JP2016141104A - 液体吐出装置、ヘッドユニット、容量性負荷駆動回路および容量性負荷駆動回路の制御方法 - Google Patents

液体吐出装置、ヘッドユニット、容量性負荷駆動回路および容量性負荷駆動回路の制御方法 Download PDF

Info

Publication number
JP2016141104A
JP2016141104A JP2015020481A JP2015020481A JP2016141104A JP 2016141104 A JP2016141104 A JP 2016141104A JP 2015020481 A JP2015020481 A JP 2015020481A JP 2015020481 A JP2015020481 A JP 2015020481A JP 2016141104 A JP2016141104 A JP 2016141104A
Authority
JP
Japan
Prior art keywords
transistor
signal
gate driver
unit
drive signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015020481A
Other languages
English (en)
Inventor
賢史 佐野
Masashi Sano
賢史 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015020481A priority Critical patent/JP2016141104A/ja
Priority to US15/003,165 priority patent/US9475284B2/en
Publication of JP2016141104A publication Critical patent/JP2016141104A/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04541Specific driving circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/0455Details of switching sections of circuit, e.g. transistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04581Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04588Control methods or devices therefor, e.g. driver circuits, control circuits using a specific waveform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04593Dot-size modulation by changing the size of the drop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04596Non-ejecting pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Ink Jet (AREA)
  • Amplifiers (AREA)

Abstract

【課題】信頼性の高い液体吐出装置、ヘッドユニット、容量性負荷駆動回路および容量性負荷駆動回路の制御方法を提供すること。
【解決手段】変調部510と、第1ゲートドライバー521と、第2ゲートドライバー522と、第1トランジスターM1と、第1トランジスターM1に接続される第2トランジスターM2と、第1トランジスターM1と第2トランジスターM2とを接続する接続ノードと、第1ゲートドライバー521に接続した容量素子C5と、第2ゲートドライバー522の高電位側と容量素子C5との間に設けられる整流素子D10と、電源回路540と、を含む増幅部520と、増幅部520の動作を制御する動作制御部580と、ローパスフィルターと、圧電素子と、キャビティと、ノズルと、を備え、動作制御部580は、第1トランジスターM1を非導通状態とし、第2トランジスターM2を導通状態として増幅部520の動作を停止させる停止処理を行う。
【選択図】図10

Description

本発明は、液体吐出装置、ヘッドユニット、容量性負荷駆動回路および容量性負荷駆動回路の制御方法に関する。
インクを吐出して画像や文書を印刷するインクジェットプリンターなどの液体吐出装置には、圧電素子(例えばピエゾ素子)を用いたものが知られている。圧電素子は、ヘッドユニットにおいて複数のノズルのそれぞれに対応して設けられ、それぞれが駆動信号にしたがって駆動されることにより、ノズルから所定のタイミングで所定量のインク(液体)が吐出されて、ドットが形成される。圧電素子は、電気的にみればコンデンサーのような容量性負荷であるので、各ノズルの圧電素子を動作させるためには十分な電流を供給する必要がある。
このため、上述の液体吐出装置においては、増幅回路で増幅した駆動信号をヘッドユニット(インクジェットヘッド)に供給して、圧電素子を駆動する構成となっている。増幅回路としては、増幅前の源信号をAB級などで電流増幅する方式が挙げられるが、エネルギー効率が悪いので、近年では、D級アンプについて提案されている(特許文献1および特許文献2参照)。
特開2010−114711号公報 特開2005−329710号公報
ここで、特許文献2の発明はダイオードD0およびコンデンサーC0によって構成されるブートストラップ回路を含んでいる。そして、D級増幅路では電力増幅後に元のアナログ駆動信号に戻すためのローパスフィルタ(LPF)を設けてアナログ駆動信号を復調する。LPFは、例えばコイルとコンデンサーにより構成され、容量性負荷によって構成されたアクチュエーターを駆動する。そのため、ゲートドライバーの動作開始前におけるLPFの信号入力部の電位は、ゲートドライバーに供給される高電位と同じである。つまり、抵抗性負荷を駆動する場合のように、ゲートドライバーの動作開始前に接地電位となっているわけではない。
すると、ゲートドライバーが動作を開始すると、接地された側(以下、ローサイド)のトランジスター(特許文献2では例えば図2のトランジスターQ25が対応)に急激に電流が流れる。そして、LPFの入力部の電位が接地電位になると、ブートストラップ回路のコンデンサーC0をチャージするために、ダイオードD0に急激な電流が流れる。このとき、定格以上の電流が流れると、ローサイドのトランジスターQ25およびダイオードD0が劣化するおそれがある。
本発明は、以上のような技術的課題に鑑みてなされたものである。本発明のいくつかの態様によれば、動作開始時に回路素子に過電流が流れることを防止し、信頼性の高い、液体吐出装置、ヘッドユニット、容量性負荷駆動回路および容量性負荷駆動回路の制御方法を提供することができる。
本発明は前述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することが可能である。
[適用例1]
本適用例に係る液体吐出装置は、
源信号をパルス変調した変調信号を生成する変調部と、
前記変調信号に基づいて第1増幅制御信号を生成する第1ゲートドライバーと、前記変調信号に基づいて第2増幅制御信号を生成する第2ゲートドライバーと、前記第1増幅制御信号に基づいて動作する第1トランジスターと、前記第1トランジスターの低電位側に直列に接続され、前記第2増幅制御信号に基づいて動作する第2トランジスターと、前記第1トランジスターと前記第2トランジスターとを電気的に接続する接続ノードと、前記第1ゲートドライバーの高電位側とに電気的に接続した容量素子と、前記第2ゲートドライバーの高電位側と前記容量素子との間に設けられる整流素子と、前記第2ゲートドライバーに電源供給するとともに、前記整流素子を介して前記容量素子に電源供給する電源回路と、を含む増幅部と、
前記増幅部の動作を制御する動作制御部と、
前記第1トランジスターと前記第2トランジスターとの動作に基づいて生成された増幅変調信号を復調して駆動信号を生成するローパスフィルターと、
前記駆動信号が印加されることで変位する圧電素子と、
内部に液体が充填され、前記圧電素子の変位により、内部容積が変化するキャビティと、
前記キャビティに連通し、前記キャビティの内部容積の変化に応じて前記キャビティ内の前記液体を液滴として吐出するノズルと、
を備え、
前記動作制御部は、
前記第1トランジスターを電流が流れない状態である非導通状態とし、前記第2トランジスターを電流が流れる状態である導通状態として前記増幅部の動作を停止させる停止処理を行う、液体吐出装置である。
本適用例によれば、第1トランジスターを非導通状態とし、第2トランジスターを導通状態とすることで、容量素子の一端が低電位となるので、停止処理時に整流素子を介して容量素子を充電することができる。したがって、動作開始時に回路素子(整流素子および第2トランジスター)に過電流が流れることを防止できるので、信頼性の高い液体吐出装置を実現できる。
[適用例2]
上述の液体吐出装置において、
前記動作制御部は、
前記駆動信号の電圧を低下させる低下処理を行った後に前記停止処理を行ってもよい。
本適用例によれば、第2トランジスターを導通状態とした場合に、第2トランジスターとローパスフィルターと接地ラインとを介して共振ループが形成されてしまった場合にも、共振振幅を小さくできる。したがって、第2トランジスターに過電流が流れることを防止できるので、信頼性の高い液体吐出装置を実現できる。
[適用例3]
上述の液体吐出装置において、
前記動作制御部は、
前記低下処理において、前記駆動信号の電圧を、前記源信号の入力範囲に対応する前記駆動信号の出力範囲の最低値にする制御を行ってもよい。
本適用例によれば、低下処理においても、源信号に基づいて駆動信号を生成し続けるので、第2トランジスターの抵抗成分と、ローパスフィルターと、接地ラインとを介して発振ループが形成される可能性を低減できる。したがって、第2トランジスターに過電流が流れることを防止できるので、信頼性の高い液体吐出装置1を実現できる。
[適用例4]
上述の液体吐出装置において、
前記源信号を生成する源信号生成部と、
前記駆動信号に基づいて帰還信号を生成し、前記帰還信号を前記変調部に帰還する帰還回路と、
をさらに備え、
前記動作制御部は、
前記低下処理において前記源信号生成部の出力を最低値または最大値に制御することで前記駆動信号を制御してもよい。
本適用例によれば、低下処理においても、源信号に基づいて駆動信号を生成し続けるので、第2トランジスターの抵抗成分と、ローパスフィルターと、接地ラインとを介して発振ループが形成される可能性を低減できる。したがって、第2トランジスターに過電流が流れることを防止できるので、信頼性の高い液体吐出装置1を実現できる。
[適用例5]
上述の液体吐出装置において、
前記動作制御部は、
前記駆動信号の電圧が一定の場合に、前記第1トランジスターおよび前記第2トランジスターを電流が流れない状態である非導通状態として前記増幅部の動作を休止させる休止処理を行ってもよい。
圧電素子は電圧を保持する性質を有するので、本適用例によれば、駆動信号の電圧が一定の場合に休止処理を行うことで、増幅部およびローパスフィルターでの電力消費を低減することができる。
[適用例6]
上述の液体吐出装置であって、
前記変調信号の発振周波数は、1MHz以上8MHz以下であってもよい。
上述の液体吐出装置では、増幅変調信号を平滑化して駆動信号を生成し、駆動信号が印加されることによって圧電素子が変位して、ノズルから液体を吐出させる。ここで、液体吐出装置が例えば小ドットを吐出するための駆動信号の波形を周波数スペクトル解析すると、50kHz以上の周波数成分が含まれていることが判っている。このような50kHz以上の周波数成分を含む駆動信号を生成するためには、変調信号の周波数(自励発振の周波数)を1MHz以上とする必要がある。
もし、当該周波数を1MHzよりも低くしてしまうと、再現される駆動信号の波形のエッジが鈍って丸くなってしまう。換言すれば、角が取れて波形が鈍ってしまう。駆動信号の波形が鈍ると、波形の立ち上がり、立ち下がりエッジに応じて動作する圧電素子の変位が緩慢になり、吐出時の尾引きや、吐出不良などを発生させて、印刷の品質を低下させてしまう。
一方、自励発振の周波数を8MHzよりも高くすれば、駆動信号の波形の分解能は高まる。ただし、トランジスターにおけるスイッチング周波数が上昇することによって、スイッチング損失が大きくなり、AB級アンプなどのリニア増幅と比べて、優位性を有する省電力性、省発熱性が損なわれてしまう。
このため、上述の液体吐出装置において、変調信号の周波数は、1MHz以上8MHz以下であることが好ましい。
[適用例7]
本適用例に係るヘッドユニットは、
源信号をパルス変調した変調信号を生成する変調部と、
前記変調信号に基づいて第1増幅制御信号を生成する第1ゲートドライバーと、前記変調信号に基づいて第2増幅制御信号を生成する第2ゲートドライバーと、前記第1増幅制御信号に基づいて動作する第1トランジスターと、前記第1トランジスターの低電位側に直列に接続され、前記第2増幅制御信号に基づいて動作する第2トランジスターと、前記第1トランジスターと前記第2トランジスターとを電気的に接続する接続ノードと、前記第1ゲートドライバーの高電位側とに電気的に接続した容量素子と、前記第2ゲートドライバーの高電位側と前記容量素子との間に設けられる整流素子と、前記第2ゲートドライバーに電源供給するとともに、前記整流素子を介して前記容量素子に電源供給する電源回路と、を含む増幅部と、
前記増幅部の動作を制御する動作制御部と、
前記第1トランジスターと前記第2トランジスターとの動作に基づいて生成された増幅変調信号を復調して駆動信号を生成するローパスフィルターと、
前記駆動信号が印加されることで変位する圧電素子と、
内部に液体が充填され、前記圧電素子の変位により、内部容積が変化するキャビティと、
前記キャビティに連通し、前記キャビティの内部容積の変化に応じて前記キャビティ内の前記液体を液滴として吐出するノズルと、
を備え、
前記動作制御部は、
前記第1トランジスターを電流が流れない状態である非導通状態とし、前記第2トランジスターを電流が流れる状態である導通状態として前記増幅部の動作を停止させる停止処理を行う、ヘッドユニットである。
本適用例によれば、第1トランジスターを非導通状態とし、第2トランジスターを導通状態とすることで、容量素子の一端が低電位となるので、停止処理時に整流素子を介して容量素子を充電することができる。したがって、動作開始時に回路素子(整流素子および第2トランジスター)に過電流が流れることを防止できるので、信頼性の高いヘッドユニットを実現できる。
[適用例8]
本適用例に係る容量性負荷駆動回路は、
源信号をパルス変調した変調信号を生成する変調部と、
前記変調信号に基づいて第1増幅制御信号を生成する第1ゲートドライバーと、前記変調信号に基づいて第2増幅制御信号を生成する第2ゲートドライバーと、前記第1増幅制御信号に基づいて動作する第1トランジスターと、前記第1トランジスターの低電位側に直列に接続され、前記第2増幅制御信号に基づいて動作する第2トランジスターと、前記第1トランジスターと前記第2トランジスターとを電気的に接続する接続ノードと、前記第1ゲートドライバーの高電位側とに電気的に接続した容量素子と、前記第2ゲートドラ
イバーの高電位側と前記容量素子との間に設けられる整流素子と、前記第2ゲートドライバーに電源供給するとともに、前記整流素子を介して前記容量素子に電源供給する電源回路と、を含む増幅部と、
前記増幅部の動作を制御する動作制御部と、
前記第1トランジスターと前記第2トランジスターとの動作に基づいて生成された増幅変調信号を復調して駆動信号を生成して容量性負荷に出力するローパスフィルターと、
を備え、
前記動作制御部は、
前記第1トランジスターを電流が流れない状態である非導通状態とし、前記第2トランジスターを電流が流れる状態である導通状態として前記増幅部の動作を停止させる停止処理を行う、容量性負荷駆動回路である。
本適用例によれば、第1トランジスターを非導通状態とし、第2トランジスターを導通状態とすることで、容量素子の一端が低電位となるので、停止処理時に整流素子を介して容量素子を充電することができる。したがって、動作開始時に回路素子(整流素子および第2トランジスター)に過電流が流れることを防止できるので、信頼性の高い容量性負荷駆動回路を実現できる。
[適用例9]
本適用例に係る容量性負荷駆動回路の制御方法は、
源信号をパルス変調した変調信号を生成する変調部と、
前記変調信号に基づいて第1増幅制御信号を生成する第1ゲートドライバーと、前記変調信号に基づいて第2増幅制御信号を生成する第2ゲートドライバーと、前記第1増幅制御信号に基づいて動作する第1トランジスターと、前記第1トランジスターの低電位側に直列に接続され、前記第2増幅制御信号に基づいて動作する第2トランジスターと、前記第1トランジスターと前記第2トランジスターとを電気的に接続する接続ノードと、前記第1ゲートドライバーの高電位側とに電気的に接続した容量素子と、前記第2ゲートドライバーの高電位側と前記容量素子との間に設けられる整流素子と、前記第2ゲートドライバーに電源供給するとともに、前記整流素子を介して前記容量素子に電源供給する電源回路と、を含む増幅部と、
前記第1トランジスターと前記第2トランジスターとの動作に基づいて生成された増幅変調信号を復調して駆動信号を生成して容量性負荷に出力するローパスフィルターと、
を備える容量性負荷駆動回路の制御方法であって、
前記駆動信号の電圧を低下させる低下処理を行う工程と、
前記第1トランジスターを電流が流れない状態である非導通状態とし、前記第2トランジスターを電流が流れる状態である導通状態として前記増幅部の動作を停止させる停止処理を行う工程と、
を含む、容量性負荷駆動回路の制御方法である。
本適用例によれば、第1トランジスターを非導通状態とし、第2トランジスターを導通状態とすることで、容量素子の一端が低電位となるので、停止処理時に整流素子を介して容量素子を充電することができる。したがって、動作開始時に回路素子(整流素子および第2トランジスター)に過電流が流れることを防止できるので、信頼性の高い容量性負荷駆動回路の制御方法を実現できる。
液体吐出装置の概略構成を示す図である。 液体吐出装置の構成を示すブロック図である。 ヘッドユニットにおける吐出部の構成を示す図である。 ヘッドユニットにおけるノズル配列を示す図である。 ヘッドユニットにおける選択制御部の動作を説明するための図である。 ヘッドユニットにおける選択制御部の構成を示す図である。 ヘッドユニットにおけるデコーダーのデコード内容を示す図である。 ヘッドユニットにおける選択部の構成を示す図である。 選択部により選択される駆動信号を示す図である。 駆動回路(容量性負荷駆動回路)の回路構成を示す図である。 駆動回路の動作を説明するための図である。 動作制御部の動作を説明するためのタイミングチャートである。 本実施形態に係る容量性負荷駆動回路の制御方法を示すフローチャートである。
以下、本発明の好適な実施形態について図面を用いて詳細に説明する。用いる図面は説明の便宜上のものである。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
1.液体吐出装置の概要
本実施形態に係る液体吐出装置の一例としての印刷装置は、外部のホストコンピューターから供給された画像データに応じてインクを吐出させることによって、紙などの印刷媒体にインクドット群を形成し、これにより、当該画像データに応じた画像(文字、図形等を含む)を印刷するインクジェットプリンターである。
なお、液体吐出装置としては、例えば、プリンター等の印刷装置、液晶ディスプレイ等のカラーフィルターの製造に用いられる色材吐出装置、有機ELディスプレイ、FED(面発光ディスプレイ)等の電極形成に用いられる電極材料吐出装置、バイオチップ製造に用いられる生体有機物吐出装置等を挙げることができる。
図1は、液体吐出装置1の内部の概略構成を示す斜視図である。図1に示されるように、液体吐出装置1は、移動体2を、主走査方向に移動(往復動)させる移動機構3を備える。
移動機構3は、移動体2の駆動源となるキャリッジモーター31と、両端が固定されたキャリッジガイド軸32と、キャリッジガイド軸32とほぼ平行に延在し、キャリッジモーター31により駆動されるタイミングベルト33と、を有している。
移動体2のキャリッジ24は、キャリッジガイド軸32に往復動自在に支持されるとともに、タイミングベルト33の一部に固定されている。そのため、キャリッジモーター31によりタイミングベルト33を正逆走行させると、移動体2がキャリッジガイド軸32に案内されて往復動する。
また、移動体2のうち、印刷媒体Pと対向する部分にはヘッドユニット20が設けられる。このヘッドユニット20は、後述するように、多数のノズルからインク滴(液滴)を吐出させるためのものであり、フレキシブルケーブル190を介して各種の制御信号等が供給される構成となっている。
液体吐出装置1は、印刷媒体Pを、副走査方向にプラテン40上で搬送させる搬送機構4を備える。搬送機構4は、駆動源である搬送モーター41と、搬送モーター41により回転して、印刷媒体Pを副走査方向に搬送する搬送ローラー42と、を備える。
印刷媒体Pが搬送機構4によって搬送されたタイミングで、ヘッドユニット20が当該印刷媒体Pにインク滴を吐出することによって、印刷媒体Pの表面に画像が形成される。
図2は、液体吐出装置1の電気的な構成を示すブロック図である。
この図に示されるように、液体吐出装置1では、制御ユニット10とヘッドユニット20とがフレキシブルケーブル190を介して接続される。
制御ユニット10は、制御部100と、キャリッジモーター31と、キャリッジモータードライバー35と、搬送モーター41と、搬送モータードライバー45と、駆動回路50−a、駆動回路50−bと、を有する。このうち、制御部100は、ホストコンピューターから画像データが供給されたときに、各部を制御するための各種の制御信号等を出力する。
詳細には、第1に、制御部100は、キャリッジモータードライバー35に対して制御信号Ctr1を供給し、キャリッジモータードライバー35は、当該制御信号Ctr1にしたがってキャリッジモーター31を駆動する。これにより、キャリッジ24における主走査方向の移動が制御される。
第2に、制御部100は、搬送モータードライバー45に対して制御信号Ctr2を供給し、搬送モータードライバー45は、当該制御信号Ctr2にしたがって搬送モーター41を駆動する。これにより、搬送機構4による副走査方向の移動が制御される。
第3に、制御部100は、2つの駆動回路50−a、50−bのうち、一方の駆動回路50−aにデジタルのデータdAを供給し、他方の駆動回路50−bにデジタルのデータdBを供給する。ここで、データdAは、ヘッドユニット20に供給する駆動信号のうち、駆動信号COM−Aの波形を規定し、データdBは、駆動信号COM−Bの波形を規定する。
第4に、制御部100は、2つの駆動回路50−a、50−bに、動作ささせるか否かを指示するイネーブル信号ENを出力する。
なお、詳細については後述するが、駆動回路50−aは、データdAをアナログ変換した後に、D級増幅した駆動信号COM−Aをヘッドユニット20に供給する。同様に、駆動回路50−bは、データdBをアナログ変換した後に、D級増幅した駆動信号COM−Bをヘッドユニット20に供給する。また、駆動回路50−a、50−bについては、入力するデータ、および、出力する駆動信号が異なるのみであり、後述するように回路的な構成は同一である。このため、駆動回路50−a、50−bについて特に区別する必要がない場合(例えば後述する図10を説明する場合)には、「−(ハイフン)」以下を省略し、単に符号を「50」として説明する。
第5に、制御部100は、ヘッドユニット20に、クロック信号Sck、データ信号Data、制御信号LAT、CHを供給する。
ヘッドユニット20には、選択制御部210と、選択部230および圧電素子(ピエゾ素子)60の複数組とが設けられる。なお、後述されるように、ヘッドユニット20が駆動回路50−a、50−bを備えていてもよい。
選択制御部210は、選択部230のそれぞれに対して駆動信号COM−A、COM−Bのいずれかを選択すべきか(または、いずれも非選択とすべきか)を、制御部100か
ら供給される制御信号等によって指示し、選択部230は、トランジスターを含んで構成され、圧電素子60へ駆動信号を印加するか否かを選択する。選択部230は、選択制御部210の指示にしたがって、駆動信号COM−A、COM−Bを選択し、圧電素子60の一端にそれぞれに駆動信号として供給する。なお、図2では、この駆動信号の電圧をVoutと表記している。圧電素子60のそれぞれにおける他端は、電圧VBSが共通に印加されている。
圧電素子60は、駆動信号が印加されることで変位する。圧電素子60は、ヘッドユニット20における複数のノズルのそれぞれに対応して設けられる。そして、圧電素子60は、選択部230により選択された駆動信号の電圧Voutと電圧VBSとの差に応じて変位してインクを吐出させる。そこで次に、圧電素子60への駆動によってインクを吐出させるための構成について簡単に説明する。
図3は、ヘッドユニット20において、ノズル1個分に対応した概略構成を示す図である。
図3に示されるように、ヘッドユニット20は、圧電素子60と振動板621とキャビティ(圧力室)631とリザーバー641とノズル651とを含む。このうち、振動板621は、図において上面に設けられた圧電素子60によって変位(屈曲振動)し、インクが充填されるキャビティ631の内部容積を拡大/縮小させるダイヤフラムとして機能する。ノズル651は、ノズルプレート632に設けられるとともに、キャビティ631に連通する開孔部である。キャビティ631は、内部に液体(例えば、インク)が充填され、圧電素子60の変位により、内部容積が変化する。ノズル651は、キャビティ631に連通し、キャビティ631の内部容積の変化に応じてキャビティ631内の液体を液滴として吐出する。
図3で示される圧電素子60は、圧電体601を一対の電極611、612で挟んだ構造である。この構造の圧電体601にあっては、電極611、612により印加された電圧に応じて、電極611、612、振動板621とともに図3において中央部分が両端部分に対して上下方向に撓む。具体的には、圧電素子60は、駆動信号の電圧Voutが高くなると、上方向に撓む一方、電圧Voutが低くなると、下方向に撓む構成となっている。この構成において、上方向に撓めば、キャビティ631の内部容積が拡大するので、インクがリザーバー641から引き込まれる一方、下方向に撓めば、キャビティ631の内部容積が縮小するので、縮小の程度によっては、インクがノズル651から吐出される。
なお、圧電素子60は、図示した構造に限られず、圧電素子60を変形させてインクのような液体を吐出させることができる型であればよい。また、圧電素子60は、屈曲振動に限られず、いわゆる縦振動を用いる構成でもよい。
また、圧電素子60は、ヘッドユニット20においてキャビティ631とノズル651とに対応して設けられ、当該圧電素子60は、図1において、選択部230にも対応して設けられる。このため、圧電素子60、キャビティ631、ノズル651および選択部230のセットは、ノズル651毎に設けられることになる。
図4(a)は、ノズル651の配列の一例を示す図である。
図4(a)に示されるように、ノズル651は、例えば2列で次のように配列している。詳細には、1列分でみたとき、複数個のノズル651が副走査方向に沿ってピッチPvで配置する一方、2列同士では、主走査方向にピッチPhだけ離間して、かつ、副走査方
向にピッチPvの半分だけシフトした関係となっている。
なお、ノズル651は、カラー印刷する場合には、C(シアン)、M(マゼンタ)、Y(イエロー)、K(ブラック)などの各色に対応したパターンが例えば主走査方向に沿って設けられるが、以下の説明では、簡略化するために、単色で階調を表現する場合について説明する。
図4(b)は、図4(a)に示したノズル配列による画像形成の基本解像度を説明するための図である。なお、この図は、説明を簡易化するために、ノズル651からインク滴を1回吐出させて、1つのドットを形成する方法(第1方法)の例であり、黒塗りの丸印がインク滴の着弾により形成されるドットを示している。
ヘッドユニット20が、主走査方向に速度vで移動するとき、同図に示されるように、インク滴の着弾によって形成されるドットの(主走査方向の)間隔Dと、当該速度vとは、次のような関係にある。
すなわち、1回のインク滴の吐出で1ドットが形成される場合、ドット間隔Dは、速度vを、インクの吐出周波数fで除した値(=v/f)、換言すれば、インク滴が繰り返し吐出される周期(1/f)においてヘッドユニット20が移動する距離で示される。
なお、図4(a)および図4(b)の例では、ピッチPhがドット間隔Dに対して係数nで比例する関係にして、2列のノズル651から吐出されるインク滴が、印刷媒体Pにおいて同一列で揃うように着弾させている。このため、図4(b)に示されるように、副走査方向のドット間隔が、主走査方向のドット間隔の半分となっている。ドットの配列は、図示の例に限られないことは言うまでもない。
ところで、高速印刷を実現するためには、単純には、ヘッドユニット20が主走査方向に移動する速度vを高めればよい。ただし、単に速度vを高めるだけでは、ドットの間隔Dが長くなってしまう。このため、ある程度の解像度を確保した上で、高速印刷を実現するためには、インクの吐出周波数fを高めて、単位時間当たりに形成されるドット数を増やす必要がある。
また、印刷速度とは別に、解像度を高めるためには、単位面積当たりで形成されるドット数を増やせばよい。ただし、ドット数を増やす場合に、インクを少量にしないと、隣り合うドット同士が結合してしまうだけでなく、インクの吐出周波数fを高めないと、印刷速度が低下する。
このように、高速印刷および高解像度印刷を実現するためには、インクの吐出周波数fを高める必要があるのは、上述した通りである。
一方、印刷媒体Pにドットを形成する方法としては、インク滴を1回吐出させて、1つのドットを形成する方法のほかに、単位期間にインク滴を2回以上吐出可能として、単位期間において吐出された1以上のインク滴を着弾させ、当該着弾した1以上のインク滴を結合させることで、1つのドットを形成する方法(第2方法)や、これら2以上のインク滴を結合させることなく、2以上のドットを形成する方法(第3方法)がある。以降の説明では、ドットを上記第2方法によって形成する場合について説明する。
本実施形態では、第2方法について、次のような例を想定して説明する。すなわち、本実施形態において、1つのドットについては、インクを最多で2回吐出させることで、大ドット、中ドット、小ドットおよび非記録の4階調を表現させる。この4階調を表現する
ために、本実施形態では、2種類の駆動信号COM−A、COM−Bを用意して、それぞれにおいて、1周期に前半パターンと後半パターンとを持たせている。1周期のうち、前半・後半において駆動信号COM−A、COM−Bを、表現すべき階調に応じた選択して(または選択しないで)、圧電素子60に供給する構成となっている。
そこで、駆動信号COM−A、COM−Bについて説明し、この後、駆動信号COM−A、COM−Bを選択するための構成について説明する。なお、駆動信号COM−A、COM−Bについては、それぞれ駆動回路50によって生成されるが、駆動回路50については、便宜的に、駆動信号COM−A、COM−Bを選択するための構成の後に説明する。
図5は、駆動信号COM−A、COM−Bの波形等を示す図である。
図5に示されるように、駆動信号COM−Aは、周期Taのうち、制御信号LATが出力されて(立ち上がって)から制御信号CHが出力されるまでの期間T1に配置された台形波形Adp1と、周期Taのうち、制御信号CHが出力されてから次の制御信号LATが出力されるまでの期間T2に配置された台形波形Adp2とを連続させた波形となっている。
本実施形態において台形波形Adp1、Adp2とは、互いにほぼ同一の波形であり、仮にそれぞれが圧電素子60の一端に供給されたとしたならば、当該圧電素子60に対応するノズル651から所定量、具体的には中程度の量のインクをそれぞれ吐出させる波形である。
駆動信号COM−Bは、期間T1に配置された台形波形Bdp1と、期間T2に配置された台形波形Bdp2とを連続させた波形となっている。本実施形態において台形波形Bdp1、Bdp2とは、互いに異なる波形である。このうち、台形波形Bdp1は、ノズル651の開孔部付近のインクを微振動させてインクの粘度の増大を防止するための波である。このため、仮に台形波形Bdp1が圧電素子60の一端に供給されたとしても、当該圧電素子60に対応するノズル651からインク滴が吐出されない。また、台形波形Bdp2は、台形波形Adp1(Adp2)とは異なる波形となっている。仮に台形波形Bdp2が圧電素子60の一端に供給されたとしたならば、当該圧電素子60に対応するノズル651から上記所定量よりも少ない量のインクを吐出させる波形である。
なお、台形波形Adp1、Adp2、Bdp1、Bdp2の開始タイミングでの電圧と、終了タイミングでの電圧とは、いずれも電圧Vcで共通である。すなわち、台形波形Adp1、Adp2、Bdp1、Bdp2は、それぞれ電圧Vcで開始し、電圧Vcで終了する波形となっている。
図6は、図2における選択制御部210の構成を示す図である。
図6に示されるように、選択制御部210には、クロック信号Sck、データ信号Data、制御信号LAT、CHが制御ユニット10から供給される。選択制御部210では、シフトレジスタ(S/R)212とラッチ回路214とデコーダー216との組が、圧電素子60(ノズル651)のそれぞれに対応して設けられている。
データ信号Dataは、画像の1ドットを形成するにあたって、当該ドットのサイズを規定する。本実施形態では、非記録、小ドット、中ドットおよび大ドットの4階調を表現するために、データ信号Dataは、上位ビット(MSB)および下位ビット(LSB)の2ビットで構成される。
データ信号Dataは、クロック信号Sckに同期してノズルごとに、ヘッドユニット20の主走査に合わせて制御部100からシリアルで供給される。シリアルで供給されたデータ信号Dataを、ノズルに対応して2ビット分、一旦保持するための構成がシフトレジスタ212である。
詳細には、圧電素子60(ノズル)に対応した段数のシフトレジスタ212が互いに縦続接続されるとともに、シリアルで供給されたデータ信号Dataが、クロック信号Sckにしたがって順次後段に転送される構成となっている。
なお、圧電素子60の個数をm(mは複数)としたときに、シフトレジスタ212を区別するために、データ信号Dataが供給される上流側から順番に1段、2段、…、m段と表記している。
ラッチ回路214は、シフトレジスタ212で保持されたデータ信号Dataを制御信号LATの立ち上がりでラッチする。
デコーダー216は、ラッチ回路214によってラッチされた2ビットのデータ信号Dataをデコードして、制御信号LATと制御信号CHとで規定される期間T1、T2ごとに、選択信号Sa、Sbを出力して、選択部230での選択を規定する。
図7は、デコーダー216におけるデコード内容を示す図である。
図7において、ラッチされた2ビットのデータ信号Dataについては(MSB、LSB)と表記している。デコーダー216は、例えばラッチされたデータ信号Dataが(0,1)であれば、選択信号Sa、Sbの論理レベルを、期間T1ではそれぞれH、Lレベルとし、期間T2ではそれぞれL、Hレベルとして、出力するということを意味している。
なお、選択信号Sa、Sbの論理レベルについては、クロック信号Sck、データ信号Data、制御信号LAT、CHの論理レベルよりも、レベルシフター(図示省略)によって、高振幅論理にレベルシフトされる。
図8は、図2における圧電素子60(ノズル651)の1個分に対応する選択部230の構成を示す図である。
図8に示されるように、選択部230は、インバーター(NOT回路)232a、232bと、トランスファーゲート234a、234bとを有する。
デコーダー216からの選択信号Saは、トランスファーゲート234aにおいて丸印が付されていない正制御端に供給される一方で、インバーター232aによって論理反転されて、トランスファーゲート234aにおいて丸印が付された負制御端に供給される。同様に、選択信号Sbは、トランスファーゲート234bの正制御端に供給される一方で、インバーター232bによって論理反転されて、トランスファーゲート234bの負制御端に供給される。
トランスファーゲート234aの入力端には、駆動信号COM−Aが供給され、トランスファーゲート234bの入力端には、駆動信号COM−Bが供給される。トランスファーゲート234a、234bの出力端同士は、共通接続されるとともに、対応する圧電素子60の一端に接続される。
トランスファーゲート234aは、選択信号SaがHレベルであれば、入力端および出力端の間を導通(オン)させ、選択信号SaがLレベルであれば、入力端と出力端との間を非導通(オフ)させる。トランスファーゲート234bについても同様に選択信号Sbに応じて、入力端および出力端の間をオンオフさせる。
次に、選択制御部210と選択部230との動作について図5を参照して説明する。
データ信号Dataが、制御部100からノズル毎に、クロック信号Sckに同期してシリアルで供給されて、ノズルに対応するシフトレジスタ212において順次転送される。そして、制御部100がクロック信号Sckの供給を停止させると、シフトレジスタ212のそれぞれには、ノズルに対応したデータ信号Dataが保持された状態になる。なお、データ信号Dataは、シフトレジスタ222における最終m段、…、2段、1段のノズルに対応した順番で供給される。
ここで、制御信号LATが立ち上がると、ラッチ回路214のそれぞれは、シフトレジスタ212に保持されたデータ信号Dataを一斉にラッチする。図5において、L1、L2、…、Lmは、データ信号Dataが、1段、2段、…、m段のシフトレジスタ212に対応するラッチ回路214によってラッチされたデータ信号Dataを示している。
デコーダー216は、ラッチされたデータ信号Dataで規定されるドットのサイズに応じて、期間T1、T2のそれぞれにおいて、選択信号Sa、Saの論理レベルを図7に示されるような内容で出力する。
すなわち、第1に、デコーダー216は、当該データ信号Dataが(1,1)であって、大ドットのサイズを規定する場合、選択信号Sa、Sbを、期間T1においてH、Lレベルとし、期間T2においてもH、Lレベルとする。第2に、デコーダー216は、当該データ信号Dataが(0,1)であって、中ドットのサイズを規定する場合、選択信号Sa、Sbを、期間T1においてH、Lレベルとし、期間T2においてL、Hレベルとする。第3に、デコーダー216は、当該データ信号Dataが(1,0)であって、小ドットのサイズを規定する場合、選択信号Sa、Sbを、期間T1においてL、Lレベルとし、期間T2においてL、Hレベルとする。第4に、デコーダー216は、当該データ信号Dataが(0,0)であって、非記録を規定する場合、選択信号Sa、Sbを、期間T1においてL、Hレベルとし、期間T2においてL、Lレベルとする。
図9は、データ信号Dataに応じて選択されて、圧電素子60の一端に供給される駆動信号の電圧波形を示す図である。
データ信号Dataが(1,1)であるとき、選択信号Sa、Sbは、期間T1においてH、Lレベルとなるので、トランスファーゲート234aがオンし、トランスファーゲート234bがオフする。このため、期間T1において駆動信号COM−Aの台形波形Adp1が選択される。選択信号Sa、Sbは期間T2においてもH、Lレベルとなるので、選択部230は、駆動信号COM−Aの台形波形Adp2を選択する。
このように期間T1において台形波形Adp1が選択され、期間T2において台形波形Adp2が選択されて、駆動信号として圧電素子60の一端に供給されると、当該圧電素子60に対応したノズル651から、中程度の量のインクが2回にわけて吐出される。このため、印刷媒体Pにはそれぞれのインクが着弾し合体して、結果的に、データ信号Dataで規定される通りの大ドットが形成されることになる。
データ信号Dataが(0,1)であるとき、選択信号Sa、Sbは、期間T1においてH、Lレベルとなるので、トランスファーゲート234aがオンし、トランスファーゲート234bはオフする。このため、期間T1において駆動信号COM−Aの台形波形Adp1が選択される。次に、選択信号Sa、Sbは期間T2においてL、Hレベルとなるので、駆動信号COM−Bの台形波形Bdp2が選択される。
したがって、ノズルから、中程度および小程度の量のインクが2回にわけて吐出される。このため、印刷媒体Pには、それぞれのインクが着弾して合体して、結果的に、データ信号Dataで規定された通りの中ドットが形成されることになる。
データ信号Dataが(1,0)であるとき、選択信号Sa、Sbは、期間T1においてともにLレベルとなるので、トランスファーゲート234a、234bがオフする。このため、期間T1において台形波形Adp1、Bdp1のいずれも選択されない。トランスファーゲート234a、234bがともにオフする場合、当該トランスファーゲート234a、234bの出力端同士の接続点から圧電素子60の一端までの経路は、電気的にどの部分にも接続されないハイ・インピーダンス状態になる。ただし、圧電素子60は、自己が有する容量性によって、トランスファーゲート234a、234bがオフする直前の電圧(Vc−VBS)を保持する。
次に、選択信号Sa、Sbは期間T2においてL、Hレベルとなるので、駆動信号COM−Bの台形波形Bdp2が選択される。このため、ノズル651から、期間T2においてのみ小程度の量のインクが吐出されるので、印刷媒体Pには、データ信号Dataで規定された通りの小ドットが形成されることになる。
データ信号Dataが(0,0)であるとき、選択信号Sa、Sbは、期間T1においてL、Hレベルとなるので、トランスファーゲート234aがオフし、トランスファーゲート234bがオンする。このため、期間T1において駆動信号COM−Bの台形波形Bdp1が選択される。次に、選択信号Sa、Sbは期間T2においてともにLレベルとなるので、台形波形Adp2、Bdp2のいずれも選択されない。
このため、期間T1においてノズル651の開孔部付近のインクが微振動するのみであり、インクは吐出されないので、結果的に、ドットが形成されない、すなわち、データ信号Dataで規定された通りの非記録になる。
このように、選択部230は、選択制御部210による指示にしたがって駆動信号COM−A、COM−Bを選択し(または選択しないで)、圧電素子60の一端に供給する。このため、各圧電素子60は、データ信号Dataで規定されるドットのサイズに応じて駆動されることになる。
なお、図5に示した駆動信号COM−A、COM−Bはあくまでも一例である。実際には、ヘッドユニット20の移動速度や印刷媒体Pの性質などに応じて、予め用意された様々な波形の組み合わせが用いられる。
また、ここでは、圧電素子60が、電圧の上昇に伴って上方向に撓む例で説明したが、電極611、612に供給する電圧を逆転させると、圧電素子60は、電圧の上昇に伴って下方向に撓むことになる。このため、圧電素子60が、電圧の上昇に伴って下方向に撓む構成では、図9に例示した駆動信号COM−A、COM−Bが、電圧Vcを基準に反転した波形となる。
このように本実施形態において、印刷媒体Pに対して1ドットは単位期間である周期T
aを単位として形成される。このため、周期Taにおいて(最多で)2回のインク滴の吐出により1ドットを形成する本実施形態では、インクの吐出周波数fは2/Taとなり、ドット間隔Dは、ヘッドユニット20が移動する速度vを、インクの吐出周波数f(=2/Ta)で除した値となる。
一般に、単位期間Tにおいてインク滴がQ(Qは2以上の整数)回吐出可能であって、当該Q回のインク滴の吐出で1ドットが形成される場合、インクの吐出周波数fはQ/Tと表すことができる。
本実施形態のように、印刷媒体Pに異なるサイズのドットを形成する場合の方が、1回のインク滴の吐出で1ドットを形成する場合と比較して、1ドットを形成するために要する時間(周期)が同じでも、1回のインク滴を1回吐出するため時間を短くする必要がある。
なお、2以上のインク滴を結合させないで2以上のドットを形成する第3方法については、特段の説明は要しないであろう。
2.容量性負荷駆動回路の回路構成
続いて、駆動回路50−a、50−bについて説明する。このうち、一方の駆動回路50−aについて概略すると、次のようにして駆動信号COM−Aを生成する。すなわち、駆動回路50−aは、第1に、制御部100から供給されるデータdAをアナログ変換し、第2に、出力の駆動信号COM−Aを帰還するとともに、当該駆動信号COM−Aに基づく信号(減衰信号)と目標信号との偏差を、当該駆動信号COM−Aの高周波成分で補正して、当該補正した信号にしたがって変調信号を生成し、第3に、当該変調信号にしたがってトランジスターをスイッチングすることによって増幅変調信号を生成し、第4に、当該増幅変調信号をローパスフィルターで平滑化(復調)して、当該平滑化した信号を駆動信号COM−Aとして出力する。
他方の駆動回路50−bについても同様な構成であり、データdBから駆動信号COM−Bを出力する点についてのみ異なる。そこで以下の図10においては、駆動回路50−a、50−bについて区別しないで、駆動回路50として説明する。
ただし、入力されるデータや出力される駆動信号については、dA(dB)、COM−A(COM−B)などと表記して、駆動回路50−aの場合には、データdAを入力して駆動信号COM−Aを出力し、駆動回路50−bの場合には、データdBを入力して駆動信号COM−Bを出力する、ということを表すことにする。
図10は、駆動回路50(容量性負荷駆動回路)の回路構成を示す図である。なお、図10では、駆動信号COM−Aを出力するための構成を示しているが、集積回路装置500については、実際には、2系統の駆動信号COM−AおよびCOM−Bの双方を生成するための回路が1個にパッケージ化されている。
図10に示されるように、駆動回路50は、集積回路装置500や、出力回路550のほか、抵抗やコンデンサーなどの各種素子から構成される。
本実施形態における駆動回路50は、源信号を生成するDAC(Digital to Analog Converter)511(源信号生成部)と、源信号をパルス変調した変調信号を生成する変調部510と、増幅部520と、増幅部520の動作を制御する動作制御部580と、第1トランジスターM1(後述)と第2トランジスターM2(後述)との動作に基づいて生成された増幅変調信号を復調して駆動信号を生成するローパスフィルター560と、駆動信
号に基づいて帰還信号を生成し、帰還信号を変調部510に帰還する帰還回路590と、を備えている。
増幅部520は、変調信号に基づいて第1増幅制御信号を生成する第1ゲートドライバー521と、変調信号に基づいて第2増幅制御信号を生成する第2ゲートドライバー522と、第1増幅制御信号に基づいて動作する第1トランジスターM1と、第1トランジスターM1の低電位側に直列に接続され、第2増幅制御信号に基づいて動作する第2トランジスターM2と、第1トランジスターM1と第2トランジスターM2とを電気的に接続する接続ノードと、第1ゲートドライバー521の高電位側とに電気的に接続した容量素子C5と、第2ゲートドライバー522の高電位側と容量素子C5との間に設けられる整流素子D10と、第2ゲートドライバー522に電源供給するとともに、整流素子D10を介して容量素子C5とに電源供給する電源回路540と、を含んで構成されている。
本実施形態における集積回路装置500は、DAC511(源信号生成部)と、変調部510と、動作制御部580と、インバーター515(後述)と、第1ゲートドライバー521と、第2ゲートドライバー522と、電源回路540と、第1電源部530(後述)と、を備えている。
集積回路装置500は、制御部100から端子D0〜D9を介して入力した10ビットのデータdA(源信号)に基づいて、第1トランジスターM1に第1増幅制御信号を出力し、第2トランジスターM2に第2増幅制御信号を出力するものである。このため、集積回路装置500は、DAC511(源信号生成部)と、変調部510と、第1ゲートドライバー521と、第2ゲートドライバー522と、第1電源部530と、電源回路540と、を含む。変調部510は、加算器512と、加算器513と、コンパレーター514と、積分減衰器516と、減衰器517と、を含む。
DAC511(源信号生成部)は、駆動信号COM−Aの波形を規定するデータdAを、アナログ信号Aaに変換し、加算器512の入力端(+)に供給する。なお、このアナログ信号Aaの電圧振幅は、例えば0〜2ボルト程度であり、この電圧を約20倍に増幅したものが、駆動信号COM−Aとなる。つまり、アナログ信号Aaは、駆動信号COM−Aの増幅前の目標となる信号である。
積分減衰器516は、帰還回路590および帰還端子Vfbを介して入力した端子Outの電圧、すなわち、駆動信号COM−Aを減衰するとともに、積分して、加算器512の入力端(−)に供給する。
加算器512は、入力端(+)の電圧から入力端(−)の電圧を差し引いて積分した電圧の信号Abを加算器513の入力端(+)に供給する。
なお、DAC511からインバーター515までに至る回路の電源電圧は、低振幅の3.3ボルト(電圧Vdd)である。このため、アナログ信号Aaの電圧が最大でも2ボルト程度であるのに対し、駆動信号COM−Aの電圧が最大で40ボルトを超える場合があるので、偏差を求めるにあたって両電圧の振幅範囲を合わせるため、駆動信号COM−Aの電圧を積分減衰器516によって減衰させている。
減衰器517は、帰還回路590および帰還端子Ifbを介して入力した駆動信号COM−Aの高周波成分を減衰して、加算器513の入力端(−)に供給する。加算器513は、入力端(+)の電圧から入力端(−)の電圧を減算した電圧の信号Asを、コンパレーター514に供給する。減衰器517による減衰は、積分減衰器516と同様に、駆動信号COM−Aを帰還するにあたって、振幅を合わせるためである。
加算器513から出力される信号Asの電圧は、アナログ信号Aaの電圧から、帰還端子Vfbに供給された信号の減衰電圧を差し引いて、帰還端子Ifbに供給された信号の減衰電圧を減算した電圧である。このため、加算器513による信号Asの電圧は、目標であるアナログ信号Aaの電圧から、端子Outから出力される駆動信号COM−Aの減衰電圧を指し引いた偏差を、当該駆動信号COM−Aの高周波成分で補正した信号ということができる。
コンパレーター514は、加算器513による減算電圧に基づいて、次のようにパルス変調した変調信号Msを出力する。詳細には、コンパレーター514は、加算器513から出力される信号Asが電圧上昇時であれば、電圧閾値Vth1以上になったときにHレベルとなり、信号Asが電圧下降時であれば、電圧閾値Vth2を下回ったときにLレベルとなる変調信号Msを出力する。なお、後述するように、電圧閾値は、
Vth1>Vth2
という関係に設定されている。
コンパレーター514による変調信号Msは、動作制御部580を介して、インバーター515による論理反転を経て、第2ゲートドライバー522に供給される。一方、第1ゲートドライバー521には、動作制御部580を介して、論理反転を経ることなく変調信号Msが供給される。このため、第1ゲートドライバー521と第2ゲートドライバー522に供給される論理レベルは互いに排他的な関係にある。
第1ゲートドライバー521および第2ゲートドライバー522に供給される論理レベルは、実際には、同時にHレベルとはならないように(第1トランジスターM1および第2トランジスターM2が同時にオンしないように)、タイミング制御してもよい。このため、ここでいう排他的とは、厳密にいえば、同時にHレベルになることがない(第1トランジスターM1および第2トランジスターM2が同時にオンすることがない)、という意味である。
ところで、ここでいう変調信号は、狭義には、変調信号Msであるが、アナログ信号Aaに応じてパルス変調したものと考えれば、変調信号Msの否定信号も変調信号に含まれる。すなわち、アナログ信号Aaに応じてパルス変調した変調信号には、変調信号Msのみならず、当該変調信号Msの論理レベルを反転させたものや、タイミング制御されたものが含まれる。
なお、コンパレーター514が変調信号Msを出力するので、当該コンパレーター514にいたるまでの回路、すなわち、加算器512、加算器513と、コンパレーター514と、積分減衰器516と、減衰器517と、が変調信号を生成する変調部510に相当する。
また、図10に示した構成では、デジタルのデータdAをDAC511によってアナログ信号Aaに変換したが、DAC511を介することなく、例えば制御部100による指示にしたがって外部回路からアナログ信号Aaの供給を受けてもよい。デジタルのデータdAにしても、アナログ信号Aaにしても、駆動信号COM−Aの波形を生成するにあたっての目標値を規定しているので、源信号であることには変わりはない。
第1ゲートドライバー521は、コンパレーター514の出力信号である低論理振幅(Lレベル:0ボルト、Hレベル:3.3ボルト)を高論理振幅(例えばLレベル:0ボルト、Hレベル:7.5ボルト)にレベルシフトして、端子Hdrから出力する。第1ゲートドライバー521の電源電圧のうち、高位側は、端子Bstを介して印加される電圧で
あり、低位側は、端子Swを介して印加される電圧である。端子Swは、第1トランジスターM1におけるソース電極、第2トランジスターM2におけるドレイン電極、容量素子C5の他端、および、インダクターL1の一端に接続される。
第2ゲートドライバー522は、第1ゲートドライバー521よりも低電位側で動作する。第2ゲートドライバー522は、インバーター515の出力信号である低論理振幅を高論理振幅にレベルシフトして、端子Ldrから出力する。第2ゲートドライバー522の電源電圧のうち、高位側として、電圧Vm(例えば7.5ボルト)が印加され、低位側として、グラウンド端子Gndを介して電圧ゼロが印加される、すなわちグラウンド端子Gndはグラウンドに接地される。また、端子Gvdは、逆流防止用の整流素子(ダイオード)D10のアノード電極に接続され、当該整流素子D10のカソード電極は、容量素子C5の一端と端子Bstとに接続される。
第1トランジスターM1および第2トランジスターM2は、例えば直列に接続されたNチャンネル型のFET(Field Effect Transistor)である。このうち、ハイサイドの第1トランジスターM1において、ドレイン電極には、電圧Vh(例えば42ボルト)が印加され、ゲート電極が、抵抗R1を介して端子Hdrに接続される。ローサイドの第2トランジスターM2については、ゲート電極が、抵抗R2を介して端子Ldrに接続され、ソース電極が、グラウンドに接地されている。
インダクターL1の他端は、この駆動回路50で出力となる端子Outであり、当該端子Outから駆動信号COM−Aが、ヘッドユニット20に、フレキシブルケーブル190(図1および図2参照)を介して供給される。
端子Outは、コンデンサーC1の一端と、コンデンサーC2の一端と、抵抗R3の一端と、にそれぞれ接続される。このうち、コンデンサーC1の他端は、グラウンドに接地されている。このため、インダクターL1とコンデンサーC1とは、第1トランジスターM1と第2トランジスターM2との接続点に現れる増幅変調信号を平滑化するローパスフィルター(Low Pass Filter)として機能する。
抵抗R3の他端は、帰還端子Vfbおよび抵抗R4の一端に接続され、当該抵抗R4の他端には電圧Vhが印加される。これにより、帰還端子Vfbには、端子Outからの駆動信号COM−Aがプルアップされて帰還されることになる。
一方、コンデンサーC2の他端は、抵抗R5の一端と抵抗R6の一端とに接続される。このうち、抵抗R5の他端はグラウンドに接地される。このため、コンデンサーC2と抵抗R5とは、端子Outからの駆動信号COM−Aのうち、カットオフ周波数以上の高周波成分を通過させるハイパスフィルター(High Pass Filter)として機能する。なお、ハイパスフィルターのカットオフ周波数は、例えば約9MHzに設定される。
また、抵抗R6の他端は、コンデンサーC4の一端とコンデンサーC3の一端とに接続される。このうち、コンデンサーC3の他端はグラウンドに接地される。このため、抵抗R6とコンデンサーC3とは、上記ハイパスフィルターを通過した信号成分のうち、カットオフ周波数以下の低周波成分を通過させるローパスフィルター(Low Pass Filter)として機能する。なお、LPFのカットオフ周波数は、例えば約160MHzに設定される。
上記ハイパスフィルターのカットオフ周波数は、上記ローパスフィルターのカットオフ周波数よりも低く設定されているので、ハイパスフィルターとローパスフィルターとは、駆動信号COM−Aのうち、所定の周波数域の高周波成分を通過させるバンドパスフィル
ター(Band Pass Filter)570として機能する。
コンデンサーC4の他端は、集積回路装置500の帰還端子Ifbに接続される。これにより、帰還端子Ifbには、上記バンドパスフィルター570を通過した駆動信号COM−Aの高周波成分のうち、直流成分がカットされて帰還されることになる。
ところで、端子Outから出力される駆動信号COM−Aは、第1トランジスターM1と第2トランジスターM2との接続点(端子Sw)における増幅変調信号を、インダクターL1およびコンデンサーC1からなるローパスフィルターによって平滑化した信号である。この駆動信号COM−Aは、帰還端子Vfbを介して積分・減算された上で、加算器512に正帰還されるので、帰還の遅延(インダクターL1およびコンデンサーC1の平滑化による遅延と、積分減衰器516による遅延と、の和)と、帰還の伝達関数で定まる周波数で自励発振することになる。
ただし、帰還端子Vfbを介した帰還経路の遅延量が大きいために、当該帰還端子Vfbを介した帰還のみでは、自励発振の周波数を、駆動信号COM−Aの精度を十分に確保できるほど高くすることができない場合がある。
そこで、本実施形態では、帰還端子Vfbを介した経路とは別に、帰還端子Ifbを介して、駆動信号COM−Aの高周波成分を帰還する経路を設けることによって、回路全体でみたときの遅延を小さくしている。すなわち、本実施形態においては、帰還回路590は、駆動信号の高周波帯域の信号を帰還信号として帰還している。このため、信号Abに、駆動信号COM−Aの高周波成分を加算した信号Asの周波数は、帰還端子Ifbを介した経路が存在しない場合と比較して、駆動信号COM−Aの精度を十分に確保できるほど高くなる。
図11は、信号Asと変調信号Msとの波形を、アナログ信号Aaとの波形と関連付けて示す図である。
この図に示されるように、信号Asは三角波であり、その発振周波数は、アナログ信号Aaの電圧(入力電圧)に応じて変動する。具体的には、入力電圧が中間値である場合に最も高くなり、入力電圧が中間値から高くなるにつれて、または、低くなるにつれて低くなる。
また、信号Asにおいて三角波の傾斜は、入力電圧が中間値付近であれば、上り(電圧の上昇)と下り(電圧の下降)とでほぼ等しくなる。このため、信号Asをコンパレーター514によって電圧閾値Vth1、Vth2と比較した結果である変調信号Msのデューティー比は、ほぼ50%となる。入力電圧が中間値から高くなると、信号Asの下りの傾斜が緩くなる。このため、変調信号MsがHレベルとなる期間が相対的に長くなって、デューティー比が大きくなる。一方、入力電圧が中間値から低くなるにつれて、信号Asの上りの傾斜が緩くなる。このため、変調信号MsがHレベルとなる期間が相対的に短くなって、デューティー比が小さくなる。
このため、変調信号Msは、次のようなパルス密度変調信号となる。すなわち、変調信号Msのデューティー比は、入力電圧の中間値でほぼ50%であり、入力電圧が中間値よりも高くなるにつれて大きくなり、入力電圧が中間値よりも低くなるにつれて小さくなる。
第1ゲートドライバー521は、変調信号Msに基づいて第1トランジスターM1をオン/オフさせる。すなわち、第1ゲートドライバー521は、第1トランジスターM1を
、変調信号MsがHレベルであればオンさせ、変調信号MsがLレベルであればオフさせる。第2ゲートドライバー522は、変調信号Msの論理反転信号に基づいて第2トランジスターM2をオン/オフさせる。すなわち、第2ゲートドライバー522は、第2トランジスターM2を、変調信号MsがHレベルであればオフさせ、変調信号MsがLレベルであればオンさせる。
したがって、第1トランジスターM1と第2トランジスターM2の接続点における増幅変調信号をインダクターL1およびコンデンサーC1で平滑化した駆動信号COM−Aの電圧は、変調信号Msのデューティー比が大きくなるにつれて高くなり、デューティー比が小さくなるにつれて低くなるので、結果的に、駆動信号COM−Aは、アナログ信号Aaの電圧を拡大した信号となるように制御されて、出力されることになる。
この駆動回路50は、パルス密度変調を用いているので、変調周波数が固定のパルス幅変調と比較して、デューティー比の変化幅を大きく取れる、という利点がある。
すなわち、回路全体で扱うことができる最小の正パルス幅と負パルス幅はその回路特性で制約されるので、周波数固定のパルス幅変調では、デューティー比の変化幅として所定の範囲(例えば10%から90%までの範囲)しか確保できない。これに対し、パルス密度変調では、入力電圧が中間値から離れるにつれて、発振周波数が低くなるため、入力電圧が高い領域においては、デューティー比をより大きくすることができ、また、入力電圧が低い領域においては、デューティー比をより小さくすることができる。このため、自励発振型パルス密度変調では、デューティー比の変化幅として、より広い範囲(例えば5%から95%までの範囲)を確保することができるのである。
また、駆動回路50は、自励発振であり、他励発振のように高い周波数の搬送波を生成する回路が不要である。このため、高電圧を扱う回路以外の、すなわち集積回路装置500の部分の、集積化が容易である、という利点がある。
加えて、駆動回路50では、駆動信号COM−Aの帰還経路として、帰還端子Vfbを介した経路だけでなく、帰還端子Ifbを介して高周波成分を帰還する経路があるので、回路全体でみたときの遅延が小さくなる。このため、自励発振の周波数が高くなるので、駆動回路50は、駆動信号COM−Aを精度良く生成することが可能になる。
本実施形態において、変調信号の発振周波数は、1MHz以上8MHz以下であってもよい。
上述の液体吐出装置1では、増幅変調信号を平滑化して駆動信号を生成し、駆動信号が印加されることによって圧電素子60が変位して、ノズル651から液体を吐出させる。ここで、液体吐出装置1が例えば小ドットを吐出するための駆動信号の波形を周波数スペクトル解析すると、50kHz以上の周波数成分が含まれていることが判っている。このような50kHz以上の周波数成分を含む駆動信号を生成するためには、変調信号の周波数(自励発振の周波数)を1MHz以上とする必要がある。
もし、当該周波数を1MHzよりも低くしてしまうと、再現される駆動信号の波形のエッジが鈍って丸くなってしまう。換言すれば、角が取れて波形が鈍ってしまう。駆動信号の波形が鈍ると、波形の立ち上がり、立ち下がりエッジに応じて動作する圧電素子60の変位が緩慢になり、吐出時の尾引きや、吐出不良などを発生させて、印刷の品質を低下させてしまう。
一方、自励発振の周波数を8MHzよりも高くすれば、駆動信号の波形の分解能は高ま
る。ただし、トランジスターにおけるスイッチング周波数が上昇することによって、スイッチング損失が大きくなり、AB級アンプなどのリニア増幅と比べて、優位性を有する省電力性、省発熱性が損なわれてしまう。
このため、上述の液体吐出装置1、ヘッドユニット20、集積回路装置500および駆動回路50において、変調信号の周波数は、1MHz以上8MHz以下であることが好ましい。
図10に戻り、図10に示される例では、抵抗R1、抵抗R2、第1トランジスターM1、第2トランジスターM2、容量素子C5、整流素子D10およびローパスフィルター560は、変調信号に基づいて増幅制御信号を生成し、増幅制御信号に基づいて駆動信号を生成して容量性負荷(圧電素子60)に出力する出力回路550として構成されている。
第1電源部530は、圧電素子60の駆動信号が印加される端子と異なる端子に信号を印加する。第1電源部530は、例えば、バンドギャップ・リファレンス回路のような定電圧回路で構成される。第1電源部530は、電圧VBSを端子VBSから出力する。図10に示される例では、第1電源部530は、グラウンド端子Gndのグラウンド電位を基準として電圧VBSを生成する。
電源回路540は、第2ゲートドライバー522に電源供給するとともに、整流素子D10を介して容量素子C5に電源供給する。電源回路540は、チャージポンプ回路やスイッチングレギュレーターなどで構成することができる。図10に示される例では、電源回路540は、第2ゲートドライバー522の高電位側の電源電圧となる電圧Vmを生成する。また、電源回路540は、グラウンド端子Gndのグラウンド電位を基準として電圧Vddを昇圧して電圧Vmを生成する。
本実施形態においては、第2ゲートドライバー522と第1電源部530と電源回路540とは共通のグラウンド端子Gndに接続されている。なお、第2ゲートドライバー522と第1電源部530と電源回路540とは、互いに独立したグラウンド端子に接続されていてもよい。
本実施形態において、電源回路540は、チャージポンプ回路であってもよい。本実施形態によれば、電源回路540としてスイッチングレギュレーター回路を用いる場合に比べて、ノイズの発生を抑制できる。したがって、圧電素子60に印加される電圧を高精度に制御できるので、液体の吐出精度を向上できる液体吐出装置1、ヘッドユニット20、集積回路装置500および駆動回路50を実現できる。
動作制御部580は、イネーブル信号ENに基づいて、増幅部520の動作を制御する。なお、動作制御部580の一部又は全部の機能を制御部100(図2参照)が担っていてもよい。
動作制御部580は、コンパレーター514が出力する変調信号Msを通過させて出力信号Coとして後段の第1ゲートドライバー521およびインバーター515に出力する通常動作処理を行う。また、動作制御部580は、第1トランジスターM1を電流が流れない状態である非導通状態とし、第2トランジスターM2を電流が流れる状態である導通状態として増幅部520の動作を停止させる制御を行う出力信号Coを出力する停止処理を行う。上述のように、第1トランジスターM1および第2トランジスターM2は、Nチャンネル型のFETであるので、ゲート端子に印加される電圧がしきい値電圧未満である場合が非導通状態、しきい値電圧以上である場合が導通状態となる。
本実施形態によれば、第1トランジスターM1を非導通状態とし、第2トランジスターM2を導通状態とすることで、容量素子C5の一端が低電位となるので、停止処理時に整流素子D10を介して容量素子C5を充電することができる。したがって、動作開始時に回路素子(整流素子D10および第2トランジスターM2)に過電流が流れることを防止できるので、信頼性の高い液体吐出装置1、ヘッドユニット20および駆動回路50を実現できる。
動作制御部580は、駆動信号の電圧を低下させる低下処理を行った後に上述の停止処理を行ってもよい。
図12は、動作制御部580の動作を説明するためのタイミングチャートである。図12(A)は、イネーブル信号ENのタイミングチャート、図12(B)は、動作制御部580の出力信号Coのタイミングチャート、図12(C)は、駆動信号COM−Aのタイミングチャートである。図12(A)〜図12(C)の横軸は時間、縦軸は電圧を表す。
図12に示される例では、イネーブル信号ENは、時刻t1までの期間がハイレベル、時刻t1以降の期間がローレベルとなっている。この場合には、動作制御部580は、時刻t1までの期間では通常動作処理を行い、時刻t1から時刻t2までの期間では低下処理を行い、時刻t2以降の期間では停止処理を行う。
例えば、変調信号Msのデューティー比が5%から95%までの範囲である場合には、動作制御部580は、変調信号Msのデューティー比を5%として、所定のパルス数(図12(B)に示される例では4パルス)を出力信号Coとして出力する。低下処理を行うことで、図12(C)に示されるように、時刻t1から時刻t2に向かうにしたがって駆動信号COM−Aの電圧は低下する。
本実施形態によれば、第2トランジスターM2を導通状態とした場合に、第2トランジスターM2の抵抗成分と、ローパスフィルター560のインダクターL1およびコンデンサーC1と、接地ラインとを介して共振ループが形成されてしまった場合にも、共振振幅を小さくできる。したがって、第2トランジスターM2に過電流が流れることを防止できるので、信頼性の高い液体吐出装置1、ヘッドユニット20および駆動回路50を実現できる。
動作制御部580は、低下処理において、駆動信号COM−Aの電圧を、源信号の入力範囲に対応する駆動信号の出力範囲の最低値にする制御を行ってもよい。より具体的には、動作制御部580は、低下処理において、DAC511(源信号生成部)の出力を最低値または最大値に制御することで駆動信号COM−Aを制御してもよい。すなわち、この場合のDAC511(源信号生成部)は、データdAの入力を無視して、源信号(アナログ信号Aa)として最低値または最大値を出力する。DAC511(源信号生成部)への制御は、動作制御部580が行ってもよいし、制御部100がイネーブル信号ENを介して行ってもよい。
本実施形態によれば、低下処理においても、源信号に基づいて駆動信号を生成し続けるので、第2トランジスターM2の抵抗成分と、ローパスフィルター560のインダクターL1およびコンデンサーC1と、接地ラインとを介して発振ループが形成される可能性を低減できる。したがって、第2トランジスターM2に過電流が流れることを防止できるので、信頼性の高い液体吐出装置1、ヘッドユニット20および駆動回路50を実現できる。
動作制御部580は、駆動信号COM−Aの電圧が一定の場合に、第1トランジスターM1および第2トランジスターM2を電流が流れない状態である非導通状態として増幅部520の動作を休止させる休止処理を行ってもよい。
圧電素子60は電圧を保持する性質を有するので、本実施形態によれば、駆動信号COM−Aの電圧が一定の場合に休止処理を行うことで、増幅部520およびローパスフィルター560での電力消費を低減することができる。
3.容量性負荷駆動回路の制御方法
図13は、本実施形態に係る容量性負荷駆動回路の制御方法を示すフローチャートである。以下の説明においては、上述の駆動回路50(容量性負荷駆動回路)を用いて実現する場合を例に取り説明する。
本実施形態に係る容量性負荷駆動回路の制御方法は、駆動信号COM−Aの電圧を低下させる低下処理を行う工程と、第1トランジスターM1を電流が流れない状態である非導通状態とし、第2トランジスターM2を電流が流れる状態である導通状態として増幅部520の動作を停止させる停止処理を行う工程と、を含む。
より具体的には、まず、駆動信号COM−Aの電圧を低下させる低下処理を行う(ステップS100)。本実施形態においては、制御部100が低下処理を行う。低下処理の詳細は、「2.容量性負荷駆動回路の回路構成」の項で述べたとおりである。
ステップS100の後に、第1トランジスターM1を非導通状態とし、第2トランジスターM2を導通状態として増幅部520の動作を停止させる停止処理を行う。本実施形態においては、動作制御部580が停止処理を行う。停止処理の詳細は、「2.容量性負荷駆動回路の回路構成」の項で述べたとおりである。
本実施形態によれば、第1トランジスターM1を非導通状態とし、第2トランジスターM2を導通状態とすることで、容量素子C5の一端が低電位となるので、停止処理時に整流素子D10を介して容量素子C5を充電することができる。したがって、動作開始時に回路素子(整流素子D10および第2トランジスターM2)に過電流が流れることを防止できるので、信頼性の高い容量性負荷駆動回路の制御方法を実現できる。
以上、本実施形態あるいは変形例について説明したが、本発明はこれら本実施形態あるいは変形例に限られるものではなく、その要旨を逸脱しない範囲において種々の態様で実施することが可能である。
本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
1…液体吐出装置、2…移動体、3…移動機構、4…搬送機構、10…制御ユニット、20…ヘッドユニット、24…キャリッジ、31…キャリッジモーター、32…キャリッジガイド軸、33…タイミングベルト、35…キャリッジモータードライバー、40…プラテン、41…搬送モーター、42…搬送ローラー、45…搬送モータードライバー、50,50−a,50−b…駆動回路、60…圧電素子、100…制御部、190…フレキシ
ブルケーブル、210…選択制御部、212…シフトレジスタ、214…ラッチ回路、216…デコーダー、230…選択部、232a,232b…インバーター、234a,234b…トランスファーゲート、500…集積回路装置、510…変調部、511…DAC、512,513…加算器、514…コンパレーター、515…インバーター、516…積分減衰器、517…減衰器、520…増幅部、521…第1ゲートドライバー、522…第2ゲートドライバー、530…第1電源部、540…電源回路、550…出力回路、560…ローパスフィルター、570…バンドパスフィルター、580…動作制御部、590…帰還回路、600…吐出部、601…圧電体、611,612…電極、621…振動板、631…キャビティ、632…ノズルプレート、641…リザーバー、651…ノズル、C1,C2,C3,C4…コンデンサー、C5…容量素子、D10…整流素子、Gnda…グラウンド端子、Ifb…帰還端子、F…ヒューズ、L1…インダクター、M1…第1トランジスター、M2…第2トランジスター、MN…NMOSトランジスター、MP…PMOSトランジスター、P…印刷媒体、R1,R2,R3,R4,R5…抵抗、Vdda…電源端子、Vfb…帰還端子

Claims (9)

  1. 源信号をパルス変調した変調信号を生成する変調部と、
    前記変調信号に基づいて第1増幅制御信号を生成する第1ゲートドライバーと、前記変調信号に基づいて第2増幅制御信号を生成する第2ゲートドライバーと、前記第1増幅制御信号に基づいて動作する第1トランジスターと、前記第1トランジスターの低電位側に直列に接続され、前記第2増幅制御信号に基づいて動作する第2トランジスターと、前記第1トランジスターと前記第2トランジスターとを電気的に接続する接続ノードと、前記第1ゲートドライバーの高電位側とに電気的に接続した容量素子と、前記第2ゲートドライバーの高電位側と前記容量素子との間に設けられる整流素子と、前記第2ゲートドライバーに電源供給するとともに、前記整流素子を介して前記容量素子に電源供給する電源回路と、を含む増幅部と、
    前記増幅部の動作を制御する動作制御部と、
    前記第1トランジスターと前記第2トランジスターとの動作に基づいて生成された増幅変調信号を復調して駆動信号を生成するローパスフィルターと、
    前記駆動信号が印加されることで変位する圧電素子と、
    内部に液体が充填され、前記圧電素子の変位により、内部容積が変化するキャビティと、
    前記キャビティに連通し、前記キャビティの内部容積の変化に応じて前記キャビティ内の前記液体を液滴として吐出するノズルと、
    を備え、
    前記動作制御部は、
    前記第1トランジスターを電流が流れない状態である非導通状態とし、前記第2トランジスターを電流が流れる状態である導通状態として前記増幅部の動作を停止させる停止処理を行う、液体吐出装置。
  2. 請求項1に記載の液体吐出装置において、
    前記動作制御部は、
    前記駆動信号の電圧を低下させる低下処理を行った後に前記停止処理を行う、液体吐出装置。
  3. 請求項2に記載の液体吐出装置において、
    前記動作制御部は、
    前記低下処理において、前記駆動信号の電圧を、前記源信号の入力範囲に対応する前記駆動信号の出力範囲の最低値にする制御を行う、液体吐出装置。
  4. 請求項3に記載の液体吐出装置において、
    前記源信号を生成する源信号生成部と、
    前記駆動信号に基づいて帰還信号を生成し、前記帰還信号を前記変調部に帰還する帰還回路と、
    をさらに備え、
    前記動作制御部は、
    前記低下処理において、前記源信号生成部の出力を最低値または最大値に制御することで前記駆動信号を制御する、液体吐出装置。
  5. 請求項1ないし4のいずれか1項に記載の液体吐出装置において、
    前記動作制御部は、
    前記駆動信号の電圧が一定の場合に、前記第1トランジスターおよび前記第2トランジスターを電流が流れない状態である非導通状態として前記増幅部の動作を休止させる休止処理を行う、液体吐出装置。
  6. 請求項1ないし5のいずれか1項に記載の液体吐出装置であって、
    前記変調信号の発振周波数は、1MHz以上8MHz以下である、液体吐出装置。
  7. 源信号をパルス変調した変調信号を生成する変調部と、
    前記変調信号に基づいて第1増幅制御信号を生成する第1ゲートドライバーと、前記変調信号に基づいて第2増幅制御信号を生成する第2ゲートドライバーと、前記第1増幅制御信号に基づいて動作する第1トランジスターと、前記第1トランジスターの低電位側に直列に接続され、前記第2増幅制御信号に基づいて動作する第2トランジスターと、前記第1トランジスターと前記第2トランジスターとを電気的に接続する接続ノードと、前記第1ゲートドライバーの高電位側とに電気的に接続した容量素子と、前記第2ゲートドライバーの高電位側と前記容量素子との間に設けられる整流素子と、前記第2ゲートドライバーに電源供給するとともに、前記整流素子を介して前記容量素子に電源供給する電源回路と、を含む増幅部と、
    前記増幅部の動作を制御する動作制御部と、
    前記第1トランジスターと前記第2トランジスターとの動作に基づいて生成された増幅変調信号を復調して駆動信号を生成するローパスフィルターと、
    前記駆動信号が印加されることで変位する圧電素子と、
    内部に液体が充填され、前記圧電素子の変位により、内部容積が変化するキャビティと、
    前記キャビティに連通し、前記キャビティの内部容積の変化に応じて前記キャビティ内の前記液体を液滴として吐出するノズルと、
    を備え、
    前記動作制御部は、
    前記第1トランジスターを電流が流れない状態である非導通状態とし、前記第2トランジスターを電流が流れる状態である導通状態として前記増幅部の動作を停止させる停止処理を行う、ヘッドユニット。
  8. 源信号をパルス変調した変調信号を生成する変調部と、
    前記変調信号に基づいて第1増幅制御信号を生成する第1ゲートドライバーと、前記変調信号に基づいて第2増幅制御信号を生成する第2ゲートドライバーと、前記第1増幅制御信号に基づいて動作する第1トランジスターと、前記第1トランジスターの低電位側に直列に接続され、前記第2増幅制御信号に基づいて動作する第2トランジスターと、前記第1トランジスターと前記第2トランジスターとを電気的に接続する接続ノードと、前記第1ゲートドライバーの高電位側とに電気的に接続した容量素子と、前記第2ゲートドライバーの高電位側と前記容量素子との間に設けられる整流素子と、前記第2ゲートドライバーに電源供給するとともに、前記整流素子を介して前記容量素子に電源供給する電源回路と、を含む増幅部と、
    前記増幅部の動作を制御する動作制御部と、
    前記第1トランジスターと前記第2トランジスターとの動作に基づいて生成された増幅変調信号を復調して駆動信号を生成して容量性負荷に出力するローパスフィルターと、
    を備え、
    前記動作制御部は、
    前記第1トランジスターを電流が流れない状態である非導通状態とし、前記第2トランジスターを電流が流れる状態である導通状態として前記増幅部の動作を停止させる停止処理を行う、容量性負荷駆動回路。
  9. 源信号をパルス変調した変調信号を生成する変調部と、
    前記変調信号に基づいて第1増幅制御信号を生成する第1ゲートドライバーと、前記変調信号に基づいて第2増幅制御信号を生成する第2ゲートドライバーと、前記第1増幅制
    御信号に基づいて動作する第1トランジスターと、前記第1トランジスターの低電位側に直列に接続され、前記第2増幅制御信号に基づいて動作する第2トランジスターと、前記第1トランジスターと前記第2トランジスターとを電気的に接続する接続ノードと、前記第1ゲートドライバーの高電位側とに電気的に接続した容量素子と、前記第2ゲートドライバーの高電位側と前記容量素子との間に設けられる整流素子と、前記第2ゲートドライバーに電源供給するとともに、前記整流素子を介して前記容量素子に電源供給する電源回路と、を含む増幅部と、
    前記第1トランジスターと前記第2トランジスターとの動作に基づいて生成された増幅変調信号を復調して駆動信号を生成して容量性負荷に出力するローパスフィルターと、
    を備える容量性負荷駆動回路の制御方法であって、
    前記駆動信号の電圧を低下させる低下処理を行う工程と、
    前記第1トランジスターを電流が流れない状態である非導通状態とし、前記第2トランジスターを電流が流れる状態である導通状態として前記増幅部の動作を停止させる停止処理を行う工程と、
    を含む、容量性負荷駆動回路の制御方法。
JP2015020481A 2015-02-04 2015-02-04 液体吐出装置、ヘッドユニット、容量性負荷駆動回路および容量性負荷駆動回路の制御方法 Pending JP2016141104A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015020481A JP2016141104A (ja) 2015-02-04 2015-02-04 液体吐出装置、ヘッドユニット、容量性負荷駆動回路および容量性負荷駆動回路の制御方法
US15/003,165 US9475284B2 (en) 2015-02-04 2016-01-21 Liquid discharging apparatus, head unit, capacitive load driving circuit, and control method of capacitive load driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015020481A JP2016141104A (ja) 2015-02-04 2015-02-04 液体吐出装置、ヘッドユニット、容量性負荷駆動回路および容量性負荷駆動回路の制御方法

Publications (1)

Publication Number Publication Date
JP2016141104A true JP2016141104A (ja) 2016-08-08

Family

ID=56553779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015020481A Pending JP2016141104A (ja) 2015-02-04 2015-02-04 液体吐出装置、ヘッドユニット、容量性負荷駆動回路および容量性負荷駆動回路の制御方法

Country Status (2)

Country Link
US (1) US9475284B2 (ja)
JP (1) JP2016141104A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019130823A (ja) * 2018-01-31 2019-08-08 セイコーエプソン株式会社 液体吐出装置
JP2019166766A (ja) * 2018-03-26 2019-10-03 セイコーエプソン株式会社 プリントヘッド、液体吐出装置及び圧電素子制御回路

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104485806B (zh) * 2014-11-08 2017-07-28 成都芯源系统有限公司 一种自举电压刷新控制电路、电压转换电路及其控制方法
JP6730835B2 (ja) * 2016-04-06 2020-07-29 ローム株式会社 過電流検出回路
CN110091602B (zh) * 2018-01-31 2020-11-17 精工爱普生株式会社 液体喷出装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118336A (en) * 1998-10-30 2000-09-12 Intersil Corporation Start-up circuit for self oscillating class D modulator
US6963498B2 (en) * 2004-02-02 2005-11-08 International Rectifier Corporation Bootstrap capacitor refresh circuit
JP4639922B2 (ja) 2004-04-20 2011-02-23 富士ゼロックス株式会社 容量性負荷の駆動回路及び方法、液滴吐出装置、液滴吐出ユニット、インクジェットヘッドの駆動回路
CN101501985A (zh) * 2006-08-15 2009-08-05 Nxp股份有限公司 用于自振荡d类系统的电子装置
JP2010114711A (ja) 2008-11-07 2010-05-20 Seiko Epson Corp 電力増幅装置
JP6187756B2 (ja) * 2013-09-05 2017-08-30 セイコーエプソン株式会社 液体吐出装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019130823A (ja) * 2018-01-31 2019-08-08 セイコーエプソン株式会社 液体吐出装置
JP7069761B2 (ja) 2018-01-31 2022-05-18 セイコーエプソン株式会社 液体吐出装置
JP2019166766A (ja) * 2018-03-26 2019-10-03 セイコーエプソン株式会社 プリントヘッド、液体吐出装置及び圧電素子制御回路
JP7063041B2 (ja) 2018-03-26 2022-05-09 セイコーエプソン株式会社 プリントヘッド、液体吐出装置及び圧電素子制御回路

Also Published As

Publication number Publication date
US9475284B2 (en) 2016-10-25
US20160221332A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
JP6372333B2 (ja) 液体吐出装置、ヘッドユニット、容量性負荷駆動用集積回路装置および容量性負荷駆動回路
JP6528391B2 (ja) 液体吐出装置、ヘッドユニット、容量性負荷駆動用集積回路装置および容量性負荷駆動回路
JP6520574B2 (ja) 液体吐出装置およびヘッドユニット
JP6365281B2 (ja) 液体吐出装置、ヘッドユニット、容量性負荷駆動回路および容量性負荷駆動用集積回路装置
JP6421560B2 (ja) 液体吐出装置、ヘッドユニット、容量性負荷駆動用集積回路装置および容量性負荷駆動回路
JP6369686B2 (ja) 液体吐出装置、ヘッドユニット、容量性負荷駆動回路および容量性負荷駆動用集積回路装置
JP2016141070A (ja) 液体吐出装置、ヘッドユニット、容量性負荷駆動回路および容量性負荷駆動回路の制御方法
JP6365282B2 (ja) 液体吐出装置、ヘッドユニット、容量性負荷駆動用集積回路装置および容量性負荷駆動回路
JP2016141105A (ja) 液体吐出装置、ヘッドユニット、容量性負荷駆動回路および容量性負荷駆動回路の制御方法
JP6572645B2 (ja) 液体吐出装置
JP2016112739A (ja) 液体吐出装置、ヘッドユニット、容量性負荷駆動用集積回路装置、容量性負荷駆動回路及び液体吐出装置の制御方法
JP6347327B2 (ja) 液体吐出装置、ヘッドユニット、容量性負荷駆動回路および容量性負荷駆動用集積回路装置
JP6428311B2 (ja) 液体吐出装置、ヘッドユニット、容量性負荷駆動回路および容量性負荷駆動用集積回路装置
JP2016141104A (ja) 液体吐出装置、ヘッドユニット、容量性負荷駆動回路および容量性負荷駆動回路の制御方法
JP2016040085A (ja) 液体吐出装置およびヘッドユニット
JP6443621B2 (ja) 液体吐出装置、ヘッドユニット、容量性負荷駆動回路および集積回路装置
JP2016107445A (ja) 液体吐出装置、ヘッドユニット、容量性負荷駆動用集積回路装置、容量性負荷駆動回路及び液体吐出装置の製造方法
JP2016150493A (ja) 液体吐出装置、ヘッドユニット、容量性負荷駆動回路および容量性負荷駆動回路の制御方法
JP2016040861A (ja) 液体吐出装置およびヘッドユニット
JP6390843B2 (ja) 液体吐出装置、ヘッドユニット、容量性負荷駆動回路および容量性負荷駆動用集積回路装置
JP6583508B2 (ja) 容量性負荷を駆動する駆動回路および液体吐出装置
JP2017154424A (ja) 液体吐出装置、容量性負荷駆動用集積回路装置、容量性負荷駆動回路及び容量性負荷駆動方法
JP2018034312A (ja) 液体吐出装置
JP2017121727A (ja) 液体吐出装置、容量性負荷駆動回路及び容量性負荷駆動方法