JP2016138736A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2016138736A
JP2016138736A JP2015015346A JP2015015346A JP2016138736A JP 2016138736 A JP2016138736 A JP 2016138736A JP 2015015346 A JP2015015346 A JP 2015015346A JP 2015015346 A JP2015015346 A JP 2015015346A JP 2016138736 A JP2016138736 A JP 2016138736A
Authority
JP
Japan
Prior art keywords
voltage
conversion coefficient
current
input current
rated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015015346A
Other languages
Japanese (ja)
Other versions
JP6319120B2 (en
Inventor
邱雁宇
Yanyu Chiu
池田雄一
Yuichi Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2015015346A priority Critical patent/JP6319120B2/en
Publication of JP2016138736A publication Critical patent/JP2016138736A/en
Application granted granted Critical
Publication of JP6319120B2 publication Critical patent/JP6319120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Rectifiers (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a tolerance at a conversion formula for calculating an input current (an effective value) of AC power supply from DC current after rectification in the case that an operation is continued when AC voltage is lowered below a lower limit rated voltage in a rated voltage range of an air conditioner.SOLUTION: An air conditioner 20 comprises an input current converting part 30 in which an input current is calculated from a detected current by using a predetermined conversion coefficient that is a ratio of an input current of AC power supply to the detected current and outputted to a control part. This input current converting part 30 comprises a first conversion coefficient memory part 31 storing a first conversion coefficient and a second conversion coefficient memory part 32 storing a second conversion coefficient larger than the first conversion coefficient. The input current converting part 30 calculates an input current by using the second conversion coefficient in place of the first conversion coefficient when a voltage detected at a voltage detecting part becomes less than a predetermined voltage threshold and outputs it to an outdoor unit control part 9.SELECTED DRAWING: Figure 1

Description

本発明は、空気調和機に係わり、より詳細には、整流・平滑した直流電源における直流電流から交流電源の入力電流を算出して求める構成において、入力電圧が低下した時に算出する入力電流値の精度を向上させる構成に関する。   The present invention relates to an air conditioner, and more specifically, in a configuration in which an input current of an AC power supply is calculated from a DC current in a rectified and smoothed DC power supply, an input current value calculated when the input voltage decreases. The present invention relates to a configuration that improves accuracy.

従来、入力された交流電源の力率改善を行なうと共に、整流した電圧を昇圧する空気調和機としては特許文献1に開示されている。この空気調和機70を図4のブロック図に示す。   Conventionally, Patent Document 1 discloses an air conditioner that improves the power factor of an input AC power supply and boosts a rectified voltage. This air conditioner 70 is shown in the block diagram of FIG.

図4の空気調和機70は互いに通信接続された室外機60と室内機50とで構成されている。
室外機60は、図示しない交流電源が接続される入力端(入力端1と入力端2)に接続された整流器4と、整流器4の出力端に接続された整流電圧検出部3と、整流器4の出力端に接続された昇圧チョッパ回路5と、昇圧チョッパ回路5の出力端に接続されるインバータ6と、インバータ6の出力端に接続された圧縮機7と、昇圧チョッパ回路5の出力端に並列に接続された電圧検出部8と、整流器4の出力側と昇圧チョッパ回路5の間に直列に接続されたシャント抵抗からなる電流検出部10と、室内機50からの指示により室外機40全体を制御する室外機制御部9を備えている。
The air conditioner 70 shown in FIG. 4 includes an outdoor unit 60 and an indoor unit 50 that are connected to each other for communication.
The outdoor unit 60 includes a rectifier 4 connected to input terminals (input terminal 1 and input terminal 2) to which an AC power supply (not shown) is connected, a rectified voltage detection unit 3 connected to an output terminal of the rectifier 4, and the rectifier 4 The boost chopper circuit 5 connected to the output terminal of the inverter, the inverter 6 connected to the output terminal of the boost chopper circuit 5, the compressor 7 connected to the output terminal of the inverter 6, and the output terminal of the boost chopper circuit 5 The voltage detector 8 connected in parallel, the current detector 10 composed of a shunt resistor connected in series between the output side of the rectifier 4 and the step-up chopper circuit 5, and the outdoor unit 40 as a whole according to instructions from the indoor unit 50 The outdoor unit control unit 9 is controlled.

また、室外機60は、電流検出部10で検出した検出電流信号が入力され、入力された検出電流信号を内蔵された図示しない抵抗とコンデンサで積分して、検出電流信号と対応する電圧を生成する信号平滑部11と、この生成された電圧をアナログ/デジタル変換するA/D変換部12と、アナログ/デジタル変換された値を予め定められた変換式で算出して室外機制御部9へ交流電源の入力電流値(実効値)として出力する電流変換部13とを備えている。   The outdoor unit 60 receives the detection current signal detected by the current detection unit 10 and integrates the input detection current signal with a built-in resistor and capacitor (not shown) to generate a voltage corresponding to the detection current signal. A signal smoothing unit 11 that performs analog / digital conversion on the generated voltage, and an analog / digital converted value calculated by a predetermined conversion formula to the outdoor unit control unit 9. And a current converter 13 that outputs the input current value (effective value) of the AC power supply.

ところで、交流を整流した直流で動作する機器に関して、エネルギー保存の法則により、交流の消費電力と整流された後の直流の消費電力とは等しくなる。この関係を以下に示す。なお、Veは交流電圧(実効値)、Ieは交流電流(実効値)、λは力率、Vdは直流電圧、Idは直流電流である。なお、直流は全て実効値である。
Ve×Ie×λ=Vd×Id 従って、
Ie=(Vd×Id)/(Ve×λ)・・・式1
となる。ここで、整流・平滑された電圧であるVdは、ほぼVeの1.4倍となるため、
Ve=Vd×1/1.4・・・式2
の関係が成り立ち、この式2を式1に代入して、
Ie=(Vd×Id)/(Vd×1/1.4×λ)
=Id/(0.71×λ)=(1/0.71)×(1/λ)×Id・・・式3
となる。ここで1/0.71=1.4を係数kとすると、
Ie=k×Ia×(1/λ)・・・式4
となる。なお、この式は無負荷状態を表す式であり、実際にはkは接続される負荷の電圧に影響されるため、この負荷の電圧、つまり、昇圧チョッパ回路5の出力電圧が所定電圧、例えば空気調和機70が定格電圧範囲で使用される直流の300ボルトの時の係数kを第1変換係数変換係数、力率λを1とすると、
Ie=第1変換係数×Ia・・・式5
となる。
By the way, with respect to a device that operates on a direct current obtained by rectifying an alternating current, the consumed power of the alternating current is equal to the consumed power of the direct current after being rectified according to the law of energy conservation. This relationship is shown below. Note that Ve is an AC voltage (effective value), Ie is an AC current (effective value), λ is a power factor, Vd is a DC voltage, and Id is a DC current. All direct currents are effective values.
Ve × Ie × λ = Vd × Id Therefore,
Ie = (Vd × Id) / (Ve × λ) Equation 1
It becomes. Here, Vd, which is the rectified and smoothed voltage, is approximately 1.4 times Ve,
Ve = Vd × 1 / 1.4 Expression 2
Substituting Equation 2 into Equation 1
Ie = (Vd × Id) / (Vd × 1 / 1.4 × λ)
= Id / (0.71 × λ) = (1 / 0.71) × (1 / λ) × Id Formula 3
It becomes. Here, when 1 / 0.71 = 1.4 is a coefficient k,
Ie = k × Ia × (1 / λ) Equation 4
It becomes. Note that this expression is an expression representing a no-load state, and in actuality k is affected by the voltage of the connected load, so that the voltage of this load, that is, the output voltage of the boost chopper circuit 5 is a predetermined voltage, for example, When the coefficient k when the air conditioner 70 is used in the rated voltage range and the direct current is 300 volts is the first conversion coefficient conversion coefficient and the power factor λ is 1,
Ie = first conversion coefficient × Ia Equation 5
It becomes.

なお、式4において1/λがIdの乗数となっているため、λが1から小さくなると、つまり、力率が悪化するとIeはこれに対応して大きくなる。また、第1変換係数は予め実験的に求めておく。例えば、空気調和機70が定格電圧、例えば230ボルト(実効値)で昇圧チョッパ回路5の出力電圧が300ボルトの時、空調負荷を変化させて入力電流(実効値)を変化させ、この時のA/D変換部12の出力値を求める。このようにして、入力電流(実効値)と対応するA/D変換部12の出力値を対応させて式5から第1変換係数を決定する。   In Equation 4, since 1 / λ is a multiplier of Id, when λ decreases from 1, that is, when the power factor deteriorates, Ie increases correspondingly. The first conversion coefficient is obtained experimentally in advance. For example, when the air conditioner 70 has a rated voltage, for example, 230 volts (effective value) and the output voltage of the boost chopper circuit 5 is 300 volts, the air conditioning load is changed to change the input current (effective value). The output value of the A / D converter 12 is obtained. In this manner, the first conversion coefficient is determined from Equation 5 by associating the input current (effective value) with the corresponding output value of the A / D converter 12.

一般的に空気調和機の定格電圧範囲内で力率がほぼ1になるように昇圧チョッパ回路5を設計するため、定格電圧範囲内であれば、前述した式5により整流後の直流電流であるIaと第1変換係数を用いてIe(交流電源の入力電流の実効値)を求めることができる。
つまり、信号平滑部11で電流検出部10で検出した検出電流信号を平滑化し、これをA/D変換部12でデジタル値に変換し、電流変換部13で式5を用いて入力電流値(実効値)に変換し、室外機制御部9へ出力するようになっている。
In general, the step-up chopper circuit 5 is designed so that the power factor is approximately 1 within the rated voltage range of the air conditioner. Ie (the effective value of the input current of the AC power supply) can be obtained using Ia and the first conversion coefficient.
That is, the signal smoothing unit 11 smoothes the detection current signal detected by the current detection unit 10, converts this to a digital value by the A / D conversion unit 12, and the current conversion unit 13 uses the expression 5 to obtain the input current value ( (Effective value) and output to the outdoor unit control unit 9.

室外機制御部9は、圧縮機7を指示された回転数で駆動する駆動信号(スイッチング信号)をPWM制御により生成してインバータ6へ出力すると共に、電圧検出部8で検出した昇圧チョッパ回路5の出力電圧が所定の目標電圧になるように、また、電流検出部10で検出した検出電流信号と整流電圧検出部3で検出した整流出力電圧信号とに基づいて力率を1に近づけるようにスイッチング信号をPWM制御により生成して昇圧チョッパ回路5へ出力する。   The outdoor unit control unit 9 generates a drive signal (switching signal) for driving the compressor 7 at the instructed rotational speed by PWM control and outputs the drive signal to the inverter 6, and the boost chopper circuit 5 detected by the voltage detection unit 8. The power factor is made close to 1 based on the detected current signal detected by the current detecting unit 10 and the rectified output voltage signal detected by the rectified voltage detecting unit 3. A switching signal is generated by PWM control and output to the boost chopper circuit 5.

交流電圧が定格電圧範囲の下限より下回ると、昇圧チョッパ回路5は入力電流を正弦波形とすることができずに入力電流波形は非正弦波形となり力率が悪化する。そして、前述したように式4において1/λがIdの乗数となっているため、λ(力率)が1から小さくなると、つまり、力率が悪化するとIeはこれに対応して大きくする必要がある。一方、直流の検出電流から交流電流の入力電流を求めるための変換式(式5)は、交流電圧が定格電圧範囲内の時に力率を1として決定してある。このため、力率が悪化した場合に力率を1とした式5を用いた場合は誤差が大きくなる。一般的な空気調和機では入力電圧が定格電圧範囲外となった時には運転を中止するためこの誤差は問題とならない。   When the AC voltage falls below the lower limit of the rated voltage range, the boost chopper circuit 5 cannot make the input current a sine waveform, and the input current waveform becomes a non-sine waveform, and the power factor deteriorates. Since 1 / λ is a multiplier of Id in Equation 4 as described above, when λ (power factor) decreases from 1, that is, when the power factor deteriorates, Ie needs to be increased correspondingly. There is. On the other hand, the conversion formula (Formula 5) for obtaining the AC current input current from the DC detection current is determined with a power factor of 1 when the AC voltage is within the rated voltage range. For this reason, when the power factor is deteriorated, the error becomes large when Expression 5 with the power factor of 1 is used. In a general air conditioner, the operation is stopped when the input voltage is out of the rated voltage range, so this error is not a problem.

しかしながら、電源事情の悪い地域で使用される空気調和機は、一時的に定格電圧範囲の下限定格電圧よりも低下した場合であっても、定格電圧範囲での定格運転能力よりも運転能力を低下させて、できるだけ運転を継続させる必要がある。この場合、変換式(式5)は誤差が大きくなり、力率が悪化して1よりも小さくなると変換結果が実際の入力電流よりも小さい値になってしまう。   However, air conditioners that are used in areas where power supply conditions are poor have a lower operating capacity than the rated operating capacity in the rated voltage range, even if temporarily lower than the lower rated voltage of the rated voltage range It is necessary to continue operation as much as possible. In this case, the conversion formula (Formula 5) has a large error, and when the power factor deteriorates and becomes smaller than 1, the conversion result becomes a value smaller than the actual input current.

このため、室外機制御部9は変換式(式5)で算出された入力電流値(実効値)が実際には許容電流値よりも大きいにも関わらず、許容電流値よりも小さいと誤認識して昇圧チョッパ回路5やインバータ6を制御する。この結果、例えば入力電流値(実効値)で制限が規定されている圧縮機7の回転数制御(電流レリース制御)の限度電流値を超えて圧縮機7の回転数を上昇させることになり、インバータ6内の図示しないスイッチング素子の最大定格電流値を超えた制御や、整流器4の最大定格電流値を超えた制御を行なうことになり、場合によっては整流器4やインバータ6のスイッチング素子が破壊される問題があった。   For this reason, the outdoor unit control unit 9 erroneously recognizes that the input current value (effective value) calculated by the conversion formula (Formula 5) is actually smaller than the allowable current value even though it is larger than the allowable current value. Thus, the boost chopper circuit 5 and the inverter 6 are controlled. As a result, for example, the rotational speed of the compressor 7 is increased beyond the limit current value of the rotational speed control (current release control) of the compressor 7 that is restricted by the input current value (effective value). Control exceeding the maximum rated current value of the switching element (not shown) in the inverter 6 or control exceeding the maximum rated current value of the rectifier 4 is performed. In some cases, the switching elements of the rectifier 4 and the inverter 6 are destroyed. There was a problem.

特開平10−52050号公報(第2−3頁、図5)Japanese Patent Laid-Open No. 10-52050 (page 2-3, FIG. 5)

本発明は以上述べた問題点を解決し、交流電圧が空気調和機の定格電圧範囲の下限定格電圧よりも低下した時に運転を継続する場合、整流された後の直流電流から交流電源の入力電流(実効値)を求めるための変換式の誤差を小さくすることを目的とする。   The present invention solves the above-described problems, and when the operation is continued when the AC voltage is lower than the lower limit rated voltage of the rated voltage range of the air conditioner, the input current of the AC power source is changed from the rectified DC current. The object is to reduce the error of the conversion formula for obtaining (effective value).

本発明は上述の課題を解決するため、本発明の請求項1に記載の発明は、交流電源が接続される入力端と、前記入力端に接続される整流器と、同整流器の出力端に接続された力率改善回路と、同力率改善回路の出力端に接続されたインバータと、同インバータの出力端に接続された圧縮機と、前記整流器と前記力率改善回路との間に直列に接続された電流検出部と、前記力率改善回路の前記出力端に接続された電圧検出部と、前記力率改善回路と前記インバータを制御する制御部とを備え、
定格の空調能力で運転が可能な定格電圧範囲で動作する定格運転モードと、前記定格電圧範囲の下限定格電圧未満で前記定格の空調能力よりも小さい空調能力で運転する限定運転モードのいずれかで動作する空気調和機であって、
前記空気調和機は、前記電流検出部が検出した直流の検出電流に対する前記交流電源の実効値の入力電流の比であり予め定めた変換係数を用いて前記検出電流から前記入力電流を算出して前記制御部へ出力する入力電流変換部を備え、
前記入力電流変換部は、前記定格運転モードで使用される第1変換係数を記憶する第1変換係数記憶部と、
前記限定運転モードで使用され前記第1変換係数よりも大きい第2変換係数を記憶する第2変換係数記憶部とを備え、
前記入力電流変換部は、前記電圧検出部で検出された電圧が、前記定格電圧範囲の下限定格電圧より低い電圧と対応する予め定めた電圧閾値以下に低下した時、前記第1変換係数に代えて前記第2変換係数を用いて前記入力電流を算出して前記制御部へ出力する。
In order to solve the above-described problems, the present invention according to claim 1 of the present invention includes an input terminal to which an AC power supply is connected, a rectifier connected to the input terminal, and an output terminal of the rectifier. A power factor correction circuit, an inverter connected to the output terminal of the power factor correction circuit, a compressor connected to the output terminal of the inverter, and the rectifier and the power factor correction circuit in series. A connected current detection unit; a voltage detection unit connected to the output terminal of the power factor improvement circuit; and a control unit for controlling the power factor improvement circuit and the inverter.
Either a rated operation mode that operates in the rated voltage range that can be operated with the rated air conditioning capacity, or a limited operation mode that operates with an air conditioning capacity that is less than the lower rated voltage of the rated voltage range and smaller than the rated air conditioning capacity. An operating air conditioner,
The air conditioner is a ratio of an input current of an effective value of the AC power supply to a DC detection current detected by the current detection unit, and calculates the input current from the detection current using a predetermined conversion coefficient. An input current conversion unit for outputting to the control unit;
The input current conversion unit includes a first conversion coefficient storage unit that stores a first conversion coefficient used in the rated operation mode;
A second conversion coefficient storage unit that is used in the limited operation mode and stores a second conversion coefficient larger than the first conversion coefficient;
The input current conversion unit replaces the first conversion coefficient when the voltage detected by the voltage detection unit falls below a predetermined voltage threshold corresponding to a voltage lower than a lower limit rated voltage of the rated voltage range. The input current is calculated using the second conversion coefficient and output to the control unit.

以上の手段を用いることにより、本発明による空気調和機によれば、請求項1に係わる発明は、電圧検出部で検出された電圧が電圧閾値以下になった時、入力電流変換部が第1変換係数に代えて第2変換係数を用いて交流電源の入力電流を算出して制御部へ出力するため、交流電圧が空気調和機の定格電圧範囲よりも低い時に空調運転を継続する場合、より正確に入力電流を求めることができ、回路素子の破壊を防止することができる。   By using the above means, according to the air conditioner of the present invention, when the voltage detected by the voltage detection unit is equal to or lower than the voltage threshold, the input current conversion unit is In order to calculate the input current of the AC power supply using the second conversion coefficient instead of the conversion coefficient and output it to the control unit, if the AC voltage is lower than the rated voltage range of the air conditioner, The input current can be accurately obtained, and the circuit element can be prevented from being destroyed.

本発明による空気調和機の実施例を示すブロック図である。It is a block diagram which shows the Example of the air conditioner by this invention. 本発明による空気調和機の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the air conditioner by this invention. 検出電流の変換式を説明するグラフである。It is a graph explaining the conversion formula of detection current. 従来の空気調和機を示すブロック図である。It is a block diagram which shows the conventional air conditioner.

以下、本発明の実施の形態を、添付図面に基づいた実施例として詳細に説明する。なお、図1に示す空気調和機には熱交換機や送風ファン、電磁弁などを備えているが、これらは本願と直接的な関係がないため図示と説明を省略する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail as examples based on the attached drawings. The air conditioner shown in FIG. 1 includes a heat exchanger, a blower fan, a solenoid valve, and the like, but these are not directly related to the present application, and illustration and description thereof are omitted.

図1は本発明による空気調和機20の実施例を示す概略のブロック図である。なお、この空気調和機20は、交流電圧の定格電圧が230ボルト、動作可能な定格電圧範囲が207〜253ボルトになっている。なお、電圧はいずれも実効値であり、207ボルトは下限定格電圧を示す。   FIG. 1 is a schematic block diagram showing an embodiment of an air conditioner 20 according to the present invention. The air conditioner 20 has an AC voltage rated voltage of 230 volts and an operable voltage range of 207 to 253 volts. In addition, all voltages are effective values, and 207 volts indicates a lower limit rated voltage.

室外機40は、図示しない交流電源が接続される入力端(入力端1と入力端2)に接続された整流器4と、整流器4の出力端(正極出力端4aと負極出力端4b)に接続された整流電圧検出部3と、整流器4の出力端に入力端(正極入力端5bと負極入力端5c)が接続された力率改善回路である昇圧チョッパ回路5と、昇圧チョッパ回路5の出力端(正極出力端5dと負極出力端5e)に接続されるインバータ6と、インバータ6の出力端に接続された圧縮機7と、昇圧チョッパ回路5の出力端に並列に接続された電圧検出部8と、整流器4の負極出力端4bと昇圧チョッパ回路5の負極入力端5cの間に直列に接続されたシャント抵抗からなる電流検出部10と、室内機50からの指示により室外機40全体を制御する室外機制御部9を備えている。   The outdoor unit 40 is connected to a rectifier 4 connected to an input end (input end 1 and input end 2) to which an AC power supply (not shown) is connected, and to an output end (positive output end 4a and negative output end 4b) of the rectifier 4. The boosted chopper circuit 5 which is a power factor improving circuit in which the input terminals (the positive input terminal 5b and the negative input terminal 5c) are connected to the output terminal of the rectifier 4, and the output of the boost chopper circuit 5 Inverter 6 connected to the terminals (positive output terminal 5d and negative output terminal 5e), a compressor 7 connected to the output terminal of inverter 6, and a voltage detection unit connected in parallel to the output terminal of boost chopper circuit 5 8, the current detection unit 10 including a shunt resistor connected in series between the negative output terminal 4 b of the rectifier 4 and the negative input terminal 5 c of the boost chopper circuit 5, and the outdoor unit 40 as a whole by an instruction from the indoor unit 50. The outdoor unit control unit 9 to be controlled Eteiru.

また、室外機40は、電流検出部10で検出した検出電流信号が入力され、入力された検出電流信号を内蔵された図示しない抵抗とコンデンサで積分して、入力電流と対応する電圧を生成する信号平滑部11と、この生成された電圧をアナログ/デジタル変換するA/D変換部12と、検出電流がアナログ/デジタル変換されて出力された検出電流値を予め定められた変換式で算出して室外機制御部9へ入力電流値として出力する入力電流変換部30とを備えている。   The outdoor unit 40 receives the detection current signal detected by the current detection unit 10 and integrates the input detection current signal with a built-in resistor and capacitor (not shown) to generate a voltage corresponding to the input current. The signal smoothing unit 11, the A / D conversion unit 12 that performs analog / digital conversion on the generated voltage, and the detection current value that is output after analog / digital conversion of the detection current is calculated by a predetermined conversion formula. And an input current conversion unit 30 that outputs an input current value to the outdoor unit control unit 9.

前述したように整流前の入力電流(実効値)と整流した後の直流電流は一定の関係式(式4)が成り立つ。このため、検出電流(整流した後の電流)から交流電流の入力電流(実効値)を求めるため、例えば前述した第1変換係数を決定した方法を用いて、予め定められた空調負荷と定格電圧における検出電流と交流電流の入力電流の関係式(式5)の変換係数を実験的に求めて入力電流変換部30に記憶し、この式を用いてA/D変換部12が出力する検出電流値を入力電流変換部30で入力電流値として算出し、室外機制御部9へ出力するようになっている。なお、交流電圧が下限定格電圧より小さい場合、つまり、力率が1より小さい場合も同様に、空調負荷と交流電圧を固定して空気調和機20を運転し、検出電流と交流電流の入力電流の関係式(式4)の変換係数と力率の積からなる第2変換係数を実験的に求めて入力電流変換部30に記憶しておく。   As described above, the input current (effective value) before rectification and the direct current after rectification have a certain relational expression (formula 4). For this reason, in order to obtain the input current (effective value) of the alternating current from the detected current (the current after rectification), for example, using the method for determining the first conversion coefficient described above, a predetermined air conditioning load and rated voltage are used. Is obtained experimentally and stored in the input current conversion unit 30, and the detection current output from the A / D conversion unit 12 using this equation. The value is calculated as an input current value by the input current conversion unit 30 and output to the outdoor unit control unit 9. Similarly, when the AC voltage is smaller than the lower limit rated voltage, that is, when the power factor is smaller than 1, the air conditioner 20 is operated with the air conditioning load and the AC voltage fixed, and the detected current and the input current of the AC current are A second conversion coefficient consisting of the product of the conversion coefficient of the relational expression (formula 4) and the power factor is experimentally obtained and stored in the input current conversion unit 30.

室外機制御部9は、圧縮機7を指示された回転数で駆動する駆動信号(スイッチング信号)をPWM制御により生成してインバータ6へ出力すると共に、電圧検出部8で検出した検出電圧信号が昇圧チョッパ回路5の出力電圧の目標電圧になるように、また、電流検出部10で検出した検出電流信号と整流電圧検出部3で検出した整流出力電圧信号とに基づいて力率を改善するようにスイッチング信号をPWM制御により生成して昇圧チョッパ回路5へ出力する。   The outdoor unit controller 9 generates a drive signal (switching signal) for driving the compressor 7 at the instructed rotational speed by PWM control and outputs it to the inverter 6, and the detected voltage signal detected by the voltage detector 8 The power factor is improved based on the detected current signal detected by the current detector 10 and the rectified output voltage signal detected by the rectified voltage detector 3 so that the output voltage of the boost chopper circuit 5 becomes the target voltage. The switching signal is generated by PWM control and output to the boost chopper circuit 5.

入力電流変換部30は、電圧検出部8で検出されたDC電圧が予め定めた電圧閾値以下になった時、つまり、交流電圧が低下して下限定格電圧未満となり、昇圧チョッパ回路5で目標電圧までDC電圧を昇圧できなくなった時に、ハイレベルの電圧低下信号を出力する電圧低下検出部34と、入力された検出電流値を予め定めた変換式により算出して、算出結果を入力電流値として室外機制御部9へ出力する電流変換部33と、電流変換部33が用いる変換式で使用される第1変換係数を記憶する第1変換係数記憶部31、及び第2変換係数を記憶する第2変換係数記憶部32を備えている。
なお、電流変換部33は電圧低下信号がハイレベルになった時には第2変換係数を第2変換係数記憶部32から、また、ローレベルになった時には第1変換係数を第1変換係数記憶部31からそれぞれ読み出し、読み出された変換係数を変換式に用いて入力電流値を算出する。
When the DC voltage detected by the voltage detection unit 8 becomes equal to or lower than a predetermined voltage threshold, that is, the AC voltage decreases to become less than the lower limit rated voltage, the input current conversion unit 30 When the DC voltage can no longer be boosted up to, the voltage drop detection unit 34 that outputs a high level voltage drop signal and the input detection current value are calculated by a predetermined conversion formula, and the calculation result is used as the input current value. The current conversion unit 33 that outputs to the outdoor unit control unit 9, the first conversion coefficient storage unit 31 that stores the first conversion coefficient used in the conversion formula used by the current conversion unit 33, and the second conversion coefficient that stores the second conversion coefficient. 2 conversion coefficient storage unit 32 is provided.
The current conversion unit 33 converts the second conversion coefficient from the second conversion coefficient storage unit 32 when the voltage drop signal becomes high level, and the first conversion coefficient from the first conversion coefficient storage unit when it becomes low level. 31. The input current value is calculated using the conversion coefficient read out from each of 31 and the conversion equation.

なお、室外機制御部9は電圧低下検出部34と同様に、DC電圧が予め定めた電圧閾値以下となった時を監視しており、DC電圧が予め定めた電圧閾値よりも高い場合には定格電圧範囲であるため、定格の空調能力で運転する定格運転モードに、また、DC電圧が予め定めた電圧閾値以下の場合には定格電圧範囲の下限定格電圧未満であるため、定格の空調能力よりも小さい空調能力で運転する限定運転モードに切り換えて空調運転する。   As with the voltage drop detection unit 34, the outdoor unit control unit 9 monitors when the DC voltage falls below a predetermined voltage threshold, and when the DC voltage is higher than the predetermined voltage threshold. Because it is in the rated voltage range, it is in the rated operation mode that operates with the rated air conditioning capacity, and when the DC voltage is less than the predetermined voltage threshold, it is less than the lower limit voltage rating of the rated voltage range, so the rated air conditioning capacity The air conditioning operation is switched to the limited operation mode that operates with a smaller air conditioning capacity.

次に図3の検出電流値と変換された入力電流値との関係を示すグラフを用いて入力電流変換部30の変換式について説明する。
図3の横軸はA/D変換部12が出力する検出電流値であり、縦軸は入力電流変換部30が出力する入力電流値である。また、グラフの破線は空気調和機20の定格電圧範囲(DC電圧が電圧閾値を超えた時)で使用される変換式の傾きを示し、グラフの実線は空気調和機20の定格電圧範囲の下限電圧未満(DC電圧が電圧閾値以下)で使用される変換式の傾きを示している。
Next, the conversion formula of the input current conversion unit 30 will be described using a graph showing the relationship between the detected current value and the converted input current value in FIG.
The horizontal axis in FIG. 3 is the detected current value output from the A / D converter 12, and the vertical axis is the input current value output from the input current converter 30. The broken line in the graph indicates the slope of the conversion formula used in the rated voltage range of the air conditioner 20 (when the DC voltage exceeds the voltage threshold), and the solid line in the graph indicates the lower limit of the rated voltage range of the air conditioner 20. The gradient of the conversion equation used when the voltage is lower than the voltage (the DC voltage is equal to or lower than the voltage threshold) is shown.

定格電圧範囲で使用される変換式は前述したように決定されている。なお、第1変換係数は1.23、Ieは入力電流(実効値)、IaはA/D変換部12が出力する直流の検出電流である。

Ie=(第1変換係数)×Ia・・・式6

また、下限定格電圧未満で使用される変換式は次のように決定されている。なお、第2変換係数は第1変換係数よりも大きい値、例えば1.49、Ie’は下限定格電圧未満の時の入力電流(実効値)、IaはA/D変換部12が出力する検出電流である。

Ie’=(第2変換係数)×Ia・・・式7
The conversion formula used in the rated voltage range is determined as described above. The first conversion coefficient is 1.23, Ie is an input current (effective value), and Ia is a DC detection current output from the A / D conversion unit 12.

Ie = (first conversion coefficient) × Ia Equation 6

Moreover, the conversion formula used below the lower limit rated voltage is determined as follows. Note that the second conversion coefficient is a value larger than the first conversion coefficient, for example, 1.49, Ie ′ is an input current (effective value) when the voltage is less than the lower limit rated voltage, and Ia is a detection output by the A / D converter 12. Current.

Ie ′ = (second conversion coefficient) × Ia Equation 7

なお、前述したように第1変換係数<第2変換係数の関係になっている。これは前述した式4において、力率が1より小さくなると実際の入力電流値よりも算出される入力電流値が小さくなる。このため、力率が1として求めた第1変換係数でなく、実際に交流電圧が下限定格電圧未満になった時を想定して求めた第2変換係数を用いることで力率の悪化による誤差を小さくするためである。
例えば、第1変換係数=1.23、第2変換係数=1.49の時、電流検出部10で検出された検出電流が4.7アンペアの場合、式6ではIe=5.8アンペアになり、式7では Ie’=7.0アンペアになる。
As described above, the relationship is the first conversion coefficient <the second conversion coefficient. This is because, in the above-described equation 4, when the power factor is smaller than 1, the calculated input current value is smaller than the actual input current value. For this reason, the error due to the deterioration of the power factor is caused by using the second conversion coefficient obtained assuming that the AC voltage is actually less than the lower limit rated voltage instead of the first conversion coefficient obtained with the power factor of 1. This is to reduce the size.
For example, when the first conversion coefficient = 1.23 and the second conversion coefficient = 1.49, when the detected current detected by the current detection unit 10 is 4.7 amperes, in Equation 6, Ie = 5.8 amperes. Thus, in equation 7, Ie ′ = 7.0 amps.

図2は本発明による空気調和機の動作を説明する説明図である。
図2の横軸は時間を示している。また、縦軸において、図2(1)は交流電圧を、図2(2)は交流電流(入力電流)を、図2(3)は昇圧チョッパ回路5が出力するDC電圧を、図2(4)は電圧低下信号を、図2(5)は第1変換係数を用いて算出した入力電流値を連続的に示したグラフであり、図2(6)は第2変換係数を用いて算出した入力電流値を連続的に示したグラフである。なお、図2(5)と図2(6)は本発明を説明するための仮想的なグラフであり、電流変換部33が実際に第1変換係数と第2変換係数を用いて同時に入力電流値を算出するものではない。
FIG. 2 is an explanatory view for explaining the operation of the air conditioner according to the present invention.
The horizontal axis in FIG. 2 indicates time. On the vertical axis, FIG. 2 (1) shows the AC voltage, FIG. 2 (2) shows the AC current (input current), FIG. 2 (3) shows the DC voltage output by the boost chopper circuit 5, FIG. 4) is a graph showing a voltage drop signal, FIG. 2 (5) is a graph continuously showing an input current value calculated using the first conversion coefficient, and FIG. 2 (6) is a calculation using the second conversion coefficient. 6 is a graph showing continuously the input current value. 2 (5) and 2 (6) are virtual graphs for explaining the present invention. The current converter 33 actually uses the first conversion coefficient and the second conversion coefficient to simultaneously input current. It does not calculate a value.

一方、図2(7)は電流変換部33が実際に選択した第1変換係数、又は第2変換係数を用いて算出した入力電流値を連続的に示したグラフである。なお、図2(5)〜図2(7)において、実線は算出された各入力電流値を、破線は実際の入力電流値をそれぞれ示している。またt1〜t4は時刻である。   On the other hand, FIG. 2 (7) is a graph continuously showing the input current value calculated using the first conversion coefficient or the second conversion coefficient actually selected by the current conversion unit 33. In FIGS. 2 (5) to 2 (7), the solid line indicates the calculated input current value, and the broken line indicates the actual input current value. T1 to t4 are times.

前述したように、空気調和機20は交流電圧の定格電圧の実効値が230ボルト(ピーク電圧は324ボルト)、動作可能な定格電圧範囲の実効値が207〜253ボルト(ピーク電圧は292〜357ボルト)になっている。なお、実効値の207ボルトは下限定格電圧を示す。   As described above, in the air conditioner 20, the effective value of the rated voltage of the AC voltage is 230 volts (peak voltage is 324 volts), and the effective value of the operable voltage range is 207 to 253 volts (peak voltage is 292 to 357). Bolt). Note that the effective value of 207 volts indicates the lower limit rated voltage.

図2(1)の交流電圧においてt1〜t3の間に瞬時電圧低下が発生し、定格電圧の230ボルト(実効値)から161ボルト(実効値)に低下している。このためピーク電圧も324ボルトから227ボルトに低下している。161ボルト(実効値)は空気調和機20の定格電圧範囲の下限定格電圧であるAC207ボルト(実効値)未満であり、定格の空調能力で使用した場合、前述したように、入力電流値(実効値)で制限が規定されている圧縮機7の回転数制御(電流レリース制御)の限度電流値を超えて圧縮機7の回転数を上昇させる場合があり、インバータ6内の図示しないスイッチング素子の最大定格電流値を超えた制御や、整流器4の最大定格電流値を超えた制御を行なうことになり、場合によっては整流器4やインバータ6のスイッチング素子が破壊される可能性がある。   In the AC voltage in FIG. 2 (1), an instantaneous voltage drop occurs between t1 and t3, and the rated voltage drops from 230 volts (effective value) to 161 volts (effective value). For this reason, the peak voltage is also reduced from 324 volts to 227 volts. 161 volts (effective value) is less than AC207 volts (effective value), which is the lower limit rated voltage of the rated voltage range of the air conditioner 20, and when used at the rated air conditioning capacity, as described above, the input current value (effective value) Value), the rotational speed of the compressor 7 may be increased beyond the limit current value of the rotational speed control (current release control) of the compressor 7, which is restricted by the value). Control exceeding the maximum rated current value or control exceeding the maximum rated current value of the rectifier 4 is performed. In some cases, the switching elements of the rectifier 4 and the inverter 6 may be destroyed.

このため室外機制御部9は、交流電圧が定格電圧範囲内の時、つまり、定格運転モードで運転中の場合から、交流電圧が下限定格電圧値であるAC207ボルト(実効値)未満になり、この結果、室外機制御部9が制御目標とするDC電圧が300ボルトから低下し、予め定めた電圧閾値(250ボルト)以下の時、つまり、限定運転モードで運転するt2〜t4の区間において、インバータ6に出力する駆動信号により圧縮機7の回転数を低下させて空調能力を低下させる。この結果、圧縮機7で消費する電力が低減され、これに対応して圧縮機7で消費する消費電流が低減されるため、前述した素子の破壊を防止し、空気調和機20は定格電圧範囲の下限定格電圧未満でも動作を継続させることができる。   For this reason, when the AC voltage is within the rated voltage range, that is, when operating in the rated operation mode, the outdoor unit control unit 9 is less than AC207 volts (effective value), which is the lower limit rated voltage value. As a result, when the DC voltage to be controlled by the outdoor unit control unit 9 decreases from 300 volts and is equal to or lower than a predetermined voltage threshold (250 volts), that is, in a section from t2 to t4 that operates in the limited operation mode. The drive signal output to the inverter 6 reduces the rotational speed of the compressor 7 to reduce the air conditioning capability. As a result, the power consumed by the compressor 7 is reduced, and the current consumed by the compressor 7 correspondingly is reduced. Therefore, the above-described element is prevented from being destroyed, and the air conditioner 20 has a rated voltage range. The operation can be continued even below the lower rated voltage.

図2(2)に示すように、t1まではピーク電流が10アンペアであるが、t1〜t3の間に瞬時電圧低下が発生し、DC電圧が300ボルトから200ボルトへ低下している。このため、室外機制御部9はこの電圧低下に対応してインバータ6に供給するピーク電流を15アンペアに増加させ、t3以降はピーク電流を10アンペアに復帰させている。なお、t1〜t3では昇圧チョッパ回路5が力率を1に維持できなくなり、電流波形が正弦波でなくひずんだ非正弦波なっている。前述したように、式4において1/力率λがIdの乗数となっている。従って、λが1から小さくなると、つまり、力率が悪化するとIeはこれに対応して大きくなるはずであるが、力率が1の時に定めた第1変換係数を用いた式1では算出された入力電流値に大きな誤差が発生する。   As shown in FIG. 2B, the peak current is 10 amperes until t1, but an instantaneous voltage drop occurs between t1 and t3, and the DC voltage drops from 300 volts to 200 volts. For this reason, the outdoor unit controller 9 increases the peak current supplied to the inverter 6 to 15 amperes in response to this voltage drop, and returns the peak current to 10 amperes after t3. Note that the boost chopper circuit 5 cannot maintain the power factor at 1 from t1 to t3, and the current waveform is not a sine wave but a distorted non-sine wave. As described above, in Equation 4, 1 / power factor λ is a multiplier of Id. Accordingly, when λ is reduced from 1, that is, when the power factor is deteriorated, Ie should increase correspondingly. However, it is calculated by Formula 1 using the first conversion coefficient determined when the power factor is 1. A large error occurs in the input current value.

ところで、電圧検出部8では昇圧チョッパ回路5の出力電圧の0〜500ボルトを0〜5ボルトのDC電圧として検出している。このため、図2(4)に示すように電圧低下検出部34は、入力されたDC電圧信号が電圧閾値(250ボルト)と対応する2.5ボルト以下になったt2で、電圧低下信号をローレベルからハイレベルにして出力し、入力されたDC電圧信号が電圧閾値と対応する電圧(2.5ボルト)より大きくなったt4で、電圧低下信号をハイレベルからローレベルにして出力する。
なお、入力電圧が下限定格電圧未満となり、昇圧チョッパ回路5の力率が1から大きくずれた時の昇圧チョッパ回路5の出力電圧を電圧閾値とするとよい。
By the way, the voltage detector 8 detects 0 to 500 volts of the output voltage of the boost chopper circuit 5 as a DC voltage of 0 to 5 volts. For this reason, as shown in FIG. 2 (4), the voltage drop detection unit 34 outputs the voltage drop signal at t2 when the input DC voltage signal becomes 2.5 volts or less corresponding to the voltage threshold (250 volts). The low voltage is output from the low level, and the voltage drop signal is output from the high level to the low level at t4 when the input DC voltage signal becomes larger than the voltage (2.5 volts) corresponding to the voltage threshold.
Note that the output voltage of the boost chopper circuit 5 when the input voltage becomes less than the lower limit rated voltage and the power factor of the boost chopper circuit 5 deviates greatly from 1 may be used as the voltage threshold value.

図2(5)に示すように、第1変換係数を用いて算出した入力電流値は、t2以前とt4以降において実際の入力電流値と比較して誤差が小さいが、t1〜t3の間の瞬時電圧低下の影響を受け、t2〜t4の区間では誤差が大きくなっている。一方、図2(6)に示すように、第2変換係数を用いて算出した入力電流値は、t2以前とt4以降において実際の入力電流値と比較して誤差が大きいが、t1〜t3の間の区間では誤差が小さくなっている。   As shown in FIG. 2 (5), the input current value calculated using the first conversion coefficient is smaller in error than the actual input current value before t2 and after t4, but between t1 and t3. Under the influence of the instantaneous voltage drop, the error is large in the interval from t2 to t4. On the other hand, as shown in FIG. 2 (6), the input current value calculated using the second conversion coefficient has a large error compared to the actual input current value before t2 and after t4, but from t1 to t3. In the interval between, the error is small.

従って電流変換部33は図2(7)に示すように、電圧低下信号がローレベルの時には、第1変換係数を用いて入力電流値を算出し、電圧低下信号がハイレベルの時には第2変換係数を用いて入力電流値を算出する。これにより、交流電圧が定格電圧範囲の下限定格電圧未満の場合であっても正確な入力電流値を求めることができ、回路素子の破壊を防止することができる。この結果、空気調和機20は定格電圧範囲の下限定格電圧未満でも運転を継続することができる。   Accordingly, as shown in FIG. 2 (7), the current conversion unit 33 calculates the input current value using the first conversion coefficient when the voltage drop signal is at a low level, and performs the second conversion when the voltage drop signal is at a high level. The input current value is calculated using the coefficient. As a result, an accurate input current value can be obtained even when the AC voltage is less than the lower limit rated voltage of the rated voltage range, and the destruction of the circuit elements can be prevented. As a result, the air conditioner 20 can continue to operate even if it is less than the lower limit rated voltage of the rated voltage range.

本実施例では電流変換部33で変換式を用いて入力電流値を変換しているが、これに限るものでなく、予め変換式を用いて計算した結果をテーブルとして記憶しておき、このテーブルを用いて検出した検出電流値を入力電流値に変換するようにしてもよい。また、本実施例では電圧閾値を用いて交流電圧を2つの電圧範囲に切り分けているが、これに限るものでなく、変換式の係数を交流電圧の大きさや力率の値に対応させて連続的に変化させるようにしてもよい。
また、本実施例では二次側に力率改善回路(昇圧チョッパ回路)を備えた例を説明しているが、これに限るものでなく、一次側にリアクタを備えた部分スイッチング方式の力率改善回路を備えていてもよい。
In this embodiment, the input current value is converted by the current conversion unit 33 using the conversion formula. However, the present invention is not limited to this, and the results calculated using the conversion formula are stored in advance as a table. The detected current value detected by using may be converted into an input current value. In this embodiment, the AC voltage is divided into two voltage ranges using the voltage threshold. However, the present invention is not limited to this, and the conversion coefficient is continuously associated with the magnitude of the AC voltage and the value of the power factor. It may be changed as desired.
In this embodiment, an example in which a power factor correction circuit (a boost chopper circuit) is provided on the secondary side is described. However, the present invention is not limited to this, and the power factor of the partial switching system having a reactor on the primary side. An improvement circuit may be provided.

1 入力端
2 入力端
3 整流電圧検出部
4 整流器
4a 正極出力端
4b 負極出力端
5 昇圧チョッパ回路(力率改善回路)
5a 平滑コンデンサ
5b 正極入力端
5c 負極入力端
5d 正極出力端
5e 負極出力端
6 インバータ
7 圧縮機
8 電圧検出部
9 室外機制御部(制御部)
10 電流検出部
11 信号平滑部
12 A/D変換部
20 空気調和機
30 入力電流変換部
31 第1変換係数記憶部
32 第2変換係数記憶部
33 電流変換部
34 電圧低下検出部
40 室外機
50 室内機
DESCRIPTION OF SYMBOLS 1 Input terminal 2 Input terminal 3 Rectification voltage detection part 4 Rectifier 4a Positive electrode output terminal 4b Negative electrode output terminal 5 Boost chopper circuit (power factor improvement circuit)
5a Smoothing capacitor 5b Positive input terminal 5c Negative input terminal 5d Positive output terminal 5e Negative output terminal 6 Inverter 7 Compressor 8 Voltage detection unit 9 Outdoor unit control unit (control unit)
DESCRIPTION OF SYMBOLS 10 Current detection part 11 Signal smoothing part 12 A / D conversion part 20 Air conditioner 30 Input current conversion part 31 1st conversion coefficient memory | storage part 32 2nd conversion coefficient memory | storage part 33 Current conversion part 34 Voltage drop detection part 40 Outdoor unit 50 Indoor unit

Claims (1)

交流電源が接続される入力端と、前記入力端に接続される整流器と、同整流器の出力端に接続された力率改善回路と、同力率改善回路の出力端に接続されたインバータと、同インバータの出力端に接続された圧縮機と、前記整流器と前記力率改善回路との間に直列に接続された電流検出部と、前記力率改善回路の前記出力端に接続された電圧検出部と、前記力率改善回路と前記インバータを制御する制御部とを備え、
定格の空調能力で運転が可能な定格電圧範囲で動作する定格運転モードと、前記定格電圧範囲の下限定格電圧未満で前記定格の空調能力よりも小さい空調能力で運転する限定運転モードのいずれかで動作する空気調和機であって、
前記空気調和機は、前記電流検出部が検出した直流の検出電流に対する前記交流電源の実効値の入力電流の比であり予め定めた変換係数を用いて前記検出電流から前記入力電流を算出して前記制御部へ出力する入力電流変換部を備え、
前記入力電流変換部は、前記定格運転モードで使用される第1変換係数を記憶する第1変換係数記憶部と、
前記限定運転モードで使用され前記第1変換係数よりも大きい第2変換係数を記憶する第2変換係数記憶部とを備え、
前記入力電流変換部は、前記電圧検出部で検出された電圧が、前記定格電圧範囲の下限定格電圧より低い電圧と対応する予め定めた電圧閾値以下に低下した時、前記第1変換係数に代えて前記第2変換係数を用いて前記入力電流を算出して前記制御部へ出力することを特徴とする空気調和機。
An input terminal to which an AC power supply is connected; a rectifier connected to the input terminal; a power factor correction circuit connected to the output terminal of the rectifier; an inverter connected to the output terminal of the power factor improvement circuit; A compressor connected to the output terminal of the inverter, a current detection unit connected in series between the rectifier and the power factor correction circuit, and a voltage detection connected to the output terminal of the power factor correction circuit And a control unit for controlling the power factor correction circuit and the inverter,
Either a rated operation mode that operates in the rated voltage range that can be operated with the rated air conditioning capacity, or a limited operation mode that operates with an air conditioning capacity that is less than the lower rated voltage of the rated voltage range and smaller than the rated air conditioning capacity. An operating air conditioner,
The air conditioner is a ratio of an input current of an effective value of the AC power supply to a DC detection current detected by the current detection unit, and calculates the input current from the detection current using a predetermined conversion coefficient. An input current conversion unit for outputting to the control unit;
The input current conversion unit includes a first conversion coefficient storage unit that stores a first conversion coefficient used in the rated operation mode;
A second conversion coefficient storage unit that is used in the limited operation mode and stores a second conversion coefficient larger than the first conversion coefficient;
The input current conversion unit replaces the first conversion coefficient when the voltage detected by the voltage detection unit falls below a predetermined voltage threshold corresponding to a voltage lower than a lower limit rated voltage of the rated voltage range. An air conditioner characterized in that the input current is calculated using the second conversion coefficient and output to the control unit.
JP2015015346A 2015-01-29 2015-01-29 Air conditioner Active JP6319120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015015346A JP6319120B2 (en) 2015-01-29 2015-01-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015015346A JP6319120B2 (en) 2015-01-29 2015-01-29 Air conditioner

Publications (2)

Publication Number Publication Date
JP2016138736A true JP2016138736A (en) 2016-08-04
JP6319120B2 JP6319120B2 (en) 2018-05-09

Family

ID=56559035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015015346A Active JP6319120B2 (en) 2015-01-29 2015-01-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP6319120B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121135A (en) * 1998-10-16 2000-04-28 Toshiba Kyaria Kk Controller for air conditioner
JP2004007880A (en) * 2002-05-31 2004-01-08 Fujitsu General Ltd Power supply device
JP2008113514A (en) * 2006-10-31 2008-05-15 Hitachi Ltd Power supply circuit and control circuit therewith

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121135A (en) * 1998-10-16 2000-04-28 Toshiba Kyaria Kk Controller for air conditioner
JP2004007880A (en) * 2002-05-31 2004-01-08 Fujitsu General Ltd Power supply device
JP2008113514A (en) * 2006-10-31 2008-05-15 Hitachi Ltd Power supply circuit and control circuit therewith

Also Published As

Publication number Publication date
JP6319120B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
JP4487008B2 (en) Power supply
JP5104947B2 (en) Switching power supply
US9722488B2 (en) Power converter and air conditioner
JP2009232681A (en) Multilevel inverter
JP3980005B2 (en) Inverter control device for motor drive and air conditioner
JP6758515B2 (en) Power converters, compressors, blowers, and air conditioners
JP2013021861A (en) Power-supply device and method of controlling the same
JP2010135473A (en) Light-emitting diode driving power supply unit
JP5978489B2 (en) DC power supply unit and DC power supply system
JP2010041891A (en) Charger
JP3215302B2 (en) Air conditioner
EP3413451B1 (en) Power conversion device
JP2017123740A (en) Switching power supply
JP6319120B2 (en) Air conditioner
JP2005229792A (en) Power supply device
JP2010115029A (en) Insulated switching power unit
JP6260506B2 (en) Air conditioner
KR101624048B1 (en) Power converting apparatus and air conditioner
KR102013869B1 (en) Power converter and operating method thereof
JPWO2018216144A1 (en) Power converter
JP6784249B2 (en) AC inverter
JP7049770B2 (en) Power converter and motor drive system
JP2006101660A (en) Power supply and air conditioner employing the same
JP2020150610A (en) Power supply device and air conditioner having the same
JP2015156768A (en) Power Conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180319

R151 Written notification of patent or utility model registration

Ref document number: 6319120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151