JP2016142527A - Fourier transform type spectrophotometer - Google Patents

Fourier transform type spectrophotometer Download PDF

Info

Publication number
JP2016142527A
JP2016142527A JP2015015821A JP2015015821A JP2016142527A JP 2016142527 A JP2016142527 A JP 2016142527A JP 2015015821 A JP2015015821 A JP 2015015821A JP 2015015821 A JP2015015821 A JP 2015015821A JP 2016142527 A JP2016142527 A JP 2016142527A
Authority
JP
Japan
Prior art keywords
mirror
posture
fixed mirror
speed
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015015821A
Other languages
Japanese (ja)
Other versions
JP2016142527A5 (en
JP6278205B2 (en
Inventor
佳澄 横田
Kasumi Yokota
佳澄 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2015015821A priority Critical patent/JP6278205B2/en
Publication of JP2016142527A publication Critical patent/JP2016142527A/en
Publication of JP2016142527A5 publication Critical patent/JP2016142527A5/ja
Application granted granted Critical
Publication of JP6278205B2 publication Critical patent/JP6278205B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Fourier transform type spectrophotometer with which it is possible to always excellently control the posture of a fixed mirror and control the movement speed of a movable mirror.SOLUTION: A Fourier transform type spectrophotometer comprises: a main interferometer provided with an infrared light source 2, a beam splitter 5, a movable mirror 7a, and a fixed mirror 6a and generating the interference light of an infrared ray emitted from the infrared light source 2; and a control interferometer including a laser beam source 8, a beam splitter 5, a movable mirror 7a, and a fixed mirror 6a and generating the interference light of a laser beam emitted from the laser beam source 8. The mixed mirror 6a is provided with a sensor for detecting the posture of the fixed mirror 6a, and the posture of the fixed mirror 6a is controlled on the basis of the detection signal of this sensor. The movable mirror 7a is provided with a sensor for detecting the movement speed of the movable mirror 7a, and the movement speed of the movable mirror 7a is controlled on the basis of this sensor.SELECTED DRAWING: Figure 1

Description

本発明は、フーリエ変換型分光光度計に関する。   The present invention relates to a Fourier transform spectrophotometer.

フーリエ変換赤外分光光度計(FTIR)では、ビームスプリッタ、固定鏡、移動鏡などを含むマイケルソン型干渉計を代表とする干渉計により時間的に振幅が変化する赤外干渉光を生成し、該赤外干渉光を試料に照射してその透過光又は反射光をインターフェログラム(以下「IFG」と称す)として検出する。この透過又は反射IFGをフーリエ変換処理することによって、横軸に波数(又は波長)、縦軸に強度(吸光度又は透過率など)をとったスペクトルを得る。そして、このスペクトルのピーク波長、ピーク強度等から試料の定性分析や定量分析が行われる。   In the Fourier transform infrared spectrophotometer (FTIR), infrared interference light whose amplitude changes with time is generated by an interferometer typified by a Michelson interferometer including a beam splitter, a fixed mirror, a moving mirror, and the like. The sample is irradiated with the infrared interference light, and the transmitted light or reflected light is detected as an interferogram (hereinafter referred to as “IFG”). The transmission or reflection IFG is subjected to a Fourier transform process to obtain a spectrum with the wave number (or wavelength) on the horizontal axis and the intensity (absorbance or transmittance, etc.) on the vertical axis. Then, qualitative analysis or quantitative analysis of the sample is performed from the peak wavelength, peak intensity, etc. of this spectrum.

通常、FTIRにおける干渉計は、IFGを得るための主干渉計のほかに、IFGのデータサンプリング用の信号を生成するためのコントロール干渉計を備えている。コントロール干渉計は、単色光光源(レーザ光源)と、主干渉計と共通のビームスプリッタ、固定鏡、移動鏡などを含み、干渉縞信号を得るためのレーザ干渉光を発生させる。このレーザ干渉光は、赤外干渉光の光路中に挿入されたミラーにより該光路から取り出されて光検出器に導入される。移動鏡が一定速度で移動するとレーザ干渉光の強度は一定周波数の正弦波、つまりレーザ光干渉縞信号として検出される。この干渉縞信号に基づいてデータサンプリング用のパルス信号が生成される。   In general, an interferometer in FTIR includes a control interferometer for generating a signal for IFG data sampling in addition to a main interferometer for obtaining IFG. The control interferometer includes a monochromatic light source (laser light source), a beam splitter, a fixed mirror, a moving mirror, etc. common to the main interferometer, and generates laser interference light for obtaining an interference fringe signal. The laser interference light is extracted from the optical path by a mirror inserted in the optical path of the infrared interference light and introduced into the photodetector. When the moving mirror moves at a constant speed, the intensity of the laser interference light is detected as a sine wave having a constant frequency, that is, a laser light interference fringe signal. A pulse signal for data sampling is generated based on the interference fringe signal.

定性分析や定量分析を精度良く行うためには、正確で再現性の良いスペクトルデータを取得することが重要であり、そのためには移動鏡と固定鏡の位置関係、基準面に対する移動鏡及び固定鏡の位置や姿勢を一定に維持しつつ該移動鏡を一定速度で移動させる必要がある。そこで、従来のFTIRでは、コントロール干渉計の光検出器で得られる信号を利用して、固定鏡の位置や姿勢(傾き)を調整したり、移動鏡の姿勢や速度を制御したりしている。   In order to perform qualitative analysis and quantitative analysis with high accuracy, it is important to acquire accurate and reproducible spectral data. For that purpose, the positional relationship between the movable mirror and the fixed mirror, the movable mirror and the fixed mirror relative to the reference plane, and so on. It is necessary to move the movable mirror at a constant speed while maintaining the position and posture of the lens at a constant. Therefore, in the conventional FTIR, the position and posture (tilt) of the fixed mirror are adjusted, and the posture and speed of the movable mirror are controlled using a signal obtained by the photodetector of the control interferometer. .

従来のFTIRでは、固定鏡と移動鏡の相対的な位置関係を制御するために、ダイナミックアライメント方式と呼ばれる、コントロール干渉計におけるレーザ光の干渉状態を用いた固定鏡の傾きを調整する方法が用いられている(特許文献1等参照)。この方法では、コントロール干渉計においてレーザ干渉光を検出する光検出器として、互いに直交する2軸(水平軸及び垂直軸)により受光面が4分割されたフォトダイオードが通常、用いられる。ここで、4個の受光部のうち、ある1個の受光部を参照部R、参照部Rに水平方向に隣接する受光部を水平部H、参照部Rに垂直方向に隣接する受光部を垂直部Vとし、参照部Rから得られる信号を参照信号Sr、水平部Hから得られる信号を水平信号Sh、垂直部Vから得られる信号を垂直信号Svとする。   In the conventional FTIR, in order to control the relative positional relationship between the fixed mirror and the movable mirror, a method of adjusting the tilt of the fixed mirror using the interference state of the laser beam in the control interferometer is used, which is called a dynamic alignment method. (See Patent Document 1, etc.). In this method, a photodiode in which a light receiving surface is divided into four by two axes (horizontal axis and vertical axis) orthogonal to each other is usually used as a photodetector for detecting laser interference light in a control interferometer. Here, of the four light receiving units, one light receiving unit is the reference unit R, the light receiving unit adjacent to the reference unit R in the horizontal direction is the horizontal unit H, and the light receiving unit adjacent to the reference unit R in the vertical direction. A signal obtained from the reference unit R is a reference signal Sr, a signal obtained from the horizontal unit H is a horizontal signal Sh, and a signal obtained from the vertical unit V is a vertical signal Sv.

レーザ干渉光の光束断面内で光路長に差がある場合、参照信号Sr、水平信号Sh及び垂直信号Svの間に位相差が生じる。そこで、移動鏡を駆動する際に、制御部は、参照信号Srと水平信号Shの間の位相差(ΔRH)及び参照信号Srと垂直信号Svの間の位相差(ΔRV)がそれぞれ一定となるように、固定鏡に搭載された圧電素子に駆動電圧を印加し、固定鏡の傾きを補償する。これにより、移動鏡の鏡面と固定鏡の鏡面の位置関係が一定に維持される。   When there is a difference in optical path length within the beam cross section of the laser interference light, a phase difference occurs between the reference signal Sr, the horizontal signal Sh, and the vertical signal Sv. Therefore, when driving the movable mirror, the control unit has a constant phase difference (ΔRH) between the reference signal Sr and the horizontal signal Sh and a phase difference (ΔRV) between the reference signal Sr and the vertical signal Sv. As described above, a drive voltage is applied to the piezoelectric element mounted on the fixed mirror to compensate for the tilt of the fixed mirror. Thereby, the positional relationship between the mirror surface of the movable mirror and the mirror surface of the fixed mirror is maintained constant.

一方、移動鏡は、コントロール干渉計におけるレーザ干渉光を利用したフィードバック制御により一定速度で駆動される(特許文献2等参照)。すなわち、移動鏡を移動させる際に、制御部は、フォトダイオードの4個の受光部でそれぞれ得られた信号を加算し、その加算信号の周波数から移動鏡の移動速度Vcを計算する。そして、この移動速度Vcと予め決められている目標速度V0の差、つまり速度誤差(Vc−V0)を求め、この速度誤差を、移動鏡を駆動するモータへの印加電圧にフィードバックする。これにより、移動鏡を高い精度で駆動することができる。   On the other hand, the movable mirror is driven at a constant speed by feedback control using laser interference light in a control interferometer (see Patent Document 2, etc.). That is, when the moving mirror is moved, the control unit adds the signals respectively obtained by the four light receiving units of the photodiode, and calculates the moving speed Vc of the moving mirror from the frequency of the added signal. Then, a difference between the moving speed Vc and a predetermined target speed V0, that is, a speed error (Vc−V0) is obtained, and this speed error is fed back to the voltage applied to the motor that drives the moving mirror. Thereby, the movable mirror can be driven with high accuracy.

特開平02-253103号公報Japanese Patent Laid-Open No. 02-253103 特開2009-139352号公報JP 2009-139352 A

従来のFTIRでは、コントロール干渉計の光検出器で得られる干渉縞信号は基準電位からプラス方向とマイナス方向の振幅を持つフリンジ信号として処理され、このフリンジ信号が、固定鏡の傾き制御及び移動鏡のフィードバック制御に用いられる。すなわち、フリンジ信号からなる参照信号Sr、水平信号Sh及び垂直信号Svの立ち上がりゼロクロス(基準電位から立ち上がる時点)のタイミングの違いから位相差(ΔRH及びΔRV)を求めて固定鏡の傾きを制御する。また、フリンジ信号からなる加算信号の立ち上がりゼロクロスから次の立ち上がりゼロクロスまでの時間を計測することにより、レーザ1波長分に相当する光路長差の距離だけ移動鏡が移動したときの時間を求め、移動鏡の移動速度を求める。しかしながら、こうした構成では次のような問題がある。   In the conventional FTIR, the interference fringe signal obtained by the light detector of the control interferometer is processed as a fringe signal having amplitudes in the plus and minus directions from the reference potential, and this fringe signal is used to control the tilt of the fixed mirror and the movable mirror. Used for feedback control. That is, the phase difference (ΔRH and ΔRV) is obtained from the difference in timing of the rising zero cross (at the time of rising from the reference potential) of the reference signal Sr, the horizontal signal Sh, and the vertical signal Sv that are fringe signals, and the tilt of the fixed mirror is controlled. Also, by measuring the time from the rising zero cross of the added signal consisting of the fringe signal to the next rising zero cross, the time when the moving mirror moves by the distance of the optical path length difference corresponding to one wavelength of the laser is obtained and moved Find the moving speed of the mirror. However, such a configuration has the following problems.

FTIRの干渉計で使用される移動鏡の駆動装置の一つにボイスコイルと磁石からなるリニア駆動装置がある。このリニア駆動装置では、ボイスコイルに流れる電流と磁石が作る磁界による電磁力により、リニアガイドに沿って移動鏡が移動される。移動鏡の移動速度はボイスコイルに印加する電圧の大きさを変化させることによって調整される。
このような装置においては、経年劣化等により移動鏡とリニアガイドの間のクーロン摩擦(すべり摩擦)が大きくなり、その結果、移動鏡のうちリニアガイドと接触する部分がそれ以外の部分と異なる動きをしたり、移動鏡全体の移動に応答の遅れが生じたりすることがある。クーロン摩擦は予測したり検出したりすることができないため、フリンジ信号のゼロクロスタイミングで求めた位相差や移動速度だけでは、固定鏡の姿勢制御や移動鏡の移動制御が必ずしも最適に行われなくなり、これが測定自体の精度を低下させる一因となる。
One of the moving mirror driving devices used in the FTIR interferometer is a linear driving device composed of a voice coil and a magnet. In this linear drive device, the movable mirror is moved along the linear guide by the electromagnetic force generated by the current flowing through the voice coil and the magnetic field generated by the magnet. The moving speed of the moving mirror is adjusted by changing the magnitude of the voltage applied to the voice coil.
In such a device, the Coulomb friction (sliding friction) between the movable mirror and the linear guide increases due to deterioration over time, and as a result, the portion of the movable mirror that contacts the linear guide moves differently from the rest. Or a delay in response to the movement of the entire moving mirror. Since Coulomb friction cannot be predicted or detected, the attitude control of the fixed mirror and the movement control of the moving mirror are not necessarily optimally performed only by the phase difference and moving speed obtained at the zero cross timing of the fringe signal. This contributes to a decrease in the accuracy of the measurement itself.

特に、移動鏡を低速で移動させる場合は、問題が顕在化する。具体的には、ゼロクロスタイミングの発生間隔が長くなるため、ゼロクロスタイミングで設定した制御が継続して行われるだけであり、事実上の無制御時間が増加する。
また、固定鏡の姿勢を一定に維持することができても、移動鏡の姿勢が変化すると固定鏡と移動鏡の相対的な位置関係が変化する。しかしながら、従来は移動鏡の姿勢を直接検出することは行っていないため、上記のような場合に対応することができない。
In particular, when the moving mirror is moved at a low speed, the problem becomes obvious. Specifically, since the occurrence interval of the zero cross timing becomes longer, only the control set at the zero cross timing is continuously performed, and the virtually no control time increases.
Further, even if the fixed mirror can be maintained in a constant posture, the relative positional relationship between the fixed mirror and the movable mirror changes when the posture of the movable mirror changes. However, conventionally, since the posture of the movable mirror is not directly detected, it is impossible to cope with the above case.

本発明が解決しようとする課題は、固定鏡の姿勢制御や移動鏡の移動速度の制御を常に良好に行うことができ、且つ、固定鏡と移動鏡の相対的な位置関係を一定に維持することができるフーリエ変換型分光光度計を提供することである。   The problem to be solved by the present invention is that the attitude control of the fixed mirror and the control of the moving speed of the movable mirror can always be performed well, and the relative positional relationship between the fixed mirror and the movable mirror is kept constant. It is to provide a Fourier transform spectrophotometer that can be used.

上記課題を解決するために成された本発明に係るフーリエ変換型分光光度計は、
多波長光源、ビームスプリッタ、移動鏡、及び固定鏡を備え、前記多波長光源から発せられる多波長光の干渉光である多波長光干渉光を生成する主干渉計と、
単色光源、前記ビームスプリッタ、前記移動鏡、及び前記固定鏡を含み、前記単色光源から発せられる単色光の干渉光である単色光干渉光を生成するコントロール干渉計と
を具備するフーリエ変換型分光光度計において、
a)前記移動鏡に取り付けられた、該移動鏡の移動速度を検出するためのセンサおよび前記移動鏡の姿勢を検出するためのセンサを有する移動鏡速度姿勢検出部と、
b)前記移動鏡速度姿勢検出部の検出結果に基づいて前記固定鏡の姿勢を制御する固定鏡姿勢制御手段と、
c)前記移動鏡速度姿勢検出部の検出結果に基づいて前記移動鏡の移動速度を制御する移動鏡速度制御手段と、
を備えることを特徴とする。
The Fourier transform spectrophotometer according to the present invention made to solve the above problems is
A main interferometer that includes a multi-wavelength light source, a beam splitter, a movable mirror, and a fixed mirror, and generates multi-wavelength light interference light that is interference light of multi-wavelength light emitted from the multi-wavelength light source;
A Fourier transform spectrophotometer comprising: a monochromatic light source, the beam splitter, the moving mirror, and the fixed mirror, and a control interferometer that generates monochromatic light interference light that is interference light of the monochromatic light emitted from the monochromatic light source. In total
a) a movable mirror speed / attitude detection unit having a sensor attached to the movable mirror for detecting the movement speed of the movable mirror and a sensor for detecting the attitude of the movable mirror;
b) a fixed mirror posture control means for controlling the posture of the fixed mirror based on the detection result of the moving mirror speed posture detection unit;
c) moving mirror speed control means for controlling the moving speed of the moving mirror based on the detection result of the moving mirror speed posture detection unit;
It is characterized by providing.

本発明に係るフーリエ変換型分光光度計では、さらに、前記固定鏡の姿勢を検出するセンサを有する固定鏡姿勢検出部を備え、
前記固定鏡姿勢制御手段が、前記固定鏡姿勢検出部および前記移動鏡速度姿勢検出部の検出結果に基づいて前記固定鏡の姿勢を制御し、
前記移動鏡速度制御手段が、前記固定鏡姿勢検出部および前記移動鏡速度姿勢検出部の検出結果に基づいて前記移動鏡の移動速度を制御するようにしても良い。
The Fourier transform spectrophotometer according to the present invention further includes a fixed mirror posture detection unit having a sensor for detecting the posture of the fixed mirror,
The fixed mirror posture control means controls the posture of the fixed mirror based on the detection results of the fixed mirror posture detector and the moving mirror speed posture detector;
The moving mirror speed control means may control the moving speed of the moving mirror based on detection results of the fixed mirror attitude detection unit and the movable mirror speed attitude detection unit.

移動鏡速度姿勢検出部および固定鏡姿勢検出部は、3軸加速度センサ、角速度センサ、PSD(Position Sensitive Detector)センサ等のセンサと、センサの検出信号を処理する演算処理部から構成することができる。
移動鏡速度姿勢検出部が有する移動鏡の移動速度を検出するためのセンサおよび前記移動鏡の姿勢を検出するためのセンサは1個のセンサが兼用しても良く、それぞれ別のセンサとしても良い。センサは固定鏡や移動鏡に直接取り付けられていても良く、固定鏡や移動鏡と一体的に動く支持部等の部材に取り付けられていても良い。また、固定鏡の姿勢を検出するためのセンサは、固定鏡から離れた部位に設けられていても良い。演算処理部は固定鏡や移動鏡に設置されていても良く、フーリエ変換型分光光度計内の固定鏡や移動鏡とは別の箇所に設置されていても良い。また、フーリエ変換型分光光度計に有線または無線で接続されたパーソナルコンピュータ等を演算処理部として機能させても良い。固定鏡姿勢検出部の全体を固定鏡に取り付ける場合、あるいは移動鏡速度姿勢検出部の全体を移動鏡に取り付ける場合、センサと演算処理回路が1枚の基板上に集積されたMEMS(Micro Electro Mechanical Systems)を固定鏡姿勢検出部や移動鏡速度姿勢検出部として用いると良い。
The movable mirror speed / attitude detection unit and the fixed mirror attitude detection unit can be composed of sensors such as a three-axis acceleration sensor, an angular velocity sensor, and a PSD (Position Sensitive Detector) sensor, and an arithmetic processing unit that processes the detection signal of the sensor. .
The sensor for detecting the moving speed of the moving mirror and the sensor for detecting the attitude of the moving mirror included in the moving mirror speed / attitude detection unit may be used as one sensor or as different sensors. . The sensor may be directly attached to the fixed mirror or the movable mirror, or may be attached to a member such as a support unit that moves integrally with the fixed mirror or the movable mirror. In addition, the sensor for detecting the posture of the fixed mirror may be provided in a part away from the fixed mirror. The arithmetic processing unit may be installed in a fixed mirror or a movable mirror, or may be installed in a location different from the fixed mirror or the movable mirror in the Fourier transform spectrophotometer. Further, a personal computer or the like connected to the Fourier transform type spectrophotometer by wire or wireless may function as the arithmetic processing unit. When the entire fixed mirror posture detection unit is attached to the fixed mirror, or when the entire movable mirror velocity posture detection unit is attached to the movable mirror, the MEMS (Micro Electro Mechanical) in which the sensor and the arithmetic processing circuit are integrated on a single substrate. Systems) may be used as a fixed mirror attitude detector and a moving mirror speed attitude detector.

フーリエ変換型分光光度計では、主干渉計で生成された多波長光干渉光を試料に照射してその透過光又は反射光をIFGとして検出し、この透過又は反射IFGをフーリエ変換処理することにより、スペクトルを得る。また、コントロール干渉光で生成される単色光干渉光の検出信号から、IFGのデータをサンプリングするための信号を得る。本発明では、単色光干渉光の検出信号とは別の固定鏡姿勢検出部や移動鏡速度姿勢検出部の検出信号から固定鏡の姿勢や移動鏡の姿勢及び移動速度を求めて、固定鏡の姿勢制御及び移動鏡の速度制御を行う。特に、固定鏡姿勢検出部および移動鏡速度姿勢検出部の検出結果に基づいて固定鏡の姿勢を制御し、固定鏡姿勢検出部および移動鏡速度姿勢検出部の検出結果に基づいて移動鏡の移動速度を制御する構成では、固定鏡及び移動鏡の相対的な位置関係や姿勢、移動鏡の速度を精度良く制御することができる。   In the Fourier transform type spectrophotometer, the sample is irradiated with the multi-wavelength light interference light generated by the main interferometer, the transmitted light or reflected light is detected as IFG, and the transmitted or reflected IFG is subjected to Fourier transform processing. , Get the spectrum. Further, a signal for sampling the IFG data is obtained from the detection signal of the monochromatic light interference light generated by the control interference light. In the present invention, the fixed mirror posture, the movable mirror posture and the moving speed are obtained from the detection signals of the fixed mirror posture detection unit and the movable mirror speed posture detection unit different from the detection signal of the monochromatic interference light. Attitude control and moving mirror speed control are performed. In particular, the posture of the fixed mirror is controlled based on the detection results of the fixed mirror posture detection unit and the movable mirror speed posture detection unit, and the movement of the movable mirror is based on the detection results of the fixed mirror posture detection unit and the movable mirror speed posture detection unit. In the configuration for controlling the speed, the relative positional relationship and posture of the fixed mirror and the movable mirror and the speed of the movable mirror can be accurately controlled.

この場合、固定鏡姿勢制御手段および移動鏡速度制御手段が、従来のフーリエ変換型分光光度計で固定鏡や移動鏡の相対的な位置関係の制御に用いられている前記単色干渉光の検出信号と、本発明の特徴的構成である移動鏡姿勢検出部や固定鏡姿勢検出部の検出信号を併用して固定鏡の姿勢および移動鏡の速度を制御するようにすると、制御の精度がより一層向上する。   In this case, the fixed mirror attitude control means and the moving mirror speed control means are the detection signals of the monochromatic interference light used for controlling the relative positional relationship between the fixed mirror and the moving mirror in the conventional Fourier transform spectrophotometer. If the control signal of the fixed mirror and the speed of the movable mirror are controlled by using the detection signals of the movable mirror posture detection unit and the fixed mirror posture detection unit, which are the characteristic configuration of the present invention, the control accuracy is further improved. improves.

本発明のフーリエ変換型分光光度計によれば、ゼロクロスタイミングの制約を受けることなく任意のタイミングで固定鏡の姿勢、移動鏡の姿勢および移動速度を検出することができる。さらに、固定鏡の姿勢制御や移動鏡の速度制御を常に良好に行うことができるため、固定鏡と移動鏡の相対的な位置関係を一定に保つ、移動鏡の速度を一定に維持する、固定鏡との相対的な距離を維持した状態で移動鏡をステップスキャンする際の制御を安定させる、といったことが可能になる。   According to the Fourier transform spectrophotometer of the present invention, the posture of the fixed mirror, the posture of the movable mirror, and the moving speed can be detected at any timing without being restricted by the zero cross timing. In addition, the attitude control of the fixed mirror and the speed control of the moving mirror can be performed satisfactorily, so that the relative positional relationship between the fixed mirror and the moving mirror is kept constant, the speed of the moving mirror is kept constant, and fixed. It becomes possible to stabilize the control when step-scanning the movable mirror while maintaining the relative distance from the mirror.

本発明の第1実施例に係るFTIRの光学系の概略的構成図。1 is a schematic configuration diagram of an FTIR optical system according to a first embodiment of the present invention. FIG. 制御・処理系の要部のブロック図。The block diagram of the principal part of a control / processing system. 固定鏡と移動鏡センサの関係及び移動鏡と移動鏡センサの関係を示す図。The figure which shows the relationship between a fixed mirror and a movable mirror sensor, and the relationship between a movable mirror and a movable mirror sensor. フリンジ信号とレーザ干渉光の検出信号及びセンサ信号から求めた位相差の関係を示す図。The figure which shows the relationship of the phase difference calculated | required from the detection signal and sensor signal of a fringe signal and a laser interference light. 本発明の第2実施例に係るFTIRの制御・処理系の要部のブロック図。The block diagram of the principal part of the control and processing system of FTIR which concerns on 2nd Example of this invention. 本発明の変形例に係るFTIRの制御・処理系の要部のブロック図。The block diagram of the principal part of the control and processing system of FTIR which concerns on the modification of this invention.

以下、本発明の具体的な実施例について添付図面を参照して説明する。
図1は本発明の第1実施例に係るFTIRの光学系の概略構成図を示す。図1において、干渉計室1内には、赤外光源2、集光鏡3、コリメータ鏡4、ビームスプリッタ5、固定鏡部6、移動鏡部7から構成される主干渉計と、レーザ光源8、レーザ用ミラー9、ビームスプリッタ5、固定鏡部6、移動鏡部7から構成されるコントロール干渉計と、が配設されている。固定鏡部6は、固定鏡6aと該固定鏡6aを支持する支持台6bと該固定鏡6aに付設されている固定鏡6aの姿勢調整用の圧電素子6c(図2にのみ示す。)から構成されている。圧電素子6cは、固定鏡6aをZ軸を中心とする回転方向、及びY軸を中心とする回転方向に駆動することにより、該固定鏡6aのX軸に対する傾き(姿勢)を調整する。移動鏡部7は移動鏡7a、ボイスコイルと磁石から成るリニアモータ7b、及びリニアガイド7c(図3にのみ示す。)から構成されている。移動鏡7aは、ボイスコイルに電圧が印加されることにより発生する電磁力によってリニアガイド7cに沿って矢印M方向に往復移動する。
Specific embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of an FTIR optical system according to a first embodiment of the present invention. In FIG. 1, in an interferometer chamber 1, a main interferometer composed of an infrared light source 2, a condensing mirror 3, a collimator mirror 4, a beam splitter 5, a fixed mirror portion 6, and a movable mirror portion 7, and a laser light source 8, a control interferometer including a laser mirror 9, a beam splitter 5, a fixed mirror unit 6, and a movable mirror unit 7 is disposed. The fixed mirror section 6 includes a fixed mirror 6a, a support base 6b that supports the fixed mirror 6a, and a piezoelectric element 6c for adjusting the attitude of the fixed mirror 6a attached to the fixed mirror 6a (shown only in FIG. 2). It is configured. The piezoelectric element 6c adjusts the inclination (posture) of the fixed mirror 6a with respect to the X axis by driving the fixed mirror 6a in the rotation direction about the Z axis and the rotation direction about the Y axis. The movable mirror unit 7 includes a movable mirror 7a, a linear motor 7b composed of a voice coil and a magnet, and a linear guide 7c (shown only in FIG. 3). The movable mirror 7a reciprocates in the arrow M direction along the linear guide 7c by an electromagnetic force generated by applying a voltage to the voice coil.

主干渉計は干渉計室1の外部に設置された試料室13内の試料14のスペクトル測定を行うための赤外干渉光を発生させる。即ち、赤外光源2から出射された赤外光は、集光鏡3、コリメータ鏡4を介してビームスプリッタ5に照射され、ビームスプリッタ5により固定鏡6及び移動鏡7の二方向に分割される。固定鏡6及び移動鏡7にてそれぞれ反射した光はビームスプリッタ5によって再び合一され、放物面鏡12へ向かう光路に送られる。測定時において、移動鏡7は矢印Mの方向に往復動しているため、合一された光は時間的に振幅が変化する干渉光となる。放物面鏡12にて集光された光は試料室13内に照射され、試料室13に配置された試料14を通過した光は楕円面鏡15により赤外光検出器16へ集光される。   The main interferometer generates infrared interference light for measuring the spectrum of the sample 14 in the sample chamber 13 installed outside the interferometer chamber 1. That is, the infrared light emitted from the infrared light source 2 is applied to the beam splitter 5 through the condensing mirror 3 and the collimator mirror 4, and is split by the beam splitter 5 into two directions of the fixed mirror 6 and the movable mirror 7. The The lights reflected by the fixed mirror 6 and the movable mirror 7 are recombined by the beam splitter 5 and sent to the optical path toward the parabolic mirror 12. At the time of measurement, since the movable mirror 7 reciprocates in the direction of the arrow M, the combined light becomes interference light whose amplitude changes with time. The light collected by the parabolic mirror 12 is irradiated into the sample chamber 13, and the light that has passed through the sample 14 disposed in the sample chamber 13 is condensed by the ellipsoidal mirror 15 onto the infrared light detector 16. The

一方、コントロール干渉計は干渉縞信号を得るためのレーザ干渉光を発生させる。即ち、レーザ光源8から出射された光はレーザ用ミラー9を介してビームスプリッタ5に照射され、赤外光と同様に干渉光となって放物面鏡12の方向へ送られる。このレーザ干渉光は非常に小さな径の光束となって進行し、光路中に挿入されているレーザ用ミラー10により反射されてレーザ検出器11に導入される。レーザ検出器11は受光面が互いに直交する二軸により4つに分割された4分割フォトダイオードであり、4つの受光部で得られた信号が並列に出力される。図示しない信号生成回路では、レーザ検出器11の受光信号、つまりレーザ干渉光信号G2から、赤外干渉光に対する受光信号G1をサンプリングするためのパルス信号が生成される。   On the other hand, the control interferometer generates laser interference light for obtaining an interference fringe signal. That is, the light emitted from the laser light source 8 is applied to the beam splitter 5 through the laser mirror 9 and is transmitted to the parabolic mirror 12 as interference light like infrared light. The laser interference light travels as a light beam having a very small diameter, is reflected by the laser mirror 10 inserted in the optical path, and is introduced into the laser detector 11. The laser detector 11 is a four-divided photodiode in which the light receiving surface is divided into four by two axes orthogonal to each other, and signals obtained by the four light receiving units are output in parallel. In a signal generation circuit (not shown), a pulse signal for sampling the light reception signal G1 for the infrared interference light is generated from the light reception signal of the laser detector 11, that is, the laser interference light signal G2.

レーザ干渉光信号G2は、データサンプリング以外に、ダイナミックアライメント方式による固定鏡6aの姿勢制御、及びモニタリングした移動速度に基づくフィードバック制御による移動鏡7aの速度制御、に利用される。   In addition to data sampling, the laser interference light signal G2 is used for attitude control of the fixed mirror 6a by the dynamic alignment method and speed control of the movable mirror 7a by feedback control based on the monitored moving speed.

すなわち、図2に示すように、レーザ検出器11において4つの受光部でそれぞれ得られた信号G2は演算処理部20に入力され、演算処理部20は上述したように、4つの受光部のうちの或る1つの受光部から得られる参照信号Sr、該受光部に対し水平方向及び垂直方向にそれぞれ隣接する受光部から得られる水平信号Sh及び垂直信号Svについて、参照信号Srと水平信号Shの間の位相差(ΔRH)、及び参照信号Srと垂直信号Svの間の位相差(ΔRV)に相当する信号をそれぞれ求める。固定鏡姿勢制御部21は2つの位相差ΔRH、ΔRVがそれぞれ制御量設定部26から与えられる位相差の目標値に一致するような制御信号を生成する。そして、駆動部22を介して圧電素子6cを駆動することにより、固定鏡6aの姿勢を調整する。   That is, as shown in FIG. 2, the signals G2 respectively obtained by the four light receiving units in the laser detector 11 are input to the arithmetic processing unit 20, and the arithmetic processing unit 20 is, as described above, of the four light receiving units. Of the reference signal Sr and the horizontal signal Sh with respect to the reference signal Sr obtained from a certain light receiving unit, the horizontal signal Sh and the vertical signal Sv obtained from the light receiving unit adjacent to the light receiving unit in the horizontal direction and the vertical direction, respectively. And a signal corresponding to the phase difference (ΔRH) between the reference signal Sr and the vertical signal Sv. The fixed mirror attitude control unit 21 generates a control signal such that the two phase differences ΔRH and ΔRV respectively match the target value of the phase difference given from the control amount setting unit 26. And the attitude | position of the fixed mirror 6a is adjusted by driving the piezoelectric element 6c via the drive part 22. FIG.

一方、レーザ検出器11において4つの受光部でそれぞれ得られた信号G2は演算処理部23にも入力され、演算処理部23は4つの受光部から得られる信号を全て加算して、干渉縞信号を求める。移動鏡速度制御部24は干渉縞信号の周波数(周期)から移動鏡7aの移動速度Vcを計算する。そして、この移動速度Vcと予め決められている速度の目標値V0との差、つまり速度誤差を求め、この速度誤差に対し制御量設定部26から与えられる干渉計制御量で決まる伝達関数を適用してフィードバック制御量を計算する。そして、駆動部25を介してリニアモータ7bを駆動することにより、移動鏡7aの移動速度を一定に維持する。   On the other hand, the signal G2 obtained by each of the four light receiving units in the laser detector 11 is also input to the arithmetic processing unit 23, and the arithmetic processing unit 23 adds up all the signals obtained from the four light receiving units to obtain an interference fringe signal. Ask for. The moving mirror speed control unit 24 calculates the moving speed Vc of the moving mirror 7a from the frequency (period) of the interference fringe signal. Then, a difference between the moving speed Vc and a predetermined speed target value V0, that is, a speed error is obtained, and a transfer function determined by an interferometer control amount given from the control amount setting unit 26 is applied to the speed error. To calculate the feedback control amount. Then, by driving the linear motor 7b via the drive unit 25, the moving speed of the movable mirror 7a is kept constant.

固定鏡6aの姿勢を適切に保つため、及び、移動鏡7aの移動速度を正確に一定に維持するためには、位相差ΔRH、ΔRVが固定鏡6aの実際の傾きを反映していることが重要である。同様に、移動速度Vcが移動鏡7aの実際の移動速度を反映していることが重要である。本実施例のFTIRでは、固定鏡6a及び移動鏡7aに、固定鏡6aの姿勢や移動鏡7aの移動速度をリアルタイムで検出するためのセンサを取付け、これらセンサの検出信号が演算処理部20及び演算処理部23にそれぞれ入力されるようになっている。   In order to keep the posture of the fixed mirror 6a properly and to keep the moving speed of the movable mirror 7a accurately and constant, the phase differences ΔRH and ΔRV reflect the actual inclination of the fixed mirror 6a. is important. Similarly, it is important that the moving speed Vc reflects the actual moving speed of the moving mirror 7a. In the FTIR of the present embodiment, sensors for detecting the posture of the fixed mirror 6a and the moving speed of the movable mirror 7a in real time are attached to the fixed mirror 6a and the movable mirror 7a, and the detection signals of these sensors are converted into the arithmetic processing unit 20 and Each is input to the arithmetic processing unit 23.

すなわち、図3に示すように、固定鏡6aの側面には該固定鏡6aの傾きを検出するための固定鏡センサ31が取り付けられている。また、移動鏡7aの側面には該移動鏡7aの傾きと該移動鏡7aの移動速度を検出するための移動鏡センサ32が搭載されている。固定鏡センサ31及び移動鏡センサ32には、例えば3軸加速度センサが用いられる。3軸加速度センサは、XYZ軸の3方向の加速度を1個のデバイスで測定することができるため、角度情報、すなわち固定鏡6aの姿勢、移動鏡7aの姿勢に関する情報を直接得ることができる。   That is, as shown in FIG. 3, the fixed mirror sensor 31 for detecting the inclination of the fixed mirror 6a is attached to the side surface of the fixed mirror 6a. A movable mirror sensor 32 for detecting the inclination of the movable mirror 7a and the moving speed of the movable mirror 7a is mounted on the side surface of the movable mirror 7a. As the fixed mirror sensor 31 and the movable mirror sensor 32, for example, a three-axis acceleration sensor is used. Since the triaxial acceleration sensor can measure the acceleration in the three directions of the XYZ axes with one device, it can directly obtain angle information, that is, information on the attitude of the fixed mirror 6a and the attitude of the movable mirror 7a.

なお、固定鏡センサ31及び移動鏡センサ32には、上記3軸加速度センサの他、角速度センサ、PSDセンサ等を用いることができる。また、固定鏡センサ31及び移動鏡センサ32は1個のセンサに限らず複数のセンサから構成することも可能である。固定鏡センサ31及び移動鏡センサ32を複数のセンサから構成する場合、これら複数のセンサを異なる部位に設置すれば、検出精度を向上することができる。また、固定鏡センサ31及び移動鏡センサ32を複数のセンサから構成する場合、全て同じ種類のセンサから構成しても良く、異なる種類のセンサを組み合わせても良い。また、固定鏡センサ31と移動鏡センサ32は同じ種類のセンサでも良く、異なる種類のセンサでも良い。   As the fixed mirror sensor 31 and the movable mirror sensor 32, an angular velocity sensor, a PSD sensor, or the like can be used in addition to the three-axis acceleration sensor. Further, the fixed mirror sensor 31 and the movable mirror sensor 32 are not limited to a single sensor, and may be composed of a plurality of sensors. When the fixed mirror sensor 31 and the movable mirror sensor 32 are composed of a plurality of sensors, the detection accuracy can be improved by installing the plurality of sensors in different parts. When the fixed mirror sensor 31 and the movable mirror sensor 32 are composed of a plurality of sensors, they may all be composed of the same type of sensor, or may be combined with different types of sensors. The fixed mirror sensor 31 and the movable mirror sensor 32 may be the same type of sensor or different types of sensors.

固定鏡センサ31及び移動鏡センサ32からの信号は常時、演算処理部20及び23に入力される。固定鏡センサ31からの信号を受けた演算処理部20は、この信号を処理して位相差(ΔRH)、位相差(ΔRV)に相当する信号(ΔRH’、ΔRV’)を求める。そして、これらの信号が、レーザ検出器11の4つの受光部で得られた信号から求めた位相差と異なる場合は、固定鏡姿勢制御部21は、新たに求めた2つの位相差ΔRH’、ΔRV’がそれぞれ制御量設定部26から与えられる位相差の目標値に一致するような制御信号を生成する。   Signals from the fixed mirror sensor 31 and the movable mirror sensor 32 are always input to the arithmetic processing units 20 and 23. Receiving the signal from the fixed mirror sensor 31, the arithmetic processing unit 20 processes this signal to obtain signals (ΔRH ′, ΔRV ′) corresponding to the phase difference (ΔRH) and the phase difference (ΔRV). When these signals are different from the phase difference obtained from the signals obtained by the four light receiving units of the laser detector 11, the fixed mirror attitude control unit 21 calculates the two newly obtained phase differences ΔRH ′, Control signals are generated such that ΔRV ′ matches the target value of the phase difference given from the control amount setting unit 26.

同様に、移動鏡センサ32からの信号を受けた演算処理部23は、この信号を処理して移動鏡の移動速度Vc’を求める。そして、この移動速度が、レーザ検出器11の4つの受光部で得られた信号から求めた移動速度Vcと異なる場合は、移動鏡速度制御部24は、移動速度Vc’と目標値V0との差を求め、この速度誤差に対して制御量設定部26から与えられる干渉計制御量で決まる伝達関数を適用してフィードバック制御量を計算する。   Similarly, the arithmetic processing unit 23 that has received the signal from the movable mirror sensor 32 processes this signal to obtain the moving speed Vc ′ of the movable mirror. When the moving speed is different from the moving speed Vc obtained from the signals obtained by the four light receiving units of the laser detector 11, the moving mirror speed control unit 24 sets the moving speed Vc ′ and the target value V0. The difference is obtained, and the feedback control amount is calculated by applying a transfer function determined by the interferometer control amount given from the control amount setting unit 26 to this speed error.

例えば図4の(a)はフリンジ信号から直流成分を除去したもの、(b)はダイナミックアライメント方式により決定される位相差を表す信号、(c)は固定鏡センサ31により求められる固定鏡6aの傾きを表す信号、あるいは移動鏡センサ32により求められる移動鏡7aの傾きを表す信号、をそれぞれ示している。図4(a)において、矢印はフリンジ信号のゼロクロスタイミングを示す。なお、ここでは立ち下がりゼロクロスタイミングを採用したが、立ち上がりゼロクロスタイミングでも良い。また、立ち上がりと立ち下がりの両方のゼロクロスタイミングを使用しても良い。   For example, (a) in FIG. 4 is obtained by removing the DC component from the fringe signal, (b) is a signal indicating a phase difference determined by the dynamic alignment method, and (c) is a signal of the fixed mirror 6a obtained by the fixed mirror sensor 31. A signal representing the tilt or a signal representing the tilt of the movable mirror 7a obtained by the movable mirror sensor 32 is shown. In FIG. 4A, arrows indicate the zero cross timing of the fringe signal. Although the falling zero cross timing is adopted here, the rising zero cross timing may be used. Further, both rising and falling zero cross timings may be used.

従来のダイナミックアライメント方式では、レーザ検出器11の4つの受光部でそれぞれ得られた信号は演算処理部20、23に入力される。演算処理部20、23はこれらの信号を処理してフリンジ信号を求め、該フリンジ信号のゼロクロスタイミングから位相差を求め、この位相差から固定鏡6aの傾きや移動鏡7aの移動速度を求める。位相差から求められる固定鏡6aの制御信号や移動鏡7aのフィードバック制御量は次のゼロクロスタイミングまで保持される(図4((b))。   In the conventional dynamic alignment method, signals respectively obtained by the four light receiving units of the laser detector 11 are input to the arithmetic processing units 20 and 23. The arithmetic processing units 20 and 23 process these signals to obtain a fringe signal, obtain a phase difference from the zero cross timing of the fringe signal, and obtain an inclination of the fixed mirror 6a and a moving speed of the movable mirror 7a from the phase difference. The control signal of the fixed mirror 6a obtained from the phase difference and the feedback control amount of the movable mirror 7a are held until the next zero cross timing ((b) in FIG. 4).

一方、固定鏡センサ31および移動鏡センサ32の検出信号はいずれも演算処理部20、23に入力され、演算処理部20、23は、これら信号を、ゼロクロスタイミングとは無関係に連続的に処理し、固定鏡6aの姿勢や移動鏡7aの姿勢および移動速度を求める(図4(c))。従って、本実施例のFTIRでは、ゼロクロスタイミングに限らずいつの時点でも、最適な制御量に基づいて固定鏡6aの姿勢制御や移動鏡7aの速度一定制御が行われ、正確で再現性の良いスペクトルデータを取得することができる。特に、本実施例では、固定鏡センサ31の信号および移動鏡センサ32の信号の両方を用いて固定鏡aの姿勢制御を行うため、固定鏡6aと移動鏡7aの相対的な位置関係を一定に維持することができる。同様に、固定鏡センサ31の信号および移動鏡センサ32の信号の両方を用いて移動鏡7aの速度制御を行うため、移動鏡7aの速度制御の精度が向上する。   On the other hand, the detection signals of the fixed mirror sensor 31 and the movable mirror sensor 32 are both input to the arithmetic processing units 20 and 23, and the arithmetic processing units 20 and 23 continuously process these signals regardless of the zero cross timing. Then, the attitude of the fixed mirror 6a and the attitude and moving speed of the movable mirror 7a are obtained (FIG. 4C). Therefore, in the FTIR of this embodiment, the attitude control of the fixed mirror 6a and the constant speed control of the movable mirror 7a are performed based on the optimal control amount at any time, not limited to the zero cross timing, and the spectrum is accurate and has good reproducibility. Data can be acquired. In particular, in this embodiment, since the attitude control of the fixed mirror a is performed using both the signal of the fixed mirror sensor 31 and the signal of the movable mirror sensor 32, the relative positional relationship between the fixed mirror 6a and the movable mirror 7a is constant. Can be maintained. Similarly, since the speed control of the movable mirror 7a is performed using both the signal of the fixed mirror sensor 31 and the signal of the movable mirror sensor 32, the accuracy of the speed control of the movable mirror 7a is improved.

なお、上記した実施例では、通常はレーザ検出器11の4つの受光部で得られた信号から求めた位相差を用いて固定鏡6aの姿勢を制御し、固定鏡センサ31の信号から求めた位相差が、レーザ検出器11の4つの受光部で得られた信号から求めた位相差と異なる場合に、固定鏡センサ31の信号から求めた位相差を用いるようにしたが、処理の順序は逆でも良い。すなわち、通常は固定鏡センサ31の信号から求めた位相差に基づき固定鏡31の姿勢を制御し、ゼロクロスタイミングにおいてレーザ検出器11の4つの受光部で得られた信号から求めた位相差が固定鏡センサ31の信号から求めた位相差と異なる場合は、レーザ検出器11の4つの受光部で得られた信号から求めた位相差を用いて制御量を補正するようにしても良い。移動鏡7aの移動制御についても同様である。   In the above-described embodiment, the posture of the fixed mirror 6a is controlled by using the phase difference obtained from the signals obtained by the four light receiving units of the laser detector 11 and is obtained from the signal of the fixed mirror sensor 31. When the phase difference is different from the phase difference obtained from the signals obtained by the four light receiving units of the laser detector 11, the phase difference obtained from the signal of the fixed mirror sensor 31 is used. The reverse is also acceptable. That is, normally, the attitude of the fixed mirror 31 is controlled based on the phase difference obtained from the signal of the fixed mirror sensor 31, and the phase difference obtained from the signals obtained from the four light receiving units of the laser detector 11 at the zero cross timing is fixed. If the phase difference is different from the phase difference obtained from the signal from the mirror sensor 31, the control amount may be corrected using the phase difference obtained from the signals obtained from the four light receiving portions of the laser detector 11. The same applies to the movement control of the movable mirror 7a.

また、上記した実施例では、レーザ検出器11からの信号と固定鏡センサ31及び移動鏡センサ32からの信号の両方を用いて、固定鏡6aの姿勢制御及び移動鏡7aの移動制御を行ったが、レーザ検出器11からの信号はデータサンプリング用の信号(干渉縞信号)として用い、固定鏡センサ31及び移動鏡センサ32からの信号だけを固定鏡6aの姿勢制御用の信号及び移動鏡7aの速度制御用の信号として用いてもよい。この実施例の制御・処理系の要部の構成図を図5に示す。   In the above-described embodiment, the posture control of the fixed mirror 6a and the movement control of the movable mirror 7a are performed using both the signal from the laser detector 11 and the signals from the fixed mirror sensor 31 and the movable mirror sensor 32. However, the signal from the laser detector 11 is used as a data sampling signal (interference fringe signal), and only the signals from the fixed mirror sensor 31 and the movable mirror sensor 32 are used to control the attitude of the fixed mirror 6a and the movable mirror 7a. It may be used as a signal for speed control. FIG. 5 shows a block diagram of the main part of the control / processing system of this embodiment.

さらに、常にレーザ検出器11からの信号と固定鏡センサ31及び移動鏡センサ32からの信号の両方を用いて固定鏡6aの姿勢制御及び移動鏡7aの移動制御を行うのではなく、移動鏡7aの位置や速度など、移動鏡の状態に応じて、レーザ検出器11からの信号G2、固定鏡センサ31及び移動鏡センサ32からの信号の重み付けを変更しても良い。また、ユーザが重み付けを自由に設定できるようにしても良い。
この場合、図6に示すように、演算処理部20および演算処理部23に代えて1個の演算処理部40を設け、この演算処理部40に固定鏡センサ31および移動鏡センサ32からの信号、並びにレーザ検出器からの信号G2が入力され、前記演算処理部40が各信号の重み付けに応じた制御量を演算して固定鏡姿勢制御部21および移動鏡速度制御部24に出力するように構成すると良い。
Furthermore, instead of always using both the signal from the laser detector 11 and the signals from the fixed mirror sensor 31 and the moving mirror sensor 32, the posture control of the fixed mirror 6a and the movement control of the moving mirror 7a are not performed, but the moving mirror 7a. The weights of the signal G2 from the laser detector 11, the signals from the fixed mirror sensor 31 and the movable mirror sensor 32 may be changed according to the state of the movable mirror, such as the position and speed of. Further, the user may be able to freely set the weight.
In this case, as shown in FIG. 6, one arithmetic processing unit 40 is provided instead of the arithmetic processing unit 20 and the arithmetic processing unit 23, and signals from the fixed mirror sensor 31 and the movable mirror sensor 32 are provided in the arithmetic processing unit 40. In addition, the signal G2 from the laser detector is input, and the arithmetic processing unit 40 calculates a control amount corresponding to the weight of each signal and outputs it to the fixed mirror attitude control unit 21 and the moving mirror speed control unit 24. It is good to configure.

さらに、本発明はフーリエ変換型赤外分光光度計に限らず、多波長光として可視光や紫外光を用いたフーリエ変換型可視・紫外分光光度計にも適用可能である。   Furthermore, the present invention is not limited to a Fourier transform infrared spectrophotometer, but can also be applied to a Fourier transform visible / ultraviolet spectrophotometer using visible light or ultraviolet light as multiwavelength light.

2…赤外光源
3…集光鏡
4…コリメータ鏡
5…ビームスプリッタ
6…固定鏡部
6a…固定鏡
6b…支持台
6c…圧電素子
7…移動鏡部
7a…移動鏡
7b…リニアモータ
7c…リニアガイド
8…レーザ光源
9、10…レーザ用ミラー
11…レーザ検出器
12…放物面鏡
13…試料室
14…試料
15…楕円面鏡
16…赤外光検出器
20、23、40…演算処理部
21…固定鏡姿勢制御部
22、25…駆動部
24…移動鏡速度制御部
26…制御量設定部
31…固定鏡センサ
32…移動鏡センサ
DESCRIPTION OF SYMBOLS 2 ... Infrared light source 3 ... Condensing mirror 4 ... Collimator mirror 5 ... Beam splitter 6 ... Fixed mirror part 6a ... Fixed mirror 6b ... Support stand 6c ... Piezoelectric element 7 ... Moving mirror part 7a ... Moving mirror 7b ... Linear motor 7c ... Linear guide 8 ... laser light source 9, 10 ... laser mirror 11 ... laser detector 12 ... parabolic mirror 13 ... sample chamber 14 ... sample 15 ... ellipsoidal mirror 16 ... infrared light detectors 20, 23, 40 ... calculation Processing unit 21 ... Fixed mirror posture control unit 22, 25 ... Drive unit 24 ... Moving mirror speed control unit 26 ... Control amount setting unit 31 ... Fixed mirror sensor 32 ... Moving mirror sensor

Claims (4)

多波長光源、ビームスプリッタ、移動鏡、及び固定鏡を備え、前記多波長光源から発せられる多波長光の干渉光である多波長光干渉光を生成する主干渉計と、
単色光源、前記ビームスプリッタ、前記移動鏡、及び前記固定鏡を含み、前記単色光源から発せられる単色光の干渉光である単色光干渉光を生成するコントロール干渉計と
を具備するフーリエ変換型分光光度計において、
a)前記移動鏡に取り付けられた、該移動鏡の移動速度を検出するためのセンサおよび前記移動鏡の姿勢を検出するためのセンサを有する移動鏡速度姿勢検出部と、
b)前記移動鏡速度姿勢検出部の検出結果に基づいて前記固定鏡の姿勢を制御する固定鏡姿勢制御手段と、
c)前記移動鏡速度姿勢検出部の検出結果に基づいて前記移動鏡の移動速度を制御する移動鏡速度制御手段と、
を備えることを特徴とするフーリエ変換型分光光度計。
A main interferometer that includes a multi-wavelength light source, a beam splitter, a movable mirror, and a fixed mirror, and generates multi-wavelength light interference light that is interference light of multi-wavelength light emitted from the multi-wavelength light source;
A Fourier transform spectrophotometer comprising: a monochromatic light source, the beam splitter, the moving mirror, and the fixed mirror, and a control interferometer that generates monochromatic light interference light that is interference light of the monochromatic light emitted from the monochromatic light source. In total
a) a movable mirror speed / attitude detection unit having a sensor attached to the movable mirror for detecting the movement speed of the movable mirror and a sensor for detecting the attitude of the movable mirror;
b) a fixed mirror posture control means for controlling the posture of the fixed mirror based on the detection result of the moving mirror speed posture detection unit;
c) moving mirror speed control means for controlling the moving speed of the moving mirror based on the detection result of the moving mirror speed posture detection unit;
A Fourier transform spectrophotometer characterized by comprising:
請求項1に記載のフーリエ変換型分光光度計において、
さらに、前記固定鏡の姿勢を検出するセンサを有する固定鏡姿勢検出部を備え、
前記固定鏡姿勢制御手段が、前記固定鏡姿勢検出部および前記移動鏡速度姿勢検出部の検出結果に基づいて前記固定鏡の姿勢を制御し、
前記移動鏡速度制御手段が、前記固定鏡姿勢検出部および前記移動鏡速度姿勢検出部の検出結果に基づいて前記移動鏡の移動速度を制御する移動鏡速度制御手段と、
を備えることを特徴とするフーリエ変換型分光光度計。
In the Fourier transform type spectrophotometer according to claim 1,
Furthermore, a fixed mirror posture detection unit having a sensor for detecting the posture of the fixed mirror,
The fixed mirror posture control means controls the posture of the fixed mirror based on the detection results of the fixed mirror posture detector and the moving mirror speed posture detector;
The movable mirror speed control means controls the movement speed of the movable mirror based on the detection results of the fixed mirror posture detection unit and the movable mirror speed posture detection unit;
A Fourier transform spectrophotometer characterized by comprising:
前記単色光干渉光の検出器を備え、
前記固定鏡姿勢制御手段が、前記単色光干渉光の検出信号を参照して前記固定鏡の姿勢を制御することを特徴とする請求項1又は2に記載のフーリエ変換型分光光度計。
Comprising a detector for the monochromatic interference light,
The Fourier transform spectrophotometer according to claim 1 or 2, wherein the fixed mirror attitude control means controls the attitude of the fixed mirror with reference to a detection signal of the monochromatic interference light.
前記単色光干渉光の検出器を備え、
前記移動鏡速度制御手段が、前記単色光干渉光の検出信号を参照して前記移動鏡の移動速度を制御することを特徴とする請求項1又は2に記載のフーリエ変換型分光光度計。
Comprising a detector for the monochromatic interference light,
3. The Fourier transform spectrophotometer according to claim 1, wherein the moving mirror speed control means controls the moving speed of the moving mirror with reference to the detection signal of the monochromatic interference light.
JP2015015821A 2015-01-29 2015-01-29 Fourier transform spectrophotometer Expired - Fee Related JP6278205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015015821A JP6278205B2 (en) 2015-01-29 2015-01-29 Fourier transform spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015015821A JP6278205B2 (en) 2015-01-29 2015-01-29 Fourier transform spectrophotometer

Publications (3)

Publication Number Publication Date
JP2016142527A true JP2016142527A (en) 2016-08-08
JP2016142527A5 JP2016142527A5 (en) 2017-06-29
JP6278205B2 JP6278205B2 (en) 2018-02-14

Family

ID=56570231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015015821A Expired - Fee Related JP6278205B2 (en) 2015-01-29 2015-01-29 Fourier transform spectrophotometer

Country Status (1)

Country Link
JP (1) JP6278205B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193499A1 (en) * 2017-04-17 2018-10-25 株式会社島津製作所 Fourier transformation-type infrared spectrophotometer
WO2020049620A1 (en) * 2018-09-03 2020-03-12 株式会社島津製作所 Interferometer moving-mirror position measurement device, and fourier transform infrared spectrophotometer
WO2020174665A1 (en) * 2019-02-28 2020-09-03 株式会社島津製作所 Michelson interferometer and fourier transform infrared spectrometer comprising same
US11009454B2 (en) 2019-01-08 2021-05-18 Shimadzu Corporation Fourier transform infrared spectrometer
WO2022196015A1 (en) * 2021-03-18 2022-09-22 株式会社島津製作所 Analysis device
JP7468406B2 (en) 2021-02-26 2024-04-16 株式会社島津製作所 Fourier transform infrared spectrophotometer

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234318A (en) * 1985-04-09 1986-10-18 Shimadzu Corp Speed control device for interferrometer movable mirror
JPS63168522A (en) * 1986-12-30 1988-07-12 Shimadzu Corp Adjuscting apparatus for interferometer
JPS63168502A (en) * 1986-12-30 1988-07-12 Shimadzu Corp Control apparatus of interferometer
JPS63203917A (en) * 1987-02-19 1988-08-23 Shimadzu Corp Magnetic flotation type rectilinear bearing
JPH02253103A (en) * 1989-03-27 1990-10-11 Shimadzu Corp Two-luminous flux interferometer
JP2003057570A (en) * 2001-08-13 2003-02-26 Hitachi Via Mechanics Ltd Scanner
US20060060759A1 (en) * 2004-09-21 2006-03-23 Predina Joe P Method and apparatus for measurement of optical detector linearity
JP2007065397A (en) * 2005-08-31 2007-03-15 Olympus Imaging Corp Mirror frame, electronic imaging unit and camera
JP2009139352A (en) * 2007-12-11 2009-06-25 Shimadzu Corp Fourier transformation type infrared spectrophotometer
JP2011158808A (en) * 2010-02-03 2011-08-18 Seiko Epson Corp Video projector
JP2012007964A (en) * 2010-06-24 2012-01-12 Shimadzu Corp Fourier transform infrared spectrophotometer
JP2012027446A (en) * 2010-06-23 2012-02-09 Mitsubishi Electric Corp Galvano scanning device
US20120120404A1 (en) * 2010-11-11 2012-05-17 John Magie Coffin Flexure Mounted Moving Mirror to Reduce Vibration Noise
WO2014132379A1 (en) * 2013-02-28 2014-09-04 株式会社島津製作所 Fourier transform infrared spectrometer
JP2014181987A (en) * 2013-03-19 2014-09-29 Jasco Corp Speed control device of movable mirror for interferometer, and fourier transform spectrophotometer

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234318A (en) * 1985-04-09 1986-10-18 Shimadzu Corp Speed control device for interferrometer movable mirror
JPS63168522A (en) * 1986-12-30 1988-07-12 Shimadzu Corp Adjuscting apparatus for interferometer
JPS63168502A (en) * 1986-12-30 1988-07-12 Shimadzu Corp Control apparatus of interferometer
JPS63203917A (en) * 1987-02-19 1988-08-23 Shimadzu Corp Magnetic flotation type rectilinear bearing
JPH02253103A (en) * 1989-03-27 1990-10-11 Shimadzu Corp Two-luminous flux interferometer
JP2003057570A (en) * 2001-08-13 2003-02-26 Hitachi Via Mechanics Ltd Scanner
US20060060759A1 (en) * 2004-09-21 2006-03-23 Predina Joe P Method and apparatus for measurement of optical detector linearity
JP2007065397A (en) * 2005-08-31 2007-03-15 Olympus Imaging Corp Mirror frame, electronic imaging unit and camera
JP2009139352A (en) * 2007-12-11 2009-06-25 Shimadzu Corp Fourier transformation type infrared spectrophotometer
JP2011158808A (en) * 2010-02-03 2011-08-18 Seiko Epson Corp Video projector
JP2012027446A (en) * 2010-06-23 2012-02-09 Mitsubishi Electric Corp Galvano scanning device
JP2012007964A (en) * 2010-06-24 2012-01-12 Shimadzu Corp Fourier transform infrared spectrophotometer
US20120120404A1 (en) * 2010-11-11 2012-05-17 John Magie Coffin Flexure Mounted Moving Mirror to Reduce Vibration Noise
WO2014132379A1 (en) * 2013-02-28 2014-09-04 株式会社島津製作所 Fourier transform infrared spectrometer
JP2014181987A (en) * 2013-03-19 2014-09-29 Jasco Corp Speed control device of movable mirror for interferometer, and fourier transform spectrophotometer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7070557B2 (en) 2017-04-17 2022-05-18 株式会社島津製作所 Fourier Transform Infrared Spectrophotometer
JPWO2018193499A1 (en) * 2017-04-17 2020-01-09 株式会社島津製作所 Fourier transform infrared spectrophotometer
WO2018193499A1 (en) * 2017-04-17 2018-10-25 株式会社島津製作所 Fourier transformation-type infrared spectrophotometer
WO2020049620A1 (en) * 2018-09-03 2020-03-12 株式会社島津製作所 Interferometer moving-mirror position measurement device, and fourier transform infrared spectrophotometer
JP7099530B2 (en) 2018-09-03 2022-07-12 株式会社島津製作所 Interferometer Moving mirror position measuring device and Fourier transform infrared spectrophotometer
JPWO2020049620A1 (en) * 2018-09-03 2021-05-20 株式会社島津製作所 Interferometer Moving mirror position measuring device and Fourier transform infrared spectrophotometer
US11009454B2 (en) 2019-01-08 2021-05-18 Shimadzu Corporation Fourier transform infrared spectrometer
JPWO2020174665A1 (en) * 2019-02-28 2021-12-23 株式会社島津製作所 Michelson interferometer and Fourier transform infrared spectroscope equipped with it
WO2020174665A1 (en) * 2019-02-28 2020-09-03 株式会社島津製作所 Michelson interferometer and fourier transform infrared spectrometer comprising same
JP7215562B2 (en) 2019-02-28 2023-01-31 株式会社島津製作所 Michelson interferometer and Fourier transform infrared spectrometer equipped with it
JP7468406B2 (en) 2021-02-26 2024-04-16 株式会社島津製作所 Fourier transform infrared spectrophotometer
WO2022196015A1 (en) * 2021-03-18 2022-09-22 株式会社島津製作所 Analysis device
JP7464190B2 (en) 2021-03-18 2024-04-09 株式会社島津製作所 Analysis equipment

Also Published As

Publication number Publication date
JP6278205B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP6278205B2 (en) Fourier transform spectrophotometer
EP2365306B1 (en) Interferometer step scanning systems and methods
JP2004251916A (en) Scanning monochromator
US9329027B2 (en) Measuring unit, measuring system and method for determining a relative position and relative orientation
JP6079863B2 (en) Fourier transform infrared spectrophotometer
US8947670B2 (en) Flexure mounted moving mirror to reduce vibration noise
EP2638370B1 (en) Interferometer velocity control of beamsplitter and moving mirrors
US5650853A (en) Vibration-resistant interferometer
US8546762B1 (en) Method and arrangement for carrying out time-domain measurements
JP2014523517A (en) Spectrometer
CN109682992A (en) A kind of high-precision laser interference accelerometer
US6958817B1 (en) Method of interferometry with modulated optical path-length difference and interferometer
EP2638369B1 (en) Dual input interferometer beamsplitter tilt control system and flexure mounting
JP6937945B2 (en) Retro interferometer with active readjustment
US8174705B1 (en) Tilting mirror controlled using null-based interferometric sensing
EP2679984A1 (en) Method and arrangement for carrying out time-domain measurements
JP6195459B2 (en) Speed control device for movable mirror for interferometer, Fourier transform spectrophotometer
WO2014199888A1 (en) Fourier transform spectrometer and spectroscopy and fourier transform spectrometer timing generation device
US4685804A (en) Method and apparatus for the measurement of the location or movement of a body
JP2002054987A (en) Three-dimensional laser doppler vibrograph
JP2016065719A (en) Device and method for measuring absolute angle
JP7215562B2 (en) Michelson interferometer and Fourier transform infrared spectrometer equipped with it
JP4824323B2 (en) Speed detection apparatus for moving body and speed control apparatus using the same
US10663347B2 (en) Optical measurement apparatus and recording medium
JP2008014815A (en) Terahertz-pulse light measuring apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180102

R151 Written notification of patent or utility model registration

Ref document number: 6278205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees