.8μm(V))上にて光学倍率1/2倍で観察した。また、本実験系の視野範囲は12.9mmである。光源には輝線スペクトルを有するHe-Neレーザ(波長:632.8nm)を用いた。その結果、設置角φyの値は30deg.となった。   FIG. 15 shows the result of an experiment in which the entire measurement surface (imaging plane) is calibrated using the calibration optical coordinate system constructed using the discrete bright spot image formed on the object plane and the field angle correction geometric model. In this experiment, a discrete bright spot image was formed using a fly-eye lens (focal length: 10 mm, diameter: 2.3 mm, center-to-center distance: 1.7 mm), and a CCD camera (model number: XC-75, pixel size: 8.4 μm). (H) × 9.8 μm (V)) was observed at an optical magnification of 1/2. The field of view of this experimental system is 12.9 mm. A He—Ne laser (wavelength: 632.8 nm) having an emission line spectrum was used as a light source. As a result, the installation angle φy was 30 deg.

このように求めた設置角φyを用いて結像面上の全ての干渉像の2次元データから式(5)から位相差Lを求めることで各干渉像の分光特性を校正することができる。図15では、CCDカメラの画素毎、つまり結像面上における干渉像の形成位置と校正前後の分光特性誤差及び校正後の分光特性誤差の関係を示している。図15から、画角が小さいときは校正前と校正後の分光特性の差はほとんどないが、画角が大きくなると校正前と校正後の分光特性の差が大きくなることが分かる。具体的には、例えば画角θx=0.56deg.、θy=-0.92deg.の位置にある干渉像の場合、取得した分光特性の誤差を20.2mmから0.70mmまで最大97%減少した。また、測定面全体でも±3mmの範囲で校正することができた。   The spectral characteristic of each interference image can be calibrated by obtaining the phase difference L from Equation (5) from the two-dimensional data of all the interference images on the imaging plane using the installation angle φy thus obtained. FIG. 15 shows the relationship between each pixel of the CCD camera, that is, the position where the interference image is formed on the imaging surface, the spectral characteristic error before and after calibration, and the spectral characteristic error after calibration. FIG. 15 shows that there is almost no difference between the spectral characteristics before and after calibration when the angle of view is small, but the difference between the spectral characteristics before and after calibration increases when the angle of view increases. Specifically, for example, in the case of an interference image at the positions of the angle of view θx = 0.56 deg. And θy = −0.92 deg., The error of the acquired spectral characteristics was reduced by 97% at maximum from 20.2 mm to 0.70 mm. The entire measurement surface could be calibrated in the range of ± 3mm.

このように本実施形態によれば、位相シフター25の設置角φyを予め実験的に求め、この設置角φyを用いて画角毎の位相差を算出するようにしたので、分光特性を正しく校正することができる。   As described above, according to the present embodiment, the installation angle φy of the phase shifter 25 is experimentally obtained in advance, and the phase difference for each angle of view is calculated using the installation angle φy. can do.

尚、本発明は上記した実施形態に限らず、本発明の要旨を変更しない範囲で種々の拡張、変形が可能である。
例えば、上記実施形態では離散干渉像の任意の一つについて校正光学座標系を定義して位相シフターの設置角を求めるようにしたが、図13に示すように、求まる設置角が理論的には同じになる複数の離散干渉像についてそれぞれ校正光学座標系を定義して位相シフターの設置角を求め、これらの平均値を用いて画角毎の位相差を求めるようにしても良い。このようにすれば、測定誤差を小さく抑えることができる。
The present invention is not limited to the above-described embodiment, and various expansions and modifications can be made without changing the gist of the present invention.
For example, in the above-described embodiment, the calibration optical coordinate system is defined for any one of the discrete interference images and the installation angle of the phase shifter is obtained. However, as shown in FIG. A calibration optical coordinate system may be defined for each of a plurality of discrete interference images that are the same, and the installation angle of the phase shifter may be obtained, and a phase difference for each angle of view may be obtained using an average value of these. In this way, measurement errors can be kept small.

また、全ての離散干渉像の結像強度変化から、画角毎に波長及び位相シフターの移動量と位相差量との関係を表すデータテーブルを作成し、このデータテーブルを用いて画角毎に分光特性を校正するようにしても良い。   In addition, a data table representing the relationship between the amount of movement of the wavelength and phase shifter and the amount of phase difference is created for each angle of view from the change in intensity of all the discrete interference images, and this data table is used for each angle of view. The spectral characteristics may be calibrated.

離散輝点はフライアイレンズを用いる他、2次元マトリックス配列された多数の光源を用いて形成することができる。
位相シフターの設置角は、少なくとも一つの干渉像について結像強度変化のデータが分かれば求めることが可能である。従って、校正モードでは、物体面上に1個の輝点を形成し、この輝点に対応する干渉像の分光特性から位相シフターの設置角を求めるようにしても良い。
Discrete bright spots can be formed using a number of light sources arranged in a two-dimensional matrix in addition to using a fly-eye lens.
The installation angle of the phase shifter can be obtained if the image intensity change data is known for at least one interference image. Therefore, in the calibration mode, one bright spot may be formed on the object surface, and the installation angle of the phase shifter may be obtained from the spectral characteristics of the interference image corresponding to this bright spot.

10…分光特性測定装置
20…光学系
21…光源
22…検出部
22a…受光面(結像面)
23…フライアイレンズ
24…対物レンズ
25…位相シフター
251…可動ミラー部
252…固定ミラー部
253…駆動ステージ
255…移動量検出器
26…結像レンズ
27…レンズ駆動機構
40…制御装置
41…制御部
43…演算処理部
DESCRIPTION OF SYMBOLS 10 ... Spectral characteristic measuring apparatus 20 ... Optical system 21 ... Light source 22 ... Detection part 22a ... Light-receiving surface (imaging surface)
DESCRIPTION OF SYMBOLS 23 ... Fly eye lens 24 ... Objective lens 25 ... Phase shifter 251 ... Movable mirror part 252 ... Fixed mirror part 253 ... Drive stage 255 ... Movement amount detector 26 ... Imaging lens 27 ... Lens drive mechanism 40 ... Control apparatus 41 ... Control Unit 43 ... arithmetic processing unit

Claims (9)

a) 被測定物の測定点から出射された光を第1反射部と第2反射部に導く分割光学系と、
b) 前記第1及び第2反射部によって反射された光を同一点に導き干渉像を形成する結像光学系と、
c) 前記第1反射部を移動させることにより前記分割光学系から前記第1反射部を経て前記結像光学系に向かう第1反射光と前記分割光学系から前記第2反射部を経て前記結像光学系に向かう第2反射光の間の光路長差を伸縮する光路長差伸縮手段と、
d) 前記第1反射部の移動量を検出する移動量検出部と、
e) 前記干渉像の光強度を検出する、複数の検出素子が2次元配列された光検出部と、
f) 前記光路長差伸縮手段によって前記光路長差を伸縮させることにより前記光検出部で検出される光強度変化に基づき、前記被測定物の測定点のインターフェログラムを求め、このインターフェログラムをフーリエ変換することによりスペクトルを取得する処理部と
を備える分光特性測定装置において、
さらに、画角が既知の輝点から波長が既知の校正光を出射させる校正光出射手段と、
前記光路長差伸縮手段によって前記光路長差を伸縮させることにより前記光検出部で検出される前記輝点の干渉像の光強度変化の1周期に相当する前記第1反射部の移動量と、前記輝点の画角と、前記校正光の波長とに基づき、前記第1反射部の設置角を求める設置角算出部と、
前記被測定物の測定点の画角を求める画角検出部とを備え、
前記処理部は、前記第1反射部の設置角と前記測定点の画角とから、前記第1反射部の移動量に対応する前記光路長差を求め、該光路長差に基づきスペクトルを校正することを特徴とする分光特性測定装置。
a) a splitting optical system that guides light emitted from the measurement point of the object to be measured to the first reflecting portion and the second reflecting portion;
b) an imaging optical system that guides the light reflected by the first and second reflectors to the same point to form an interference image;
c) by moving the first reflecting part, the first reflected light from the splitting optical system to the imaging optical system through the first reflecting part and the splitting optical system through the second reflecting part, Optical path length difference expansion / contraction means for expanding / contracting the optical path length difference between the second reflected light toward the image optical system;
d) a movement amount detection unit for detecting a movement amount of the first reflection unit;
e) a light detection unit in which a plurality of detection elements are two-dimensionally arranged to detect the light intensity of the interference image;
f) Obtaining an interferogram of the measurement point of the object to be measured based on the light intensity change detected by the light detection unit by expanding / contracting the optical path length difference by the optical path length difference expansion / contraction means, and this interferogram A spectral characteristic measuring apparatus comprising: a processing unit that obtains a spectrum by Fourier transforming
Further, calibration light emitting means for emitting calibration light having a known wavelength from a bright spot having a known angle of view;
The amount of movement of the first reflecting portion corresponding to one period of the light intensity change of the interference image of the bright spot detected by the light detection unit by expanding / contracting the optical path length difference by the optical path length difference expansion / contraction means, An installation angle calculation unit for obtaining an installation angle of the first reflection unit based on the angle of view of the bright spot and the wavelength of the calibration light;
An angle-of-view detector that obtains the angle of view of the measurement point of the object to be measured;
The processing unit obtains the optical path length difference corresponding to the movement amount of the first reflecting unit from the installation angle of the first reflecting unit and the angle of view of the measurement point, and calibrates the spectrum based on the optical path length difference. Spectral characteristic measuring device characterized by that.
前記設置角算出部が、前記校正光の前記第1反射部への入射点を原点とするxyz座標系であって、前記第1反射部の反射面の法線を含む面をxz平面、該xz平面に垂直な軸をy軸とする校正光学座標系を定義し、当該校正光学座標系における前記設置角φy(ただし、設置角φyは前記第1反射部の反射面の法線の前記y軸回りの回転角を示す。)を以下の式
φy=(90°+θy)+cos-1{(λ/2Mλ)×θx}
(上記式において、θx及びθyは、前記輝点の干渉像の画角であって当該干渉像と前記校正光学座標系の原点とを結ぶ線とx軸及びy軸との角度、λは前記校正光の波長、Mλは前記輝点の干渉像の光強度変化の1周期に相当する前記第1反射部の移動量を示す。)
から算出することを特徴とする請求項1に記載の分光特性測定装置。
The installation angle calculation unit is an xyz coordinate system having an origin at an incident point of the calibration light to the first reflection unit, and a plane including a normal line of the reflection surface of the first reflection unit is an xz plane, Define a calibration optical coordinate system having an axis perpendicular to the xz plane as the y-axis, and the installation angle φy in the calibration optical coordinate system (where the installation angle φy is the y of the normal of the reflection surface of the first reflecting portion) The rotation angle around the axis.) Is expressed by the following equation: φy = (90 ° + θy) + cos −1 {(λ / 2M λ ) × θx}
(In the above equation, θx and θy are the angles of view of the interference image of the bright spot, the angle between the line connecting the interference image and the origin of the calibration optical coordinate system, and the x-axis and y-axis, and λ is the above-mentioned wavelength calibration light, the M lambda indicates the movement amount of the first reflecting portion corresponding to one period of the light intensity change of the interference image of the bright spot.)
The spectral characteristic measuring apparatus according to claim 1, wherein the spectral characteristic measuring apparatus is calculated from:
前記設置角算出部は、z軸が前記輝点の干渉像と原点とを結ぶ線となる前記校正光学座標系における前記設置角φyを算出することを特徴とする請求項2に記載の分光特性測定装置。

前記設置角算出部は、前記輝点の画角θx及びθyをそれぞれθx=0及びθy=0として前記設置角φyを算出することを
The spectral characteristic according to claim 2, wherein the installation angle calculation unit calculates the installation angle φy in the calibration optical coordinate system in which the z-axis is a line connecting the interference image of the bright spot and the origin. measuring device.

The installation angle calculation unit calculates the installation angle φy by setting the angles of view θx and θy of the bright spot to θx = 0 and θy = 0, respectively.
前記処理部は、前記光路長差Lを、以下の式
L={2Mcos(φy-θ1'y)}/cos(θ1x) (ただし、θ1'y=θ1y+90°)
(上記式において、θ1x及びθ1yは前記測定点の画角、Mは前記第1反射部の移動量を示す。)
から算出することを特徴とする請求項2又は3に記載の分光特性測定装置。
The processing unit calculates the optical path length difference L by the following equation: L = {2Mcos (φy−θ1′y)} / cos (θ1x) (where θ1′y = θ1y + 90 °)
(In the above equation, θ1x and θ1y are the angle of view of the measurement point, and M is the amount of movement of the first reflecting portion.)
The spectral characteristic measuring apparatus according to claim 2, wherein the spectral characteristic measuring apparatus is calculated from:
校正光出射手段が、波長が既知の単色光源発せられた光をフライアイレンズに入射させることにより複数の離散輝点を形成することを特徴とする請求項1〜4のいずれかに記載の分光特性測定装置。   5. The spectroscopic method according to claim 1, wherein the calibration light emitting means forms a plurality of discrete bright spots by causing light emitted from a monochromatic light source having a known wavelength to enter a fly-eye lens. Characteristic measuring device. a) 被測定物の測定点から出射された光を第1反射部と第2反射部に導く分割光学系と、
b) 前記第1及び第2反射部によって反射された光を同一点に導き干渉像を形成する結像光学系と、
c) 前記第1反射部を移動させることにより前記分割光学系から前記第1反射部を経て前記結像光学系に向かう第1反射光と前記分割光学系から前記第2反射部を経て前記結像光学系に向かう第2反射光の間の光路長差を伸縮する光路長差伸縮手段と、
d) 前記第1反射部の移動量を検出する移動量検出部と、
e) 前記干渉像の光強度を検出する、複数の検出素子が2次元配列された光検出部と、
f) 前記光路長差伸縮手段によって前記光路長差を伸縮させることにより前記光検出部で検出される光強度変化に基づき、前記被測定物の測定点のインターフェログラムを求め、このインターフェログラムをフーリエ変換することによりスペクトルを取得する処理部と、
前記被測定物の測定点の画角を求める画角検出部と
を備える分光特性測定装置において、
画角が既知の輝点から出射された波長が既知の校正光を前記分割光学系に入射させ、そのとき前記結像光学系によって形成される干渉像の光強度変化1周期に相当する前記第1反射部の移動量を前記移動量検出部から取得し、
当該第1反射部の移動量と、前記輝点の画角と、前記校正光の波長とに基づき、前記第1反射部の設置角を求め、
前記第1反射部の設置角と前記測定点の画角とから、前記第1反射部の移動量に対応する前記光路長差を求め、該光路長差に基づきスペクトルを校正することを特徴とする分光特性測定装置の校正方法。
a) a splitting optical system that guides light emitted from the measurement point of the object to be measured to the first reflecting portion and the second reflecting portion;
b) an imaging optical system that guides the light reflected by the first and second reflectors to the same point to form an interference image;
c) by moving the first reflecting part, the first reflected light from the splitting optical system to the imaging optical system through the first reflecting part and the splitting optical system through the second reflecting part, Optical path length difference expansion / contraction means for expanding / contracting the optical path length difference between the second reflected light toward the image optical system;
d) a movement amount detection unit for detecting a movement amount of the first reflection unit;
e) a light detection unit in which a plurality of detection elements are two-dimensionally arranged to detect the light intensity of the interference image;
f) Obtaining an interferogram of the measurement point of the object to be measured based on the light intensity change detected by the light detection unit by expanding / contracting the optical path length difference by the optical path length difference expansion / contraction means, and this interferogram A processing unit that obtains a spectrum by Fourier transforming
In a spectral characteristic measuring apparatus comprising: an angle-of-view detection unit for obtaining an angle of view of a measurement point of the object to be measured;
Calibration light having a known wavelength emitted from a bright spot having a known angle of view is incident on the splitting optical system, and the first light beam corresponding to one period of a change in light intensity of an interference image formed by the imaging optical system at that time. 1 Acquire the movement amount of the reflection part from the movement amount detection unit,
Based on the amount of movement of the first reflecting part, the angle of view of the bright spot, and the wavelength of the calibration light, the installation angle of the first reflecting part is obtained,
The optical path length difference corresponding to the amount of movement of the first reflective part is obtained from the installation angle of the first reflective part and the angle of view of the measurement point, and the spectrum is calibrated based on the optical path length difference. Calibration method for spectral characteristic measuring apparatus.
前記第1反射部の設置角が、前記校正光の前記第1反射部への入射点を原点とするxyz座標系であって、前記第1反射部の反射面の法線を含む面をxz平面、該xz平面に垂直な軸をy軸とする校正光学座標系における前記設置角φy(ただし、設置角φyは前記第1反射部の反射面の法線の前記y軸回りの回転角を示す。)であり、当該設置角φyを以下の式
φy=(90°+θy)+cos-1{(λ/2Mλ)×θx}
(上記式において、θx及びθyは、前記輝点の干渉像の画角であって当該干渉像と前記校正光学座標系の原点とを結ぶ線とx軸及びy軸との角度、λは前記校正光の波長、Mλは前記輝点の干渉像の光強度変化の1周期に相当する前記第1反射部の移動量を示す。)
から算出することを特徴とする請求項6に記載の分光特性測定装置の校正方法。
An installation angle of the first reflecting part is an xyz coordinate system having an origin at an incident point of the calibration light to the first reflecting part, and a plane including a normal line of the reflecting surface of the first reflecting part is xz The installation angle φy in the calibration optical coordinate system having a plane and an axis perpendicular to the xz plane as the y-axis (where the installation angle φy is the rotation angle around the y-axis of the normal line of the reflection surface of the first reflecting portion) The installation angle φy is expressed by the following equation: φy = (90 ° + θy) + cos −1 {(λ / 2M λ ) × θx}
(In the above equation, θx and θy are the angles of view of the interference image of the bright spot, the angle between the line connecting the interference image and the origin of the calibration optical coordinate system, and the x-axis and y-axis, and λ is the above-mentioned wavelength calibration light, the M lambda indicates the movement amount of the first reflecting portion corresponding to one period of the light intensity change of the interference image of the bright spot.)
The spectral characteristic measuring apparatus calibration method according to claim 6, wherein the spectral characteristic measuring apparatus is calculated from:
前記校正光学座標系は、そのz軸が前記輝点の干渉像と原点とを結ぶ線であることを特徴とする請求項7に記載の分光特性測定装置の校正方法。   8. The method for calibrating a spectral characteristic measuring apparatus according to claim 7, wherein the calibration optical coordinate system has a z-axis that is a line connecting the interference image of the bright spot and the origin. 前記光路長差Lは、以下の式
L={2Mcos(φy-θ1'y)}/cos(θ1x) (ただし、θ1'y=θ1y+90°)
(上記式において、θ1x及びθ1yは前記測定点の画角、Mは前記第1反射部の移動量を示す。)
から算出することを特徴とする請求項7又は8に記載の分光特性測定装置の校正方法。
The optical path length difference L is expressed by the following equation: L = {2Mcos (φy−θ1′y)} / cos (θ1x) (where θ1′y = θ1y + 90 °)
(In the above equation, θ1x and θ1y are the angle of view of the measurement point, and M is the amount of movement of the first reflecting portion.)
9. The method for calibrating a spectral characteristic measuring apparatus according to claim 7, wherein the calibration method is calculated from:
JP2011043171A 2011-02-28 2011-02-28 Spectral characteristic measuring apparatus and calibration method thereof Active JP5648961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011043171A JP5648961B2 (en) 2011-02-28 2011-02-28 Spectral characteristic measuring apparatus and calibration method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011043171A JP5648961B2 (en) 2011-02-28 2011-02-28 Spectral characteristic measuring apparatus and calibration method thereof

Publications (2)

Publication Number Publication Date
JP2012181060A true JP2012181060A (en) 2012-09-20
JP5648961B2 JP5648961B2 (en) 2015-01-07

Family

ID=47012382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011043171A Active JP5648961B2 (en) 2011-02-28 2011-02-28 Spectral characteristic measuring apparatus and calibration method thereof

Country Status (1)

Country Link
JP (1) JP5648961B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104704333A (en) * 2012-10-05 2015-06-10 国立大学法人香川大学 Spectral characteristic measurement device
JP2016142523A (en) * 2015-01-29 2016-08-08 国立大学法人 香川大学 Spectral characteristic measuring apparatus and adjustment method thereof
US9482576B2 (en) 2012-10-05 2016-11-01 National University Corporation Kagawa University Spectroscopic measurement device having transmissive optical member with a sloped face
KR101913947B1 (en) 2017-06-13 2018-10-31 한국과학기술원 Scanning device and optical micorscopy system including the same
JP2019215262A (en) * 2018-06-13 2019-12-19 国立大学法人 香川大学 Spectrometric measurement device and spectrometric measurement method
US11402270B2 (en) 2018-06-13 2022-08-02 National University Corporation Kagawa University Spectral measurement device and spectral measurement method
CN115615938A (en) * 2022-12-14 2023-01-17 天津中科谱光信息技术有限公司 Water quality analysis method and device based on reflection spectrum and electronic equipment
CN116256062A (en) * 2023-04-20 2023-06-13 长沙思木锐信息技术有限公司 Spectral analysis device, method and calibration method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347324A (en) * 1993-06-11 1994-12-22 Res Dev Corp Of Japan Parallel multiple image fourier-transform spectroscopic imaging method
JP2000514556A (en) * 1996-07-12 2000-10-31 フォス エレクトリック アクティーゼルスカブ Interferometer
JP2005538359A (en) * 2002-09-09 2005-12-15 ザイゴ コーポレーション Interferometry for ellipsometry, reflected light and scattered light measurements, including characterization of thin film structures
JP2008507696A (en) * 2004-07-21 2008-03-13 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Interferometer calibration method and apparatus
JP2008309706A (en) * 2007-06-15 2008-12-25 Kagawa Univ Spectrometer and spectrometry

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347324A (en) * 1993-06-11 1994-12-22 Res Dev Corp Of Japan Parallel multiple image fourier-transform spectroscopic imaging method
JP2000514556A (en) * 1996-07-12 2000-10-31 フォス エレクトリック アクティーゼルスカブ Interferometer
JP2005538359A (en) * 2002-09-09 2005-12-15 ザイゴ コーポレーション Interferometry for ellipsometry, reflected light and scattered light measurements, including characterization of thin film structures
JP2008507696A (en) * 2004-07-21 2008-03-13 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Interferometer calibration method and apparatus
JP2008309706A (en) * 2007-06-15 2008-12-25 Kagawa Univ Spectrometer and spectrometry

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104704333A (en) * 2012-10-05 2015-06-10 国立大学法人香川大学 Spectral characteristic measurement device
JP2015111169A (en) * 2012-10-05 2015-06-18 国立大学法人 香川大学 Spectral characteristic measuring apparatus
CN104833634A (en) * 2012-10-05 2015-08-12 国立大学法人香川大学 Spectral characteristic measurement device
US9482576B2 (en) 2012-10-05 2016-11-01 National University Corporation Kagawa University Spectroscopic measurement device having transmissive optical member with a sloped face
US9488524B2 (en) 2012-10-05 2016-11-08 National University Corporation Kagawa University Spectroscopic measurement device having diffraction grating at conjugate plane of relay lens
JP2016142523A (en) * 2015-01-29 2016-08-08 国立大学法人 香川大学 Spectral characteristic measuring apparatus and adjustment method thereof
KR101913947B1 (en) 2017-06-13 2018-10-31 한국과학기술원 Scanning device and optical micorscopy system including the same
JP2019215262A (en) * 2018-06-13 2019-12-19 国立大学法人 香川大学 Spectrometric measurement device and spectrometric measurement method
US11402270B2 (en) 2018-06-13 2022-08-02 National University Corporation Kagawa University Spectral measurement device and spectral measurement method
JP7182243B2 (en) 2018-06-13 2022-12-02 国立大学法人 香川大学 Spectroscopic measurement device and spectroscopic measurement method
CN115615938A (en) * 2022-12-14 2023-01-17 天津中科谱光信息技术有限公司 Water quality analysis method and device based on reflection spectrum and electronic equipment
CN116256062A (en) * 2023-04-20 2023-06-13 长沙思木锐信息技术有限公司 Spectral analysis device, method and calibration method
CN116256062B (en) * 2023-04-20 2024-02-09 长沙思木锐信息技术有限公司 Spectral analysis device, method and calibration method

Also Published As

Publication number Publication date
JP5648961B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5648961B2 (en) Spectral characteristic measuring apparatus and calibration method thereof
JP5349739B2 (en) Interferometer and interferometer calibration method
US8773757B2 (en) Slit-scan multi-wavelength confocal lens module and slit-scan microscopic system and method using the same
KR101683408B1 (en) Spectroscopic measurement device
JP5954979B2 (en) Measuring device with multi-wavelength interferometer
TWI484139B (en) Chromatic confocal scanning apparatus
JP5394317B2 (en) Rotationally symmetric aspherical shape measuring device
JP5882674B2 (en) Multi-wavelength interferometer, measuring apparatus and measuring method
JP5120873B2 (en) Spectroscopic measurement apparatus and spectral measurement method
KR20120044064A (en) Optical measuring apparatus
KR20120099504A (en) Surface shape measurement method and surface shape measurement device
JP2009162539A (en) Light wave interferometer apparatus
JP2014532173A5 (en)
JP5849231B2 (en) Surface shape measuring apparatus and method
JP2013152191A (en) Multi-wavelength interferometer
KR101251292B1 (en) Three dimensional shape and depth measuring device using polarized light
KR101794641B1 (en) A slope spectrum system for measuring height of object by using wavelength division
JP5282929B2 (en) Multi-wavelength interferometer
KR101620594B1 (en) spectroscopy apparatus
JP2007298281A (en) Measuring method and device of surface shape of specimen
JP5740701B2 (en) Interferometer
JP2007093288A (en) Light measuring instrument and light measuring method
JP5233643B2 (en) Shape measuring device
KR20200125149A (en) Apparatus for monitoring three-dimensional shape of target object capable of auto focusing in real time
CN114341602B (en) Spectrometry device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141031

R150 Certificate of patent or registration of utility model

Ref document number: 5648961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250