JP2016141101A - Heat welding device - Google Patents

Heat welding device Download PDF

Info

Publication number
JP2016141101A
JP2016141101A JP2015020392A JP2015020392A JP2016141101A JP 2016141101 A JP2016141101 A JP 2016141101A JP 2015020392 A JP2015020392 A JP 2015020392A JP 2015020392 A JP2015020392 A JP 2015020392A JP 2016141101 A JP2016141101 A JP 2016141101A
Authority
JP
Japan
Prior art keywords
heat
welding
heat welding
edge
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015020392A
Other languages
Japanese (ja)
Other versions
JP6457287B2 (en
Inventor
智志 三宅
Satoshi Miyake
智志 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Munekata Industrial Machinery Co Ltd
Original Assignee
Munekata Industrial Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Munekata Industrial Machinery Co Ltd filed Critical Munekata Industrial Machinery Co Ltd
Priority to JP2015020392A priority Critical patent/JP6457287B2/en
Publication of JP2016141101A publication Critical patent/JP2016141101A/en
Application granted granted Critical
Publication of JP6457287B2 publication Critical patent/JP6457287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

TECHNICAL PROBLEM: To stabilize weld strength by suppressing the variation of heat generation temperature of a heat welding edge in a heat welding device at the time of heat-welding a chip material such as a filter to a thermoplastic resin product.SOLUTION: A heat welding edge 3 having a weld shape outline is projected at a tip of a heat welding chip body 2, a bridge 5 for applying electricity is provided in a space surrounded by the heat welding edge 3, and an applied current is divided into three parts on the heat welding edge 3 side and the bridge 5 side by the action of the bridge 5, whereby the variation of heat generation temperature over the whole circumference of the heat welding edge 3 is suppressed to a small level to uniform the weld strength.SELECTED DRAWING: Figure 1

Description

本発明は、熱可塑性樹脂で成形された熱可塑性樹脂製品(以下、「熱可塑性樹脂製品」と言う。)に各種フィルター等のチップ材を熱溶着するための装置に関する。 The present invention relates to an apparatus for thermally welding chip materials such as various filters to a thermoplastic resin product (hereinafter referred to as “thermoplastic resin product”) molded with a thermoplastic resin.

通常、樹脂フィルムや布などのシート状の被固定物(以下、「被固定物」と言う。)を熱可塑性樹脂製品に固定する場合は接着剤や両面粘着テープを用いることが多いが、量産性と耐久性、密閉性が必要な場合には熱溶着(熱融着)工法が用いられる。 Usually, when fixing a sheet-like object to be fixed such as a resin film or cloth (hereinafter referred to as “an object to be fixed”) to a thermoplastic resin product, an adhesive or a double-sided adhesive tape is often used. When heat resistance, durability, and airtightness are required, a thermal welding (thermal fusion) method is used.

この際、発熱が早く、溶着加工後には該溶着部をただちに冷却して固定できる装置としてインパルス方式で発熱する熱溶着装置の使用が知られている(特許文献1)。 At this time, it is known to use a heat welding device that generates heat by an impulse method as a device that generates heat quickly and can immediately cool and fix the welded portion after the welding process (Patent Document 1).

しかし、この特許文献1の熱溶着装置であって、本書添付の図6および図7に示された円形の熱溶着エッジ3の場合、その外径がおよそφ10mm(矩形の場合8mm×8mm)以下の場合には、前記熱溶着エッジ3の発熱部分は発熱範囲が狭いため、熱溶着エッジ3の円周上において発熱のバラつきは大きな問題とはならないが、熱溶着エッジ3部分の外径がφ10mm以上の大径になると熱溶着エッジ3の円周上において、その中央部に比べて給電部に近い両サイド部分の温度が中間部分に比較して低くなり、この発熱温度のバラつきから溶着不良等の問題が発生する。 However, in the case of the circular heat welding edge 3 shown in FIG. 6 and FIG. 7 attached to this document, the outer diameter is about φ10 mm (in the case of a rectangle, 8 mm × 8 mm) or less. In this case, since the heat generation portion of the heat welding edge 3 has a narrow heat generation range, variation in heat generation on the circumference of the heat welding edge 3 is not a big problem, but the outer diameter of the heat welding edge 3 portion is φ10 mm. When the diameter becomes larger, the temperature of both side parts closer to the power feeding part is lower than the middle part on the circumference of the thermal welding edge 3 compared to the middle part. Problems occur.

これは、加熱用の電流は給電部(+極)から給電部(−極)側へ最短距離で流れるため、熱溶着エッジ3の中央部分に比べて給電部側の発熱量が少ないことに加え、発熱部側の熱が熱溶着チップ本体2の側壁側へ伝熱し、この側壁側からの放熱量が多くなることに起因している。 This is because the heating current flows from the power feeding part (+ pole) to the power feeding part (− pole) side in the shortest distance, so that the amount of heat generated on the power feeding part side is smaller than the central part of the heat welding edge 3. This is because the heat on the heat generating part side is transferred to the side wall side of the heat-welded chip body 2 and the amount of heat released from the side wall side is increased.

このような周形状の熱溶着エッジの発熱ムラ対策として、特許文献2には容器の開口周縁部分と蓋体とを熱融着する容器用ヒートシール装置として、リング状ヒーター上の対向する2箇所に給電部を備え、前記給電部の周方向の内外寸法を異なる寸法とすることで、均一な発熱を可能とするヒーターが開示されている。しかし、このヒーターは薄板であるため発熱温度の制御は容易であるものの、溶着時の押圧力に対する剛性が低いため、断熱用のシリコーンゴムを介しての金属製の抑え手段が必要である。また、シリコーンゴムの耐熱性は約200℃であるため、200℃以上の加熱が必要な樹脂の溶着は困難であり、さらにシリコーンゴムは柔軟であるため押圧方向に対するヒーターの可動寸法精度を確保することは難しく、フィルム同士のシールなどのような平面的な溶着形状にしか適用できない。 As a countermeasure against heat generation unevenness of the circumferentially shaped heat-welded edge, Patent Document 2 discloses two opposing locations on a ring-shaped heater as a container heat-sealing device for heat-sealing the peripheral edge of the container and the lid. There is disclosed a heater that is provided with a power feeding unit and that allows uniform heat generation by making the inner and outer dimensions of the power feeding unit different in the circumferential direction. However, since this heater is a thin plate, the heat generation temperature can be easily controlled, but the rigidity against the pressing force at the time of welding is low, so that a metal suppression means via a silicone rubber for heat insulation is necessary. In addition, since the heat resistance of silicone rubber is about 200 ° C., it is difficult to weld a resin that needs to be heated to 200 ° C. or more. Further, since silicone rubber is flexible, the movable dimensional accuracy of the heater in the pressing direction is ensured. This is difficult, and can only be applied to planar welded shapes such as seals between films.

また、特許文献3にはリング状の抵抗発熱体の線長を偶数等分する部位を受電部とし、さらに前記受電部において隣接する受電部を異極とし、その上で同極同士をまとめて電圧印加極を形成して成る熱可塑性樹脂の溶着装置が開示されている。この溶着装置は抵抗発熱体の発熱バランスに優れるが、偶数倍設けたそれぞれの給電部からの放熱は無くすことが出来ないため、給電部に隣接した発熱部分の温度低下は避けられない。 Further, in Patent Document 3, a portion that divides the line length of the ring-shaped resistance heating element into an even number is set as a power receiving unit, and the power receiving unit adjacent to the power receiving unit is set as a different pole, and then the same polarity is gathered together. A thermoplastic resin welding device formed by forming a voltage application electrode is disclosed. Although this welding apparatus is excellent in the heat generation balance of the resistance heating element, since it is impossible to eliminate heat radiation from each power supply unit provided even times, a temperature drop in the heat generation part adjacent to the power supply unit is unavoidable.

さらに、接合用加熱装置として特許文献4には、中空部を有する角筒からなるヒートシンクを備え、このヒートシンクの下側の開口端面に通電することにより発熱する抵抗体を介して下面が平坦な伝熱部材を結合することにより、全体的に剛性を高めて溶着部の寸法精度を確保する技術の提案が開示されている。しかし、この発熱体は角筒の対向する2面に給電部を設けて通電する構造であるため、給電部に隣接しない2面の通電部に接する抵抗体に流れる電流に対して、前記2面の給電部に接する抵抗体に流れる電流には偏りが発生するため、抵抗体の発熱が不均一となってしまう。 Further, as a heating apparatus for bonding, Patent Document 4 includes a heat sink composed of a rectangular tube having a hollow portion, and the bottom surface is transmitted through a resistor that generates heat by energizing the lower open end surface of the heat sink. There has been disclosed a proposal of a technique for securing rigidity of a welded portion by combining a heat member to improve overall rigidity. However, since this heating element has a structure in which a feeding portion is provided on two opposite faces of the square tube and energizes, the two faces against the current flowing in the resistor that contacts the two current-carrying parts that are not adjacent to the feeding part. Since the current flowing through the resistor in contact with the power supply section is biased, the heat generated by the resistor becomes non-uniform.

特許第5592911号Japanese Patent No. 5592911 特許第3857619号Japanese Patent No. 3857619 特開平11−179808JP-A-11-179808 特開平9−225632JP 9-225632 A

本発明は、溶着部が輪郭形状の製品を溶着する熱溶着装置であって、寸法精度に優れ、溶着エッジ部分の発熱温度分布のムラを低減し、加えて溶着加工サイクルタイムを短縮することができる熱溶着装置の提供を課題とする。 The present invention is a thermal welding apparatus that welds a product having a contour shape in the welded portion, which has excellent dimensional accuracy, reduces unevenness in the heat generation temperature distribution at the welded edge portion, and additionally shortens the welding cycle time. An object of the present invention is to provide a heat welding apparatus that can be used.

上記目的を達成するため、請求項1に記載の発明は、熱溶着装置において、熱溶着性を有する素材で形成されたチップ材の周囲を熱可塑性樹脂製品に熱溶着するインパルス加熱方式の熱溶着装置であって、この熱溶着装置の熱溶着チップ本体の先端部には、前記溶着形状の輪郭からなる熱溶着エッジを突設し、この溶着エッジに囲まれた前記熱溶着チップ本体の内部には空間部を形成し、この空間部を横断するようにブリッジを設けることにより、左右の電極部から印加された電流の流れを前記溶着エッジに沿って流れる電流の流れと、前記ブリッジに沿って流れる電流の流れに3分割することにより、熱溶着エッジの発熱温度のバラつきを小さく設定したことを特徴とするものである。 In order to achieve the above-mentioned object, the invention according to claim 1 is an impulse heating type thermal welding in which a periphery of a chip material formed of a material having thermal weldability is thermally welded to a thermoplastic resin product in a thermal welding apparatus. A thermal welding edge having a contour of the welding shape is protruded from a tip portion of the thermal welding chip body of the thermal welding apparatus, and the thermal welding chip body surrounded by the welding edge is provided inside the thermal welding chip body. Forming a space, and by providing a bridge so as to cross the space, a current flow applied from the left and right electrode portions flows along the welding edge and along the bridge. The variation in the heat generation temperature of the heat welding edge is set to be small by dividing the current flow into three.

更に、請求項2に記載の発明は、請求項1に記載の熱溶着装置において、前記熱溶着エッジにおける正面視の形状は、円形又は矩形又は多角形に形成されていることを特徴とするものである。 Furthermore, the invention according to claim 2 is the thermal welding apparatus according to claim 1, wherein the shape of the thermal welding edge in a front view is formed in a circle, a rectangle, or a polygon. It is.

更に、請求項3に記載の発明は、請求項1に記載の熱溶着装置において、前記熱溶着チップ本体内には冷却エアー供給用パイプが挿入されていると共に前記熱溶着チップ本体の側壁には、左右の電極部の中間に冷却エアー流出スリットと、このスリットの下端には周方向に向けて冷却エアー流出窓が形成され、前記冷却エアー供給用パイプから噴出した冷却エアーは、前記熱溶着チップ本体内から前記熱溶着エッジ部分を冷却したのち、前記スリットと冷却エアー流出窓を経由して熱溶着チップ本体の外に流出することを特徴とするものである。 Further, the invention according to claim 3 is the thermal welding apparatus according to claim 1, wherein a cooling air supply pipe is inserted into the thermal welding tip body, and a side wall of the thermal welding tip body is provided. A cooling air outflow slit is formed in the middle of the left and right electrode portions, and a cooling air outflow window is formed in the circumferential direction at the lower end of the slit, and the cooling air ejected from the cooling air supply pipe is the thermal welding tip. The heat welding edge portion is cooled from the inside of the main body, and then flows out of the heat welding chip main body through the slit and the cooling air outflow window.

更に、請求項4に記載の発明は、請求項1に記載の熱溶着装置において、前記ブリッジは、熱溶着チップ本体内空間部の中央を横断し、かつブリッジは中央部の幅が両端部の幅より大きく設定されていることを特徴とするものである。 Furthermore, the invention according to claim 4 is the thermal welding apparatus according to claim 1, wherein the bridge traverses the center of the space portion in the main body of the thermal welding chip, and the bridge has a width of the central portion at both ends. It is characterized by being set larger than the width.

本発明に係る熱溶着装置において、熱溶着チップ本体の熱溶着エッジの内径内の中央部を横断するようにブリッジを形成したことにより、電流の流れをこのブリッジを流れる電流とこの両側のエッジ側を流れる電流に3分割した。この結果、熱溶着エッジの全周において発熱温度のバラつきを緩和することが出来る。 In the thermal welding apparatus according to the present invention, the bridge is formed so as to cross the central portion in the inner diameter of the thermal welding edge of the thermal welding tip main body, so that the current flows between the current flowing through the bridge and the edge sides on the both sides. Divided into three currents. As a result, the variation in the heat generation temperature can be alleviated in the entire periphery of the heat welding edge.

特に溶着部の外径がおよそφ10mm、矩形の場合はおよそ8mm×8mmを超える大きさの熱溶着チップにおいては、発熱温度のバラつきを緩和することにより、安定した熱溶着が可能となり、また、強制冷却により溶着時間の短縮を図ることが出来る。加えて、熱溶着チップ本体の先端部においてブリッジ部分は簡単に形成が可能であることから、製作コストが安く、シンプルな構成のため、メンテナンスが容易である。 In particular, in the case of a heat-welded tip having an outer diameter of approximately 10 mm or more than approximately 8 mm × 8 mm in the case of a rectangle, stable heat-welding can be achieved by reducing variations in the heat generation temperature. The welding time can be shortened by cooling. In addition, since the bridge portion can be easily formed at the front end portion of the heat-welded chip body, the manufacturing cost is low, and the maintenance is easy due to the simple configuration.

熱溶着装置の斜視図である。It is a perspective view of a heat welding apparatus. 熱溶着装置の正面図である。It is a front view of a heat welding apparatus. 熱溶着装置の中央縦断正面図である。It is a center longitudinal section front view of a heat welding apparatus. 熱溶着装置を下方から見たときの正面図である。It is a front view when a heat welding apparatus is seen from the lower part. 実施例1の熱溶着工程を示すもので、(a)は溶着前、(b)は溶着開始直前の状態、(c)は溶着終了時の状態、(d)は溶着が完了して熱溶着装置がチップ材から離れた状態を示す説明図である。The heat welding process of Example 1 is shown, (a) is before welding, (b) is the state immediately before the start of welding, (c) is the state at the end of welding, and (d) is the heat welding after the welding is completed. It is explanatory drawing which shows the state which the apparatus left | separated from the chip | tip material. 特許文献1の溶着装置の正面図である。It is a front view of the welding apparatus of patent document 1. FIG. 図6に示した熱溶着装置の中央縦断正面図である。It is a center longitudinal cross-sectional front view of the heat welding apparatus shown in FIG. 矩形の熱溶着エッジから成る熱溶着装置の斜視図である。It is a perspective view of the heat welding apparatus which consists of a rectangular heat welding edge. 本発明熱溶着チップ本体の発熱シミュレーションによる温度分布の説明図であって、(a)は斜視図、(b)は熱溶着エッジ側から見た正面図である。It is explanatory drawing of the temperature distribution by the heat_generation | fever simulation of this invention heat welding chip | tip main body, Comprising: (a) is a perspective view, (b) is the front view seen from the heat welding edge side. 図6、7に示した従来例の熱溶着チップ本体の発熱シミュレーションによる温度分布の説明図であって、(a)は斜視図、(b)は熱溶着エッジ側から見た正面図である。It is explanatory drawing of the temperature distribution by the heat_generation | fever simulation of the heat welding chip | tip main body of the prior art example shown to FIG. 6, 7, (a) is a perspective view, (b) is the front view seen from the heat welding edge side.

本発明の熱溶着装置は、熱可塑性樹脂製品の表面に被固定物を直接固定する時に使用される。熱可塑性樹脂製品にシート状の被固定物を固定する目的であれば熱可塑性樹脂製品及び被固定物の形状に制限は無く、熱可塑性樹脂製品の表面が曲面形状、あるいは被固定物の形状が円形、矩形、多角形、その他任意の形状であっても適用が可能である。また、熱溶着装置の熱溶着エッジにアール(R)や勾配をつけることで、熱可塑性樹脂製品に形成された輪郭形状のリブや突起を変形させて部品を固定する際の熱カシメ加工にも使用することが出来る。 The heat welding apparatus of the present invention is used when directly fixing an object to be fixed to the surface of a thermoplastic resin product. For the purpose of fixing a sheet-like object to be fixed to a thermoplastic resin product, the shape of the thermoplastic resin product and the object to be fixed is not limited, and the surface of the thermoplastic resin product is a curved shape or the shape of the object to be fixed is The present invention can be applied to circular, rectangular, polygonal, and other arbitrary shapes. In addition, by applying a radius (R) or a gradient to the thermal welding edge of the thermal welding equipment, it can also be used for thermal caulking when deforming contour ribs and protrusions formed on thermoplastic resin products and fixing parts. Can be used.

被固定物が熱可塑性樹脂の場合は、熱可塑性樹脂製品に比較して熱溶融温度がほぼ同じであることが条件である。さらに、溶融した熱可塑性樹脂製品の樹脂が被固定物に染みこめば固定が可能であるため、被固定物自体に熱溶融性は無くとも、その表面から内部に向って空隙のある布、不織布、フィルター(材質は布、不織布、ガラス繊維、フェルト、多孔質樹脂など)等の固定にも本発明は適用が可能である。 When the object to be fixed is a thermoplastic resin, it is a condition that the heat melting temperature is almost the same as that of the thermoplastic resin product. Furthermore, since the molten thermoplastic resin product can be fixed if it soaks into the fixed object, the fixed object itself is not heat-meltable, but there is a cloth or non-woven fabric having voids from the surface to the inside. The present invention can also be applied to fixing a filter (material is cloth, non-woven fabric, glass fiber, felt, porous resin, etc.).

本実施例1は、請求項1乃至4に記載した発明の実施例であって、図1乃至図5(a)〜(d)に基づいてその構成と溶着工程を詳細に説明する。 The first embodiment is an embodiment of the invention described in claims 1 to 4, and the configuration and welding process will be described in detail based on FIGS. 1 to 5 (a) to (d).

図1は熱溶着装置1を正面方向から見た斜視図、図2は正面図、図3は中央縦断正面図、図4は熱溶着エッジ側から見た正面図、図5(a)〜(d)は溶着工程の説明図である。 1 is a perspective view of the heat welding apparatus 1 as seen from the front, FIG. 2 is a front view, FIG. 3 is a front view of the center longitudinal section, FIG. 4 is a front view as seen from the heat welding edge side, and FIGS. d) It is explanatory drawing of a welding process.

熱溶着装置1は、円筒状の熱溶着チップ本体2の先端にリング状の熱溶着エッジ3が突設され、この熱溶着エッジ3に囲まれた内部の空間部には熱溶着エッジ3より一段奥まった位置に通電用のブリッジ5が横設されている。 In the thermal welding apparatus 1, a ring-shaped thermal welding edge 3 protrudes from the tip of a cylindrical thermal welding chip body 2, and an inner space surrounded by the thermal welding edge 3 is one step higher than the thermal welding edge 3. A bridge 5 for energization is provided in a horizontal position.

このブリッジ5は前記熱溶着エッジ3の通電方向と平行に設置され、熱溶着エッジ3との接続部5aの幅(断面積)は熱溶着エッジ3の中間部の幅(断面積)より小さく設定され、ブリッジ5の中間部5bの幅(断面積)は熱溶着エッジ3との間に一定のすき間を確保出来る範囲で最大に広げられたギャップ6が設けられている。このためブリッジ5の中央部は電気抵抗が小さく、接続部5aは電気抵抗が大きくなるため、ブリッジ5は両端の接続部5a側が大きく発熱し、中間部5b側は小さく発熱する。このためフィルター12の面はブリッジ5による発熱の影響を受けにくい。 The bridge 5 is installed in parallel with the energization direction of the thermal welding edge 3, and the width (cross-sectional area) of the connecting portion 5 a with the thermal welding edge 3 is set smaller than the width (cross-sectional area) of the intermediate portion of the thermal welding edge 3. In addition, a gap 6 that is widened to the maximum in a range in which a certain gap can be secured between the intermediate portion 5b of the bridge 5 and the heat welding edge 3 is provided. For this reason, since the electrical resistance is small in the central portion of the bridge 5 and the electrical resistance of the connecting portion 5a is large, the bridge 5 generates a large amount of heat on the connecting portion 5a side at both ends, and generates a small amount of heat on the intermediate portion 5b side. For this reason, the surface of the filter 12 is not easily affected by heat generated by the bridge 5.

また、熱溶着エッジ3の断面積よりブリッジ5の接続部5aの断面積が小さいため、ブリッジ5の接続部5aの発熱量は熱溶着エッジ3より大きくなるが、接続部5aの発熱は給電側2bへの伝熱で逃げるため、熱溶着エッジ3は全周にわたって略均一な温度に制御される。 Further, since the cross-sectional area of the connecting portion 5a of the bridge 5 is smaller than the cross-sectional area of the heat-welding edge 3, the amount of heat generated by the connecting portion 5a of the bridge 5 is larger than that of the heat-welding edge 3. In order to escape by heat transfer to 2b, the heat welding edge 3 is controlled to a substantially uniform temperature over the entire circumference.

ここで、熱溶着エッジ3とブリッジ5の接続部5aの発熱量及び給電側2bへの伝熱量を熱流体解析ソフト(CFdesign(ブルー リッジ ヌメリクス, インコーポレイテッドの登録商標))を用いて解析した結果を図9(a)、(b)に示す。この解析結果から明らかなように、熱溶着エッジ3の発熱温度分布の温度差は20℃以内に収っている。 Here, the result of analyzing the amount of heat generated at the connecting portion 5a of the thermal welding edge 3 and the bridge 5 and the amount of heat transferred to the power feeding side 2b using thermal fluid analysis software (CFdesign (Blue Ridge Numerics, registered trademark of Incorporated)). Is shown in FIGS. 9 (a) and 9 (b). As is clear from this analysis result, the temperature difference of the heat generation temperature distribution of the thermal welding edge 3 is within 20 ° C.

符号の8は、前記熱溶着チップ本体2において、熱溶着エッジ3の両側面に水平に形成された冷却エアーの流出窓、7は熱溶着チップ本体2の前後側面において、前記流出窓8の中央から上方に向けて対称位置に形成されたスリット、9、9aは電圧印加用のリード線、10は熱溶着チップ本体2の上端部内に嵌合したセラミック製絶縁体11の中心孔を経由して熱溶着チップ本体2内に挿入された冷却エアー供給用の冷却パイプ10である。 Reference numeral 8 denotes a cooling air outlet window formed horizontally on both side surfaces of the thermal welding edge 3 in the thermal welding tip body 2, and 7 denotes a center of the outlet window 8 on the front and rear sides of the thermal welding tip body 2. A slit formed in a symmetric position upward from 9, 9 and 9 a are lead wires for voltage application, and 10 is through a central hole of a ceramic insulator 11 fitted in the upper end portion of the heat-welded chip body 2. A cooling pipe 10 for supplying cooling air inserted into the heat-welded chip body 2.

前記冷却パイプ10の後端部は、圧縮空気供給装置(図示せず)に接続されていて、圧縮空気は、コントローラ(図示せず)によりその噴出が制御される。 The rear end of the cooling pipe 10 is connected to a compressed air supply device (not shown), and the jet of the compressed air is controlled by a controller (not shown).

熱溶着装置1は、手持ちで作業することも可能であるが、通常は架台(図示せず)に設置された上下に移動可能なアクチュエータ(図示せず)の先端に取り付けられる。また熱溶着装置1は3軸制御のエアシリンダー、電動シリンダーまたはロボットなどを用いて複数箇所で行う自動熱溶着装置に取り付けて用いることも可能である。 Although the heat welding apparatus 1 can be operated by hand, it is usually attached to the tip of an actuator (not shown) that can be moved up and down installed on a gantry (not shown). The heat welding apparatus 1 can also be used by being attached to an automatic heat welding apparatus that is performed at a plurality of locations using a three-axis controlled air cylinder, electric cylinder, or robot.

次に[図5](a)〜(d)を用いて溶着工程を説明する。 Next, the welding process will be described using [FIG. 5] (a) to (d).

12は溶着対象となるフィルター、13は熱可塑性樹脂製品で材質はABS、14は熱可塑性樹脂製品13に設けられた穴径φ14mmから成る通気孔であって、前記フィルター12はこの通気孔14の入口に取り付けられる。 12 is a filter to be welded, 13 is a thermoplastic resin product made of ABS, and 14 is a vent hole having a hole diameter of φ14 mm provided in the thermoplastic resin product 13. Attached to the entrance.

本実施例におけるフィルター12は(PTFEを素材とする多孔質メンブレン)t=0.3mm φ22.0mmである。 The filter 12 in this embodiment is (porous membrane made of PTFE) t = 0.3 mm φ22.0 mm.

熱溶着チップ本体2の熱溶着エッジ3は外径φ20.0mm 内径φ18.0mmmである The thermal welding edge 3 of the thermal welding chip body 2 has an outer diameter of φ20.0 mm and an inner diameter of φ18.0 mm.

[図5](a)は、熱可塑性樹脂製品13の通気口14の入口部分に配置されたフィルタ
ー12の上方に、熱溶着装置1がスタンバイしている状態である。
[FIG. 5] (a) is a state in which the thermal welding apparatus 1 is on standby above the filter 12 disposed at the inlet portion of the vent hole 14 of the thermoplastic resin product 13.

[図5](b)は、熱可塑性樹脂製品13に向けて熱溶着装置1が降下して来てフィルタ
ー12の表面に熱溶着エッジ3が接した状態であり、この状態は熱溶着チップ本体2の熱溶着エッジ3と熱可塑性樹脂製品13間にフィルター12が挟まれた状態である。ここで電源装置(図示せず)からリード線9,9aに電圧を印加すると電気抵抗により熱溶着チップ本体2の熱溶着エッジ3が発熱する。同時に、熱溶着装置1に熱可塑性樹脂製品方向に適宜な押し圧を加えることにより、熱溶着チップ本体2の熱溶着エッジ3はフィルター12に圧接する。
[FIG. 5] (b) is a state in which the thermal welding apparatus 1 descends toward the thermoplastic resin product 13 and the thermal welding edge 3 is in contact with the surface of the filter 12, and this state is the thermal welding tip body. 2 is a state in which the filter 12 is sandwiched between the thermal welding edge 3 and the thermoplastic resin product 13. Here, when a voltage is applied to the lead wires 9 and 9a from a power supply device (not shown), the heat welding edge 3 of the heat welding chip body 2 generates heat due to electric resistance. At the same time, an appropriate pressing force is applied to the heat welding device 1 in the direction of the thermoplastic resin product, so that the heat welding edge 3 of the heat welding chip body 2 is in pressure contact with the filter 12.

発熱した熱溶着エッジ3の熱はフィルター12を加熱すると同時にフィルター12を介して熱可塑性樹脂製品13にも熱が伝わり、熱可塑性樹脂製品13を加熱するため、熱可塑性樹脂製品13が軟化し、溶融温度に達すると溶融する。 The heat generated from the heat-welding edge 3 heats the filter 12 and at the same time heat is transferred to the thermoplastic resin product 13 through the filter 12 to heat the thermoplastic resin product 13, so that the thermoplastic resin product 13 is softened, It melts when it reaches the melting temperature.

熱溶着チップ本体2の発熱温度を正確に制御するために、発熱部に熱電対を取り付けて発熱温度を検出し、フィードバック制御する事により、発熱温度の管理を適格に行うことは有効である。 In order to accurately control the heat generation temperature of the heat-welded chip body 2, it is effective to properly manage the heat generation temperature by attaching a thermocouple to the heat generating portion, detecting the heat generation temperature, and performing feedback control.

[図5](c)は、溶融した熱可塑性樹脂製品13はフィルター12と共に溶着エッジ3
の押し圧で押しつぶされると同時に溶融した樹脂の一部はフィルター12(多孔質メンブレン)にも浸透し、その後冷却エアーパイプ10からの冷却エアーにより冷却されて固化することにより、フィルター12は熱可塑性樹脂製品13と一体となって通気孔14の入口に固定された状態である。
[FIG. 5] (c) shows that the molten thermoplastic resin product 13 is welded edge 3 together with the filter 12.
At the same time, a part of the molten resin is squeezed by the pressure of the filter 12 (porous membrane) and then cooled and solidified by the cooling air from the cooling air pipe 10, so that the filter 12 is thermoplastic. In this state, the resin product 13 is integrally fixed to the inlet of the vent hole 14.

また、この固定された状態において、フィルター12は、熱溶着チップ本体2の熱溶着エッジ3の押し込み力により、熱可塑性樹脂製品13の表面に沈み込む。 Further, in this fixed state, the filter 12 sinks into the surface of the thermoplastic resin product 13 by the pushing force of the heat welding edge 3 of the heat welding chip body 2.

また、熱溶着エッジ3は、下降時(沈み込み時)にフィルター12に対してその中心から外周方向に押し広げるような力を加えることになるため、フィルター12にはシワがよらず、きれいに溶着することになる。 Further, the heat welding edge 3 applies a force that pushes the filter 12 from the center to the outer circumferential direction when descending (when sinking), so the filter 12 is not wrinkled and is welded cleanly. Will do.

熱溶着装置1の降下位置は事前に設定してあり、その降下位置は熱可塑性樹脂製品13が溶融してフィルター12に含浸し、一体化した状態において、フィルター12の溶着部が破損しない空間を確保出来る値を選ぶ。本実施例ではフィルター12の厚み0.3mmに対し溶着部12aに0.15mmの空間を設定した。 The lowered position of the heat welding apparatus 1 is set in advance, and the lowered position is a space where the welded portion of the filter 12 is not damaged when the thermoplastic resin product 13 is melted and impregnated into the filter 12 and integrated. Select a value that can be secured. In the present embodiment, a space of 0.15 mm was set in the welded portion 12a with respect to a thickness of the filter 12 of 0.3 mm.

ここまでにおいて、ブリッジ5はフィルター12に接触せず、通電による発熱も小さいためフィルター12を傷付けたり、熱による損傷を与える虞れは無い。 Up to this point, the bridge 5 does not come into contact with the filter 12 and heat generation due to energization is small, so there is no possibility of scratching the filter 12 or causing damage due to heat.

設定した加熱時間が経過した後、電圧の印加を止めると同時に熱溶着チップ本体2に設けた冷却エアーパイプ10から冷却エアー10aが供給されるようにコントローラが電磁弁の切り替えを行う。噴出した冷却エアーは熱溶着チップ本体2の先端部を内部から冷却する。 After the set heating time has elapsed, the controller switches the electromagnetic valve so that the cooling air 10a is supplied from the cooling air pipe 10 provided in the heat-welded chip body 2 at the same time as the application of voltage is stopped. The jetted cooling air cools the tip of the heat-welded chip body 2 from the inside.

このようにして、冷却エアーパイプ10から流出した冷却エアーは流出窓8およびスリット7の間隙を経由して溶着チップ本体2の外部に放出される。 In this way, the cooling air that has flowed out of the cooling air pipe 10 is discharged to the outside of the welding tip body 2 through the gap between the outflow window 8 and the slit 7.

あらかじめ設定した時間で熱溶着チップ本体2の熱溶着エッジ3およびブリッジ接続部5aが冷却され、溶着部12aの樹脂が固化するとコントローラにより電磁弁を切り替えて冷却エアーの供給を止め、熱溶着装置1を上昇させる。この結果フィルター12は熱可塑性樹脂製品13の通気口14の入口の周囲に溶着され、図5(d)のように固定される。 When the heat welding edge 3 and the bridge connecting portion 5a of the heat welding tip body 2 are cooled for a preset time and the resin of the welding portion 12a is solidified, the controller switches the solenoid valve to stop the supply of cooling air, and the heat welding device 1 To raise. As a result, the filter 12 is welded around the inlet of the vent hole 14 of the thermoplastic resin product 13 and fixed as shown in FIG.

図9(a)(b)に本発明による熱溶着チップ本体2(熱溶着エッジ3)が
発熱した時の発熱温度の変化をシミュレーションした結果を示す。この図のように熱溶着エッジ3の温度分布は130℃から160℃の範囲となる。一方、図10(a)(b)のブリッジを設けていない従来例(図6、図7)では130℃から200℃と発熱温度のバラつきが非常に大きくなっている。
FIGS. 9 (a) and 9 (b) show the simulation results of changes in the heat generation temperature when the heat-welded chip body 2 (heat-welded edge 3) according to the present invention generates heat. As shown in this figure, the temperature distribution of the thermal welding edge 3 is in the range of 130 ° C to 160 ° C. On the other hand, in the conventional example (FIGS. 6 and 7) in which the bridges of FIGS. 10A and 10B are not provided, the variation in the heat generation temperature is extremely large from 130 ° C. to 200 ° C.

実施例1では円形のフィルター12を円形の熱溶着エッジ3で熱溶着する場合を説明したが熱溶着エッジ3の形状を楕円形、矩形、多角形等に加工することができれば、例えば図8に示すような矩形の熱溶着エッジ3を有する熱溶着チップ本体2を用いて矩形状に熱溶着することも可能である。
図8において、図1〜図5(a)〜(d)に記載したと同一の符号は、同一の構成部分を示しており、記載の重複を避けるためにここでの符号の説明は省略する。
In the first embodiment, the case where the circular filter 12 is heat-welded with the circular heat-welding edge 3 has been described. However, if the shape of the heat-welding edge 3 can be processed into an ellipse, a rectangle, a polygon, etc., for example, FIG. It is also possible to heat-weld in a rectangular shape using a heat-welding tip body 2 having a rectangular heat-welding edge 3 as shown.
In FIG. 8, the same reference numerals as those shown in FIGS. 1 to 5 (a) to (d) indicate the same components, and the description of the reference numerals is omitted here to avoid duplication of description. .

1 熱溶着装置
2 熱溶着チップ本体
3 熱溶着エッジ
4 開口部
5 ブリッジ
5a ブリッジ接続部
6 ギャップ
7 エアー流出スリット
8 エアー流出窓
9,9a リード線
10 冷却エアーパイプ
11 絶縁体
12 フィルター
13 熱可塑性樹脂製品
14 通気孔
DESCRIPTION OF SYMBOLS 1 Thermal welding apparatus 2 Thermal welding tip main body 3 Thermal welding edge 4 Opening part 5 Bridge 5a Bridge connection part 6 Gap 7 Air outflow slit 8 Air outflow window
9, 9a Lead wire 10 Cooling air pipe 11 Insulator 12 Filter 13 Thermoplastic resin product 14 Ventilation hole

Claims (4)

熱溶着性を有する素材で形成されたチップ材の周囲を熱可塑性樹脂製品に熱溶着するインパルス加熱方式の熱溶着装置であって、この熱溶着装置の熱溶着チップ本体の先端部には、前記溶着形状の輪郭からなる熱溶着エッジを突設し、
この溶着エッジに囲まれた前記熱溶着チップ本体の内部には空間部を形成し、
この空間部を横断するようにブリッジを設けることにより、左右の電極部から印加された電流の流れを前記溶着エッジに沿って流れる電流の流れと、前記ブリッジに沿って流れる電流の流れに3分割することにより、熱溶着エッジの発熱温度のバラつきを小さく設定したこと、
を特徴とする熱可塑性樹脂製品にチップ材を熱溶着するための熱溶着装置。
An impulse heating type thermal welding apparatus that thermally welds the periphery of a chip material formed of a material having thermal weldability to a thermoplastic resin product, and the tip of the thermal welding chip body of the thermal welding apparatus is Protruding a thermal welding edge consisting of the outline of the welding shape,
A space is formed inside the heat welding chip body surrounded by the welding edge,
By providing a bridge so as to cross this space portion, the current flow applied from the left and right electrode portions is divided into three parts: a current flow flowing along the welding edge and a current flow flowing along the bridge. By doing so, the variation in the heat generation temperature of the heat welding edge was set small,
A thermal welding apparatus for thermally welding a chip material to a thermoplastic resin product.
請求項1に記載の熱溶着装置であって、前記熱溶着エッジにおける正面視の形状は、円形又は矩形又は多角形に形成されていること、を特徴とする熱溶着装置。 It is a heat welding apparatus of Claim 1, Comprising: The shape of the front view in the said heat welding edge is formed in circular, a rectangle, or a polygon, The heat welding apparatus characterized by the above-mentioned. 請求項1に記載の熱溶着装置であって、前記熱溶着チップ本体内には冷却エアー供給用パイプが挿入されていると共に前記熱溶着チップ本体の側壁には、左右の電極部の中間に冷却エアー流出スリットと、このスリットの下端には周方向に向けて冷却エアー流出窓が形成され、前記冷却エアー供給用パイプから噴出した冷却エアーは、前記熱溶着チップ本体内から前記熱溶着エッジ部分を冷却したのち、前記スリットと冷却エアー流出窓を経由して熱溶着チップ本体の外に流出すること、を特徴とする熱溶着装置。 2. The heat welding apparatus according to claim 1, wherein a cooling air supply pipe is inserted into the heat welding tip body, and the side wall of the heat welding tip body is cooled between the left and right electrode portions. An air outflow slit and a cooling air outflow window are formed in the circumferential direction at the lower end of the slit, and the cooling air ejected from the cooling air supply pipe passes through the thermal welding edge portion from the inside of the thermal welding tip body. After cooling, the heat welding apparatus is characterized in that it flows out of the heat welding chip body through the slit and the cooling air outflow window. 請求項1に記載の熱溶着装置であって、前記ブリッジは、熱溶着チップ本体内空間部の中央を横断し、かつブリッジは中央部の幅が両端部の幅より大きく設定されていること、を特徴とする熱溶着装置。 It is a heat welding apparatus according to claim 1, wherein the bridge crosses the center of the space part in the heat welding chip main body, and the bridge is set such that the width of the center part is larger than the width of both ends. A heat welding apparatus characterized by
JP2015020392A 2015-02-04 2015-02-04 Heat welding equipment Active JP6457287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015020392A JP6457287B2 (en) 2015-02-04 2015-02-04 Heat welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015020392A JP6457287B2 (en) 2015-02-04 2015-02-04 Heat welding equipment

Publications (2)

Publication Number Publication Date
JP2016141101A true JP2016141101A (en) 2016-08-08
JP6457287B2 JP6457287B2 (en) 2019-01-23

Family

ID=56569345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015020392A Active JP6457287B2 (en) 2015-02-04 2015-02-04 Heat welding equipment

Country Status (1)

Country Link
JP (1) JP6457287B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106113487A (en) * 2016-08-24 2016-11-16 余姚市亿荣自动化科技有限公司 Plastic plate or plastic sheeting eddy current pulse welding mechanism
CN107127978A (en) * 2017-06-05 2017-09-05 盐池县特力建材有限公司 A kind of straight tube pipe well shaping heat melting device
JP2019119122A (en) * 2017-12-30 2019-07-22 ムネカタインダストリアルマシナリー株式会社 Thermal welding device
JP2019123157A (en) * 2018-01-17 2019-07-25 ムネカタインダストリアルマシナリー株式会社 Heat welding apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059495U (en) * 1983-09-30 1985-04-25 株式会社 土屋製作所 Impulse heater heating element
JPS623927A (en) * 1985-06-28 1987-01-09 エービー テトラ パック Method and device for adjusting supply energy to sealing device for thermoplastic material
JP2001079949A (en) * 1999-09-09 2001-03-27 Nippon Avionics Co Ltd Thermo compression bonding apparatus
JP2002318489A (en) * 2001-04-20 2002-10-31 Canon Inc Manufacturing method of process cartridge, manufacturing method of developing device and impulse seal device
JP2003181937A (en) * 2001-12-13 2003-07-03 Tohoku Munekata Co Ltd Method and apparatus for heat-fusion-bonding thermoplastic resin molding
JP2006150613A (en) * 2004-11-25 2006-06-15 Munekata Co Ltd Resistance heater for welding device capable of caulking two welded bosses at same time
JP2014004729A (en) * 2012-06-22 2014-01-16 Munekata Industrial Machinery Co Ltd Thermal welding device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059495U (en) * 1983-09-30 1985-04-25 株式会社 土屋製作所 Impulse heater heating element
JPS623927A (en) * 1985-06-28 1987-01-09 エービー テトラ パック Method and device for adjusting supply energy to sealing device for thermoplastic material
JP2001079949A (en) * 1999-09-09 2001-03-27 Nippon Avionics Co Ltd Thermo compression bonding apparatus
JP2002318489A (en) * 2001-04-20 2002-10-31 Canon Inc Manufacturing method of process cartridge, manufacturing method of developing device and impulse seal device
JP2003181937A (en) * 2001-12-13 2003-07-03 Tohoku Munekata Co Ltd Method and apparatus for heat-fusion-bonding thermoplastic resin molding
JP2006150613A (en) * 2004-11-25 2006-06-15 Munekata Co Ltd Resistance heater for welding device capable of caulking two welded bosses at same time
JP2014004729A (en) * 2012-06-22 2014-01-16 Munekata Industrial Machinery Co Ltd Thermal welding device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106113487A (en) * 2016-08-24 2016-11-16 余姚市亿荣自动化科技有限公司 Plastic plate or plastic sheeting eddy current pulse welding mechanism
CN106113487B (en) * 2016-08-24 2023-04-25 宁波亿荣自动化科技有限公司 Vortex pulse welding mechanism for plastic plate or plastic film
CN107127978A (en) * 2017-06-05 2017-09-05 盐池县特力建材有限公司 A kind of straight tube pipe well shaping heat melting device
JP2019119122A (en) * 2017-12-30 2019-07-22 ムネカタインダストリアルマシナリー株式会社 Thermal welding device
JP2019123157A (en) * 2018-01-17 2019-07-25 ムネカタインダストリアルマシナリー株式会社 Heat welding apparatus

Also Published As

Publication number Publication date
JP6457287B2 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
JP6457287B2 (en) Heat welding equipment
JP5592911B2 (en) Heat welding equipment
JP6101946B2 (en) Welding equipment
US3536568A (en) Sealing and/or severing device for plastic films
KR102211294B1 (en) Connecting method for plastic pipe and connecting structure therefor
JP7187082B2 (en) Selective current sintering equipment
JP2015205419A (en) Heat sealer and production method thereof
KR102193936B1 (en) Connecting method for plastic pipe and connecting structure therefor
JP3733348B2 (en) Thermo welding equipment for thermoplastic resin molded products
JP3737966B2 (en) Thermal welding method and apparatus for thermoplastic resin molded product
JP6567250B2 (en) Heat welding equipment
KR101421133B1 (en) Heat Adhesion System And Method For Plastic Element Using Selective Heating
JP6722931B1 (en) Thermal welding tip and thermal welding unit
JP2017177697A (en) Apparatus and method for injection molding
JPH0419016B2 (en)
JP3053786B2 (en) Heat welding method of sealed resin case
KR102588190B1 (en) Manufacturing Unit for Lead Tabs for Secondary Batteries
JP2023013122A (en) Bonding method and bonding device
JP3832544B2 (en) Bonding method of resin parts
JP3199959U (en) Ceramic heater
JP2017079178A (en) Clamp and joining method
KR101576112B1 (en) Hot stacking machine
JP2004026161A (en) Heat-sealing device for container
JPH05283087A (en) Method and device for manufacturing flat battery
JP2014151492A (en) Valve gate system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181220

R150 Certificate of patent or registration of utility model

Ref document number: 6457287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250