JPS63168522A - Adjuscting apparatus for interferometer - Google Patents

Adjuscting apparatus for interferometer

Info

Publication number
JPS63168522A
JPS63168522A JP31280386A JP31280386A JPS63168522A JP S63168522 A JPS63168522 A JP S63168522A JP 31280386 A JP31280386 A JP 31280386A JP 31280386 A JP31280386 A JP 31280386A JP S63168522 A JPS63168522 A JP S63168522A
Authority
JP
Japan
Prior art keywords
light
mirror
incident
interferometer
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31280386A
Other languages
Japanese (ja)
Inventor
Osamu Yoshikawa
治 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP31280386A priority Critical patent/JPS63168522A/en
Publication of JPS63168522A publication Critical patent/JPS63168522A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To well improve the error of an adjusted state, by a method wherein the light from a measuring light source is reflected from a translucent mirror when the change of the optical system of a two luminous flux type interferometer with the elapse of time is automatically controlled to be allowed to be incident to a main light detector and, at the same time, a fixed mirror and a moving mirror are used to allow the light from a monochromatic light source to be also incident thereto. CONSTITUTION:The light from a measuring light source L is reflected from the reflecting surface of a collimator mirror 7 having a small hole provided to the central par thereof and the reflected light is further reflected from a translucent mirror B to be allowed to be incident to a main light detector 8. In order to avoid the change of the two-luminous flux type interferometer thus constituted such as a Fourier transformation type spectrophotometer with the elapse of time, the light from a monochromatic light source H is allowed to be incident to the main light detector 8 through the translucent mirror along with measuring light apart from the measuring light source using a fixed Mf and a moving mirror Mv and this incident beam is detected by a four-split light detector Df and the moving mirror Mv is moved so that the ratio of the max. and min. values of each light receiving element constituting said detector Df becomes equal to always monitor whether the incident position of the measuring light is accurate.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明はフーリエ変換型分光光度針等の二光束型干渉計
の光学系の経時的変化の自動調整装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an automatic adjustment device for temporal changes in the optical system of a two-beam interferometer such as a Fourier transform spectrophotometric needle.

口、従来の技術 三光束干渉計の一例としてマイケルソン型干渉計を考え
る。第6図でLは測定用光源、Mfは固定鏡、Mvは移
動鏡でBは半透明鏡である。この構成で各光学素子Mf
、Mv、Bは予めその取付角度が調整されて固定されて
いるが、その取付は角度は温度変化等により経時的に変
動する。また移動鏡の移動に伴って移動鏡の傾きが変化
する。
Consider a Michelson interferometer as an example of a conventional three-beam interferometer. In FIG. 6, L is a measurement light source, Mf is a fixed mirror, Mv is a movable mirror, and B is a semi-transparent mirror. With this configuration, each optical element Mf
, Mv, and B have their mounting angles adjusted and fixed in advance, but the mounting angles vary over time due to temperature changes and the like. Further, as the movable mirror moves, the inclination of the movable mirror changes.

このような変化によって干渉パターンが移動し、受光素
子りの出力が経時的に変化して測定上の誤差を生ずる。
Such changes cause the interference pattern to move, causing the output of the light receiving element to change over time, causing measurement errors.

このような光学素子の位置姿勢の経時的な変化に対する
補正は固定鏡Mf或は移動鏡Mvの何れかの姿勢(光軸
と直交する二方向の傾き)を調整することによ7て可能
である。単に干渉計の経時的な狂いを補正するのであれ
ば時々手動的に干渉計の光学素子の姿勢の再調整を行え
ばよいが、干渉計を使っている状態で各光学素子の姿勢
が変化すのに対応するためには時々刻々に補正を行わな
ければならない。このためには2分割された後再び重ね
られる2光束の光軸の相互間のずれを検出して固定鏡、
移動鏡何れかの姿勢調節機構にフィードバックする自動
制御装置が必要である。
Correction for changes in the position and orientation of the optical element over time can be made by adjusting the orientation (tilt in two directions perpendicular to the optical axis) of either the fixed mirror Mf or the movable mirror Mv. be. If you simply want to correct the deviation of the interferometer over time, you can manually readjust the posture of the interferometer's optical elements from time to time, but the posture of each optical element changes while the interferometer is in use. In order to cope with this, corrections must be made from time to time. For this purpose, a fixed mirror is detected by detecting the mutual deviation of the optical axes of the two beams that are split into two and then overlapped again.
An automatic control device is required to provide feedback to the attitude adjustment mechanism of any of the movable mirrors.

所で従来提案されている干渉計の光学系の調整のための
自動制御装置は第6図に示すような構成になっている。
A conventionally proposed automatic control device for adjusting the optical system of an interferometer has a configuration as shown in FIG.

図でLは測定用光源で、Hが自動調整用の光源であり、
レーザが用いられる。干渉計に入射したレーザビームは
鏡mによって4分割光検出器Dfに入射せしめられる。
In the figure, L is the measurement light source, H is the automatic adjustment light source,
A laser is used. The laser beam incident on the interferometer is made incident on a four-split photodetector Df by a mirror m.

固定鏡Mf側の光軸上に遮光板Kを置いて、4分割光検
出器Dfには移動鏡Mvで反射されて来たレーザビーム
だけが入射するようにしである。このような構成で4分
割光検出器Df上に投射されるレーザビームスポットが
4分割光検出器の各受光素子に均等に分配されるように
移動鏡Mvの姿勢を制御するもので、移動鏡の姿勢制御
は4つの移動鏡支持体のうち2つを圧電素子にして、こ
れに電圧を印加することにより行っている。即ち4分割
光検出器Dfの各受光素子の出力が互いに等しくなるよ
うに移動鏡Mvの姿勢を制御しているのであって、この
ようにすると移動鏡Mvで反射されたレーザ光束は常に
正しく4分割光検出器上に投射されていることになり、
移動鏡Mvによる反射光軸の光軸の振れが阻止される。
A light shielding plate K is placed on the optical axis on the side of the fixed mirror Mf, so that only the laser beam reflected by the movable mirror Mv enters the four-split photodetector Df. With this configuration, the attitude of the movable mirror Mv is controlled so that the laser beam spot projected onto the 4-split photodetector Df is evenly distributed to each light receiving element of the 4-split photodetector. The posture control is performed by applying a voltage to two of the four movable mirror supports as piezoelectric elements. That is, the attitude of the movable mirror Mv is controlled so that the output of each light receiving element of the 4-split photodetector Df is equal to each other, and in this way, the laser beam reflected by the movable mirror Mv is always correctly 4 It is projected onto a split photodetector,
The deflection of the optical axis of the reflected optical axis due to the movable mirror Mv is prevented.

ハ1発明が解決しようとする問題点 上述した従来例では移動鏡Mvの使用中の反射光の光軸
の振れは阻止されるが、固定鏡や半透明鏡の姿勢も経時
的な変化があるのに、干渉計の光学系全体としての調整
の狂いの動的な補正は行われていない。
C1 Problems to be Solved by the Invention In the conventional example described above, the deflection of the optical axis of the reflected light while the movable mirror Mv is in use is prevented, but the posture of the fixed mirror or semi-transparent mirror also changes over time. However, there is no dynamic correction of misalignment of the interferometer's optical system as a whole.

本発明は上述した従来例より、より完全な干渉計の調整
状態の変動の自動補正を行うことを目的としている。
An object of the present invention is to perform automatic correction of fluctuations in the adjustment state of an interferometer more completely than the conventional example described above.

二1問題点解決のための手段 三光束干渉計において、干渉光束を受光する位置に円周
方向に多分割された多分割光検出器を配置し、同光検出
器に入射する光束の断面が同光検出器の受光面と同程度
乃至若干大きい程度となるような光束を干渉計の主入射
光束の光軸と平行に干渉計に入射せしめる単色光光源を
配置し、干渉計の移動鏡移動中の上記多分割光検出器の
各受光素子の出力の最大、最小の差と出力平均との比が
各受光素子について等しくなるように干渉計の固定鏡或
は移動鏡の姿勢制御を行うフィードバック系を設けた。
21 Means for Solving Problems In a three-beam interferometer, a multi-segmented photodetector that is multi-divided in the circumferential direction is arranged at the position where the interference light beam is received, and the cross-section of the light beam incident on the photodetector is A monochromatic light source is arranged to make a light beam that is about the same level or slightly larger than the light receiving surface of the photodetector enter the interferometer parallel to the optical axis of the main incident light beam of the interferometer, and the movable mirror of the interferometer is moved. Feedback for controlling the attitude of the fixed mirror or movable mirror of the interferometer so that the ratio between the maximum and minimum difference in output of each light receiving element of the multi-split photodetector and the output average is equal for each light receiving element. A system was established.

ホ9作用 第3図において、Dfが多分割光検出器で、Pl、P2
は光検出器Df上に投射される光束を示し、Plは第1
図の固定鏡Mfからの反射光束、P2は移動!tMvか
らの反射光束で両光束はDfの受光面上で干渉している
。その結果、移動鏡を移動させると光検出器Dfの各受
光素子Dfl。
E9 action In Fig. 3, Df is a multi-division photodetector, Pl, P2
indicates the luminous flux projected onto the photodetector Df, and Pl is the first
The reflected light flux from the fixed mirror Mf in the figure, P2, is moving! The reflected light beams from tMv interfere with each other on the light receiving surface of Df. As a result, when the movable mirror is moved, each light receiving element Dfl of the photodetector Df.

Df2.・・・の出力は移動鏡が光の波長の1/2の距
離を移動する間に一周期の変動をする。第3図Aは2光
束PL、P2が互いに少しずれて重なっており、このよ
うな状態のときは光束断面の光強度分布が中心対称的で
外周に向かい低下しているので、光束の重なり部分の各
点における2光束の強度比は1でなく、場所によって異
っており、干渉状態も異っており、受光素子Dfl、D
f2゜・・・の出力の変動の振幅と平均値との比は互い
に一致していない。これに対して第3図Bに示すように
2光束PI、P2が光検出器Df上で完全に一致してい
るときは上記比の値が各受光素子同士互いに等しくなる
。即ち干渉計から出射する2光束Pi、P2の光軸が一
致したことになる。従って干渉計の光学系の調整として
完全な調整が行われたことになり、このような調整が移
動鏡の移動中に行われるのである。
Df2. The output of ... fluctuates in one cycle while the movable mirror moves a distance of 1/2 the wavelength of the light. In Fig. 3A, two light beams PL and P2 are overlapped with each other with a slight deviation from each other. In such a state, the light intensity distribution in the cross section of the light beams is center symmetric and decreases toward the outer periphery, so the overlapping portion of the light beams The intensity ratio of the two light beams at each point is not 1, but differs depending on the location, and the interference state also differs, and the light receiving elements Dfl, D
The ratios of the amplitudes of the fluctuations in the outputs of f2° and the average value do not match each other. On the other hand, as shown in FIG. 3B, when the two light beams PI and P2 completely match on the photodetector Df, the values of the ratios are equal to each other for each light receiving element. That is, the optical axes of the two beams Pi and P2 emitted from the interferometer coincide. Therefore, a complete adjustment has been made as an adjustment of the optical system of the interferometer, and such adjustment is performed while the movable mirror is moving.

へ、実施例 第1図に本発明の一実施例を示す。この実施例はフーリ
エ変換型分光光度計用の干渉計に本発明を適用したもの
である。Mfは固定鏡、Mvは移動鏡でBは半透明鏡で
ある。移動鏡Mvは直進型のエアベアリングlに保持さ
れ、リニヤモータ2によって図で左右に駆動される。固
定鏡Mfは弾性棒の中心脚3で固定台4に保持され、第
2図に示すように中心脚3を中心とする正方形の相隣る
2頂点の位置で固定鏡と固定台との間に圧縮ばね5.5
が介在させてあり、他の2頂点の位置には、固定台との
間に電圧素子61.62が介在させである。圧電素子6
1.62に電圧を印加すると、これらの圧電素子は伸縮
し、そのため固定鏡Mfは中心脚3の取付点つまり固定
鏡中心を支点に左右および拝み方向に揺動せしめられる
。Lは測定用光源で、その出射光はコリメータ鏡7によ
り平行光束となって干渉計に入射せしめられ、干渉計か
ら出射して測定用の主光検出器8上に集光せられ、そこ
で2分割された2光束が干渉する。
Embodiment FIG. 1 shows an embodiment of the present invention. In this embodiment, the present invention is applied to an interferometer for a Fourier transform spectrophotometer. Mf is a fixed mirror, Mv is a movable mirror, and B is a semi-transparent mirror. The movable mirror Mv is held by a linear air bearing l, and is driven left and right in the figure by a linear motor 2. The fixed mirror Mf is held on the fixed base 4 by the center leg 3 of an elastic rod, and as shown in FIG. compression spring 5.5
are interposed therebetween, and voltage elements 61 and 62 are interposed between the fixing base and the other two apex positions. Piezoelectric element 6
When a voltage is applied to 1.62, these piezoelectric elements expand and contract, and the fixed mirror Mf is therefore swung left and right and in the viewing direction about the attachment point of the center leg 3, that is, the center of the fixed mirror as a fulcrum. L is a measurement light source, and its emitted light is made into a parallel light beam by a collimator mirror 7 and is made to enter the interferometer, and is then emitted from the interferometer and condensed onto the main light detector 8 for measurement, where 2 The two divided beams of light interfere.

Hは光学系自動調整用の単色光光源でHe−Neレーザ
が用いられており、その出射光束はコリメータ鏡7の中
央の小孔を通して干渉計の入射光路光軸に平行に干渉計
に入射せしめられ、干渉計の出射光路上の小鏡mで反射
されて4分割光検出器Df上に投射せしめられる。光源
のHe −N eレーザはTEM00の発振モードを用
い、出射光束断面半径はレーザの出射口において0.4
mm弱、そこから1200mm進んだ所で約1mm強に
広がっており、光束断面における光強度分布は中心対称
的なガウス分布になっている。この1200mmは光源
Hから光検出器Dfまでの光路長とはV等しい値で、光
検出器Dfは受光面直径が約1mmで、第3図に示すよ
うに4分割されている。
H is a monochromatic light source for automatic adjustment of the optical system, and a He-Ne laser is used, and its emitted light beam enters the interferometer through a small hole in the center of the collimator mirror 7 in parallel to the optical axis of the interferometer's incident optical path. The light is reflected by a small mirror m on the output optical path of the interferometer and projected onto a four-split photodetector Df. The light source He-Ne laser uses the TEM00 oscillation mode, and the cross-sectional radius of the emitted beam is 0.4 at the laser exit.
It spreads out to just over 1 mm at a point 1200 mm further from there, and the light intensity distribution in the beam cross section is a centrosymmetric Gaussian distribution. This 1200 mm is equal to the optical path length from the light source H to the photodetector Df by V, and the photodetector Df has a light receiving surface diameter of about 1 mm and is divided into four parts as shown in FIG.

4分割光検出器の4個の受光素子Dfl、Df2、Df
3.Df4は第4図に示すように、夫々アンプA1〜A
4を経てその出力の交流成分がマルチプレクサMPXに
より順次サンプリングされ、AD変換されて、信号処理
回路10に取込まれ、信号処理回路10から圧電素子駆
動回路12を介して圧電素子61.62にフィードバッ
クされる。信号処理回路10は次のように動作する。
Four light receiving elements Dfl, Df2, Df of the 4-split photodetector
3. Df4 are amplifiers A1 to A, respectively, as shown in FIG.
4, the AC component of the output is sequentially sampled by the multiplexer MPX, AD converted, taken into the signal processing circuit 10, and fed back from the signal processing circuit 10 to the piezoelectric elements 61 and 62 via the piezoelectric element drive circuit 12. be done. The signal processing circuit 10 operates as follows.

第5図はその動作を説明するためのタイムチャートであ
る。第5図でAは受光素子Dflの出力である。この出
力は第4図の微分増幅回路11により微分され第5図の
波形Adとなる。信号処理回路10はこの微分パルス信
号によってマルチプレクサMPXefilJ御し、同パ
ルス信号の立上りおよび立下りにおいて受光素子Dfl
〜Df4の出力信号A、B、C,Dをサンプリングして
いる。第5図の黒丸はこのサンプリング点を示し、4個
の受光素子の出力変動の振幅および出力の平均値は第3
図の2光束PL、P2がずれている場合、2光束の各受
光素子上での強度比が異るため干渉状態が異っていて互
に等しくない。信号処理回路10は上記したサンプリン
グデータにより各受光素子出力について、 (最大値−最小値)/(最大値+最小値)を算出する。
FIG. 5 is a time chart for explaining the operation. In FIG. 5, A is the output of the light receiving element Dfl. This output is differentiated by the differential amplifier circuit 11 shown in FIG. 4, resulting in a waveform Ad shown in FIG. The signal processing circuit 10 controls the multiplexer MPXefilJ by this differential pulse signal, and at the rising and falling edges of the pulse signal, the light receiving element Dfl
The output signals A, B, C, and D of ~Df4 are sampled. The black circles in Figure 5 indicate this sampling point, and the amplitude of the output fluctuations and the average value of the output of the four light receiving elements are the third
When the two light beams PL and P2 in the figure are out of alignment, the intensity ratios of the two light beams on each light receiving element are different, so the interference states are different and they are not equal. The signal processing circuit 10 calculates (maximum value - minimum value)/(maximum value + minimum value) for each light receiving element output using the above-mentioned sampling data.

上式の分母は平均の2倍値である。The denominator in the above equation is twice the average.

上式の比の値は、第3図の2光束PL、P2が完全に一
致したとき、検出器の受光面上のどの点でも両光束の強
さが互いに同じだから完全な干渉が成立し、(最大+最
小)は略0になり、(最大−最小)は最大になり、比の
値が最大になる。従って制御回路10は圧電素子61.
62の何れか一方を駆動して、受光素子Dfl〜Df4
の何れか一つ例えばDflについて上記比の値が最大に
なるようにし、次に圧電素子の他方を駆動して、更に上
記比が最大になるようにし、そこで他の受光素子につい
て上記比の値がDflに対する量比の値と等しいか否か
調べ、等しければそこで調整は終わりであり、若し等し
くなければ、残りのDf2〜Df4の中の一つについて
上述と同じ動作を行う。
The value of the ratio in the above equation is that when the two beams PL and P2 in Fig. 3 perfectly match, the intensities of both beams are the same at any point on the light receiving surface of the detector, so perfect interference is established. (Maximum+Minimum) becomes approximately 0, (Maximum-Minimum) becomes maximum, and the value of the ratio becomes maximum. Therefore, the control circuit 10 uses the piezoelectric element 61.
62 to drive one of the light receiving elements Dfl to Df4.
For example, the value of the ratio is maximized for one of the light receiving elements, for example, Dfl, and then the other piezoelectric element is driven so that the ratio is maximized, and then the value of the ratio is set for the other light receiving elements. It is checked whether or not is equal to the value of the quantity ratio to Dfl. If they are equal, the adjustment ends there; if they are not equal, the same operation as described above is performed for one of the remaining Df2 to Df4.

第1図の実施例はフーリエ変換型分光光度計で、移動鏡
を左から右へ移動させながらインターフェログラムのデ
ータを採取する。この場合光源Hによって得られる干渉
信号を第4図に示すように受光素子Dflの出力から得
て、これを移動鏡Mvの移動速度制御に利用し、またイ
ンターフェログラムのデータサンプリングパルスを作る
のに利用している。と云うよりそのためのHe−Neレ
ーザを本発明の目的に利用しているのである。
The embodiment shown in FIG. 1 is a Fourier transform spectrophotometer that collects interferogram data while moving a movable mirror from left to right. In this case, the interference signal obtained by the light source H is obtained from the output of the light receiving element Dfl as shown in FIG. It is used for. Rather, the He-Ne laser for that purpose is utilized for the purpose of the present invention.

信号処理回路10は移動鏡Mvの左から右への移動の間
移動鏡の速度制御、インターフェログラムのデータサン
プリング等を行っているので、上述した固定鏡の微調整
は移動鏡の右から左への帰行程において行うようになっ
ており、左から右への測定行程ではその前の帰行程にお
ける調整状態を記憶している。
The signal processing circuit 10 controls the speed of the movable mirror Mv while it moves from left to right, samples interferogram data, etc., so the above-mentioned fine adjustment of the fixed mirror can be performed from right to left of the movable mirror. This is done on the return trip from left to right, and in the measurement trip from left to right, the adjustment state from the previous return trip is memorized.

ト、効果 本発明によれば試験光束を干渉計に入射させて干渉を起
こさせ、その干渉状態を受光して光学素子の調整を行う
ので、調整は単に移動鏡の光軸の振れを補正すると云う
のではな(、干渉計全体としての調整状態の狂いの補正
が行われることになり、移動鏡の移動中でも調整可能で
あるから、常に最良の状態で干渉計を用いることができ
、測定精度の向上が得られる。また多分割光検出器の各
受光素子出力についてその最大最小の差と平均との比を
用いて制御を行っているので、各受光素子間に感度のば
らつきがあっても、調整結果に影響しないと云う利点が
ある。
G. Effects According to the present invention, a test light beam is made incident on an interferometer to cause interference, and the interference state is received to adjust the optical element. Therefore, the adjustment is simply a matter of correcting the deflection of the optical axis of the movable mirror. (This means that the adjustment state of the interferometer as a whole is corrected, and adjustment can be made even while the movable mirror is moving. Therefore, the interferometer can always be used in the best condition, improving measurement accuracy. Furthermore, since control is performed using the ratio between the maximum and minimum differences and the average of the outputs of each light-receiving element of the multi-segment photodetector, even if there are variations in sensitivity between each light-receiving element, , has the advantage that it does not affect the adjustment results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光学系の平面図、第2図は
同実施例の固定鏡の保持構造を示す正面図、第3図は本
発明の詳細な説明する図、第4図は本発明の一実施例の
制御回路の要部回路図、第5図は同回路の動作説明のた
めの波形図、第6図は従来例の光学系の平面図である。 L・・・測定用光源、H・・・調整用光源、Mf・・・
固定鏡、Mv・・・移動鏡、B・・・半透明鏡、Df・
・・多分割光検出器、3・・・中心脚、5・・・ばね、
61.62・・・圧電素子。 代理人  弁理士 縣  浩 介 I4図
FIG. 1 is a plan view of an optical system according to an embodiment of the present invention, FIG. 2 is a front view showing a fixed mirror holding structure of the same embodiment, FIG. 3 is a diagram explaining the present invention in detail, and FIG. 5 is a circuit diagram of a main part of a control circuit according to an embodiment of the present invention, FIG. 5 is a waveform diagram for explaining the operation of the circuit, and FIG. 6 is a plan view of a conventional optical system. L...Light source for measurement, H...Light source for adjustment, Mf...
Fixed mirror, Mv... Movable mirror, B... Semi-transparent mirror, Df.
...Multi-segment photodetector, 3...Center leg, 5...Spring,
61.62...Piezoelectric element. Agent: Hiroshi Agata, Patent Attorney Figure I4

Claims (1)

【特許請求の範囲】[Claims] 干渉光束を受光する位置に円周方向に多分割された多分
割光検出器を配置し、同光検出器に入射する光束断面が
同光検出器の受光面と同程度かやゝ大きい程度となるよ
うな光束を干渉計の主入射光束の光軸と平行に干渉計に
入射せしめる単色光光源を配置し、干渉計の固定鏡或は
移動鏡の何れかにその姿勢を微調整する電気的駆動手段
を設け、上記多分割光検出器の各受光素子の出力につい
て、夫々最大値と最小値の差と平均値との比を算出し、
この比の値が各受光素子で等しくなるように上記微調整
手段を制御する信号処理回路を設けたことを特徴とする
干渉計の調整装置。
A multi-segment photodetector, which is divided into multiple sections in the circumferential direction, is placed at a position where the interference light beam is received, and the cross-section of the light beam incident on the photodetector is approximately the same or slightly larger than the light receiving surface of the photodetector. A monochromatic light source is arranged to make a light beam that is incident on the interferometer parallel to the optical axis of the main incident light beam of the interferometer, and an electric light source is used to finely adjust the attitude of either the fixed mirror or the movable mirror of the interferometer. A driving means is provided, and the ratio of the difference between the maximum value and the minimum value and the average value is calculated for the output of each light receiving element of the multi-division photodetector, respectively,
An interferometer adjustment device characterized in that a signal processing circuit is provided for controlling the fine adjustment means so that the value of this ratio is equal for each light receiving element.
JP31280386A 1986-12-30 1986-12-30 Adjuscting apparatus for interferometer Pending JPS63168522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31280386A JPS63168522A (en) 1986-12-30 1986-12-30 Adjuscting apparatus for interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31280386A JPS63168522A (en) 1986-12-30 1986-12-30 Adjuscting apparatus for interferometer

Publications (1)

Publication Number Publication Date
JPS63168522A true JPS63168522A (en) 1988-07-12

Family

ID=18033593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31280386A Pending JPS63168522A (en) 1986-12-30 1986-12-30 Adjuscting apparatus for interferometer

Country Status (1)

Country Link
JP (1) JPS63168522A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148726A1 (en) * 2010-05-28 2011-12-01 コニカミノルタホールディングス株式会社 Interferometer, and fourier transform spectrometry device
JP2014523517A (en) * 2011-05-02 2014-09-11 フォス アナリティカル アグシャセルスガーッブ Spectrometer
JP2016142523A (en) * 2015-01-29 2016-08-08 国立大学法人 香川大学 Spectral characteristic measuring apparatus and adjustment method thereof
JP2016142527A (en) * 2015-01-29 2016-08-08 株式会社島津製作所 Fourier transform type spectrophotometer
WO2020174665A1 (en) * 2019-02-28 2020-09-03 株式会社島津製作所 Michelson interferometer and fourier transform infrared spectrometer comprising same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148726A1 (en) * 2010-05-28 2011-12-01 コニカミノルタホールディングス株式会社 Interferometer, and fourier transform spectrometry device
JPWO2011148726A1 (en) * 2010-05-28 2013-07-25 コニカミノルタ株式会社 Interferometer and Fourier transform spectrometer
JP2014523517A (en) * 2011-05-02 2014-09-11 フォス アナリティカル アグシャセルスガーッブ Spectrometer
JP2016142523A (en) * 2015-01-29 2016-08-08 国立大学法人 香川大学 Spectral characteristic measuring apparatus and adjustment method thereof
JP2016142527A (en) * 2015-01-29 2016-08-08 株式会社島津製作所 Fourier transform type spectrophotometer
WO2020174665A1 (en) * 2019-02-28 2020-09-03 株式会社島津製作所 Michelson interferometer and fourier transform infrared spectrometer comprising same
JPWO2020174665A1 (en) * 2019-02-28 2021-12-23 株式会社島津製作所 Michelson interferometer and Fourier transform infrared spectroscope equipped with it

Similar Documents

Publication Publication Date Title
US4325640A (en) Electro-optical triangulation rangefinder for contour measurement
US4480914A (en) Vibration compensating interferometer mirror drive system
US6008902A (en) Method and device for heterodyne interferometer error correction
US5144363A (en) Apparatus for and method of projecting a mask pattern on a substrate
US4915502A (en) Interferometer spectrometer having tiltable reflector assembly and reflector assembly therefor
US4022532A (en) Sample point interferometric system for optical figure monitoring
JP2004251916A (en) Scanning monochromator
US5671047A (en) Laser beamsplitter for generating a plurality of parallel beams
JPH07117371B2 (en) measuring device
GB2183418A (en) Determining distance to a surface
US5289254A (en) Process and apparatus for testing optical components or systems
US5150172A (en) Interferometer spectrometer having tiltable reflector assembly and reflector assembly therefor
JPS63168522A (en) Adjuscting apparatus for interferometer
JPS63168502A (en) Control apparatus of interferometer
JP2732849B2 (en) Interferometer
JPS61223604A (en) Gap measuring instrument
EP0204495A2 (en) Astigmatism correction in laser diodes
JPH07332954A (en) Method and apparatus for measuring displacement and inclination
JPS623280A (en) Diffraction grating exposure device
JPH033176B2 (en)
RU2018792C1 (en) Method and device for aligning fabric-perot interferometer
JPH0476237B2 (en)
WO2020245413A1 (en) Laser interferometer with nanometer resolution
SU1630465A1 (en) Method of measuring angular spread of laser beam
JPH07181006A (en) Laser length measuring equipment