JP2016135056A - Brake resistance control apparatus and brake resistance control method - Google Patents

Brake resistance control apparatus and brake resistance control method Download PDF

Info

Publication number
JP2016135056A
JP2016135056A JP2015009898A JP2015009898A JP2016135056A JP 2016135056 A JP2016135056 A JP 2016135056A JP 2015009898 A JP2015009898 A JP 2015009898A JP 2015009898 A JP2015009898 A JP 2015009898A JP 2016135056 A JP2016135056 A JP 2016135056A
Authority
JP
Japan
Prior art keywords
braking
temperature
resistance control
control circuit
braking resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015009898A
Other languages
Japanese (ja)
Other versions
JP6497081B2 (en
Inventor
夢樹 小野
Yumeki Ono
夢樹 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2015009898A priority Critical patent/JP6497081B2/en
Publication of JP2016135056A publication Critical patent/JP2016135056A/en
Application granted granted Critical
Publication of JP6497081B2 publication Critical patent/JP6497081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To attain downsizing and reduction of cost in such a manner that an electrification current of a brake resistance control circuit can be set small.SOLUTION: A brake resistance control apparatus comprises: a brake resistor 9 which absorbs regenerative power from a motor 7 that is connected to an AC load side of an inverter 3; a brake resistance control circuit 8 that is provided between the brake resistor 9 and a DC intermediate circuit of the inverter 3 and controls a current flowing to the brake resistor 9; and temperature detection/control means 10 including functions by which a temperature of the brake resistor 9 is detected, control is performed to turn on the brake resistance control circuit 8 such that a current flows to the brake resistor 9 if the detected temperature is lower than a first preset temperature, and control is performed to turn off the brake resistance control circuit 8 if the detected temperature of the brake resistor 9 exceeds a second preset temperature that is higher than the first preset temperature.SELECTED DRAWING: Figure 1

Description

本発明は、電力変換装置(インバータ)に接続された電動機からの回生電力を吸収する制動抵抗に流れる電流を制御する制動抵抗制御回路に係り、その制動抵抗制御回路の小形・低コスト化を図る技術に関する。   The present invention relates to a braking resistance control circuit that controls a current flowing through a braking resistor that absorbs regenerative power from an electric motor connected to a power converter (inverter), and is intended to reduce the size and cost of the braking resistance control circuit. Regarding technology.

電動機駆動用の電力変換装置(インバータ)は、一般的に、電動機からの回生エネルギーを吸収するための制動抵抗(Dynamic Braking Resistor:DBR)を実装している。   Generally, a power conversion device (inverter) for driving an electric motor is mounted with a braking resistance (DBR) for absorbing regenerative energy from the electric motor.

この制動抵抗を備えたインバータシステムの一例を図4に示す。図4において、3相交流電源1は各相分の遮断器2を介してインバータ3の順変換部4の交流側に接続されている。   An example of an inverter system provided with this braking resistance is shown in FIG. In FIG. 4, a three-phase AC power source 1 is connected to the AC side of the forward conversion unit 4 of the inverter 3 through a circuit breaker 2 for each phase.

インバータ3は、ダイオードを3相ブリッジ接続した順変換部4(ダイオード整流器)と、直流中間回路(順変換部4の正、負極端間)に接続されたコンデンサ5と、直流側がコンデンサ5の両端間に接続され、半導体スイッチング素子を3相ブリッジ接続した逆変換部6とを備え、逆変換部6の3相交流側は電動機7に接続されている。   The inverter 3 includes a forward conversion unit 4 (diode rectifier) in which diodes are connected in a three-phase bridge, a capacitor 5 connected to a DC intermediate circuit (between the positive and negative ends of the forward conversion unit 4), and a DC side on both ends of the capacitor 5. And an inverter 6 connected in a three-phase bridge connection with semiconductor switching elements, and the three-phase AC side of the inverter 6 is connected to an electric motor 7.

順変換部4の正、負極端間(コンデンサ5の両端間)には、制動抵抗制御回路(以下、図面ではDBR制御回路と表記する)8を介して制動抵抗9が接続されている。   A braking resistor 9 is connected between the positive and negative ends of the forward conversion unit 4 (between both ends of the capacitor 5) via a braking resistance control circuit 8 (hereinafter referred to as a DBR control circuit in the drawing).

前記制動抵抗制御回路8には通常IGBTなどの半導体スイッチが用いられ、その半導体スイッチのオン、オフ制御がなされる。例えば、インバータ3の直流中間電圧、すなわちコンデンサ5の端子電圧が設定値を超えたときに、制動抵抗制御回路8の半導体スイッチをオン制御すると制動抵抗9に電流が流れ、コンデンサ5に蓄積された電気エネルギーが放電されて制動抵抗9によって熱エネルギーとして消費される。   The braking resistance control circuit 8 is usually a semiconductor switch such as an IGBT, and the semiconductor switch is controlled to be turned on / off. For example, when the DC intermediate voltage of the inverter 3, that is, the terminal voltage of the capacitor 5 exceeds the set value, when the semiconductor switch of the braking resistance control circuit 8 is turned on, a current flows through the braking resistor 9 and is accumulated in the capacitor 5. Electrical energy is discharged and consumed as thermal energy by the braking resistor 9.

これによって、電動機7からの回生電力でインバータ3の直流電圧が上昇するような状況下においても、直流電圧の上昇を抑えることができる。   As a result, an increase in the DC voltage can be suppressed even under a situation where the DC voltage of the inverter 3 is increased by the regenerative power from the electric motor 7.

尚、従来、制動抵抗器を備えた電動機の制御装置は例えば特許文献1に記載のものが提案され、電動機の回生電力を消費する抵抗器を備えたエレベータは例えば特許文献2に記載のものが提案されていた。   Conventionally, a control device for an electric motor provided with a braking resistor has been proposed, for example, in Patent Document 1, and an elevator provided with a resistor that consumes regenerative power of the electric motor has been described in, for example, Patent Document 2. It was proposed.

特開平10−225158号公報Japanese Patent Laid-Open No. 10-225158 特開2012−144357号公報JP 2012-144357 A

図4のインバータシステムにおいて、制動抵抗9の抵抗値R、インバータ3の直流電圧V、制動抵抗9に流れる電流Iの関係は下式のとおりである。   In the inverter system of FIG. 4, the relationship between the resistance value R of the braking resistor 9, the DC voltage V of the inverter 3, and the current I flowing through the braking resistor 9 is as follows:

V=IR
制動抵抗9を周囲温度−40°C〜+60°Cなどといった厳しい周囲環境の下で使用すると、安価なステンレス抵抗器などの場合は抵抗値の範囲が大きくなる。通常、室温(+20°C)を基準に抵抗値範囲は±8%程度と大きい。
V = IR
When the braking resistor 9 is used under a severe ambient environment such as an ambient temperature of −40 ° C. to + 60 ° C., the resistance value range becomes large in the case of an inexpensive stainless steel resistor or the like. Usually, the resistance value range is as large as about ± 8% based on room temperature (+ 20 ° C.).

制動抵抗9は、通常の抵抗素子体では、低温になるほど抵抗値が小さくなり、高温になるほど抵抗値が大きくなる。つまり、制動抵抗制御回路8に流れる電流は、前記抵抗素子体が低温である場合ほど大きくなり、高温である場合ほど小さくなる。   In a normal resistance element body, the resistance value of the braking resistor 9 decreases as the temperature decreases, and the resistance value increases as the temperature increases. That is, the current flowing through the braking resistance control circuit 8 increases as the resistance element body has a low temperature, and decreases as the temperature increases.

制動抵抗制御回路8の定格電流は、コストと寸法低減のために極力小さくしたいが、通常は抵抗値の範囲を考慮して、最大電流に合わせて設計する。したがって、抵抗値の範囲が大きいほど、制動抵抗制御回路8の定格電流を高めにしなければならないという問題がある。   The rated current of the braking resistance control circuit 8 is desired to be as small as possible in order to reduce cost and size, but is usually designed according to the maximum current in consideration of the range of resistance values. Therefore, there is a problem that the rated current of the braking resistance control circuit 8 has to be increased as the range of the resistance value is larger.

本発明は上記課題を解決するものであり、その目的は、制動抵抗制御回路の通電電流を小さく設定することができ、小形・低コスト化を図ることができる制動抵抗制御装置および方法を提供することにある。   The present invention solves the above-described problems, and an object of the present invention is to provide a braking resistance control device and method capable of setting the energization current of the braking resistance control circuit to be small and reducing the size and cost. There is.

上記課題を解決するための請求項1に記載の制動抵抗制御装置は、電力変換装置の交流負荷側に接続された電動機からの回生電力を吸収する制動抵抗と、
前記制動抵抗と電力変換装置の直流中間回路の間に設けられ、制動抵抗に流れる電流を制御する制動抵抗制御回路と、
前記制動抵抗の温度を検出し、当該検出温度が第1の設定温度よりも低下したときに、前記制動抵抗制御回路をオン制御して制動抵抗に電流を流す機能を有した温度検出・制御手段と、を備えたことを特徴としている。
The braking resistance control device according to claim 1 for solving the above-described problem is a braking resistor that absorbs regenerative power from an electric motor connected to the AC load side of the power converter,
A braking resistance control circuit that is provided between the braking resistance and a DC intermediate circuit of the power converter, and controls a current flowing through the braking resistance;
Temperature detecting / controlling means having a function of detecting the temperature of the braking resistance and turning on the braking resistance control circuit to flow a current through the braking resistance when the detected temperature falls below a first set temperature. It is characterized by having.

また、請求項3に記載の制動抵抗制御方法は、電力変換装置の交流負荷側に接続された電動機からの回生電力を吸収する制動抵抗と、前記制動抵抗と電力変換装置の直流中間回路の間に設けられ、制動抵抗に流れる電流を制御する制動抵抗制御回路と、を備えた装置における制動抵抗制御方法であって、
前記制動抵抗の温度を検出するステップと、
前記検出された温度が第1の設定温度よりも低下したときに、前記制動抵抗制御回路をオン制御して制動抵抗に電流を流すステップと、を備えたことを特徴としている。
According to a third aspect of the present invention, there is provided a braking resistance control method according to a third aspect of the present invention, comprising: a braking resistor that absorbs regenerative power from an electric motor connected to the AC load side of the power converter; and a DC resistance intermediate circuit between the braking resistor and the power converter. A braking resistance control method in a device provided with a braking resistance control circuit for controlling a current flowing in the braking resistance,
Detecting the temperature of the braking resistor;
A step of turning on the braking resistance control circuit to flow a current through the braking resistance when the detected temperature falls below a first set temperature.

上記構成によれば、温度検出・制御手段による制動抵抗制御回路のオン制御によって制動抵抗に電流が通電されるため、制動抵抗の温度は第1の設定温度以上に維持され、その分だけ制動抵抗の抵抗値の範囲が小さくなる。このため制動抵抗の抵抗値が大きくなって、制動抵抗制御回路に流れる電流を小さくすることができる。これによって、制動抵抗制御回路の通電電流を小さく設定することができ、冷却部品などの小形化を達成でき、コストを下げることができる。   According to the above configuration, since the current is supplied to the braking resistor by the on-control of the braking resistance control circuit by the temperature detecting / controlling means, the temperature of the braking resistor is maintained at the first set temperature or more, and the braking resistance is correspondingly increased. The resistance value range becomes smaller. For this reason, the resistance value of the braking resistance increases, and the current flowing through the braking resistance control circuit can be reduced. As a result, the energization current of the braking resistance control circuit can be set small, the cooling parts can be miniaturized, and the cost can be reduced.

また、請求項2に記載の制動抵抗制御装置は、請求項1において、前記温度検出・制御手段は、前記制動抵抗の検出温度が、第1の設定温度よりも高い第2の設定温度を超えたときに前記制動抵抗制御回路をオフ制御する機能を有していることを特徴としている。   According to a second aspect of the present invention, there is provided the braking resistance control device according to the first aspect, wherein the temperature detection / control unit is configured such that the detected temperature of the braking resistance exceeds a second set temperature higher than the first set temperature. The brake resistance control circuit has a function of turning off when the brake resistance control circuit is turned on.

また、請求項4に記載の制動抵抗制御方法は、請求項3において、前記制動抵抗の検出温度が、第1の設定温度よりも高い第2の設定温度を超えたときに前記制動抵抗制御回路をオフ制御するステップをさらに備えたことを特徴としている。   According to a fourth aspect of the present invention, there is provided the braking resistance control method according to the third aspect, wherein when the detected temperature of the braking resistance exceeds a second set temperature higher than the first set temperature, the braking resistance control circuit is provided. It is further characterized by further comprising a step of controlling to turn off.

上記構成によれば、制動抵抗の温度を第1の設定温度と第2の設定温度の間に維持することができ、制動抵抗の抵抗値の範囲が、第1の設定温度に対応した抵抗値と第2の設定温度に対応した抵抗値の間に制限される。このため、制動抵抗の抵抗値の範囲が小さくなるように前記第1の設定温度および第2の設定温度を設定することにより、制動抵抗制御回路の通電時間を短くすることができる。   According to the above configuration, the temperature of the braking resistor can be maintained between the first set temperature and the second set temperature, and the resistance value range of the braking resistor corresponds to the first set temperature. And a resistance value corresponding to the second set temperature. For this reason, the energization time of the braking resistance control circuit can be shortened by setting the first set temperature and the second set temperature so that the range of the resistance value of the braking resistance is reduced.

(1)請求項1〜4に記載の発明によれば、制動抵抗制御回路の通電電流を小さく設定することができ、これによって制動抵抗制御回路の小形化を図り、コストを下げることができる。
(2)請求項2、4に記載の発明によれば、制動抵抗の抵抗値の範囲が小さくなるように前記第1の設定温度および第2の設定温度を設定することにより、制動抵抗制御回路の通電時間を短くすることができる。
(1) According to the first to fourth aspects of the invention, the energization current of the braking resistance control circuit can be set small, thereby reducing the size of the braking resistance control circuit and reducing the cost.
(2) According to the second and fourth aspects of the present invention, the braking resistance control circuit is configured by setting the first set temperature and the second set temperature so that the range of the resistance value of the braking resistance is reduced. Can be shortened.

本発明の一実施形態例による、制動抵抗を備えたインバータシステムの構成図。The block diagram of the inverter system provided with the braking resistance by one example of embodiment of this invention. 本発明の一実施形態例における制動抵抗制御処理の一例を示すフローチャート。The flowchart which shows an example of the braking resistance control process in one embodiment of this invention. 本発明の一実施形態例における制動抵抗制御回路の制御タイミングと抵抗温度の推移を示すフローチャート。The flowchart which shows transition of the control timing and resistance temperature of the braking resistance control circuit in one embodiment of this invention. 従来の制動抵抗を備えたインバータシステムの一例を示す構成図。The block diagram which shows an example of the inverter system provided with the conventional braking resistance.

以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。本実施形態例では、安価で、温度に対する抵抗値の依存性が大きい抵抗を制動抵抗として適用した、例えば図4のインバータシステムにおいて、制動抵抗に電流を流すことによって加熱させて、抵抗体の温度を一定範囲に保ち、システム運用中の制動抵抗の抵抗値範囲を小さくするように構成した。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. In this embodiment, for example, in the inverter system of FIG. 4, a resistor that is inexpensive and has a large resistance value dependence on temperature is applied as a braking resistor. For example, in the inverter system of FIG. Is maintained within a certain range, and the resistance value range of the braking resistance during system operation is reduced.

図1において、図4と同一部分は同一符号をもって示している。   1, the same parts as those in FIG. 4 are denoted by the same reference numerals.

10は、制動抵抗9の温度を検出し、当該検出温度がある温度(第1の設定温度)より下回ったときに、制動抵抗制御回路8(の半導体スイッチ)をオン制御して制動抵抗9に電流を流す温度検出・制御手段である。   10 detects the temperature of the braking resistor 9, and when the detected temperature falls below a certain temperature (first set temperature), the braking resistor control circuit 8 (semiconductor switch) is turned on to control the braking resistor 9. This is a temperature detection / control means for supplying current.

この温度検出・制御手段10は、一例として、制動抵抗9の素子あるいはその近傍に設けたサーミスタのような温度センサと、そのサーミスタの検出温度に応じて変化するサーミスタの抵抗値に基づいて、制動抵抗制御回路8のオン、オフ制御信号を作成する回路とで構成される。   As an example, the temperature detection / control unit 10 performs braking based on a temperature sensor such as a thermistor provided in the vicinity of the element of the braking resistor 9 or a resistance value of the thermistor that changes in accordance with the temperature detected by the thermistor. And a circuit for creating an on / off control signal for the resistance control circuit 8.

また、温度検出・制御手段10の他の例としては、制動抵抗9の素子あるいはその近傍にサーモスタットのような温度スイッチを設け、その温度スイッチの入・切出力信号によって制動抵抗制御回路8の半導体スイッチをオン、オフ制御するように構成される。   As another example of the temperature detection / control means 10, a temperature switch such as a thermostat is provided in the vicinity of the element of the braking resistor 9 or in the vicinity thereof, and the semiconductor of the braking resistance control circuit 8 is determined by an on / off output signal of the temperature switch. The switch is configured to be turned on / off.

制動抵抗9の温度がある温度(第1の設定温度)より下回ったら、温度検出・制御手段10は、制動抵抗制御回路8をオン制御することによって、順変換部4から制動抵抗9に電流を流し、制動抵抗9の温度を上げる。   When the temperature of the braking resistor 9 falls below a certain temperature (first set temperature), the temperature detection / control means 10 controls the braking resistance control circuit 8 to turn on the current from the forward conversion unit 4 to the braking resistor 9. The temperature of the braking resistor 9 is raised.

このような動作を定期的に行うことによって制動抵抗9の温度を常に一定値以上に維持し、制動抵抗9の抵抗値の範囲を小さく、且つ抵抗値を高めの状態にすることができる。   By periodically performing such an operation, the temperature of the braking resistor 9 can always be maintained at a certain value or higher, the range of the resistance value of the braking resistor 9 can be reduced, and the resistance value can be increased.

したがって、制動抵抗制御回路8の通電電流を従来よりも小さく設定できるため、冷却部品などを小形化することが可能となり、コストを下げることができる。   Therefore, since the energization current of the braking resistance control circuit 8 can be set smaller than the conventional one, it becomes possible to reduce the size of the cooling parts and the like and to reduce the cost.

次に温度検出・制御手段10が行う制動抵抗制御処理の一例を、図2のフローチャートおよび図3のタイムチャートとともに説明する。   Next, an example of the braking resistance control process performed by the temperature detection / control unit 10 will be described with reference to the flowchart of FIG. 2 and the time chart of FIG.

図3の、下段は制動抵抗制御回路8の制御タイミングを示し、上段は制動抵抗9の抵抗温度の推移を示し、「温度Lレベル」は予め設定した第1の設定温度、「温度Hレベル」は第1の設定温度よりも高く設定した第2の設定温度を各々表している。   The lower part of FIG. 3 shows the control timing of the braking resistance control circuit 8, the upper part shows the transition of the resistance temperature of the braking resistor 9, “Temperature L level” is a preset first set temperature, and “Temperature H level”. Represents a second set temperature set higher than the first set temperature.

まず図2のステップS1において、制動抵抗9の抵抗温度がLレベルよりも低下したか否かを判定し、低下した場合はステップS2において制動抵抗制御回路8(の半導体スイッチ)をオン制御する。この制動抵抗制御回路8のオン期間中、制動抵抗9に電流が通電されるため、図3のように抵抗温度は上昇する。   First, in step S1 of FIG. 2, it is determined whether or not the resistance temperature of the braking resistor 9 has decreased below the L level. If it has decreased, the braking resistance control circuit 8 (semiconductor switch) is turned on in step S2. During the ON period of the braking resistance control circuit 8, a current is passed through the braking resistor 9, so that the resistance temperature rises as shown in FIG.

次にステップS3において、制動抵抗9の抵抗温度がHレベルを超過したか否かを判定し、超過した場合はステップS4において制動抵抗制御回路8(の半導体スイッチ)をオフ制御する。この制動抵抗制御回路8のオフ期間中、抵抗温度は図3のように周囲温度によって低下する。   Next, in step S3, it is determined whether or not the resistance temperature of the braking resistor 9 has exceeded the H level. If it has exceeded, the braking resistance control circuit 8 (the semiconductor switch) is turned off in step S4. During the OFF period of the braking resistance control circuit 8, the resistance temperature decreases with the ambient temperature as shown in FIG.

そしてステップS1〜S4の処理が繰り返し行われることによって、制動抵抗9の温度はLレベル(第1の設定温度)とHレベル(第2の設定温度)との間に維持することができ、制動抵抗9の抵抗値の範囲を、温度Lレベルに対応した抵抗値と温度Hレベルに対応した抵抗値の間に制限することができる。   Then, by repeatedly performing the processes of steps S1 to S4, the temperature of the braking resistor 9 can be maintained between the L level (first set temperature) and the H level (second set temperature). The range of the resistance value of the resistor 9 can be limited between a resistance value corresponding to the temperature L level and a resistance value corresponding to the temperature H level.

このように、制動抵抗9の温度を高めに維持して抵抗値を高めに保ち、且つ抵抗値の範囲を小さくすることができるため、制動抵抗制御回路8の通電電流を従来よりも小さく設定することができ、これによって制動抵抗制御回路8の小形・低コスト化を図ることができる。   As described above, since the resistance value can be kept high by keeping the temperature of the braking resistor 9 high and the range of the resistance value can be reduced, the energization current of the braking resistance control circuit 8 is set to be smaller than the conventional one. As a result, the braking resistance control circuit 8 can be reduced in size and cost.

また、図3の制動抵抗9の温度推移からわかるように、通常は周囲温度による制動抵抗9の温度低下よりも、電流通電(制動抵抗制御回路8のオン期間)による温度上昇の方が、温度変化は急峻である。したがって、制動抵抗制御回路8の通電時間は短い。   In addition, as can be seen from the temperature transition of the braking resistor 9 in FIG. 3, the temperature increase due to current energization (the ON period of the braking resistance control circuit 8) is usually higher than the temperature decrease of the braking resistor 9 due to the ambient temperature. The change is steep. Therefore, the energization time of the braking resistance control circuit 8 is short.

また、制動抵抗9の抵抗値の範囲が小さくなるように温度Lレベルと温度Hレベルの差を小さく設定すれば、制動抵抗制御回路8の通電時間をさらに短くすることができる。   Further, if the difference between the temperature L level and the temperature H level is set to be small so that the range of the resistance value of the braking resistor 9 is reduced, the energization time of the braking resistance control circuit 8 can be further shortened.

また、前記実施例に限らず、温度検出制御手段10は制動抵抗制御回路8内に設けるように構成してもよい。例えば、温度検出・制御手段10の温度センサのみを制動抵抗9の素子あるいは近傍に設け、制動抵抗制御回路8のオン、オフ制御信号を作成する回路を制動抵抗制御回路8内に設けてもよい。   The temperature detection control means 10 is not limited to the above embodiment, and may be configured to be provided in the braking resistance control circuit 8. For example, only the temperature sensor of the temperature detection / control unit 10 may be provided in or near the braking resistor 9, and a circuit for generating an on / off control signal for the braking resistance control circuit 8 may be provided in the braking resistance control circuit 8. .

尚、本発明は、特に冬季で且つ低温地域で使用されるような場合に効果が大である。   The present invention is particularly effective when used in winter and in low-temperature areas.

1…3相交流電源
2…遮断器
3…インバータ
4…順変換部
5…コンデンサ
6…逆変換部
7…電動機
8…制動抵抗制御回路
9…制動抵抗
10…温度検出・制御手段
DESCRIPTION OF SYMBOLS 1 ... Three-phase alternating current power supply 2 ... Circuit breaker 3 ... Inverter 4 ... Forward conversion part 5 ... Capacitor 6 ... Reverse conversion part 7 ... Electric motor 8 ... Braking resistance control circuit 9 ... Braking resistance 10 ... Temperature detection and control means

Claims (4)

電力変換装置の交流負荷側に接続された電動機からの回生電力を吸収する制動抵抗と、
前記制動抵抗と電力変換装置の直流中間回路の間に設けられ、制動抵抗に流れる電流を制御する制動抵抗制御回路と、
前記制動抵抗の温度を検出し、当該検出温度が第1の設定温度よりも低下したときに、前記制動抵抗制御回路をオン制御して制動抵抗に電流を流す機能を有した温度検出・制御手段と、
を備えたことを特徴とする制動抵抗制御装置。
A braking resistor that absorbs regenerative power from the motor connected to the AC load side of the power converter,
A braking resistance control circuit that is provided between the braking resistance and a DC intermediate circuit of the power converter, and controls a current flowing through the braking resistance;
Temperature detecting / controlling means having a function of detecting the temperature of the braking resistance and turning on the braking resistance control circuit to flow a current through the braking resistance when the detected temperature falls below a first set temperature. When,
A braking resistance control device comprising:
前記温度検出・制御手段は、前記制動抵抗の検出温度が、第1の設定温度よりも高い第2の設定温度を超えたときに前記制動抵抗制御回路をオフ制御する機能を有していることを特徴とする請求項1に記載の制動抵抗制御装置。   The temperature detection / control unit has a function of turning off the braking resistance control circuit when a detected temperature of the braking resistance exceeds a second set temperature higher than the first set temperature. The braking resistance control device according to claim 1. 電力変換装置の交流負荷側に接続された電動機からの回生電力を吸収する制動抵抗と、前記制動抵抗と電力変換装置の直流中間回路の間に設けられ、制動抵抗に流れる電流を制御する制動抵抗制御回路と、を備えた装置における制動抵抗制御方法であって、
前記制動抵抗の温度を検出するステップと、
前記検出された温度が第1の設定温度よりも低下したときに、前記制動抵抗制御回路をオン制御して制動抵抗に電流を流すステップと、
を備えたことを特徴とする制動抵抗制御方法。
A braking resistor that absorbs regenerative power from an electric motor connected to the AC load side of the power converter, and a braking resistor that is provided between the braking resistor and a DC intermediate circuit of the power converter, and controls the current flowing through the braking resistor A braking resistance control method in a device comprising a control circuit,
Detecting the temperature of the braking resistor;
When the detected temperature is lower than a first set temperature, turning on the braking resistance control circuit to pass a current through the braking resistance;
A braking resistance control method comprising:
前記制動抵抗の検出温度が、第1の設定温度よりも高い第2の設定温度を超えたときに前記制動抵抗制御回路をオフ制御するステップをさらに備えたことを特徴とする請求項3に記載の制動抵抗制御方法。   The step of turning off the braking resistance control circuit when the detected temperature of the braking resistance exceeds a second set temperature that is higher than the first set temperature. Braking resistance control method.
JP2015009898A 2015-01-22 2015-01-22 Braking resistance control device and braking resistance control method Active JP6497081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015009898A JP6497081B2 (en) 2015-01-22 2015-01-22 Braking resistance control device and braking resistance control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015009898A JP6497081B2 (en) 2015-01-22 2015-01-22 Braking resistance control device and braking resistance control method

Publications (2)

Publication Number Publication Date
JP2016135056A true JP2016135056A (en) 2016-07-25
JP6497081B2 JP6497081B2 (en) 2019-04-10

Family

ID=56464723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015009898A Active JP6497081B2 (en) 2015-01-22 2015-01-22 Braking resistance control device and braking resistance control method

Country Status (1)

Country Link
JP (1) JP6497081B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904835A (en) * 2021-01-29 2021-06-04 株洲中车奇宏散热技术有限公司 Locomotive brake resistance monitoring temperature value taking method and collecting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013485A (en) * 1983-07-01 1985-01-23 Matsushita Electric Ind Co Ltd Inverter device for driving induction motor
JPS6059976A (en) * 1983-08-29 1985-04-06 Mitsubishi Electric Corp Discharging circuit of inverter device
JPS62277081A (en) * 1986-05-21 1987-12-01 Mitsubishi Electric Corp Inverter system
JP2005253213A (en) * 2004-03-04 2005-09-15 Yaskawa Electric Corp Method and device for controlling multi-axis motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013485A (en) * 1983-07-01 1985-01-23 Matsushita Electric Ind Co Ltd Inverter device for driving induction motor
JPS6059976A (en) * 1983-08-29 1985-04-06 Mitsubishi Electric Corp Discharging circuit of inverter device
JPS62277081A (en) * 1986-05-21 1987-12-01 Mitsubishi Electric Corp Inverter system
JP2005253213A (en) * 2004-03-04 2005-09-15 Yaskawa Electric Corp Method and device for controlling multi-axis motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904835A (en) * 2021-01-29 2021-06-04 株洲中车奇宏散热技术有限公司 Locomotive brake resistance monitoring temperature value taking method and collecting device

Also Published As

Publication number Publication date
JP6497081B2 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
US10250124B2 (en) Power converter for controlling switching elements during regenerative control of an inverter
KR101971369B1 (en) Power supply system for electric vehicle
CN107820664B (en) Drive device
JP2012060714A (en) Integrated circuit
US8283880B2 (en) Motor drive device with function of switching to power regenerative operation mode
JP6185860B2 (en) Bidirectional converter
JP2009207307A (en) Motor driving apparatus
JP2013183595A (en) Semiconductor device
JP2017212805A (en) Vehicular voltage conversion device
CN112511071B (en) Control device of power conversion device
US11050353B2 (en) Power conversion device that generates switching signals
JP2015523049A (en) Overload limit in peak power operation
JP2017093202A (en) Polyphase converter
JP6497081B2 (en) Braking resistance control device and braking resistance control method
JP2009296846A (en) Vehicle inverter device
JP2009022060A (en) Controller of ac electric motor
JP7041377B2 (en) Power converter
JP2015100158A (en) DC-DC converter
JP2008017649A (en) Overcurrent detection circuit
JP6957383B2 (en) Power converter
JP2004120844A (en) Step-up converter controller
JP2014225972A (en) Power conversion device and method of controlling the same
JP5790483B2 (en) Elevator control device
JP2006180606A (en) Controller for voltage driving element
KR101321427B1 (en) 3 phase converter system for protecting open phase problem and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190225

R150 Certificate of patent or registration of utility model

Ref document number: 6497081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150