JP2008309706A - Spectrometer and spectrometry - Google Patents

Spectrometer and spectrometry Download PDF

Info

Publication number
JP2008309706A
JP2008309706A JP2007159096A JP2007159096A JP2008309706A JP 2008309706 A JP2008309706 A JP 2008309706A JP 2007159096 A JP2007159096 A JP 2007159096A JP 2007159096 A JP2007159096 A JP 2007159096A JP 2008309706 A JP2008309706 A JP 2008309706A
Authority
JP
Japan
Prior art keywords
light
optical system
path length
length difference
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007159096A
Other languages
Japanese (ja)
Other versions
JP5120873B2 (en
Inventor
Ichiro Ishimaru
伊知郎 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagawa University NUC
Original Assignee
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagawa University NUC filed Critical Kagawa University NUC
Priority to JP2007159096A priority Critical patent/JP5120873B2/en
Publication of JP2008309706A publication Critical patent/JP2008309706A/en
Application granted granted Critical
Publication of JP5120873B2 publication Critical patent/JP5120873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-sensitivity spectrometer with high spatial and time resolution, and also to provide its method. <P>SOLUTION: A group of light beams (also called object beam) such as scattered light and transmitted light radially emitted in various directions from one bright spot on a measuring object S, enter an objective lens 12, pass therethrough, and then arrive at a fixed mirror part 15 and a movable mirror part 16 of a phase shifter 14. The rays are reflected by the mirror parts 15 and 16, respectively, and then form an interference figure on an imaging surface of a detection part 24 through an image-forming lens 22. Moving the mirror part 16 in such a state, gradually changes the intensity of interference light on the imaging surface of the detection part, providing a waveform of an imaging intensity change (interference light intensity change) called an interferogram. By Fourier-transforming this interferogram spectral characteristics are acquired which are the wavelength-by-wavelength relative intensities of the light emitted from the one bright spot on the measuring object S. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ライフサイエンスの分野における極微小な単一細胞内の生体成分分析技術や、ナノテクノロジーの分野における微細構造デバイスの材料評価技術として有用な分光計測装置及び分光計測方法に関する。   The present invention relates to a spectroscopic measurement apparatus and a spectroscopic measurement method that are useful as a biocomponent analysis technique in a very small single cell in the field of life science, and as a material evaluation technique of a fine structure device in the field of nanotechnology.

ヒトゲノム計画が終了し、ライフサイエンス分野においてはポストゲノムと呼ばれる時代を迎えるに至った。ポストゲノム時代においては、ヒトゲノム計画で構造解析が行われた人間の設計図とも呼ばれる、およそ30億もの塩基対で構成される塩基配列の機能的な役割を明らかにすることに重点をおいて研究が進められている。しかし、人体はおよそ60兆個という膨大な数の細胞から構成されていると言われており、このような人体を用いて30億の塩基対の一部の塩基配列の違いによる生体機能への影響を評価するのは容易ではない。そこで、ポストゲノム時代においては、シャーレなどで培養した生きたままの細胞を用いて機能解明を行う研究が強力に推進されている。   The Human Genome Project has ended, and we have reached an era called post-genome in the life science field. In the post-genome era, research focused on clarifying the functional role of base sequences composed of approximately 3 billion base pairs, also called human blueprints that were analyzed by the Human Genome Project. Is underway. However, it is said that the human body is composed of an enormous number of cells of approximately 60 trillion. Using such a human body, the biological function due to the difference in the base sequence of a part of 3 billion base pairs. It is not easy to assess the impact. Therefore, in the post-genome era, research for elucidating functions using living cells cultured in petri dishes is being strongly promoted.

また、テーラーメイド治療やオーダーメイド医療と呼ばれる、個々人の体質に適合した治療方法を選定する臨床的な試みがなされてきている。具体的には、例えば外科的に採取したガン細胞(腫瘍細胞)をシャーレ上で培養し、この培養細胞を用いて複数の抗ガン剤の効果を実験的に検証することにより特定の個人に効果的な薬剤を選定する。そのためには、直径が十ミクロン程度の極微小な単一細胞の内部における生体成分の変化を詳細に観察する必要がある。   In addition, clinical trials have been undertaken to select treatment methods suitable for individual constitutions, called tailor-made treatments and tailor-made treatments. Specifically, for example, cancer cells (tumor cells) collected surgically are cultured on a petri dish, and the effects of a plurality of anticancer agents are experimentally verified using the cultured cells. The right drug. For this purpose, it is necessary to observe in detail changes in biological components inside a very small single cell having a diameter of about 10 microns.

このようなライフサイエンス分野の研究開発や需要を背景に、単一細胞内部の生体成分分布を、高い空間解像度で詳細に観察する技術が鋭意研究開発されている。その代表的な観察手法として、蛍光物質により特定の成分を標識し、その蛍光の空間的な位置を観察することにより生体成分の空間的な分布を測定する方式が挙げられる。
特定の生体成分を標識する蛍光物質としては、例えば量子ドットや緑色蛍光タンパク質(GFP:Green Florescent Protein)が用いられている。量子ドットは、その粒径に応じて異なる色の蛍光を発する数十ナノ程度の極微小粒子である。そこで、粒径の揃った1ないし複数種類の量子ドットを作り、特定の生体成分に化学的に結合させれば、量子ドットが発する蛍光の空間的な分布を観察することにより特定の生体成分の空間的な分布を間接的に計測することができる。
Against the background of research and development and demand in the life science field, a technique for observing the distribution of biological components inside a single cell in detail with high spatial resolution has been intensively researched and developed. As a typical observation method, there is a method in which a specific component is labeled with a fluorescent substance and the spatial distribution of the biological component is measured by observing the spatial position of the fluorescence.
For example, quantum dots and green fluorescent protein (GFP) are used as fluorescent substances for labeling specific biological components. Quantum dots are ultrafine particles of about several tens of nanometers that emit fluorescence of different colors according to their particle sizes. Therefore, if one or more types of quantum dots having a uniform particle size are made and chemically bonded to a specific biological component, the spatial distribution of the fluorescence emitted by the quantum dot is observed to observe the specific biological component. Spatial distribution can be indirectly measured.

微小粒子内における蛍光の分布を計測する技術として、分散型分光法或いはフーリエ分光法と呼ばれる分光技術を用いた手法が提案されている(非特許文献1参照)。
波長分散型分光法は、測定試料を透過した光、或いは測定試料面で反射した光(以下、物体光という)を回折格子に照射したときに、当該物体光の波長に応じて回折角が異なる原理を利用した分光法である。
As a technique for measuring the distribution of fluorescence in a minute particle, a technique using a spectroscopic technique called dispersion spectroscopy or Fourier spectroscopy has been proposed (see Non-Patent Document 1).
In wavelength dispersion spectroscopy, when a diffraction grating is irradiated with light transmitted through a measurement sample or light reflected from the measurement sample surface (hereinafter referred to as object light), the diffraction angle varies depending on the wavelength of the object light. It is a spectroscopic method using the principle.

一方、フーリエ分光法は、マイケルソン型の2光束干渉光学系を用いた位相シフト干渉による分光計測技術である。物体光をハーフミラーなどのビームスプリッタにより2分岐し、それぞれの光束をミラーにより反射させて再度ハーフミラーに到達させ、2光束を合流させて干渉現象を観察する。2分岐した光束のうちの一方(参照光)を反射するミラーは参照ミラーと呼ばれる。フーリエ分光法では、参照ミラーを光の波長よりも短い分解能で高精度に移動させて干渉光強度を変化させ、いわゆるインターフェログラムを検出し、このインターフェログラムを数学的にフーリエ変換することにより分光特性を取得する。   On the other hand, Fourier spectroscopy is a spectroscopic measurement technique based on phase shift interference using a Michelson-type two-beam interference optical system. The object light is branched into two by a beam splitter such as a half mirror, the respective light beams are reflected by the mirror, reach the half mirror again, and the two light beams are merged to observe the interference phenomenon. A mirror that reflects one of the two branched light beams (reference light) is called a reference mirror. In Fourier spectroscopy, the reference mirror is moved with high accuracy at a resolution shorter than the wavelength of light to change the interference light intensity, so-called interferogram is detected, and this interferogram is mathematically Fourier transformed. Obtain spectral characteristics.

測定試料面から射出される物体光の光線方向は、散乱、屈折、反射等により様々な方向となる。このように多様な方向の光線成分が回折格子や参照ミラーに照射されると、分光精度が低下する。そのため、いずれの分光法においても物体光の空間的コヒーレンシー(可干渉性)を高めるために、微小開口を有するピンホールやスリットを用いて物体光のうち特定方向の光線成分のみを回折格子や参照ミラーに照射させている。求められる分光性能にもよるが、分散型分光法では穴径が数十ミクロン程度のピンホールが、フーリエ分光法では数ミリ程度の開口幅を有するスリットが用いられる。
平石次郎編「フーリエ変換赤外分光法」学会出版センター, 1985年11月
The direction of the light beam of the object light emitted from the measurement sample surface is varied depending on scattering, refraction, reflection, and the like. When light components in various directions are irradiated on the diffraction grating and the reference mirror in this way, the spectral accuracy is lowered. Therefore, to increase the spatial coherency (coherence) of the object light in any spectroscopic method, only a light component in a specific direction of the object light using a pinhole or slit having a minute aperture is used as a diffraction grating or a reference. The mirror is illuminated. Depending on the required spectral performance, a pinhole having a hole diameter of about several tens of microns is used in the dispersion type spectroscopy, and a slit having an opening width of about several millimeters is used in the Fourier spectroscopy.
Jiro Hiraishi, "Fourier Transform Infrared Spectroscopy" Society Publishing Center, November 1985

ところが、ピンホールやスリットを用いると、大半の物体光はピンホールやスリットを通過せず、計測に用いられないことから、光の利用効率が低い。上述した量子ドットやGFPが発する蛍光は、量子効率の高い高感度冷却CCDカメラでやっと観察できる程度の極微弱光である。このため、従来の分光技術は微弱光計測には不向きであり、単一細胞内部の任意の位置で発する蛍光を観察したり、その蛍光色を弁別したりすることは困難であった。   However, when pinholes and slits are used, most of the object light does not pass through the pinholes and slits and is not used for measurement, so the light utilization efficiency is low. The fluorescence emitted from the quantum dots and GFP described above is extremely weak light that can be finally observed with a high-sensitivity cooled CCD camera with high quantum efficiency. For this reason, the conventional spectroscopic technique is unsuitable for weak light measurement, and it has been difficult to observe the fluorescence emitted at an arbitrary position inside a single cell or discriminate the fluorescence color.

また、いずれの分光法も、測定試料上の所定の測定領域から生じている光の全てについて分光を行うことから、測定領域内の平均的な分光特性を取得することとなる。この測定領域の面積を狭くすれば空間解像度は向上するが、検出される物体光の総量は少なくなり分光感度は低下する。また、試料上の1点から生じた物体光を計測する技術であることから2次元で分光計測するためには測定領域を2次元で走査しなくてはならない。従って、2次元分光像の空間解像度は測定領域面積だけではなく、各計測点の間隔にも大きく依存する。そのため、高い空間解像度で2次元分光する為には、測定領域面積を狭くし、かつ空間的に高い密度で計測点を設けなくてはならず、測定時間が長くなる。測定時間が長くなると、生きたままの細胞など動きを伴う試料を分光計測する場合には、測定時間内に測定対象が移動してしまい、画像にぶれを生じる。
また、測定試料が光学的に透明体の場合、深さ方向の測定領域を限定して分光を行うことはできない。そのため、例えば3次元の分光吸収率分布などは計測できなかった。
In any of the spectroscopic methods, since all of light generated from a predetermined measurement region on the measurement sample is subjected to spectroscopy, an average spectral characteristic in the measurement region is acquired. If the area of the measurement region is reduced, the spatial resolution is improved, but the total amount of detected object light is reduced and the spectral sensitivity is lowered. Further, since it is a technique for measuring object light generated from one point on the sample, the measurement region must be scanned in two dimensions in order to perform spectroscopic measurement in two dimensions. Therefore, the spatial resolution of the two-dimensional spectral image greatly depends not only on the area of the measurement region but also on the interval between the measurement points. Therefore, in order to perform two-dimensional spectroscopy with a high spatial resolution, it is necessary to reduce the area of the measurement region and provide measurement points with a high spatial density, resulting in a long measurement time. When the measurement time becomes long, when a sample such as a living cell that moves is spectroscopically measured, the measurement object moves within the measurement time, and the image is blurred.
Further, when the measurement sample is optically transparent, it is not possible to perform spectroscopy by limiting the measurement region in the depth direction. For this reason, for example, a three-dimensional spectral absorptance distribution cannot be measured.

上記した課題はライフサイエンスの分野に限らず、半導体メモリーや液晶、プラズマ、有機EL方式によるフラットパネルディスプレイなど、ナノメートルオーダーの微細構造を有する電子デバイスの製品がめざましい発展を遂げているナノテクノロジーの分野でも存在する。つまり、微細構造デバイスの分光計測による材料評価技術としても、2次元、あるいは3次元の高い空間解像度を有する分光光学手法の需要は高い。   The above-mentioned issues are not limited to the field of life science, but the development of nanotechnology that has achieved remarkable development of electronic device products with fine structures on the order of nanometers such as semiconductor memory, liquid crystal, plasma, and organic EL flat panel displays. It also exists in the field. That is, as a material evaluation technique based on spectroscopic measurement of a fine structure device, there is a high demand for a spectroscopic optical method having a high two-dimensional or three-dimensional spatial resolution.

本発明が解決しようとする課題は、空間的、時間的に分解能の高い高感度な分光計測装置及びその方法を提供することである。   The problem to be solved by the present invention is to provide a highly sensitive spectroscopic measuring apparatus with high spatial and temporal resolution and a method therefor.

上記課題を解決するために成された本発明に係る分光計測装置は、
a) 被測定物の各測定点から多様な方向に向かって発せられた光が入射する分割光学系と、
b) 前記分割光学系を透過した光をほぼ同一点に導き干渉像を形成するを結像光学系と、
c) 前記干渉像の光強度を検出する検出部と、
d) 前記分割光学系から前記結像光学系に向かう光の一部と残りの光の相対的な光学光路長差を伸縮する光路長差伸縮手段と、
e) 前記光路長差伸縮手段によって光学光路長差を伸縮させることにより前記検出部で検出される光強度変化に基づき、前記被測定物の各測定点のインターフェログラムを求め、このインターフェログラムをフーリエ変換することによりスペクトルを取得する処理部と、
を備えることを特徴とする。
The spectroscopic measurement device according to the present invention, which has been made to solve the above problems,
a) a splitting optical system in which light emitted in various directions from each measurement point of the object to be measured is incident;
b) An imaging optical system for guiding the light transmitted through the splitting optical system to substantially the same point to form an interference image;
c) a detection unit for detecting the light intensity of the interference image;
d) optical path length difference expansion / contraction means for expanding / contracting a relative optical optical path length difference between a part of the light traveling from the splitting optical system toward the imaging optical system and the remaining light;
e) Obtaining an interferogram at each measurement point of the object to be measured based on a change in light intensity detected by the detection unit by expanding / contracting the optical optical path length difference by the optical path length difference expansion / contraction means, and the interferogram A processing unit that obtains a spectrum by Fourier transforming
It is characterized by providing.

また、同じ原理であるが、別の構成として本発明に係る分光計測装置は、
a) 被測定物の各測定点から多様な方向に向かって発せられた光を第1反射部と第2反射部とに分割して導く分割光学系と、
b) 前記第1及び第2反射部によって反射された光をほぼ同一点に導き干渉像を形成する結像光学系と、
c) 前記第1及び第2反射部を相対的に移動させることにより前記分割光学系から前記第1反射部を経て前記結像光学系に向かう光と前記分割光学系から前記第2反射部を経て前記結像光学系に向かう光の光学光路長差を伸縮する光路長差伸縮手段と、
d) 前記干渉像の光強度を検出する検出部と、
e) 前記光路長差伸縮手段によって光学光路長差を伸縮させることにより前記検出部で検出される光強度変化に基づき、前記被測定物の各測定点のインターフェログラムを求め、このインターフェログラムをフーリエ変換することによりスペクトルを取得する処理部と、
を備えることを特徴とする。
Moreover, although it is the same principle, the spectroscopic measurement apparatus which concerns on this invention as another structure is
a) a splitting optical system that guides light emitted from each measurement point of the object to be measured in various directions into a first reflecting part and a second reflecting part;
b) an imaging optical system for guiding the light reflected by the first and second reflecting portions to substantially the same point to form an interference image;
c) By moving the first and second reflecting parts relatively, light traveling from the splitting optical system to the imaging optical system via the first reflecting part and the second reflecting part from the splitting optical system. An optical path length difference expansion / contraction means for expanding / contracting the optical optical path length difference of the light passing through the imaging optical system,
d) a detection unit for detecting the light intensity of the interference image;
e) Obtaining an interferogram at each measurement point of the object to be measured based on a change in light intensity detected by the detection unit by expanding / contracting the optical optical path length difference by the optical path length difference expansion / contraction means, and the interferogram A processing unit that obtains a spectrum by Fourier transforming
It is characterized by providing.

上記構成においては、第1及び第2反射部の反射面を、それぞれ分割光学系を透過した平行光束の光軸に対して45°傾いた状態で配置すると、第1及び第2反射部で反射した光をそのまま結像光学系に導くことができる。   In the above configuration, when the reflecting surfaces of the first and second reflecting parts are arranged at an angle of 45 ° with respect to the optical axis of the parallel light beam transmitted through the split optical system, the first and second reflecting parts reflect the reflecting surfaces. The reflected light can be directly guided to the imaging optical system.

更に、本発明の分光計測方法は、
a) 被測定物の各測定点から多様な方向に向かって発せられた光を分割光学系によって位相固定光線群と位相可変光線群に分割し、
b) 前記位相可変光線群の光学光路長差を伸縮させつつ前記位相可変光線群と前記位相固定光線群を結像光学系によってほぼ同一点に導いて干渉像を形成させ、
c) 前記干渉像の光強度変化に基づき前記被測定物の各測定点のインターフェログラムを求め、このインターフェログラムをフーリエ変換することによりスペクトルを取得することを特徴とする。
Furthermore, the spectroscopic measurement method of the present invention provides:
a) The light emitted from each measurement point of the object to be measured in various directions is divided into a phase-fixed light beam group and a phase-variable light beam group by a splitting optical system,
b) While expanding or contracting the optical path length difference of the phase variable beam group, the phase variable beam group and the phase fixed beam group are guided to substantially the same point by an imaging optical system to form an interference image,
c) Obtaining an interferogram of each measurement point of the object to be measured based on a change in light intensity of the interference image, and obtaining a spectrum by performing a Fourier transform on the interferogram.

本発明に係る分光計測装置及び分光計測方法は、結像光学系を用いたものであり、被測定物を光学的に構成する各輝点から生じる光を分割光学系で分割し、分割された光同士の干渉現象を利用して被測定物のインターフェログラムを求めている。ここで、「分割光学系」の用語は、各輝点からの光を単純に分割するものとして、光学的に光を波長毎に分割する「分光光学系」と区別して用いている。
本発明では、分割光学系を透過してきた光線の全てを分析に用いることができるため、極めて光の利用効率が高く、微弱光計測に適している。
また、本発明は結像光学系を用いていることから、検出部として1次元の検出デバイスを用いれば高感度な1次元分光計測が可能となり、2次元の検出デバイスを用いれば高感度な2次元の分光計測が可能となる。
The spectroscopic measurement apparatus and the spectroscopic measurement method according to the present invention use an imaging optical system, and the light generated from each bright spot that optically configures the object to be measured is split by the split optical system. The interferogram of the object to be measured is obtained using the interference phenomenon between the lights. Here, the term “divided optical system” is used to distinguish the light from each luminescent spot simply from the “spectral optical system” that optically divides the light for each wavelength.
In the present invention, since all the light beams that have passed through the split optical system can be used for analysis, the light utilization efficiency is extremely high, and it is suitable for weak light measurement.
In addition, since the present invention uses an imaging optical system, high-sensitivity one-dimensional spectroscopic measurement is possible if a one-dimensional detection device is used as the detection unit, and high-sensitivity 2 is achieved if a two-dimensional detection device is used. Dimensional spectroscopic measurement is possible.

一般に、結像光学系の空間解像度は、λ/NAに比例して決まることが知られている。なお、λは光の波長、NAは対物レンズの数値開口数(Numerical Aperture)を示す。従って、高NAの対物レンズを用いれば高い解像度を得ることができる。また、液侵レンズや変形照明など超解像技術を組み合わせて用いれば、解像度の一層の向上を図ることができる。   In general, it is known that the spatial resolution of the imaging optical system is determined in proportion to λ / NA. Λ is the wavelength of light, and NA is the numerical aperture of the objective lens. Therefore, high resolution can be obtained by using a high NA objective lens. Further, if a super-resolution technique such as an immersion lens or modified illumination is used in combination, the resolution can be further improved.

更に、本発明では、分割光学系の合焦位置から発せられ結像に作用する光線のみの分光特性を計測できる。これにより、分割光学系を構成する対物レンズあるいは試料を焦点深度方向に移動させ合焦位置を移動させることにより3次元の分光特性を取得できる。
焦点深度はλ/NAに比例して光学的に決定されることから、超解像技術を用いて高NA光学システムを用いれば深さ方向の空間的な分解能も容易に向上させることができる。
Furthermore, in the present invention, it is possible to measure the spectral characteristics of only the light rays that are emitted from the focus position of the splitting optical system and that affect the image formation. Thereby, the three-dimensional spectral characteristics can be acquired by moving the objective lens or the sample constituting the split optical system in the focal depth direction and moving the in-focus position.
Since the depth of focus is optically determined in proportion to λ / NA 2 , the spatial resolution in the depth direction can be easily improved using a high NA optical system using super-resolution technology. .

物体に光を照射すると、反射、屈折、散乱、蛍光など様々な光学現象に起因して物体光が生成される。これらの生成された光により物体を光学的にモデル化すると、理想的な点光源である輝点の集合体と見なすことができる。照明方式や物体光を生成する光学現象により指向性は異なるが、理想的な点光源である1つの輝点からは、放射状に光線が射出される。このように光学的に物体を構成している輝点群を、レンズを用いて結像面上に再構成して光学的に共役な輝点群を像として形成するのが結像光学系であり、本発明はこの結像光学系を用いている。   When an object is irradiated with light, object light is generated due to various optical phenomena such as reflection, refraction, scattering, and fluorescence. When an object is optically modeled by these generated lights, it can be regarded as an aggregate of bright spots that are ideal point light sources. Although directivity differs depending on the illumination method and the optical phenomenon that generates the object light, light rays are emitted radially from one bright point that is an ideal point light source. The imaging optical system forms the optically conjugate bright spot group as an image by reconstructing the bright spot group that optically constitutes an object in this way on the imaging surface using a lens. In the present invention, this imaging optical system is used.

本発明では、物体を光学的に構成する各輝点から生じる物体光を2つの光線群に分割し、これら光線群同士の干渉現象によって検出器の結像面に形成される干渉光強度(結像強度)を検出する。2つの光線群の相対的な光路長差を変化させると、両光線群を構成する種々の波長の光線の干渉光強度は、その波長の長さに応じて周期的に変化することから、干渉光強度変化、即ちインターフェログラムを取得することができる。このインターフェログラムをフーリエ変換することにより波長ごとの相対強度である分光特性を取得することができる。   In the present invention, the object light generated from each bright spot that optically constitutes the object is divided into two light beam groups, and the interference light intensity (condensation) formed on the imaging surface of the detector by the interference phenomenon between these light beam groups. Image intensity) is detected. When the relative optical path length difference between the two light groups is changed, the interference light intensity of the light beams of various wavelengths constituting both light groups changes periodically according to the lengths of the wavelengths. Light intensity change, that is, an interferogram can be acquired. Spectral characteristics, which are relative intensities for each wavelength, can be acquired by Fourier transforming this interferogram.

また、物体を構成する各輝点から生じる物体光が入射する対物レンズの合焦位置を走査可能に構成すれば、物体の三次元画像を取得することができる。例えば蛍光色素で物体内に含まれるであろう特定成分を標識した場合、物体に励起光を照射することにより蛍光色素が自発光体となって多様な方向に光線が射出する。この光線の干渉光強度を検出することにより、細胞を生きたままの状態で内部の詳細な成分分布を観察することができる。また、照明光により励起された電気双極子から生じる電界成分である散乱光線についても同様である。   Further, if the in-focus position of the objective lens on which the object light generated from each bright spot constituting the object is incident can be scanned, a three-dimensional image of the object can be acquired. For example, when a specific component that will be contained in an object is labeled with a fluorescent dye, the fluorescent dye becomes a self-luminous substance by irradiating the object with excitation light, and light rays are emitted in various directions. By detecting the interference light intensity of this light beam, the detailed component distribution inside can be observed while the cells are still alive. The same applies to scattered light that is an electric field component generated from an electric dipole excited by illumination light.

蛍光発光や散乱光線の場合、各輝点間の光線の初期位相は必ずしも一致していない。つまり、物体上に初期位相の揃わない輝点が多数分布していると光学的にモデル化して考えられる。しかし、物体面から結像面に至るまでの空間において、各光線の光路を辿れば、物体を光学的に構成している1つの輝点から発生した光線群は結像面上で位相が揃って1点に集光することにより結像していると考えることができる。
以下、本発明を分光計測装置である分光断層像計測装置に適用した具体的な実施例について説明する。
In the case of fluorescent emission or scattered light, the initial phase of the light beam between the bright spots does not necessarily match. In other words, it can be considered that an optical model is formed when a large number of bright spots having an initial phase that are not aligned are distributed on the object. However, in the space from the object plane to the imaging plane, if the optical path of each ray is traced, the light rays generated from one bright spot that optically composes the object are aligned in phase on the imaging plane. It can be considered that the image is formed by focusing on one point.
Hereinafter, specific examples in which the present invention is applied to a spectral tomographic image measuring apparatus which is a spectral measuring apparatus will be described.

図1〜図8は本発明の第1の実施例を示しており、図1は本実施例に係る分光断層像計測装置10の全体構成の概略図である。図示しない光源から被測定物Sに対して光が照射されることにより当該被測定物Sの1輝点から多様な方向に向かって放射状に生じる散乱光や蛍光発光等の光線群(「物体光」ともいう)は、対物レンズ12に入射し、平行光束へ変換される。
前記対物レンズ12は、レンズ駆動機構13によって光軸方向に移動可能に構成されている。レンズ駆動機構13は、対物レンズ12の合焦位置を走査するためのもので、例えばピエゾ素子により構成することができる。
1 to 8 show a first embodiment of the present invention, and FIG. 1 is a schematic diagram of an overall configuration of a spectral tomographic image measurement apparatus 10 according to the present embodiment. When a light source (not shown) irradiates the object S with light, a group of rays (such as “object light”), such as scattered light and fluorescence emitted radially from one bright spot of the object S to be measured in various directions. Is also incident on the objective lens 12 and converted into a parallel light beam.
The objective lens 12 is configured to be movable in the optical axis direction by a lens driving mechanism 13. The lens driving mechanism 13 is for scanning the in-focus position of the objective lens 12 and can be constituted by, for example, a piezo element.

なお、対物レンズ12を透過した後の光束は完全な平行光束である必要はない。後述するように、1つの輝点から生じた光線群を2分割あるいはそれ以上に分割できる程度に広げることができればよい。ただし、平行光束でない場合は、後述の位相シフト量に応じて生じる位相差量に誤差を生じ易い。従って、より高い分光計測精度を得るためにはできるだけ平行光束とすることが望ましい。   The light beam after passing through the objective lens 12 does not have to be a perfect parallel light beam. As will be described later, it suffices if the light ray group generated from one bright spot can be expanded to such a degree that it can be divided into two or more. However, if the light beam is not a parallel light beam, an error is likely to occur in the phase difference amount generated according to the phase shift amount described later. Therefore, in order to obtain higher spectroscopic measurement accuracy, it is desirable to use a parallel beam as much as possible.

対物レンズ12を透過してきた平行光束は位相シフター14に到達する。位相シフター14は、例えば図2に示すように、矩形板状の固定ミラー部15、その中央の円孔部15aに挿入された円柱状の可動ミラー部16、可動ミラー部16を保持する保持部17、保持部17を移動する駆動ステージ18を備えて構成されている。固定ミラー部15及び可動ミラー部16の表面は光学的に平坦で且つ本装置10が計測対象とする光の波長帯域を反射可能な光学鏡面となっている。   The parallel light beam that has passed through the objective lens 12 reaches the phase shifter 14. For example, as shown in FIG. 2, the phase shifter 14 includes a rectangular plate-like fixed mirror portion 15, a columnar movable mirror portion 16 inserted into a circular hole portion 15 a at the center thereof, and a holding portion that holds the movable mirror portion 16. 17, a drive stage 18 that moves the holding unit 17 is provided. The surfaces of the fixed mirror unit 15 and the movable mirror unit 16 are optically flat and are optical mirror surfaces capable of reflecting the wavelength band of light to be measured by the apparatus 10.

本実施例では、位相シフター14が本発明の光路長差伸縮手段に相当し、固定ミラー部15及び可動ミラー部16がそれぞれ第1及び第2反射部に相当する。
なお、以下の説明では、位相シフター14に到達した光束のうち固定ミラー部15の反射面に到達して反射される光束を固定光線群、可動ミラー部16の反射面に到達して反射される光束を可動光線群ともいう。
In this embodiment, the phase shifter 14 corresponds to the optical path length difference expansion / contraction means of the present invention, and the fixed mirror portion 15 and the movable mirror portion 16 correspond to the first and second reflecting portions, respectively.
In the following description, among the light beams that have reached the phase shifter 14, the light beam that has reached the reflection surface of the fixed mirror unit 15 and reflected is reached and reflected by the fixed light beam group and the reflection surface of the movable mirror unit 16. The luminous flux is also referred to as a movable ray group.

駆動ステージ18は、例えば静電容量センサーを具備する圧電素子から構成されており、制御部20からの制御信号を受けて保持部を矢印A方向に移動する。これにより、可動ミラー部16は光の波長に応じた精度で矢印A方向に移動する。分光計測能力にもよるが、例えば可視光領域では10nm程度の高精度な位置制御が必要となる。   The drive stage 18 is composed of, for example, a piezoelectric element having a capacitance sensor, and moves the holding unit in the direction of arrow A in response to a control signal from the control unit 20. Thereby, the movable mirror part 16 moves to the arrow A direction with the accuracy according to the wavelength of light. Depending on the spectroscopic measurement capability, for example, in the visible light region, highly accurate position control of about 10 nm is required.

また、位相シフター14は、対物レンズ12からの平行光束の光軸に対して固定ミラー部15及び可動ミラー部16の反射面が45度傾くように配置されている。駆動ステージ18は、可動ミラー部16の反射面の光軸に対する傾きを45度に維持した状態で当該可動ミラー部16を移動する。このような構成により、可動ミラー部16の光軸方向の移動量は、駆動ステージ18の移動量の1/√2となる。また、固定光線群と可動光線群の2光束間の相対的な位相変化を与える光路長差は、可動ミラー部16の光軸方向の移動量の2倍となる。   The phase shifter 14 is arranged so that the reflecting surfaces of the fixed mirror unit 15 and the movable mirror unit 16 are inclined by 45 degrees with respect to the optical axis of the parallel light flux from the objective lens 12. The drive stage 18 moves the movable mirror unit 16 while maintaining the inclination of the reflecting surface of the movable mirror unit 16 with respect to the optical axis at 45 degrees. With this configuration, the moving amount of the movable mirror unit 16 in the optical axis direction is 1 / √2 of the moving amount of the drive stage 18. Further, the optical path length difference that gives a relative phase change between the two light beams of the fixed light beam group and the movable light beam group is twice the amount of movement of the movable mirror unit 16 in the optical axis direction.

このように固定ミラー部15及び可動ミラー部16を斜めに配置すれば、光線を分岐するためのビームスプリッタが不要となるため、物体光の利用効率を高くすることができる。また、可動ミラー部16を傾けたことにより、駆動ステージ18の移動量に対する可動ミラー部16の光軸方向の移動量が小さくなるため、ステージ移動誤差の分光計測精度への劣化の影響を小さくできる。   If the fixed mirror unit 15 and the movable mirror unit 16 are arranged obliquely in this way, a beam splitter for branching the light beam is not necessary, and the utilization efficiency of the object light can be increased. Further, since the movable mirror unit 16 is tilted, the amount of movement of the movable mirror unit 16 in the optical axis direction with respect to the amount of movement of the drive stage 18 is reduced, so that the influence of deterioration of the stage movement error on the spectral measurement accuracy can be reduced. .

位相シフター14に到達し、固定ミラー部15及び可動ミラー部16の反射面で反射された固定光線群及び可動光線群は、それぞれ結像レンズ22により収束されて検出部24の結像面に入る。検出部24は例えば二次元CCDカメラから構成されている。固定ミラー部15の反射面と可動ミラー部16の反射面は、検出部24の結像面で2つの光線群の集光位置がずれない程度の精度で平行に構成されている。   The fixed ray group and the movable ray group that reach the phase shifter 14 and are reflected by the reflecting surfaces of the fixed mirror unit 15 and the movable mirror unit 16 are converged by the imaging lens 22 and enter the imaging plane of the detection unit 24. . The detection unit 24 is composed of, for example, a two-dimensional CCD camera. The reflecting surface of the fixed mirror unit 15 and the reflecting surface of the movable mirror unit 16 are configured in parallel with an accuracy that does not shift the condensing positions of the two light beam groups on the imaging surface of the detecting unit 24.

上記構成を有する分光断層像計測装置10の光学的作用について説明する。
まず、蛍光や散乱光など初期位相が必ずしも揃っていない光線群が、対物レンズ12と結像レンズ22を経て検出部24の結像面で位相が揃った波として1つの点に集光し、輝点像(干渉像)を形成する光学モデルに基づいて説明する。
The optical action of the spectral tomographic image measurement apparatus 10 having the above configuration will be described.
First, a group of light rays whose initial phases are not necessarily aligned, such as fluorescent light and scattered light, are focused on one point as waves whose phases are aligned on the imaging surface of the detection unit 24 via the objective lens 12 and the imaging lens 22, Description will be made based on an optical model for forming a bright spot image (interference image).

前述したように、被測定物Sの一輝点から発せられた光線群は、対物レンズ12を経て位相シフター14の固定ミラー部15及び可動ミラー部16の表面に到達する。このとき、図4(a)に示すように、固定ミラー部15の表面及び可動ミラー部16の表面に光線群が二分割されて到達する。なお、固定ミラー部15の表面に到達した光線群即ち固定光線群と、可動ミラー部16の表面に到達した光線群即ち可動光線群の光量がほぼ等しくなるように、可動ミラー部16の表面の面積は設定されているが、固定光線群及び可動光線群の一方或いは両方の光路に減光フィルタを設置して相対的な光量差を調整し、光量の均等化を行うことも可能である。   As described above, a group of rays emitted from one bright spot of the measurement object S reaches the surfaces of the fixed mirror portion 15 and the movable mirror portion 16 of the phase shifter 14 via the objective lens 12. At this time, as shown in FIG. 4A, the light beam group reaches the surface of the fixed mirror unit 15 and the surface of the movable mirror unit 16 in two parts. It should be noted that the amount of light on the surface of the movable mirror 16 is fixed so that the amount of light in the group of light that has reached the surface of the fixed mirror 15, that is, the group of fixed rays, and the amount of light on the surface of the movable mirror 16 Although the area is set, it is also possible to equalize the light quantity by adjusting the relative light quantity difference by installing a neutral density filter in one or both of the optical paths of the fixed light beam group and the movable light beam group.

固定ミラー部15及び可動ミラー部16の表面で反射された光線群は、それぞれ固定光線群及び可動光線群として結像レンズ22に入射し、検出部24の結像面において干渉像を形成する。このとき、被測定物Sから発せられる光線群には様々な波長の光が含まれる(且つ各波長の光の初期位相が必ずしも揃っていない)ことから、可動ミラー部16を移動させて固定光線群と可動光線群との光路長差を変化させることにより、図6(a)に示すようなインターフェログラムと呼ばれる結像強度変化(干渉光強度変化)の波形が得られる。図6(a)は検出部24の一つの画素におけるインターフェログラムである。なお、図6(a)において、横軸は可動ミラー部16の移動に伴う固定光線群と可動光線群間の光路長差を、縦軸は結像面上の一点における結像強度を示す。   The light beam groups reflected by the surfaces of the fixed mirror unit 15 and the movable mirror unit 16 enter the imaging lens 22 as a fixed beam group and a movable beam group, respectively, and form an interference image on the imaging surface of the detection unit 24. At this time, the light beams emitted from the object S to be measured include light of various wavelengths (and the initial phases of the light of the respective wavelengths are not necessarily aligned). By changing the optical path length difference between the group and the movable beam group, a waveform of an imaging intensity change (interference light intensity change) called an interferogram as shown in FIG. 6A is obtained. FIG. 6A is an interferogram in one pixel of the detection unit 24. In FIG. 6A, the horizontal axis represents the optical path length difference between the fixed light beam group and the movable light beam group as the movable mirror unit 16 moves, and the vertical axis represents the imaging intensity at one point on the imaging surface.

このインターフェログラムをフーリエ変換することにより、被測定物Sの一輝点から発せられた光の波長毎の相対強度である分光特性を取得することができる(図6(b)参照)。検出部24の全ての画素において分光特性を得ることができれば、被測定物Sの2次元分光計測が可能となる。   By performing a Fourier transform on the interferogram, it is possible to obtain spectral characteristics that are relative intensities for each wavelength of light emitted from one bright spot of the measurement object S (see FIG. 6B). If the spectral characteristics can be obtained in all the pixels of the detection unit 24, the two-dimensional spectroscopic measurement of the object S can be performed.

ここで、インターフェログラムの生成原理について説明する。
まず、測定波長が単一波長の光の場合の光路長差と干渉光強度との関係について図7(a)〜(c)を参照しながら説明する。図7において、横軸は可動ミラー部の移動に伴う固定光線群と可動光線群間の相対的な光路長差を示し、縦軸は、検出部の一つの画素における結像強度を示している。
Here, the principle of generating the interferogram will be described.
First, the relationship between the optical path length difference and the interference light intensity when the measurement wavelength is a single wavelength will be described with reference to FIGS. In FIG. 7, the horizontal axis indicates the relative optical path length difference between the fixed light beam group and the movable light beam group as the movable mirror unit moves, and the vertical axis indicates the imaging intensity in one pixel of the detection unit. .

図7(a)〜(c)は波長の長さが異なる3種類の単色光(λa>λb>λc)の光路長差と干渉光強度との関係を示している。図7の中央付近に示す位相シフト原点(図中、一点鎖線で示す)は、図3(b)に示す可動ミラー部16の反射面が固定ミラー部15の反射面と一致している状態をいう。可動ミラー部16と固定ミラー部15の反射面が一致しているときは、固定光線群と可動光線群に相対的な位相差が生じていない。つまり、これら2光線群の光線は結像面において位相が揃って到達するため、互いに強め合う。このため、結像面には明るい輝点が形成され、結像強度が大きくなる。   7A to 7C show the relationship between the optical path length difference and the interference light intensity of three types of monochromatic light (λa> λb> λc) having different wavelength lengths. The phase shift origin (indicated by the alternate long and short dash line in the figure) shown in the vicinity of the center of FIG. 7 indicates that the reflecting surface of the movable mirror unit 16 shown in FIG. 3B matches the reflecting surface of the fixed mirror unit 15. Say. When the reflecting surfaces of the movable mirror unit 16 and the fixed mirror unit 15 are coincident, there is no relative phase difference between the fixed light beam group and the movable light beam group. That is, the light beams of these two light beam groups reach each other on the imaging plane, and thus strengthen each other. For this reason, bright bright spots are formed on the imaging surface, and the imaging intensity is increased.

これに対して、可動ミラー部16を図3(b)に示す位置から移動して固定光線群と可動光線群との間に相対的な光路長差を生じさせると、この光路長差が半波長(λ/2)の奇数倍になった時点で弱め合う干渉条件となるため結像強度は小さくなる。また、光路長差が1波長の整数倍になると、2光束間の干渉条件が強め合う状態となり、結像強度が大きくなる。
従って、可動ミラー部16を図3(a)から(b)を経て(c)の状態へと移動させて光路長差を順次変化させていくと、2光束間の干渉現象による結像強度は周期的に変化することになる。この結像強度変化の周期は、図7(a)〜(c)に示すように、波長が長い光の場合は長く、波長が短い光の場合は短くなる。
On the other hand, when the movable mirror section 16 is moved from the position shown in FIG. 3B to cause a relative optical path length difference between the fixed light beam group and the movable light beam group, the optical path length difference is reduced by half. When the wavelength (λ / 2) becomes an odd multiple, the destructive interference condition is reached, so that the imaging intensity is reduced. When the optical path length difference is an integral multiple of one wavelength, the interference condition between the two light beams is intensified, and the imaging intensity is increased.
Therefore, when the movable mirror unit 16 is moved from FIG. 3A to FIG. 3B to the state of FIG. 3C and the optical path length difference is sequentially changed, the imaging intensity due to the interference phenomenon between the two light beams is It will change periodically. As shown in FIGS. 7A to 7C, the cycle of the imaging intensity change is long for light having a long wavelength and short for light having a short wavelength.

多波長の光を測定する分光計測装置では、多様な長さの波長の干渉光強度変化が足し合わされた輝度値変化として検出されることになる。これが図6(a)に示すインターフェログラムである。固定光線群と可動光線群の相対的な光路長差が無い位相シフト原点では、波長に依存せずに2光束は強め合うため、多波長の強度変化を足し合わせた測定値においても高い結像強度となる。しかし、光路長差が大きくなると、各波長の強度変化の周期が合わないため、多波長の強度変化を足し合わせても結像強度は大きくならない。このため、インターフェログラムは、光路長差が大きくなるに従い徐々に輝度値が小さくなっていく結像強度変化が観察される。このようにインターフェログラムは、単一波長の単周期結像強度変化が足し合わされた波形であることから、この波形データをフーリエ変換することにより波長ごとの相対強度である分光特性を取得することができる。   In a spectroscopic measurement device that measures multi-wavelength light, changes in the intensity of interference light with various lengths of wavelengths are detected as luminance value changes. This is the interferogram shown in FIG. At the phase shift origin where there is no relative optical path length difference between the fixed light beam group and the movable light beam group, the two beams are intensified without depending on the wavelength. It becomes strength. However, when the optical path length difference is increased, the period of intensity change of each wavelength does not match, so that the imaging intensity does not increase even when the intensity changes of multiple wavelengths are added. For this reason, in the interferogram, a change in imaging intensity is observed in which the luminance value gradually decreases as the optical path length difference increases. In this way, since the interferogram is a waveform in which single-wavelength imaging intensity changes of a single wavelength are added, spectral characteristics that are relative intensities for each wavelength can be obtained by Fourier transforming this waveform data. Can do.

次に、被測定物Sから発せられる光に0次回折光と1次以降の高次回折光が含まれる場合の光学モデルについて説明する。
被測定物Sから発せられる0次回折光と高次回折光は、対物レンズ12の後ろ側焦点であるフーリエ変換面において空間的に最も分離できる。そこで、被測定物Sが回折光を生じる場合は、図5に示すように、固定ミラー部15及び可動ミラー部16の反射面をフーリエ変換面に配置する。これにより、それぞれの回折光成分を容易に分離して結像レンズ22に照射することができる。
Next, an optical model in the case where the light emitted from the measurement object S includes 0th-order diffracted light and 1st-order or higher-order diffracted light will be described.
The 0th-order diffracted light and the higher-order diffracted light emitted from the measurement object S can be separated most spatially on the Fourier transform plane that is the back focal point of the objective lens 12. Therefore, when the object to be measured S generates diffracted light, the reflecting surfaces of the fixed mirror unit 15 and the movable mirror unit 16 are arranged on the Fourier transform plane as shown in FIG. Thereby, each diffracted light component can be easily separated and irradiated onto the imaging lens 22.

この場合、図5に示すように、0次回折光を可動光線群、±1次回折光等の高次回折光を固定光線群として可動ミラー部16及び固定ミラー部15に照射する。なお、0次回折光を固定光線群、高次回折光を可動光線群としても良い。要は、2光線群間で相対的に光路長差を生じさせることができれば良い。
例えば、ある特定の空間周波数の明暗縞からなる模様を有する被測定物Sからは、その明暗縞の直交方向に±1次回折光を生じる。図4(b)は、このような最も基本的な回折光の可動ミラー部16及び固定ミラー部15の反射面における照射分布の例を示している。
In this case, as shown in FIG. 5, the movable mirror unit 16 and the fixed mirror unit 15 are irradiated with 0th-order diffracted light as a movable light beam group and high-order diffracted light such as ± 1st-order diffracted light as a fixed light beam group. The 0th-order diffracted light may be a fixed light beam group, and the higher-order diffracted light may be a movable light beam group. In short, it is only necessary that a relative optical path length difference can be generated between the two light beam groups.
For example, an object to be measured S having a pattern composed of bright and dark stripes having a specific spatial frequency generates ± first-order diffracted light in the orthogonal direction of the bright and dark stripes. FIG. 4B shows an example of the irradiation distribution of the most basic diffracted light on the reflecting surfaces of the movable mirror portion 16 and the fixed mirror portion 15.

結像理論によれば、対物レンズ12の合焦位置から生じる光線群のみが結像面において位相が揃い干渉像としての結像画像を取得することが可能である。つまり、合焦位置以外から生じる光は鮮明なインターフェログラムの形成に寄与しない。このため、上記分光断層像計測装置10では、合焦位置における分光特性のみを計測できる。従って、レンズ駆動機構13により対物レンズ12を光軸方向に移動させて合焦位置を走査すれば、3次元の分光特性を計測することが可能となる。   According to the imaging theory, it is possible to acquire an imaging image as an interference image in which only the light rays generated from the in-focus position of the objective lens 12 have the same phase on the imaging surface. That is, light generated from other than the in-focus position does not contribute to the formation of a clear interferogram. Therefore, the spectral tomographic image measurement apparatus 10 can measure only the spectral characteristics at the in-focus position. Therefore, if the lens drive mechanism 13 moves the objective lens 12 in the optical axis direction and scans the in-focus position, three-dimensional spectral characteristics can be measured.

図8は本発明の分光断層像計測装置10で得られた単一細胞の分光断層像の例を示している。ここでは、細胞膜表層の糖タンパク質を量子ドットで標識し、その量子ドットの蛍光発光を観察している。図8に示す細胞断層像は、対物レンズ12を移動させて合焦面(合焦位置を含む面)を走査することにより順次得られる2次元分光像である。これらの2次元分光像から3次元の分光像を取得できる。   FIG. 8 shows an example of a spectral tomographic image of a single cell obtained by the spectral tomographic image measuring apparatus 10 of the present invention. Here, glycoproteins on the surface of the cell membrane are labeled with quantum dots, and the fluorescence emission of the quantum dots is observed. The cell tomogram shown in FIG. 8 is a two-dimensional spectroscopic image that is sequentially obtained by moving the objective lens 12 and scanning the focal plane (the plane including the focal position). A three-dimensional spectral image can be acquired from these two-dimensional spectral images.

合焦面における解像度は対物レンズ12の開口数と光の波長から決まり、深さ方向の解像度は焦点深度により決まる。従って、液浸レンズのような高い開口数の対物レンズを用いれば高い解像度を得られる。また、高次回折光成分を用いた結像による高解像度化を行う変形照明などの超解像技術を用いることも可能である。   The resolution on the focal plane is determined by the numerical aperture of the objective lens 12 and the wavelength of light, and the resolution in the depth direction is determined by the depth of focus. Therefore, high resolution can be obtained by using an objective lens having a high numerical aperture such as an immersion lens. It is also possible to use a super-resolution technique such as modified illumination that achieves higher resolution by imaging using higher-order diffracted light components.

図9及び図10は本発明の第2の実施例を示している。図9に示すように、本実施例の分光断層像計測装置10は対物レンズ12と結像レンズ22の光軸が一致するように構成されている。そして、対物レンズ12と結像レンズ22の間には、光路長差伸縮手段を構成する第1及び第2ガラス板30,32が対物レンズ12及び結像レンズ22の光軸と直交するように配置されている。第1及び第2ガラス板30,32は、対物レンズ12から結像レンズ22に向かう光線群のうちの一部が第1ガラス板30を、残りが第2ガラス板32を透過するように配置されている。以下の説明では、第1及び第2ガラス板30,32を透過する光線群をそれぞれ固定光線群、可動光線群という。なお、本実施例では、固定光線群及び可動光線群の光量が同等になるように構成されている。   9 and 10 show a second embodiment of the present invention. As shown in FIG. 9, the spectral tomographic image measurement apparatus 10 of the present embodiment is configured so that the optical axes of the objective lens 12 and the imaging lens 22 coincide. Between the objective lens 12 and the imaging lens 22, the first and second glass plates 30 and 32 constituting the optical path length difference expansion / contraction means are orthogonal to the optical axes of the objective lens 12 and the imaging lens 22. Has been placed. The first and second glass plates 30 and 32 are arranged so that a part of a light beam group from the objective lens 12 toward the imaging lens 22 transmits the first glass plate 30 and the remaining light passes through the second glass plate 32. Has been. In the following description, the light ray groups that pass through the first and second glass plates 30 and 32 are referred to as a fixed light ray group and a movable light ray group, respectively. In the present embodiment, the light quantity of the fixed light beam group and the movable light beam group are configured to be equal.

図10(a)及び(b)は、図9中、左方或いは右方から見た第1及び第2ガラス板30,32の形状を示している。第1及び第2ガラス板30,32は、いずれも波長依存性の低い光学ガラスから構成されている。第1ガラス板30は断面形状がほぼ長方形状の1枚の板状部材から構成されている。
第2ガラス板32は、大小2枚の断面台形状の板状部材32a,32bから構成されている。大小の板状部材32a、32bの傾斜面は同一の傾き(角度)を有している。大きい板状部材32aはスライド機構34によって矢印B方向にスライド可能となっており、スライドさせることにより第2ガラス板32の厚み寸法が連続的に変化する。
FIGS. 10A and 10B show the shapes of the first and second glass plates 30 and 32 viewed from the left or right in FIG. The first and second glass plates 30 and 32 are both made of optical glass having low wavelength dependency. The first glass plate 30 is composed of a single plate-like member having a substantially rectangular cross-sectional shape.
The second glass plate 32 is composed of two plate members 32a and 32b having a trapezoidal cross section. The inclined surfaces of the large and small plate-like members 32a and 32b have the same inclination (angle). The large plate-like member 32a can be slid in the direction of arrow B by the slide mechanism 34, and the thickness dimension of the second glass plate 32 changes continuously by sliding.

第1及び第2ガラス板30,32を構成する光学ガラスは空気よりも屈折率が大きいため、その厚み寸法に応じて光学光路長が変化する。このため、第2ガラス板32の厚み寸法が変化すると、固定光線群と可動光線群の光路長差が伸縮する。
具体的には、実線で示す位置に板状部材32aがあるときは第2ガラス板32の厚み寸法は第1ガラス板30の厚み寸法と等しいため、固定光線群P1と可動光線群P2の光学光路長は等しくなる。これに対して、一点鎖線で示す位置に板状部材32aがあるときの第2ガラス板32の厚み寸法は第1ガラス板30の厚み寸法よりも小さいため、可動光線群P2の光学光路長は固定光線群P1の光学光路長よりも短くなる。一方、二点鎖線で示す位置に板状部材32aがあるときの第2ガラス板32の厚み寸法は第1ガラス板30の厚み寸法よりも大きいため、可動光線群P2の光学光路長は固定光線群P1の光学光路長よりも長くなる。
Since the optical glass which comprises the 1st and 2nd glass plates 30 and 32 has a refractive index larger than air, optical optical path length changes according to the thickness dimension. For this reason, when the thickness dimension of the second glass plate 32 changes, the optical path length difference between the fixed light beam group and the movable light beam group expands and contracts.
Specifically, when the plate-like member 32a is present at the position indicated by the solid line, the thickness dimension of the second glass plate 32 is equal to the thickness dimension of the first glass plate 30, and therefore the optical characteristics of the fixed light beam group P1 and the movable light beam group P2. The optical path lengths are equal. On the other hand, since the thickness dimension of the second glass plate 32 when the plate-like member 32a is at the position indicated by the alternate long and short dash line is smaller than the thickness dimension of the first glass plate 30, the optical optical path length of the movable light beam group P2 is It becomes shorter than the optical optical path length of the fixed light beam group P1. On the other hand, since the thickness dimension of the second glass plate 32 when the plate-like member 32a is located at the position indicated by the two-dot chain line is larger than the thickness dimension of the first glass plate 30, the optical optical path length of the movable light beam group P2 is a fixed beam. It becomes longer than the optical path length of the group P1.

従って、第2ガラス板32の板状部材32aをスライドさせることにより、固定光線群及び可動光線群の光学光路長差を連続的に伸縮させることができる。そして、このように固定光線群及び可動光線群の光学光路長差を伸縮させつつ前記検出部24で検出される光強度変化に基づき、前記被測定物の各測定点のインターフェログラムを求めることができ、このインターフェログラムをフーリエ変換することによりスペクトルを取得することができる。   Therefore, by sliding the plate-like member 32a of the second glass plate 32, the optical optical path length difference between the fixed light beam group and the movable light beam group can be continuously expanded and contracted. Then, based on the light intensity change detected by the detection unit 24 while expanding / contracting the optical path length difference between the fixed light beam group and the movable light beam group, an interferogram of each measurement point of the object to be measured is obtained. A spectrum can be obtained by Fourier transforming this interferogram.

また、本発明は上記した実施例に限定されるものではなく、例えば次のような変形、拡張が可能である。
位相シフター14を構成する可動ミラー部16は円柱である必要はなく、角柱など製造の容易な形状に加工すればよい。
上記した実施例では固定ミラー部15の中央に可動ミラー部16を配置したが、例えば図11及び図12に示すように長方形の板状の固定ミラー部15及び可動ミラー部16を左右或いは上下に配置しても良い。鮮明な干渉強度変化を得るには、固定光線群と可動光線群の光量が同等に揃っていることが望ましい。上記構成によれば、固定光線群と可動光線群の光量を容易に同等に揃えることができる。
物体光の光束の分割数は2つに限らない。3つ以上の光線群間の干渉光強度変化を計測できる光学系を用いた場合は、物体光の光束を3つ以上の光線群に分割することができる。
Further, the present invention is not limited to the above-described embodiments, and for example, the following modifications and expansions are possible.
The movable mirror portion 16 constituting the phase shifter 14 does not need to be a cylinder, and may be processed into a shape that is easy to manufacture, such as a prism.
In the above-described embodiment, the movable mirror unit 16 is arranged at the center of the fixed mirror unit 15. However, for example, as shown in FIGS. 11 and 12, the rectangular plate-like fixed mirror unit 15 and the movable mirror unit 16 are moved left and right or up and down. It may be arranged. In order to obtain a clear change in interference intensity, it is desirable that the light amounts of the fixed light beam group and the movable light beam group are equal. According to the said structure, the light quantity of a fixed ray group and a movable ray group can be arrange | equalized easily equally.
The number of divisions of the object beam is not limited to two. When an optical system capable of measuring the interference light intensity change between three or more light beam groups is used, the light beam of the object light can be divided into three or more light beam groups.

上記実施例では光路長差が連続的に伸縮するように構成したが、例えば図13に示すような光路長差伸縮用ガラス板40を用い、固定光線群と可動光線群の光路長差を段階的に(離散的に)変化させても良い。光路長差伸縮用ガラス板40の一面には深さ寸法が段階的に変化する多数の凹部40a及び突出寸法が段階的に変化する多数の凸部40bが設けられている。各凹部40a間、各凸部40b間に位置する部分40cは全て同じ厚み寸法に設定されており、当該ガラス板40を矢印C方向に移動させることにより、固定光線群は部分40cを、可動光線群は凹部40a或いは凸部40bを透過するようになっている。   In the above embodiment, the optical path length difference is continuously expanded and contracted. For example, the optical path length difference expanding and contracting glass plate 40 as shown in FIG. (Discretely) may be changed. On one surface of the optical path length difference expansion and contraction glass plate 40, a large number of concave portions 40a whose depth dimension changes stepwise and a large number of convex portions 40b whose protrusion size changes stepwise are provided. The portions 40c located between the concave portions 40a and between the convex portions 40b are all set to the same thickness dimension. By moving the glass plate 40 in the direction of arrow C, the fixed light beam group moves the portion 40c into the movable light beam. The group is configured to pass through the concave portion 40a or the convex portion 40b.

従って、例えば図13(a)に示すように固定光線群P1が部分40cを、可動光線群P2が凹部40aを透過するときは、固定光線群P1よりも可動光線群P2の方が光学光路長が短くなる。図13(b)に示すように、固定光線群P1及び可動光線群P2の両方が部分40cを透過するときは固定光線群P1と可動光線群P2の光学光路長は等しくなる。また、図13(c)に示すように固定光線群P1が部分40cを、可動光線群P2が凸部40bを透過するときは固定光線群P1よりも可動光線群P2の方が光学光路長が長くなる。   Therefore, for example, as shown in FIG. 13A, when the fixed light beam group P1 passes through the portion 40c and the movable light beam group P2 passes through the recess 40a, the movable light beam group P2 has an optical optical path length longer than the fixed light beam group P1. Becomes shorter. As shown in FIG. 13B, when both the fixed light beam group P1 and the movable light beam group P2 pass through the portion 40c, the optical light path lengths of the fixed light beam group P1 and the movable light beam group P2 are equal. Further, as shown in FIG. 13C, when the fixed light beam group P1 passes through the portion 40c and the movable light beam group P2 passes through the convex portion 40b, the movable light beam group P2 has an optical path length longer than the fixed light beam group P1. become longer.

上記実施例では、対物レンズ12から結像レンズ22に向かう光線群を2つに分割し、一方の光学光路長を伸縮するようにしたが、両光線群の相対的な光学光路長差を伸縮させることができれば、両光線群の光学光路長を伸縮させる構成でも良い。   In the above embodiment, the light beam group from the objective lens 12 toward the imaging lens 22 is divided into two, and one optical optical path length is expanded and contracted. However, the relative optical optical path length difference between the two light beam groups is expanded and contracted. If it can be made, the structure which expands / contracts the optical optical path length of both light beam groups may be sufficient.

対物レンズ12ではなく被測定物Sを移動させることにより対物レンズ12の合焦面を走査するようにしても良い。
位相シフター14の固定ミラー部15及び可動ミラー部16の反射面と光軸との角度は45度でなくても良い。但し、この場合は、光軸と可動ミラー部16の移動方向の角度誤差によって分光特性が劣化する可能性が大きい。これは、静電容量センサー付ピエゾステージの光軸方向への移動量が分光精度に重要な意味を持つからである。光軸方向への移動量が、可動光線群に与える位相シフト量となり、この位相シフト量が分光計測に必要なパラメータとなる。
You may make it scan the focus surface of the objective lens 12 by moving the to-be-measured object S instead of the objective lens 12. FIG.
The angle between the reflection surface of the fixed mirror portion 15 and the movable mirror portion 16 of the phase shifter 14 and the optical axis may not be 45 degrees. However, in this case, there is a high possibility that the spectral characteristics are deteriorated due to an angle error between the optical axis and the moving direction of the movable mirror section 16. This is because the amount of movement of the piezo stage with the capacitance sensor in the optical axis direction has an important meaning on the spectral accuracy. The amount of movement in the optical axis direction is the amount of phase shift given to the movable light beam group, and this amount of phase shift is a parameter necessary for spectroscopic measurement.

被測定物から放出され対物レンズを透過した光が一点に合焦するように対物レンズと被測定物の位置関係を設定すれば、分割光学系及び結像光学系を一つのレンズで構成することも可能である。
また、測定対象となる光が紫外光や長波長光の場合には、反射型光学系により分割光学系、結像光学系を構成すると良い。
更に、実際の光学系では、調整誤差によって可動ミラー部の設置角度がずれる場合がある。この角度のずれ量が、分光特性上問題となる場合は、水銀ランプなど既知の輝線スペクトルを有する光源を用いて分光特性を計測するなどにより位相シフターと光軸との傾き量の校正を行うことができる。
If the positional relationship between the objective lens and the object to be measured is set so that the light emitted from the object to be measured and transmitted through the objective lens is focused on one point, the splitting optical system and the imaging optical system are configured by one lens. Is also possible.
In addition, when the light to be measured is ultraviolet light or long wavelength light, the split optical system and the imaging optical system may be configured by a reflective optical system.
Furthermore, in an actual optical system, the installation angle of the movable mirror unit may be shifted due to an adjustment error. If this angle deviation is a problem in spectral characteristics, calibrate the amount of tilt between the phase shifter and the optical axis by measuring the spectral characteristics using a light source with a known emission line spectrum such as a mercury lamp. Can do.

本発明の第1実施例を示す分光断層像計測装置の概略的なシステム構成図。1 is a schematic system configuration diagram of a spectral tomographic image measurement apparatus showing a first embodiment of the present invention. FIG. 位相シフターの全体構成図。The whole block diagram of a phase shifter. 位相シフターの動作説明図。FIG. 6 is an operation explanatory diagram of a phase shifter. 固定ミラー部及び可動ミラー部の反射面における物体光の照射分布(a)および0次回折光と±1次回折光の照射分布(b)を示す図。The figure which shows the irradiation distribution (a) of the object light in the reflective surface of a fixed mirror part and a movable mirror part, and the irradiation distribution (b) of 0th-order diffracted light and +/- 1st-order diffracted light. 0次回折光と±1次回折光を空間的に分離する様子を示す図。The figure which shows a mode that 0th order diffracted light and +/- 1st order diffracted light are separated spatially. インターフェログラム(a)とそれをフーリエ変換したスペクトルの波形図(b)。Interferogram (a) and waveform diagram (b) of spectrum obtained by Fourier transform of the interferogram (a). インターフェログラムの生成原理を説明するための図。The figure for demonstrating the production | generation principle of an interferogram. 細胞膜表層の糖タンパク質を量子ドットで標識した単一細胞の分光断層像を計測する様子を示す図。The figure which shows a mode that the spectrum tomogram of the single cell which labeled the glycoprotein of the cell membrane surface layer with the quantum dot is measured. 本発明の第2の実施例を示す図1相当図。FIG. 1 is a view corresponding to FIG. 1 showing a second embodiment of the present invention. 光路長差伸縮手段の構成を示す図。The figure which shows the structure of an optical path length difference expansion-contraction means. 固定ミラー部及び可動ミラー部の変形例を示す図1相当図。The equivalent figure of FIG. 1 which shows the modification of a fixed mirror part and a movable mirror part. 図3相当図。FIG. 光路長差伸縮手段の別の実施例を示す図。The figure which shows another Example of an optical path length difference expansion-contraction means.

符号の説明Explanation of symbols

10…分光断層像計測装置
12…対物レンズ
13…レンズ駆動機構
14…位相シフター
15…固定ミラー部
16…可動ミラー部
18…駆動ステージ
20…制御部
22…結像レンズ
24…検出部
30…第1ガラス板
32…第2ガラス板
40…光路長差伸縮用ガラス
DESCRIPTION OF SYMBOLS 10 ... Spectral tomographic image measuring device 12 ... Objective lens 13 ... Lens drive mechanism 14 ... Phase shifter 15 ... Fixed mirror part 16 ... Movable mirror part 18 ... Drive stage 20 ... Control part 22 ... Imaging lens 24 ... Detection part 30 ... 1st 1 glass plate 32 ... 2nd glass plate 40 ... glass for optical path length difference expansion / contraction

Claims (6)

a) 被測定物の各測定点から多様な方向に向かって発せられた光が入射する分割光学系と、
b) 前記分割光学系を透過した光をほぼ同一点に導き干渉像を形成するを結像光学系と、
c) 前記干渉像の光強度を検出する検出部と、
d) 前記分割光学系から前記結像光学系に向かう光の一部と残りの光の相対的な光学光路長差を伸縮する光路長差伸縮手段と、
e) 前記光路長差伸縮手段によって光学光路長差を伸縮させることにより前記検出部で検出される光強度変化に基づき、前記被測定物の各測定点のインターフェログラムを求め、このインターフェログラムをフーリエ変換することによりスペクトルを取得する処理部と、
を備えることを特徴とする分光計測装置。
a) a splitting optical system in which light emitted in various directions from each measurement point of the object to be measured is incident;
b) An imaging optical system for guiding the light transmitted through the splitting optical system to substantially the same point to form an interference image;
c) a detection unit for detecting the light intensity of the interference image;
d) optical path length difference expansion / contraction means for expanding / contracting a relative optical optical path length difference between a part of the light traveling from the splitting optical system toward the imaging optical system and the remaining light;
e) Obtaining an interferogram at each measurement point of the object to be measured based on a change in light intensity detected by the detection unit by expanding / contracting the optical optical path length difference by the optical path length difference expansion / contraction means, and the interferogram A processing unit that obtains a spectrum by Fourier transforming
A spectroscopic measurement device comprising:
a) 被測定物の各測定点から多様な方向に向かって発せられた光を第1反射部と第2反射部とに分割して導く分割光学系と、
b) 前記第1及び第2反射部によって反射された光をほぼ同一点に導き干渉像を形成する結像光学系と、
c) 前記第1及び第2反射部を相対的に移動させることにより前記分割光学系から前記第1反射部を経て前記結像光学系に向かう光と前記分割光学系から前記第2反射部を経て前記結像光学系に向かう光の光学光路長差を伸縮する光路長差伸縮手段と、
d) 前記干渉像の光強度を検出する検出部と、
e) 前記光路長差伸縮手段によって光学光路長差を伸縮させることにより前記検出部で検出される光強度変化に基づき、前記被測定物の各測定点のインターフェログラムを求め、このインターフェログラムをフーリエ変換することによりスペクトルを取得する処理部と、
を備えることを特徴とする分光計測装置。
a) a splitting optical system that guides light emitted from each measurement point of the object to be measured in various directions into a first reflecting part and a second reflecting part;
b) an imaging optical system for guiding the light reflected by the first and second reflecting portions to substantially the same point to form an interference image;
c) By moving the first and second reflecting parts relatively, light traveling from the splitting optical system to the imaging optical system via the first reflecting part and the second reflecting part from the splitting optical system. An optical path length difference expansion / contraction means for expanding / contracting the optical optical path length difference of the light passing through the imaging optical system,
d) a detection unit for detecting the light intensity of the interference image;
e) Obtaining an interferogram at each measurement point of the object to be measured based on a change in light intensity detected by the detection unit by expanding / contracting the optical optical path length difference by the optical path length difference expansion / contraction means, and the interferogram A processing unit that obtains a spectrum by Fourier transforming
A spectroscopic measurement device comprising:
第1及び第2反射部の反射面は、それぞれ分割光学系を透過した光束の光軸に対して45°傾いた状態で配置されていることを特徴とする請求項2に記載の分光計測装置。   The spectroscopic measurement apparatus according to claim 2, wherein the reflection surfaces of the first and second reflection portions are arranged in a state inclined by 45 ° with respect to the optical axis of the light beam transmitted through the split optical system. . 処理部は、被測定物のうち分割光学系の合焦位置に位置する測定点から発せられた光のスペクトルを求めることを特徴とする請求項1から3のいずれかに記載の分光計測装置。   4. The spectroscopic measurement apparatus according to claim 1, wherein the processing unit obtains a spectrum of light emitted from a measurement point located at a focusing position of the divided optical system in the object to be measured. 被測定物に対する分割光学系の合焦位置を相対的に変更する合焦位置変更手段を備えることを特徴とする請求項4に記載の分光計測装置。   The spectroscopic measurement apparatus according to claim 4, further comprising: a focus position changing unit that relatively changes a focus position of the split optical system with respect to the object to be measured. a) 被測定物の各測定点から多様な方向に向かって発せられた光を分割光学系によって位相固定光線群と位相可変光線群に分割し、
b) 前記位相可変光線群の光学光路長差を伸縮させつつ前記位相可変光線群と前記位相固定光線群を結像光学系によってほぼ同一点に導いて干渉像を形成させ、
c) 前記干渉像の光強度変化に基づき前記被測定物の各測定点のインターフェログラムを求め、このインターフェログラムをフーリエ変換することによりスペクトルを取得する分光計測方法。
a) The light emitted from each measurement point of the object to be measured in various directions is divided into a phase-fixed light beam group and a phase-variable light beam group by a splitting optical system,
b) While expanding or contracting the optical path length difference of the phase variable beam group, the phase variable beam group and the phase fixed beam group are guided to substantially the same point by an imaging optical system to form an interference image,
c) A spectroscopic measurement method for obtaining an interferogram at each measurement point of the object to be measured based on a change in light intensity of the interference image, and acquiring a spectrum by Fourier transforming the interferogram.
JP2007159096A 2007-06-15 2007-06-15 Spectroscopic measurement apparatus and spectral measurement method Active JP5120873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159096A JP5120873B2 (en) 2007-06-15 2007-06-15 Spectroscopic measurement apparatus and spectral measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159096A JP5120873B2 (en) 2007-06-15 2007-06-15 Spectroscopic measurement apparatus and spectral measurement method

Publications (2)

Publication Number Publication Date
JP2008309706A true JP2008309706A (en) 2008-12-25
JP5120873B2 JP5120873B2 (en) 2013-01-16

Family

ID=40237431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159096A Active JP5120873B2 (en) 2007-06-15 2007-06-15 Spectroscopic measurement apparatus and spectral measurement method

Country Status (1)

Country Link
JP (1) JP5120873B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122879A1 (en) * 2009-04-23 2010-10-28 コニカミノルタホールディングス株式会社 Light reflection mechanism, optical interferometer and spectral analyzer
JP2012181060A (en) * 2011-02-28 2012-09-20 Kagawa Univ Spectral characteristic measuring apparatus and calibration method thereof
WO2013129519A1 (en) * 2012-02-29 2013-09-06 国立大学法人香川大学 Spectral characteristics measurement device and method for measuring spectral characteristics
WO2014054488A1 (en) * 2012-10-01 2014-04-10 国立大学法人香川大学 Spectral characteristic measurement device
US8988689B2 (en) 2010-09-08 2015-03-24 National University Corporation Kagawa University Spectroscopic measurement device and spectroscopic measurement method
WO2015137880A1 (en) * 2014-03-13 2015-09-17 National University Of Singapore An optical interference device
JP2016008956A (en) * 2014-06-26 2016-01-18 ソニー株式会社 Imaging device and method
JP6390805B1 (en) * 2018-01-09 2018-09-19 アルス株式会社 Reflective optical element and interferometer
CN109642868A (en) * 2016-08-19 2019-04-16 国立大学法人香川大学 Optical characteristics measurement device and optical characteristics measuring method
CN110530783A (en) * 2018-05-24 2019-12-03 深圳市帝迈生物技术有限公司 Lateral light beam collection method, device and flow cytometer for flow cytometer
WO2019240227A1 (en) 2018-06-13 2019-12-19 国立大学法人香川大学 Spectrometer and spectroscopic method
CN112133172A (en) * 2020-09-02 2020-12-25 吴玉珍 Ultraviolet visible spectrometer
CN114341602A (en) * 2019-09-03 2022-04-12 国立大学法人香川大学 Spectrometry device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160013A (en) * 1997-12-02 1999-06-18 Ricoh Co Ltd Shearing interferometer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160013A (en) * 1997-12-02 1999-06-18 Ricoh Co Ltd Shearing interferometer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6011068532; 石丸 伊知郎: '自己相関型白色位相シフト干渉計による細胞分光断層像計測取得技術' 2007年春季第54回応用物理学関係連合講演会予稿集 第0分冊, 20070327, 第58頁 28p-R-5 *
JPN6011068533; 石丸伊知郎: '最近話題の画像計測技術 可変位相差方式による単一細胞分光トモグラフィー技術' O plus E 第26巻、第12号, 20041125, 第1441頁-第1445頁 *
JPN6011068534; 石丸伊知郎、外5名: '単一細胞分光トモグラフィに関する研究 -微小球体回転制御技術と可変位相差顕微分光方式-' 電子情報通信学会大会講演論文集 2005年 エレクトロニクス2, 20050307, S-59頁 - S-60頁 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5234177B2 (en) * 2009-04-23 2013-07-10 コニカミノルタ株式会社 Light reflection mechanism, optical interferometer and spectroscopic analyzer
WO2010122879A1 (en) * 2009-04-23 2010-10-28 コニカミノルタホールディングス株式会社 Light reflection mechanism, optical interferometer and spectral analyzer
US9291444B2 (en) 2009-04-23 2016-03-22 Konica Minolta Holdings, Inc. Light reflection mechanism, optical interferometer and spectrometric analyzer
US8988689B2 (en) 2010-09-08 2015-03-24 National University Corporation Kagawa University Spectroscopic measurement device and spectroscopic measurement method
EP2615436A4 (en) * 2010-09-08 2015-06-24 Univ Kagawa Nat Univ Corp Spectrometer and spectrometric method
JP2012181060A (en) * 2011-02-28 2012-09-20 Kagawa Univ Spectral characteristic measuring apparatus and calibration method thereof
RU2575946C1 (en) * 2012-02-29 2016-02-27 Нэшнл Юниверсити Корпорейшн Кагава Юниверсити Device to measure spectral characteristics and method to measure spectral characteristics
JP5637488B2 (en) * 2012-02-29 2014-12-10 国立大学法人 香川大学 Spectral characteristic measuring apparatus and spectral characteristic measuring method
CN104145177A (en) * 2012-02-29 2014-11-12 国立大学法人香川大学 Spectral characteristics measurement device and method for measuring spectral characteristics
WO2013129519A1 (en) * 2012-02-29 2013-09-06 国立大学法人香川大学 Spectral characteristics measurement device and method for measuring spectral characteristics
US9474476B2 (en) 2012-02-29 2016-10-25 National University Corporation Kagawa University Spectral characteristics measurement device and spectral characteristics measurement method
EP2905591A4 (en) * 2012-10-01 2015-08-19 Univ Kagawa Nat Univ Corp Spectral characteristic measurement device
US9513165B2 (en) 2012-10-01 2016-12-06 National University Corporation Kagawa University Spectroscopic measurement device
WO2014054488A1 (en) * 2012-10-01 2014-04-10 国立大学法人香川大学 Spectral characteristic measurement device
JPWO2014054488A1 (en) * 2012-10-01 2016-08-25 国立大学法人 香川大学 Spectral characteristic measuring device
WO2015137880A1 (en) * 2014-03-13 2015-09-17 National University Of Singapore An optical interference device
US10760971B2 (en) 2014-03-13 2020-09-01 National University Of Singapore Optical interference device
CN106456070A (en) * 2014-06-26 2017-02-22 索尼公司 Imaging device and method
US11054304B2 (en) 2014-06-26 2021-07-06 Sony Corporation Imaging device and method
KR20170023797A (en) * 2014-06-26 2017-03-06 소니 주식회사 Imaging device and method
US20170184449A1 (en) * 2014-06-26 2017-06-29 Sony Corporation Imaging device and method
KR102425589B1 (en) * 2014-06-26 2022-07-28 소니그룹주식회사 Imaging device and method
WO2015198562A3 (en) * 2014-06-26 2016-03-24 Sony Corporation Imaging device and method
CN106456070B (en) * 2014-06-26 2021-01-12 索尼公司 Image forming apparatus and method
JP2016008956A (en) * 2014-06-26 2016-01-18 ソニー株式会社 Imaging device and method
TWI693391B (en) * 2014-06-26 2020-05-11 日商新力股份有限公司 Imaging device and method
US11035782B2 (en) 2016-08-19 2021-06-15 National University Corporation Kagawa University Optical characteristic measuring device and optical characteristic measuring method
CN109642868A (en) * 2016-08-19 2019-04-16 国立大学法人香川大学 Optical characteristics measurement device and optical characteristics measuring method
CN109642868B (en) * 2016-08-19 2022-03-15 国立大学法人香川大学 Optical characteristic measuring device and optical characteristic measuring method
JP6390805B1 (en) * 2018-01-09 2018-09-19 アルス株式会社 Reflective optical element and interferometer
CN110530783A (en) * 2018-05-24 2019-12-03 深圳市帝迈生物技术有限公司 Lateral light beam collection method, device and flow cytometer for flow cytometer
CN110530783B (en) * 2018-05-24 2023-12-15 深圳市帝迈生物技术有限公司 Lateral beam collection method and device for flow cytometer and flow cytometer
WO2019240227A1 (en) 2018-06-13 2019-12-19 国立大学法人香川大学 Spectrometer and spectroscopic method
US11402270B2 (en) 2018-06-13 2022-08-02 National University Corporation Kagawa University Spectral measurement device and spectral measurement method
CN114341602A (en) * 2019-09-03 2022-04-12 国立大学法人香川大学 Spectrometry device
CN114341602B (en) * 2019-09-03 2024-04-02 国立大学法人香川大学 Spectrometry device
CN112133172A (en) * 2020-09-02 2020-12-25 吴玉珍 Ultraviolet visible spectrometer

Also Published As

Publication number Publication date
JP5120873B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5120873B2 (en) Spectroscopic measurement apparatus and spectral measurement method
US9874737B2 (en) Method and apparatus for combination of localization microscopy and structured illumination microscopy
US10795144B2 (en) Microscopy with structured plane illumination and point accumulation for imaging and nanoscale topography
EP3394579B1 (en) Systems and methods for determining an identity of a probe in a target based on colors and locations of two or more fluorophores in the probe and in the target
US10365218B2 (en) Systems and methods for 4-D hyperspectral imaging
JP5399322B2 (en) Three-dimensional interference microscope observation
US9086536B2 (en) Talbot imaging devices and systems
Dan et al. Structured illumination microscopy for super-resolution and optical sectioning
US8619237B2 (en) Laser-scanning intersecting plane tomography such as for high speed volumetric optical imaging
US8946619B2 (en) Talbot-illuminated imaging devices, systems, and methods for focal plane tuning
JP5536650B2 (en) System and method for self-interfering fluorescence microscopy and associated computer-accessible media
US10976532B2 (en) Structured illumination microscopy system using digital micromirror device and time-complex structured illumination, and operation method therefor
US20070268583A1 (en) Method and microscope for high spatial resolution examination of samples
JP2004538451A (en) Method and device for obtaining a sample by three-dimensional microscopy
JP6084620B2 (en) Confocal spectrometer and image forming method in confocal spectrometer
JP6667539B2 (en) Optical telemetry device
CN109196333A (en) System and method for 4-D high light spectrum image-forming
JP5648961B2 (en) Spectral characteristic measuring apparatus and calibration method thereof
US9217710B2 (en) Method of simultaneous frequency-sweeping lifetime measurements on multiple excitation wavelengths
JP2014532173A5 (en)
US20170030835A1 (en) Parallel acquisition of spectral signals from a 2-d laser beam array
JP6484234B2 (en) Equipment for confocal observation of samples
NL2023860B1 (en) Pattern activated structured illumination localization microscopy
JP2023503742A (en) Apparatus and method for estimating values from images
Zakharov et al. Holographic scanning microscopy–novel approach to digital holography and laser scanning microscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5120873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250