JP2016141152A - Low hygroscopic flexible metal-clad laminate - Google Patents

Low hygroscopic flexible metal-clad laminate Download PDF

Info

Publication number
JP2016141152A
JP2016141152A JP2016011351A JP2016011351A JP2016141152A JP 2016141152 A JP2016141152 A JP 2016141152A JP 2016011351 A JP2016011351 A JP 2016011351A JP 2016011351 A JP2016011351 A JP 2016011351A JP 2016141152 A JP2016141152 A JP 2016141152A
Authority
JP
Japan
Prior art keywords
polyimide layer
polyimide
layer
clad laminate
moisture absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016011351A
Other languages
Japanese (ja)
Other versions
JP6758048B2 (en
Inventor
デ ニュン キム
Dae-Nyun Kim
デ ニュン キム
デ ウ イ
Dae Woo Lee
デ ウ イ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Innovation Co Ltd
Original Assignee
SK Innovation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Innovation Co Ltd filed Critical SK Innovation Co Ltd
Publication of JP2016141152A publication Critical patent/JP2016141152A/en
Application granted granted Critical
Publication of JP6758048B2 publication Critical patent/JP6758048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Abstract

PROBLEM TO BE SOLVED: To provide a low hygroscopic metal-clad laminate.SOLUTION: There is provided the flexible metal-clad laminate comprising a metal foil and an insulating layer. The insulation layer includes: a first polyimide layer which is formed on one surface or both surfaces of the metal foil and has a glass transition temperature of 200 to 400°C and a moisture absorptivity of 0.5 wt.% or less; a second polyimide layer which is formed on one surface of the first polyimide layer and has a glass transition temperature of 300 to 500°C and a moisture absorptivity of 0.5 w.t% or less; and a third polyimide layer which is formed on one surface of the second polyimide layer and has a glass transition temperature of 200 to 400°C and a moisture absorptivity of 0.5 wt.% or less. The insulation layer has a moisture absorptivity of 0.5 wt.% or less, and a solder heat resistant temperature of 350°C or more after moisture absorption for 72 hours at a temperature of 40°C and at a relative humidity of 90%.SELECTED DRAWING: Figure 1

Description

本発明は、フレキシブルプリント回路基板の製造に使用されるフレキシブル金属張積層体(flexible metal clad laminate)に関し、吸湿率が低く、吸湿後の耐はんだ性(solder−resistance)に優れたことを特徴とする。   The present invention relates to a flexible metal clad laminate for use in the manufacture of a flexible printed circuit board, characterized in that it has a low moisture absorption rate and excellent solder-resistance after moisture absorption. To do.

フレキシブルプリント回路基板(Flexible Printed Circuit Board)の製造に使用されるフレキシブル金属張積層体(Flexible Metal Clad Laminate)は、伝導性金属箔(metal foil)と絶縁樹脂の積層体であり、微細回路加工が可能で、狭い空間での屈曲が可能であることから電子機器の小型化・軽量化の傾向に伴いその活用が増加している。フレキシブル金属張積層体は、2層方式と3層方式とに分けられるが、接着剤を使用する3層方式は、2層方式に比べて耐熱性および難燃性に劣り、熱処理工程中の寸法変化が大きいという問題がある。そのため、フレキシブルプリント回路基板の製造において、最近の傾向は、3層方式よりは2層方式のフレキシブル金属張積層体を使用することが一般的である。   A flexible metal clad laminate used in the manufacture of a flexible printed circuit board is a laminate of a conductive metal foil and an insulating resin. Since it is possible and can be bent in a narrow space, its use is increasing along with the trend toward smaller and lighter electronic devices. Flexible metal-clad laminates are divided into two-layer and three-layer methods, but the three-layer method using an adhesive is inferior in heat resistance and flame retardancy compared to the two-layer method, and the dimensions during the heat treatment process There is a problem that the change is large. Therefore, in the manufacture of flexible printed circuit boards, a recent trend is generally to use a two-layer flexible metal-clad laminate rather than a three-layer method.

最近、回路の軽薄短小化の傾向に伴い、両面金属張積層体の使用が増加している。両面金属張積層体は、ポリイミド樹脂の最外層に形成された熱可塑性ポリイミドを金属箔とラミネートして製造することが一般的であるが、熱可塑性ポリイミド樹脂の存在によって絶縁層の吸湿後の耐はんだ性(Solder−Resistance)が不良になる問題がある。特に、既存のはんだ接合の際の接合温度が200℃水準であったことに反し、最近の鉛フリーはんだ工程の温度が250℃以上と高いことから吸湿後の耐はんだ性がより重要となっている。   In recent years, the use of double-sided metal-clad laminates has increased with the trend of thin, light and short circuits. A double-sided metal-clad laminate is generally manufactured by laminating a thermoplastic polyimide formed on the outermost layer of a polyimide resin with a metal foil, but due to the presence of the thermoplastic polyimide resin, the insulation resistance after moisture absorption of the insulating layer is increased. There is a problem that solder-resistance is poor. In particular, the soldering resistance after moisture absorption becomes more important because the temperature of the recent lead-free soldering process is as high as 250 ° C or higher, contrary to the fact that the bonding temperature at the time of existing soldering was 200 ° C. Yes.

従来の技術として特許文献1には、熱可塑性ポリイミド樹脂層として特殊な構造のポリイミド樹脂を使用する場合が例示されているが、この場合、吸湿耐熱温度が260℃に過ぎず、300℃以上の過酷な条件では耐はんだ性に問題がある。   As a conventional technique, Patent Document 1 exemplifies a case where a polyimide resin having a special structure is used as the thermoplastic polyimide resin layer. In this case, the moisture absorption heat resistance temperature is only 260 ° C., which is 300 ° C. or more. Under severe conditions, there is a problem with solder resistance.

日本特開2002−363284号公報(2002年12月18日)Japanese Unexamined Patent Publication No. 2002-363284 (December 18, 2002)

本発明者らは、前記問題点を解消するために鋭意研究を重ねた結果、互いに異なる範囲のガラス転移温度を有するポリイミドを多層に積層して、吸湿後にも耐はんだ性(solder−resistance)に優れ、低い吸湿率を有するフレキシブル金属張積層体を発明するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have laminated polyimides having glass transition temperatures in different ranges in multiple layers, and have improved solder-resistance even after moisture absorption. The inventors have invented an excellent flexible metal-clad laminate having a low moisture absorption rate.

より詳細には、フレキシブル金属張積層体の絶縁体を構成するポリイミド系樹脂の吸湿率を所定の水準以下に制御することにより、吸湿後の耐はんだ性(Solder−resistance)に優れたフレキシブル金属張積層体を提供することを目的とする。   More specifically, by controlling the moisture absorption rate of the polyimide resin constituting the insulator of the flexible metal-clad laminate to a predetermined level or less, the flexible metal-clad excellent in solder-resistance after moisture absorption (Solder-resistance). It aims at providing a laminated body.

本発明は、フレキシブル金属張積層体に関する。より具体的に、本発明は、金属箔と絶縁層とを含むフレキシブル金属張積層体であって、絶縁層は、金属箔の片面または両面に形成され、ガラス転移温度が200〜400℃であり、吸湿率が0.5wt%以下である第1ポリイミド層と、第1ポリイミド層の片面に形成され、ガラス転移温度が300〜500℃であり、吸湿率が0.5wt%以下である第2ポリイミド層と、第2ポリイミド層の片面に形成され、ガラス転移温度が200〜400℃であり、吸湿率が0.5wt%以下である第3ポリイミド層と、を含み、絶縁層の吸湿率が0.5wt%以下であり、40℃、相対湿度90%で72時間吸湿後のはんだ耐熱温度が350℃以上であるフレキシブル金属張積層体に関する。   The present invention relates to a flexible metal-clad laminate. More specifically, the present invention is a flexible metal-clad laminate including a metal foil and an insulating layer, and the insulating layer is formed on one side or both sides of the metal foil and has a glass transition temperature of 200 to 400 ° C. A first polyimide layer having a moisture absorption rate of 0.5 wt% or less, and a second polyimide layer formed on one side of the first polyimide layer, having a glass transition temperature of 300 to 500 ° C. and a moisture absorption rate of 0.5 wt% or less. A polyimide layer and a third polyimide layer formed on one side of the second polyimide layer, having a glass transition temperature of 200 to 400 ° C. and a moisture absorption of 0.5 wt% or less, and the moisture absorption of the insulating layer is The present invention relates to a flexible metal-clad laminate having a solder heat resistance temperature of 350 ° C. or higher after absorbing moisture at 40 ° C. and relative humidity 90% for 72 hours.

以上に記載の実施例は、記載された内容に限定されず、同分野における当業者であれば容易に変更できるすべての事項を含む。一例として、同一の技術を実施するために他の形態の装置を使用することがありうる。   The embodiments described above are not limited to the described contents, and include all matters that can be easily changed by those skilled in the art. As an example, other forms of devices may be used to implement the same technique.

本発明によるフレキシブル金属張積層体は、低い吸湿率を有し、吸湿後にもはんだ耐熱温度が高いことから耐はんだ性(solder−resistance)に優れ、既存の製品に比べてより安定したフレキシブル金属張積層体を提供することができる。   The flexible metal-clad laminate according to the present invention has a low moisture absorption rate and has a high solder heat resistance even after moisture absorption, so it has excellent solder-resistance and is more stable than existing products. A laminate can be provided.

本発明の一例による金属張積層体の断面を図示した図である。It is the figure which illustrated the cross section of the metal-clad laminated body by an example of this invention. 本発明の一例による金属張積層体の断面を図示した図である。It is the figure which illustrated the cross section of the metal-clad laminated body by an example of this invention. 本発明の一例による金属張積層体の断面を図示した図である。It is the figure which illustrated the cross section of the metal-clad laminated body by an example of this invention.

以下、具体例および比較例を参照して本発明によるフレキシブル金属張積層体について詳細に説明する。この際、使用される技術用語および科学用語において他の定義がなければ、本発明が属する技術分野において通常の知識を有する者が通常理解している意味を有し、下記の説明において、本発明の要旨を不明瞭にしうる公知の機能および構成に関する説明は省略する。   Hereinafter, the flexible metal-clad laminate according to the present invention will be described in detail with reference to specific examples and comparative examples. At this time, unless otherwise defined in the technical terms and scientific terms used, it has the meaning normally understood by a person having ordinary knowledge in the technical field to which the present invention belongs. Descriptions of known functions and configurations that may obscure the gist of are omitted.

吸湿後、ポリイミド樹脂を高温のはんだ槽(Solder Bath)に浸漬すると、吸湿された水分が急激に揮発してポリイミド樹脂層間またはポリイミド樹脂層と金属箔層との界面で層分離、発泡、膨張などの不良が発生する。かかる不良が発生する原因は、ポリイミド系樹脂に吸湿された水分が高温のはんだ槽に浸漬されると急激な気化(Vaporization)が起こり、樹脂の剛性が水分の蒸気圧に勝てないためである。したがって、吸湿によるはんだ耐熱性を向上させるためには高温でも樹脂の剛性を維持する必要があり、このために、高温での貯蔵弾性率を調節したり結晶化度を高める方法などが使用されて来た。しかし、かかる方法により具現される吸湿後のはんだ耐熱温度は300℃内外であり、それ以上のはんだ耐熱性を具現することは困難であった。そのため、ポリイミド系樹脂が吸湿する水分の量を所定の水準に制限する必要があり、かかる観点で実験および検討を行い続けてポリイミド主鎖にフッ素原子を含む場合、吸湿率が著しく低下することを見出し、本発明を完成するに至った。   When the polyimide resin is immersed in a high-temperature solder bath after absorbing moisture, the absorbed moisture rapidly volatilizes and layer separation, foaming, expansion, etc. occur at the polyimide resin layer or at the interface between the polyimide resin layer and the metal foil layer. Defects occur. The reason why such a defect occurs is that when the moisture absorbed in the polyimide resin is immersed in a high-temperature solder bath, rapid vaporization occurs and the rigidity of the resin cannot overcome the vapor pressure of moisture. Therefore, in order to improve solder heat resistance due to moisture absorption, it is necessary to maintain the rigidity of the resin even at high temperatures. For this reason, methods such as adjusting the storage elastic modulus at high temperatures and increasing the crystallinity are used. I came. However, the solder heat resistance temperature after moisture absorption embodied by such a method is 300 ° C. inside or outside, and it is difficult to realize solder heat resistance higher than that. Therefore, it is necessary to limit the amount of moisture absorbed by the polyimide-based resin to a predetermined level, and if the polyimide main chain contains fluorine atoms by continuing experiments and studies from such a viewpoint, the moisture absorption rate is significantly reduced. The headline and the present invention were completed.

先ず、本発明の一実施例によるフレキシブル金属張積層体は、金属箔と絶縁層とを含み、絶縁層は、金属箔の片面または両面に形成され、ガラス転移温度が200〜400℃であり、吸湿率が0.5wt%以下である第1ポリイミド層と、第1ポリイミド層の片面に形成され、ガラス転移温度が300〜500℃であり、吸湿率が0.5wt%以下である第2ポリイミド層と、第2ポリイミド層の片面に形成され、ガラス転移温度が200〜400℃であり、吸湿率が0.5wt%以下である第3ポリイミド層と、を含むことができる。   First, a flexible metal-clad laminate according to an embodiment of the present invention includes a metal foil and an insulating layer, the insulating layer is formed on one or both sides of the metal foil, and has a glass transition temperature of 200 to 400 ° C. A first polyimide layer having a moisture absorption rate of 0.5 wt% or less and a second polyimide formed on one surface of the first polyimide layer, having a glass transition temperature of 300 to 500 ° C. and a moisture absorption rate of 0.5 wt% or less. And a third polyimide layer formed on one surface of the second polyimide layer, having a glass transition temperature of 200 to 400 ° C. and a moisture absorption of 0.5 wt% or less.

この際、絶縁層の吸湿率が0.5wt%以下であり、40℃、相対湿度90%で72時間吸湿後のはんだ耐熱温度が350℃以上であってもよい。   At this time, the moisture absorption rate of the insulating layer may be 0.5 wt% or less, and the solder heat resistance temperature after moisture absorption for 72 hours at 40 ° C. and 90% relative humidity may be 350 ° C. or more.

また、第1ポリイミド層または第3ポリイミド層は、下記化学式1の構造を有するポリイミド樹脂を50〜100mol%含むことができる。
(化学式1中、nは、1〜100,000,000の整数である。)
Further, the first polyimide layer or the third polyimide layer may include 50 to 100 mol% of a polyimide resin having a structure represented by the following chemical formula 1.
(In Chemical Formula 1, n is an integer of 1 to 100,000,000.)

また、第2ポリイミド層は、下記化学式2〜3から選択されるいずれか一つまたはこれらの共重合体を含むポリイミド樹脂50〜100mol%を含むことができる。
(化学式2〜3中、mまたはlは、それぞれ独立して、1〜100,000,000の整数である。)
In addition, the second polyimide layer may include 50 to 100 mol% of a polyimide resin including any one selected from the following chemical formulas 2 to 3 or a copolymer thereof.
(In Chemical Formulas 2 to 3, m or l are each independently an integer of 1 to 100,000,000.)

本発明において、フレキシブル金属張積層体は、金属箔/第1ポリイミド層/第2ポリイミド層/第3ポリイミド層/第2ポリイミド層/第1ポリイミド層/金属箔の順に積層されることができる。   In the present invention, the flexible metal-clad laminate can be laminated in the order of metal foil / first polyimide layer / second polyimide layer / third polyimide layer / second polyimide layer / first polyimide layer / metal foil.

また、第1ポリイミド層または第3ポリイミド層は、ガラス転移温度が300〜400℃であってもよく、絶縁層の40℃、相対湿度90%で72時間吸湿後のはんだ耐熱温度が350℃以上であってもよい。   The first polyimide layer or the third polyimide layer may have a glass transition temperature of 300 to 400 ° C., and the solder heat resistance temperature after absorbing moisture for 72 hours at 40 ° C. and relative humidity 90% of the insulating layer is 350 ° C. or more. It may be.

本発明は、絶縁層の片面または両面に金属箔を形成したフレキシブル金属張積層体であり、絶縁層が複数個のポリイミド系樹脂で構成される多層構造のフレキシブル金属張積層体を提供する。   The present invention provides a flexible metal-clad laminate in which a metal foil is formed on one or both sides of an insulating layer, and a multilayered flexible metal-clad laminate in which the insulating layer is composed of a plurality of polyimide resins.

本発明による絶縁層は、複数個のポリイミド系樹脂が積層された構造であり、2層以上構成されることができ、一例として、図1〜3のように、第1ポリイミド層100/第2ポリイミド層200/第3ポリイミド層300の3層構造(図1)または第1ポリイミド層100/第2ポリイミド層200/第3ポリイミド層300/第2ポリイミド層200/第3ポリイミド層300の5層構造(図2)または第1ポリイミド層100/第2ポリイミド層200/第3ポリイミド層300/第1ポリイミド層100/第2ポリイミド層200/第3ポリイミド層300の6層構造(図3)であってもよい。   The insulating layer according to the present invention has a structure in which a plurality of polyimide-based resins are laminated, and can be composed of two or more layers. As an example, as shown in FIGS. A three-layer structure of polyimide layer 200 / third polyimide layer 300 (FIG. 1) or five layers of first polyimide layer 100 / second polyimide layer 200 / third polyimide layer 300 / second polyimide layer 200 / third polyimide layer 300 The structure (FIG. 2) or the six-layer structure (FIG. 3) of the first polyimide layer 100 / second polyimide layer 200 / third polyimide layer 300 / first polyimide layer 100 / second polyimide layer 200 / third polyimide layer 300 There may be.

つまり、前記絶縁層は、第3ポリイミド層上に積層された第4ポリイミド層をさらに含み、前記第4ポリイミド層は、第2ポリイミド層と同じ特性を有する。また、第4ポリイミド層上に積層された第5ポリイミド層をさらに含み、前記第5ポリイミド層は、第3ポリイミド層と同じ特性を有する(図2の構造)。
他の形態として、前記絶縁層は、第3ポリイミド層上に積層された第4ポリイミド層をさらに含み、前記第4ポリイミド層は、第1ポリイミド層と同じ特性を有する。また、第4ポリイミド層上に積層された第5ポリイミド層をさらに含み、前記第5ポリイミド層は、第2ポリイミド層と同じ特性を有する。また、第5ポリイミド層上に積層された第6ポリイミド層をさらに含み、前記第6ポリイミド層は、第3ポリイミド層と同じ特性を有する(図3の構造)。
That is, the insulating layer further includes a fourth polyimide layer laminated on the third polyimide layer, and the fourth polyimide layer has the same characteristics as the second polyimide layer. The fifth polyimide layer further includes a fifth polyimide layer laminated on the fourth polyimide layer, and the fifth polyimide layer has the same characteristics as the third polyimide layer (structure in FIG. 2).
As another form, the insulating layer further includes a fourth polyimide layer laminated on the third polyimide layer, and the fourth polyimide layer has the same characteristics as the first polyimide layer. The fifth polyimide layer further includes a fifth polyimide layer laminated on the fourth polyimide layer, and the fifth polyimide layer has the same characteristics as the second polyimide layer. The sixth polyimide layer further includes a sixth polyimide layer laminated on the fifth polyimide layer, and the sixth polyimide layer has the same characteristics as the third polyimide layer (structure of FIG. 3).

一般的に、金属箔層に単一のポリイミド系樹脂層を形成してフレキシブル金属張積層体を製造することもできるが、この場合、次の問題がある。まず、熱硬化性ポリイミド系樹脂層を単一に使用する場合、金属箔との接着力が低く、熱可塑性ポリイミド系樹脂層が存在せずラミネート工程が不可能であるため、両面フレキシブル金属張積層体を製造することができず、エッチング前・後の製品の反りが発生する問題がある。反対に、熱可塑性ポリイミド系樹脂の単一層を使用する場合には、絶縁層の線熱膨張係数が高いため熱処理後の寸法変化率が高く、エッチング前・後に製品の反りが発生する問題がある。したがって、本発明は、絶縁層を多層構造とし、且つポリイミド層の吸湿率を調節することにより、金属箔との接着性および耐はんだ性を高める効果を奏する。   In general, a flexible metal-clad laminate can be produced by forming a single polyimide resin layer on a metal foil layer, but in this case, there are the following problems. First, when using a single thermosetting polyimide resin layer, the adhesive strength to the metal foil is low, and there is no thermoplastic polyimide resin layer, making the lamination process impossible. The body cannot be manufactured, and there is a problem that the product warps before and after etching. On the other hand, when a single layer of thermoplastic polyimide resin is used, there is a problem that the rate of dimensional change after heat treatment is high due to the high coefficient of linear thermal expansion of the insulating layer, and the product warps before and after etching. . Therefore, the present invention has an effect of improving the adhesion to the metal foil and the solder resistance by making the insulating layer a multilayer structure and adjusting the moisture absorption rate of the polyimide layer.

本発明による第1ポリイミド層または第3ポリイミド層は、下記化学式1の構造を有するポリイミド樹脂が50〜100mol%含まれることができる。かかる構造を有するポリイミド系樹脂は、ラミネート工程による金属層の付加が可能な熱可塑性樹脂であり、吸湿率が低く、吸湿後のはんだ耐熱性が高いことを特徴とする。   The first polyimide layer or the third polyimide layer according to the present invention may include 50 to 100 mol% of a polyimide resin having a structure represented by the following chemical formula 1. The polyimide resin having such a structure is a thermoplastic resin to which a metal layer can be added by a laminating process, and has a low moisture absorption rate and a high solder heat resistance after moisture absorption.

(化学式1中、nは、1〜100,000,000の整数である。) (In Chemical Formula 1, n is an integer of 1 to 100,000,000.)

本発明による第1ポリイミド層または第3ポリイミド層は、ガラス転移温度が200〜400℃、より好ましくは300〜400℃であってもよい。ガラス転移温度が200℃未満の場合には、絶縁層の熱分解による吸湿後、はんだ耐熱性の低下をもたらすことがあり、400℃を超える場合には、金属層との安定した接着力を確保することができない。   The first polyimide layer or the third polyimide layer according to the present invention may have a glass transition temperature of 200 to 400 ° C, more preferably 300 to 400 ° C. If the glass transition temperature is less than 200 ° C, it may cause a decrease in solder heat resistance after moisture absorption by thermal decomposition of the insulating layer. If it exceeds 400 ° C, a stable adhesion to the metal layer is ensured. Can not do it.

本発明による第2ポリイミド層は、下記化学式2〜3から選択されるいずれか一つまたはこれらの共重合体を含むポリイミド樹脂50〜100mol%を含むことができる。化学式2または3の構造を有するポリイミド系樹脂は、熱膨張性が低く、吸湿率が低く、吸湿後のはんだ耐熱性が高いことを特徴とする。   The second polyimide layer according to the present invention may include 50 to 100 mol% of a polyimide resin including any one selected from the following chemical formulas 2 to 3 or a copolymer thereof. The polyimide resin having the structure of Chemical Formula 2 or 3 is characterized by low thermal expansion, low moisture absorption, and high solder heat resistance after moisture absorption.

(化学式2〜3中、mまたはlは、それぞれ独立して、1〜100,000,000の整数である。) (In Chemical Formulas 2 to 3, m or l are each independently an integer of 1 to 100,000,000.)

本発明による第2ポリイミド層は、ガラス転移温度が300〜500℃であってもよい。ガラス転移温度が300℃未満の場合には、第2ポリイミド層の吸湿後、はんだ耐熱性の低下が発生することがあり、500℃を超える場合には、ガラス転移温度が高いため硬化工程中にイミド化が困難になりうる。また、第2ポリイミド層は、100〜250℃で測定した低熱膨張係数が20ppm/K以下であってもよく、好ましくは1〜10ppm/Kであってもよい。   The second polyimide layer according to the present invention may have a glass transition temperature of 300 to 500 ° C. When the glass transition temperature is less than 300 ° C., the solder heat resistance may decrease after moisture absorption of the second polyimide layer. When the glass transition temperature exceeds 500 ° C., the glass transition temperature is high, and thus during the curing process. Imidization can be difficult. The second polyimide layer may have a low coefficient of thermal expansion measured at 100 to 250 ° C. of 20 ppm / K or less, preferably 1 to 10 ppm / K.

本発明によるポリイミド樹脂は、絶縁層の吸湿率が0.5wt%以下であり、40℃、相対湿度90%で72時間吸湿後のはんだ耐熱温度が350℃以上であってもよい。   In the polyimide resin according to the present invention, the moisture absorption rate of the insulating layer may be 0.5 wt% or less, and the solder heat resistance temperature after moisture absorption for 72 hours at 40 ° C. and 90% relative humidity may be 350 ° C. or more.

本発明によるポリイミド樹脂は、製造方法が限定されず、通常用いられる製造方法である有機溶媒中でジアミンと酸二無水物を反応させることによりポリイミド前駆体溶液を得ることができる。アルゴン、窒素などの不活性雰囲気下で、ジアミンを有機溶媒中で溶解またはスラリー状に拡散させ、酸二無水物を有機溶媒に溶解、スラリー状に拡散させた状態、または固体状態で添加する。   The production method of the polyimide resin according to the present invention is not limited, and a polyimide precursor solution can be obtained by reacting a diamine and an acid dianhydride in an organic solvent which is a production method usually used. Under an inert atmosphere such as argon or nitrogen, diamine is dissolved or diffused in a slurry state in an organic solvent, and acid dianhydride is dissolved in an organic solvent and added in a slurry state or in a solid state.

ポリイミド前駆体溶液の合成の際に使用する溶媒は、ポリイミド前駆体が溶けるものであれば、特に限定されない。例えば、ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶媒、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミドなどのホルムアミド系溶媒、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミドなどのアセトアミド系溶媒、N−メチル−2−ピロリドン、N−ビニル−2−ピロリドンなどのピロリドン系溶媒、フェノール、o−、m−、またはp−クレゾール、キシレノール、ハロゲン化フェノール、カテコールなどのフェノール系溶媒、ジグライム、トリグライム、テトラグライム、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、エタノール、ブタノールなどのアルコール系溶媒、ブチルセロソルブなどのセロソルブ系またはヘキサメチルホスホルアミド、γ−ブチロラクトンなどが挙げられ、これらを単独でまたは混合物として使用することが好ましいが、さらに、キシレン、トルエンのような芳香族炭化水素も使用可能である。   The solvent used in the synthesis of the polyimide precursor solution is not particularly limited as long as the polyimide precursor is soluble. For example, sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide, formamide solvents such as N, N-dimethylformamide and N, N-diethylformamide, and acetamide solvents such as N, N-dimethylacetamide and N, N-diethylacetamide , Pyrrolidone solvents such as N-methyl-2-pyrrolidone and N-vinyl-2-pyrrolidone, phenol solvents such as phenol, o-, m-, or p-cresol, xylenol, halogenated phenol, catechol, diglyme, Ether solvents such as triglyme, tetraglyme, tetrahydrofuran and dioxane, alcohol solvents such as methanol, ethanol and butanol, cellosolve such as butyl cellosolve or hexamethylphosphoramide, γ-buty , Lactone and the like, it is preferable to use them alone or as a mixture, further, xylene, aromatic hydrocarbons such as toluene can be used.

本発明による複数個のポリイミド系樹脂層に含まれた二無水物は、酸二無水物であれば特に限定されないが、例えば、2,2’ヘキサフルオロプロピリデンジフタル酸二無水物、2,2−ビス(4−ヒドロキシフェニル)プロパンジベンゾエート−3,3’4,4’テトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸、1,2,3,4−シクロペンタンテトラカルボン酸二無水物,2,3,5−トリカルボキシシクロペンチル酢酸二無水物、3,5,6−トリカルボキシノルボルナン−2−酢酸二無水物,2,3,4,5−テトラヒドロフランテトラカルボン酸二無水物、5−(2,5−ジオキシテトラヒドロフラン)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸二無水物、ビシクロ[2,2,2]−オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物などの脂肪族または脂環式テトラカルボン酸二無水物;ピロメリット酸二無水物、3,3’4,4’ベンゾフェノンテトラカルボン酸二無水物、3,3’4,4’ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物,2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’4,4’ビフェニルエーテルテトラカルボン酸二無水物、3,3’4,4’ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’4,4’テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4−フランテトラカルボン酸二無水物、4,4’ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’−ビスフェノールA二無水物、3,3’4,4’パーフルオロイソプロピリデンジフタル酸二無水物、3,3’4,4’−ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキシド二無水物、p−フェニレン−ビス(トリフェニルフタル酸)二無水物、m−フェニレン−ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)−4,4’ジフェニルエーテル二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物およびビス(トリフェニルフタル酸)−4,4’ジフェニルメタン二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物などの芳香族テトラカルボン酸二無水物が挙げられる。   The dianhydride contained in the plurality of polyimide resin layers according to the present invention is not particularly limited as long as it is an acid dianhydride. For example, 2,2 ′ hexafluoropropylidenediphthalic dianhydride, 2, 2-bis (4-hydroxyphenyl) propanedibenzoate-3,3′4,4′tetracarboxylic dianhydride, butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride 3,5,6-tricarboxynorbornane-2-acetic acid dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 5- (2,5-dioxyte Lahydrofuran) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, bicyclo [2,2,2] -oct-7-ene-2,3,5,6-tetracarboxylic dianhydride Aliphatic or alicyclic tetracarboxylic dianhydrides such as pyromellitic dianhydride, 3,3′4,4′benzophenonetetracarboxylic dianhydride, 3,3′4,4′biphenylsulfonetetracarboxylic Acid dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 3,3'4,4'biphenyl ether tetracarboxylic acid Dianhydride, 3,3′4,4′dimethyldiphenylsilanetetracarboxylic dianhydride, 3,3′4,4′tetraphenylsilanetetracarboxylic dianhydride, 1,2,3,4-fura Tetracarboxylic dianhydride, 4,4′bis (3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride, 4,4′bis (3,4-dicarboxyphenoxy) diphenylsulfone dianhydride, 4,4 '-Bisphenol A dianhydride, 3,3'4,4' perfluoroisopropylidenediphthalic dianhydride, 3,3'4,4'-biphenyltetracarboxylic dianhydride, bis (phthalic acid) phenyl Phosphine oxide dianhydride, p-phenylene-bis (triphenylphthalic acid) dianhydride, m-phenylene-bis (triphenylphthalic acid) dianhydride, bis (triphenylphthalic acid) -4,4 ′ diphenyl ether Anhydrides, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride and bis (triphenylphthalic acid) -4,4 ′ dipheny And aromatic tetracarboxylic dianhydrides such as methane dianhydride and 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride.

本発明による複数個のポリイミド系樹脂層に含まれるジアミンは、特に制限されないが、例えば、p(パラ)−フェニレンジアミン、m−フェニレンジアミン、4,4’ジアミノジフェニルメタン、4,4’ジアミノジフェニルエタン、4,4’ジアミノジフェニルエーテル、4,4’ジアミノフェニルスルフィド、4,4’ジアミノフェニルスルホン、1,5−ジアミノナフタレン、3,3−ジメチル−4,4’ジアミノビフェニル、3,5−ジアミノ安息香酸、5−アミノ−1−(4’アミノフェニル)−1,3,3−トリメチルインダン、6−アミノ−1−(4’アミノフェニル)−1,3,3−トリメチルインダン、4,4’ジアミノベンズアミド、3,5−ジアミノ−3’トリフルオロメチルベンズアミド、3,5−ジアミノ−4’トリフルオロメチルベンズアミド、3,4’ジアミノジフェニルエーテル、2,7−ジアミノフルオレン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、4,4’メチレン−ビス(2−クロロアニリン)、2,2’5,5’テトラクロロ−4,4’−ジアミノビフェニル、2,2’ジクロロ−4,4’ジアミノ−5,5’ジメトキシビフェニル、3,3’ジメトキシ−4,4’ジアミノフェニル、4,4’ジアミノ−2,2’ビス(トリフルオロメチル)ビフェニル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4−ビス(4−アミノフェノキシ)−ビフェニル、1,3−ビス(4−アミノフェノキシ)ベンゼン、9,9−ビス(4−アミノフェニル)フルオレン、4,4’(p−フェニレンイソプロピリデン)ビスアニリン、4,4’(m−フェニレンイソプロピリデン)ビスアニリン、4,4’−オキシジアニリン、2,2’ビス[4−(4−アミノ−2−トリフルオロメチルフェノキシ)フェニル]ヘキサフロオロプロパン、4,4’ビス[4−(4−アミノ−2−トリフルオロメチル)フェノキシ]−オクタフルオロフェニルなどの芳香族ジアミン;ジアミノテトラフェニルチオフェンなどの芳香環に結合した二つのアミノ基と当該アミノ基の窒素原子以外のヘテロ原子を有する芳香族ジアミン;1,1−メタキシレンジアミン、1,3−プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、4,4−ジアミノヘプタンメチレンジアミン、1,4−ジアミノシクロヘキサン、イソホロンジアミン、テトラヒドロジシクロペンタジエニレンジアミン、ヘキサヒドロ−4,7−メタノインダニレンジメチレンジアミンおよび4,4’メチレンビス(シクロヘキシルアミン)などの脂肪族ジアミンおよび脂環式ジアミンなどが挙げられる。   The diamine contained in the plurality of polyimide resin layers according to the present invention is not particularly limited. For example, p (para) -phenylenediamine, m-phenylenediamine, 4,4′diaminodiphenylmethane, 4,4′diaminodiphenylethane. 4,4′diaminodiphenyl ether, 4,4′diaminophenyl sulfide, 4,4′diaminophenylsulfone, 1,5-diaminonaphthalene, 3,3-dimethyl-4,4′diaminobiphenyl, 3,5-diaminobenzoic acid Acid, 5-amino-1- (4′aminophenyl) -1,3,3-trimethylindane, 6-amino-1- (4′aminophenyl) -1,3,3-trimethylindane, 4,4 ′ Diaminobenzamide, 3,5-diamino-3′trifluoromethylbenzamide, 3,5-diamino-4 Trifluoromethylbenzamide, 3,4'diaminodiphenyl ether, 2,7-diaminofluorene, 2,2-bis (4-aminophenyl) hexafluoropropane, 4,4'methylene-bis (2-chloroaniline), 2, 2′5,5′tetrachloro-4,4′-diaminobiphenyl, 2,2′dichloro-4,4′diamino-5,5′dimethoxybiphenyl, 3,3′dimethoxy-4,4′diaminophenyl, 4 , 4′diamino-2,2′bis (trifluoromethyl) biphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl ] Hexafluoropropane, 1,4-bis (4-aminophenoxy) benzene, 4,4-bis (4-aminophenoxy) -biphe 1,3-bis (4-aminophenoxy) benzene, 9,9-bis (4-aminophenyl) fluorene, 4,4 ′ (p-phenyleneisopropylidene) bisaniline, 4,4 ′ (m-phenyleneisopropyl Riden) bisaniline, 4,4′-oxydianiline, 2,2′bis [4- (4-amino-2-trifluoromethylphenoxy) phenyl] hexafluoropropane, 4,4′bis [4- (4 -Amino-2-trifluoromethyl) phenoxy] -octafluorophenyl and other aromatic diamines; diaminotetraphenylthiophene and other aromatic groups having two amino groups bonded to an aromatic ring and heteroatoms other than nitrogen atoms of the amino group Group diamine; 1,1-metaxylenediamine, 1,3-propanediamine, tetramethylenediamine, pen Tamethylenediamine, Octamethylenediamine, Nonamethylenediamine, 4,4-Diaminoheptanemethylenediamine, 1,4-Diaminocyclohexane, Isophoronediamine, Tetrahydrodicyclopentadienylenediamine, Hexahydro-4,7-methanoin danylylene Examples include aliphatic diamines and alicyclic diamines such as methylene diamine and 4,4 ′ methylene bis (cyclohexylamine).

本発明によるフレキシブル金属張積層体は、金属箔が第1ポリイミド層の片面にのみ形成されているか(片面フレキシブル金属張積層体)、第1ポリイミド層と第3ポリイミド層の片面にそれぞれ形成されていてもよい(両面フレキシブル金属張積層体)。   In the flexible metal-clad laminate according to the present invention, the metal foil is formed only on one side of the first polyimide layer (single-sided flexible metal-clad laminate), or formed on each side of the first polyimide layer and the third polyimide layer. (Double-sided flexible metal-clad laminate).

本発明による金属箔は、銅、アルミニウム、銀、パラジウム、ニッケル、クロム、モリブデンおよびタングステンなどの導電性金属を意味し、これらの合金または混合物を含むことができる。一般的には、銅が広範囲に使用されるが、必ずしもこれに限定されるものではなく、金属箔とポリイミド層との結合強度を増加させるために金属層の表面に物理的または化学的な表面処理を施したものも本発明の金属層に含まれる。   The metal foil according to the present invention means a conductive metal such as copper, aluminum, silver, palladium, nickel, chromium, molybdenum and tungsten, and can include an alloy or a mixture thereof. In general, copper is widely used, but is not necessarily limited to this, a physical or chemical surface on the surface of the metal layer to increase the bond strength between the metal foil and the polyimide layer Those subjected to treatment are also included in the metal layer of the present invention.

本発明に適用可能なコーティング方法としては、ナイフコーティング(knife coating)、ロールコーティング(roll coating)、ダイコーティング(die coating)、カーテンコーティング(curtain coating)などがあり、本発明が追求する目的を満たす限り、その方法は制限されない。コーティング溶液としては、ポリイミド前駆体溶液だけでなく、予め硬化された半硬化または完全硬化された状態のポリイミド溶液を使用することも可能である。   Examples of the coating method applicable to the present invention include knife coating, roll coating, die coating, curtain coating, and the like, which satisfy the object pursued by the present invention. As long as the method is not limited. As the coating solution, it is possible to use not only the polyimide precursor solution but also a polyimide solution in a semi-cured or fully cured state that has been pre-cured.

絶縁層のコーティング後、これを乾燥および硬化する工程は、選択的に適用されることができ、熱風硬化法、IR硬化法、バッチ式硬化法、連続式硬化法および化学硬化法など、公知の様々な方法が適用されることができる。   The step of drying and curing the insulating layer after coating can be selectively applied, and known methods such as hot air curing method, IR curing method, batch curing method, continuous curing method and chemical curing method are known. Various methods can be applied.

以下、実験例により本発明を具体的に説明する。しかし、本発明は、必ずしもこれらの例に限定されるものではない。   Hereinafter, the present invention will be described in detail by experimental examples. However, the present invention is not necessarily limited to these examples.

実施例において使用された略語は、次のとおりである。   Abbreviations used in the examples are as follows.

DMAc:N,N−ジメチルアセトアミド(N,N−dimethylacetamide)
PMDA:ピロメリット酸二無水物(Pyromellitic dianhydride)
BPDA:3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(3,3’,4,4’−biphenyltetra carboxylic acid dianhydride)
TPE−R:1,3−ビス(4−アミノフェノキシ)ベンゼン(1,3−bis(4−aminophenoxy)benzene)
p−PDA:パラ−フェニレンジアミン(p−phenylenediamine)
p−ODA:4,4’−オキシジアニリン(4,4’−Oxydianiline)
HFBAPP:2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン(2,2−bis(4−(4−aminophenoxy)phenyl)hexafluoropropane)
TFMB:2,2−ビス(トリフルオロメチル)ベンジジン(2,2−bis(trifluoromethyl)benzidine)
DMAc: N, N-dimethylacetamide (N, N-dimethylacetamide)
PMDA: Pyromellitic dianhydride
BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (3,3 ′, 4,4′-biphenyltetracarboxylic acid dianhydride)
TPE-R: 1,3-bis (4-aminophenoxy) benzene (1,3-bis (4-aminophenoxy) benzene)
p-PDA: para-phenylenediamine (p-phenylenediamine)
p-ODA: 4,4′-oxydianiline (4,4′-oxydianiline)
HFBAPP: 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane (2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane)
TFMB: 2,2-bis (trifluoromethyl) benzidine (2,2-bis (trifluoromethyl) benzidine)

合成例または実施例により製造された試験片の物性は、次のように測定した。   The physical properties of the test pieces manufactured according to the synthesis examples or the examples were measured as follows.

(ガラス転移温度、吸湿率−合成例)
Mitsui Kinzoku社製のDFF−NA銅箔(厚さ15μm、表面粗さRz=0.6μm)上に合成例1により製造したポリアミド酸溶液を最終硬化後の厚さが20μmになるようにキャスティングした後、140℃で20分間乾燥して銅箔/ゲルフィルム複合体を形成した。このように形成された銅箔/ゲルフィルム複合体を窒素雰囲気下で60分間380℃まで昇温した後、当該温度で30分間維持して完全にイミド化した後、銅箔を除去してポリイミドフィルムを得た。このように製造された試験片を使用してポリイミド樹脂のガラス転移温度および吸湿率を測定し、表1に記載した。
(Glass transition temperature, moisture absorption rate-synthesis example)
The polyamic acid solution produced according to Synthesis Example 1 was cast on a DFF-NA copper foil (thickness 15 μm, surface roughness Rz = 0.6 μm) manufactured by Mitsui Kinzoku so that the thickness after final curing was 20 μm. Thereafter, it was dried at 140 ° C. for 20 minutes to form a copper foil / gel film composite. The copper foil / gel film composite thus formed was heated to 380 ° C. for 60 minutes under a nitrogen atmosphere, then maintained at that temperature for 30 minutes for complete imidization, and then the copper foil was removed to obtain polyimide. A film was obtained. The test piece thus produced was used to measure the glass transition temperature and moisture absorption rate of the polyimide resin, and are shown in Table 1.

(ガラス転移温度−実施例)
Mettler−Toledo社製のDMA/SDTA861eを使用して引張力0.1N、周波数10Hz、変位30μmの条件で30℃から500℃まで1分当たり5℃の速度で窒素雰囲気で昇温しながら測定した。この際、得られたTanδの最大値をガラス転移温度とした。
(Glass transition temperature-Examples)
Using a Mettler-Toledo DMA / SDTA861e, measurement was performed while increasing the temperature in a nitrogen atmosphere at a rate of 5 ° C. per minute from 30 ° C. to 500 ° C. under conditions of a tensile force of 0.1 N, a frequency of 10 Hz and a displacement of 30 μm . At this time, the maximum value of Tan δ obtained was defined as the glass transition temperature.

(吸湿率−実施例)
製造された試験片から金属箔をエッチングにより除去し、残っているポリイミド層をサイズ5cm×5cmの正方形に切断した。切断した試験片を150℃の対流式オーブンで1時間以上乾燥して乾燥後の重量を測定し、これを乾燥重量(W1)とした。乾燥重量を測定した試験片を40℃/相対湿度90%の恒温恒湿器上に72時間前処理して吸湿させた後、その重量を測定して吸湿後の重量(W2)とした。測定されたデータに基づき、下記式1に代入して計算した。
(Hygroscopic rate-Examples)
The metal foil was removed from the manufactured test piece by etching, and the remaining polyimide layer was cut into a square having a size of 5 cm × 5 cm. The cut specimen was dried in a convection oven at 150 ° C. for 1 hour or longer, and the weight after drying was measured. This was defined as the dry weight (W1). The test piece whose dry weight was measured was pretreated for 72 hours on a constant temperature and humidity chamber of 40 ° C./90% relative humidity to absorb moisture, and then the weight was measured to obtain the weight after moisture absorption (W2). Based on the measured data, calculation was performed by substituting into the following equation 1.

[式1]
吸湿率(%)=(W2−W1)/W1
[Formula 1]
Moisture absorption rate (%) = (W2-W1) / W1

(吸湿後のはんだ耐熱温度の判定)
絶縁層の片面に金属層が形成された片面フレキシブル金属張積層体を製造した後、金属層を2.5cm×2.5cmの正方形にパターニングし、周辺のポリイミド層に沿って4cm×4cmのサイズに切断して試験片を製造した。製造された試験片を40℃/相対湿度90%の恒温恒湿器上に72時間前処理して吸湿させた後、初期温度250℃のはんだ槽(Solder Bath)に浮遊(floating)させて外観上に異常があるか否かを観察した。また、初期温度で外観に異常がない場合、はんだ槽の温度を10℃単位で上昇させて前記と同一の方法で不良があるか否かを観察した。膨張、気泡、層分離などの外観上の不良が発生しない最高温度を吸湿後のはんだ温度とし、400℃まで評価した後、当該温度でも異常がない場合を400℃以上(≧400℃)と表現した。
(Determination of solder heat resistance temperature after moisture absorption)
After producing a single-sided flexible metal-clad laminate with a metal layer formed on one side of the insulating layer, the metal layer is patterned into a square of 2.5 cm x 2.5 cm, and a size of 4 cm x 4 cm along the surrounding polyimide layer The test piece was manufactured by cutting into pieces. The manufactured test piece was pretreated for 72 hours on a constant temperature and humidity chamber of 40 ° C./90% relative humidity to absorb moisture, and then floated in a solder bath having an initial temperature of 250 ° C. It was observed whether there was any abnormality on the top. Moreover, when there was no abnormality in the external appearance at the initial temperature, the temperature of the solder bath was increased in units of 10 ° C., and it was observed whether there was a defect by the same method as described above. The highest temperature at which appearance defects such as expansion, bubbles, and layer separation do not occur is defined as the solder temperature after moisture absorption. After evaluating up to 400 ° C, when there is no abnormality at that temperature, it is expressed as 400 ° C or higher (≧ 400 ° C) did.

(合成例1)
DMAcにジアミンであるTPE−Rを投入した後、これを攪拌して完全に溶かした後、全体のジアミン100mol%に対して等モルのBPDAを数回に分けて添加した。以降、常温で24時間反応させて固形分濃度13重量%、平均温度23℃で測定した平均粘度が12500cpであるポリアミド酸溶液を製造した。ポリアミド酸の粘度調整は、二無水物とジアミンの当量比を調整して行った。
(Synthesis Example 1)
After TPE-R, which is a diamine, was added to DMAc, this was stirred and completely dissolved, and then equimolar BPDA was added in several portions to 100 mol% of the total diamine. Thereafter, the reaction was carried out at room temperature for 24 hours to produce a polyamic acid solution having a solid content concentration of 13% by weight and an average viscosity of 12500 cp measured at an average temperature of 23 ° C. The viscosity of the polyamic acid was adjusted by adjusting the equivalent ratio of dianhydride and diamine.

(合成例2〜6)
下記表1の組成および含量を使用した以外は、合成例1と同一の方法で製造した。
(Synthesis Examples 2 to 6)
Manufactured in the same manner as in Synthesis Example 1 except that the composition and content shown in Table 1 below were used.

(実施例1)
Furukawa Circuit Foil社製のF2WS銅箔(厚さ12μm、表面粗さRz=2.0μm)上に合成例2により製造されたポリアミド酸溶液を最終硬化後の厚さが3μmになるようにキャスティングした後、140℃で20分間乾燥して第1ポリイミド前駆体層を形成した。その後、形成された第1ポリイミド前駆体層上に合成例4により製造されたポリアミド酸溶液を最終硬化後の厚さが20μmになるようにキャスティングした後、140℃で20分間乾燥して第2ポリイミド前駆体層を形成した。また、形成された第2ポリイミド前駆体層上に、合成例2により製造されたポリアミド酸溶液を最終硬化後の厚さが3μmになるようにキャスティングした後、140℃で20分間乾燥して第3ポリイミド前駆体層を形成した。
Example 1
The polyamic acid solution produced by Synthesis Example 2 was cast on F2WS copper foil (thickness 12 μm, surface roughness Rz = 2.0 μm) manufactured by Furuka Circuit Foil so that the thickness after final curing was 3 μm. Then, it dried at 140 degreeC for 20 minute (s), and the 1st polyimide precursor layer was formed. Thereafter, the polyamic acid solution produced according to Synthesis Example 4 is cast on the formed first polyimide precursor layer so that the thickness after final curing is 20 μm, and then dried at 140 ° C. for 20 minutes to be second. A polyimide precursor layer was formed. In addition, the polyamic acid solution produced in Synthesis Example 2 was cast on the formed second polyimide precursor layer so that the final cured thickness would be 3 μm, and then dried at 140 ° C. for 20 minutes. Three polyimide precursor layers were formed.

このように形成された銅箔/前駆体フィルムの複合体を窒素雰囲気下で60分間380℃まで昇温した後、当該温度で30分間維持し完全にイミド化して試験片を完成した。完成された試験片の吸湿後、はんだ耐熱温度および金属層除去後の絶縁層全体の吸湿率を測定し、その結果を表2に記載した。   The copper foil / precursor film composite thus formed was heated to 380 ° C. for 60 minutes under a nitrogen atmosphere, and then maintained at that temperature for 30 minutes to completely imidize to complete a test piece. After moisture absorption of the completed test piece, the heat resistance temperature of the solder and the moisture absorption rate of the entire insulating layer after removal of the metal layer were measured, and the results are shown in Table 2.

(実施例2〜4および比較例1〜2)
表2に記載のポリアミド酸溶液を使用して試験片を製造した以外は、実施例1と同一の方法で試験片を製造した。完成された試験片の吸湿後のはんだ耐熱温度および金属層除去後の絶縁層全体の吸湿率を測定し、その結果を表2に記載した。
(Examples 2-4 and Comparative Examples 1-2)
A test piece was manufactured in the same manner as in Example 1 except that the test piece was manufactured using the polyamic acid solution shown in Table 2. The solder heat resistance temperature after moisture absorption of the completed test piece and the moisture absorption rate of the entire insulating layer after removal of the metal layer were measured. The results are shown in Table 2.

以上、本発明の好ましい実施例について説明しているが、本発明は、様々な変化と変更および均等物を使用してもよく、実施例を適切に変形して同様に応用することができることが明確である。したがって、実施例に記載の内容は、特許請求の範囲の限界により定められる本発明の範囲を限定するものではない。
As mentioned above, although the preferable Example of this invention is described, a various change, a change, and an equivalent may be used for this invention, and an Example can be changed suitably and can be applied similarly. It is clear. Therefore, the contents described in the examples do not limit the scope of the present invention defined by the limitations of the claims.

Claims (6)

金属箔と絶縁層とを含むフレキシブル金属張積層体であって、
前記絶縁層は、
前記金属箔の片面または両面に形成され、ガラス転移温度が200〜400℃である第1ポリイミド層と、
前記第1ポリイミド層の片面に形成され、ガラス転移温度が300〜500℃であり、吸湿率が0.5wt%以下である第2ポリイミド層と、
前記第2ポリイミド層の片面に形成され、ガラス転移温度が200〜400℃である第3ポリイミド層と、を含み、
40℃、相対湿度90%で72時間吸湿後のはんだ耐熱温度が350℃以上である、フレキシブル金属張積層体。
A flexible metal-clad laminate including a metal foil and an insulating layer,
The insulating layer is
A first polyimide layer formed on one or both sides of the metal foil and having a glass transition temperature of 200 to 400 ° C .;
A second polyimide layer formed on one side of the first polyimide layer, having a glass transition temperature of 300 to 500 ° C. and a moisture absorption of 0.5 wt% or less;
A third polyimide layer formed on one side of the second polyimide layer and having a glass transition temperature of 200 to 400 ° C.,
A flexible metal-clad laminate having a heat resistant solder temperature of 350 ° C. or higher after absorbing moisture at 40 ° C. and 90% relative humidity for 72 hours.
前記絶縁層は、
前記金属箔の片面または両面に形成され、ガラス転移温度が200〜400℃であり、吸湿率が0.5wt%以下である第1ポリイミド層と、
前記第1ポリイミド層の片面に形成され、ガラス転移温度が300〜500℃であり、吸湿率が0.5wt%以下である第2ポリイミド層と、
前記第2ポリイミド層の片面に形成され、ガラス転移温度が200〜400℃であり、吸湿率が0.5wt%以下である第3ポリイミド層と、を含み、
前記絶縁層の吸湿率が0.5wt%以下であり、40℃、相対湿度90%で72時間吸湿後のはんだ耐熱温度が350℃以上である、請求項1に記載のフレキシブル金属張積層体。
The insulating layer is
A first polyimide layer formed on one or both sides of the metal foil, having a glass transition temperature of 200 to 400 ° C. and a moisture absorption of 0.5 wt% or less;
A second polyimide layer formed on one side of the first polyimide layer, having a glass transition temperature of 300 to 500 ° C. and a moisture absorption of 0.5 wt% or less;
A third polyimide layer formed on one side of the second polyimide layer, having a glass transition temperature of 200 to 400 ° C. and a moisture absorption of 0.5 wt% or less,
The flexible metal-clad laminate according to claim 1, wherein the moisture absorption rate of the insulating layer is 0.5 wt% or less, and the solder heat resistance temperature after absorbing moisture for 72 hours at 40 ° C and 90% relative humidity is 350 ° C or more.
前記第1ポリイミド層または第3ポリイミド層は、下記化学式1の構造を有するポリイミド樹脂を50〜100mol%含む、請求項1に記載のフレキシブル金属張積層体。
(前記化学式1中、nは、1〜100,000,000の整数である。)
2. The flexible metal-clad laminate according to claim 1, wherein the first polyimide layer or the third polyimide layer contains 50 to 100 mol% of a polyimide resin having a structure of the following chemical formula 1.
(In the chemical formula 1, n is an integer of 1 to 100,000,000.)
前記第2ポリイミド層は、下記化学式2〜3から選択されるいずれか一つまたはこれらの共重合体を含むポリイミド樹脂50〜100mol%を含む、請求項1に記載のフレキシブル金属張積層体。
(前記化学式2〜3中、mまたはlは、それぞれ独立して、1〜100,000,000の整数である。)
2. The flexible metal-clad laminate according to claim 1, wherein the second polyimide layer includes 50 to 100 mol% of a polyimide resin including any one of the following chemical formulas 2 to 3 or a copolymer thereof.
(In the chemical formulas 2 to 3, m or l are each independently an integer of 1 to 100,000,000.)
前記フレキシブル金属張積層体を構成する絶縁層は、第1ポリイミド層/第2ポリイミド層/第3ポリイミド層/第2ポリイミド層/第3ポリイミド層の順に積層されているか、第1ポリイミド層/第2ポリイミド層/第3ポリイミド層/第1ポリイミド層/第2ポリイミド層/第3ポリイミド層の順に積層されている、請求項1に記載のフレキシブル金属張積層体。   The insulating layer constituting the flexible metal-clad laminate is laminated in the order of first polyimide layer / second polyimide layer / third polyimide layer / second polyimide layer / third polyimide layer, or first polyimide layer / first polyimide layer. The flexible metal-clad laminate according to claim 1, which is laminated in the order of 2 polyimide layer / third polyimide layer / first polyimide layer / second polyimide layer / third polyimide layer. 前記第1ポリイミド層または第3ポリイミド層は、ガラス転移温度が300〜400℃である、請求項1に記載のフレキシブル金属張積層体。   The flexible metal-clad laminate according to claim 1, wherein the first polyimide layer or the third polyimide layer has a glass transition temperature of 300 to 400 ° C.
JP2016011351A 2015-01-29 2016-01-25 Low moisture absorption flexible metal-clad laminate Active JP6758048B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150014051A KR101720218B1 (en) 2015-01-29 2015-01-29 Low hygroscopicity flexible metal clad laminate
KR10-2015-0014051 2015-01-29

Publications (2)

Publication Number Publication Date
JP2016141152A true JP2016141152A (en) 2016-08-08
JP6758048B2 JP6758048B2 (en) 2020-09-23

Family

ID=56569390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016011351A Active JP6758048B2 (en) 2015-01-29 2016-01-25 Low moisture absorption flexible metal-clad laminate

Country Status (3)

Country Link
JP (1) JP6758048B2 (en)
KR (1) KR101720218B1 (en)
TW (1) TWI693152B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200115243A (en) 2019-03-27 2020-10-07 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminate and circuit board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11291392A (en) * 1998-04-13 1999-10-26 Mitsui Chem Inc Polyimide-metal laminate and manufacture thereof
WO2002085616A1 (en) * 2001-04-19 2002-10-31 Nippon Steel Chemical Co., Ltd. Laminate for electronic material
JP2007313854A (en) * 2006-05-29 2007-12-06 Kaneka Corp Copper-clad laminated sheet
JP2010155360A (en) * 2008-12-26 2010-07-15 Nippon Steel Chem Co Ltd Laminate for wiring board, having transparent insulating resin layer
JP2010157571A (en) * 2008-12-26 2010-07-15 Nippon Steel Chem Co Ltd Laminated body for flexible wiring board
JP2012143992A (en) * 2011-01-13 2012-08-02 Kaneka Corp Multilayer polyimide film and flexible metal foil-clad laminate using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363284A (en) 2001-06-07 2002-12-18 Kanegafuchi Chem Ind Co Ltd Novel thermoplastic polyimide resin
TWI319748B (en) * 2006-07-26 2010-01-21 Polyimide composite flexible board and its preparation
TWI355329B (en) * 2006-09-18 2012-01-01 Chang Chun Plastics Co Ltd Polyimide composite flexible board and its prepara
KR101416782B1 (en) * 2012-04-24 2014-07-08 에스케이이노베이션 주식회사 Flexilbe Metal Clad Laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11291392A (en) * 1998-04-13 1999-10-26 Mitsui Chem Inc Polyimide-metal laminate and manufacture thereof
WO2002085616A1 (en) * 2001-04-19 2002-10-31 Nippon Steel Chemical Co., Ltd. Laminate for electronic material
JP2007313854A (en) * 2006-05-29 2007-12-06 Kaneka Corp Copper-clad laminated sheet
JP2010155360A (en) * 2008-12-26 2010-07-15 Nippon Steel Chem Co Ltd Laminate for wiring board, having transparent insulating resin layer
JP2010157571A (en) * 2008-12-26 2010-07-15 Nippon Steel Chem Co Ltd Laminated body for flexible wiring board
JP2012143992A (en) * 2011-01-13 2012-08-02 Kaneka Corp Multilayer polyimide film and flexible metal foil-clad laminate using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200115243A (en) 2019-03-27 2020-10-07 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminate and circuit board

Also Published As

Publication number Publication date
TW201627153A (en) 2016-08-01
JP6758048B2 (en) 2020-09-23
KR20160093271A (en) 2016-08-08
TWI693152B (en) 2020-05-11
KR101720218B1 (en) 2017-03-27

Similar Documents

Publication Publication Date Title
JP6258921B2 (en) Flexible metal-clad laminate
KR102038135B1 (en) Flexible metal-clad laminate manufacturing method thereof
JP2017144730A (en) Multilayer polyimide film and flexible metal-clad laminate
KR101514221B1 (en) manufacturing method of multi layer polyimide flexible metal-clad laminate
KR20230157271A (en) Polyimide film
KR20200036770A (en) Metal-clad laminate and circuit board
JP2015199328A (en) metal-clad laminate, circuit board and polyimide
JP6412012B2 (en) Multilayer flexible metal-clad laminate and manufacturing method thereof
TW202225270A (en) Non-thermoplastic polyimide film, multilayer polyimide film, and metal-clad laminated plate
JP7428646B2 (en) Metal-clad laminates and circuit boards
JP5567283B2 (en) Polyimide film
KR101756231B1 (en) Flexible metal clad laminate including a fluorinated polyimide resin layer
JP6758048B2 (en) Low moisture absorption flexible metal-clad laminate
TW202208513A (en) Multilayer Polyimide Film
JP6603021B2 (en) Polyimide film
JP5844853B2 (en) Polyimide film
JP2018126886A (en) Method for producing multilayered polyimide film
JP2018126887A (en) Method for producing multilayered polyimide film
KR102160000B1 (en) Thick polyimide metal-clad laminate and manufacturing method for thereof
KR20140092427A (en) Flexible metal clad laminate
JP2023121512A (en) Non-thermoplastic polyimide film, multi-layer polyimide film and metal-clad laminate
US20220135836A1 (en) Polyimide film for flexible metal clad laminate and flexible metal clad laminate comprising same
JP2023136376A (en) Polyimide precursor and polyimide

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20181022

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200901

R150 Certificate of patent or registration of utility model

Ref document number: 6758048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250