JP2016127819A - Emergence method utilizing coral gravel accumulation, and permeable structure and structure for the same - Google Patents
Emergence method utilizing coral gravel accumulation, and permeable structure and structure for the same Download PDFInfo
- Publication number
- JP2016127819A JP2016127819A JP2015195733A JP2015195733A JP2016127819A JP 2016127819 A JP2016127819 A JP 2016127819A JP 2015195733 A JP2015195733 A JP 2015195733A JP 2015195733 A JP2015195733 A JP 2015195733A JP 2016127819 A JP2016127819 A JP 2016127819A
- Authority
- JP
- Japan
- Prior art keywords
- coral gravel
- permeable
- coral
- gravel
- permeable structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000014653 Carica parviflora Nutrition 0.000 title claims abstract description 154
- 241000243321 Cnidaria Species 0.000 title claims abstract description 150
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000009825 accumulation Methods 0.000 title abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 87
- 238000000151 deposition Methods 0.000 claims description 29
- 230000008021 deposition Effects 0.000 claims description 16
- 238000009434 installation Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 10
- 230000035699 permeability Effects 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- 241000242757 Anthozoa Species 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/80—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
- Y02A40/81—Aquaculture, e.g. of fish
Landscapes
- Revetment (AREA)
- Farming Of Fish And Shellfish (AREA)
Abstract
Description
本発明は、サンゴ礫を堆積させ陸化する方法、そのための透過構造物および構造体に関する。 The present invention relates to a method for depositing and landing coral gravel, and a permeable structure and structure therefor.
日本の領海や排他的経済水域(EEZ)の基点となっている離島は約500に上るが、水底資源や水産資源の保護のために離島の保全・管理の強化が必要とされている。離島においてはサンゴ礁が島の周りを取り囲むなど、サンゴ礁の保全、活用の必要性が認識されている。たとえば、特許文献1,2はサンゴ礁の移設、特許文献3,4はサンゴ礁の増殖、特許文献5はサンゴの育成・保護、特許文献6はサンゴ礫断片の飛散防止、および、特許文献7はサンゴ育成構造体の構築などの技術をそれぞれ提案する。
There are about 500 remote islands that serve as the starting point for Japan's territorial waters and exclusive economic zone (EEZ), but it is necessary to strengthen the maintenance and management of remote islands in order to protect the bottom and marine resources. On remote islands, the need for coral reef conservation and utilization is recognized, such as coral reefs surrounding the island. For example,
サンゴ礁が卓越する離島付近では、死滅したサンゴが砂礫となり、気海象条件などにより、サンゴ礫が島を形成し、陸地化している箇所がある。また、海岸侵食が卓越している地点では海岸保全を目的に、石材やブロックなどで形成される離岸堤が建設されることがあるが、離岸堤背後の砂浜は回復することがあるものの、離岸堤周辺は洗掘されることが多い。また、離島の保全は現在の島の管理はもちろん、周辺のサンゴ礫が水面上まで堆積して陸地している箇所の保全に加え、新たにサンゴ礫を用いて陸地を形成することができれば、国土保全に資することができる。 In the vicinity of remote islands where coral reefs are prominent, dead corals become sand gravel, and there are places where coral gravel forms islands due to atmospheric conditions. In addition, for the purpose of coastal protection, a breakwater made of stone or blocks may be constructed at the point where coastal erosion is dominant, but the sandy beach behind the breakwater may be restored. Often, the area around the offshore bank is scoured. In addition to the maintenance of the current island, the preservation of the remote islands, as well as the preservation of the land where the coral gravel around the water has accumulated to the surface of the water, if the land can be formed using new coral gravel, Contribute to national land conservation.
サンゴに関しては複数の技術が特許文献1〜7のように提案されているものの、サンゴ礫を用いて陸地化する技術に関してはいまだ提案はない。すなわち、特許文献1〜5は生存しているサンゴの移設、増殖、保護を目的としているが、サンゴは水面下のみで生息するため、これらの方法では陸地化することは難しい。また、特許文献6の方法は水底に堆積したサンゴ礫の飛散防止に過ぎず、これによる堆積効果は期待できない。また、特許文献7の構造体・方法は、網目状で全面が略閉塞される籠体の中にサンゴ石灰石を収納することでサンゴ育成体を提供するもので、堆積を促進するものではない。さらに、自然界ではサンゴ礫で陸地化することはあるが、意図した場所にサンゴ礫を用いて陸地を形成する技術は未だない。
Although several techniques are proposed about coral like patent documents 1-7, there is still no proposal about the technique which makes land using coral gravel. In other words,
本発明は、上述のような従来技術の問題に鑑み、サンゴ礫堆積による陸化方法、そのための透過構造物および構造体を提供することを目的とする。 An object of this invention is to provide the landing method by coral gravel deposition, the permeation | transmission structure, and a structure for it in view of the problem of the prior art as mentioned above.
上記目的を達成するためのサンゴ礫堆積による陸化方法は、サンゴ礫を堆積させ陸化する方法であって、サンゴ礫を捕捉可能な複数の開口を有する透過性構造物を水塊が通過可能な方向に設置し、前記透過性構造物の開口において前記水塊を通過させ前記サンゴ礫を捕捉することで前記サンゴ礫を堆積させる。 The land-based method by coral gravel deposition to achieve the above objective is a method of depositing coral gravel and landing it, allowing water masses to pass through a permeable structure that can capture coral gravel. The coral gravel is deposited by passing the water mass through the opening of the permeable structure and capturing the coral gravel.
このサンゴ礫堆積による陸化方法によれば、透過性構造物は、波や潮流などにより移動する水塊を透過する一方、水塊の移動に伴い移動するサンゴ礫を捕捉することができる。この捕捉されたサンゴ礫は堆積し、ある程度の堆積厚になるまでサンゴ礫内の透過性により水塊は作用し続け、引き続きサンゴ礫は移動し堆積する。そして、サンゴ礫の堆積厚が増加して透過性が低下すると、堆積したサンゴ礫が新しい水底地盤となって、水塊はより高い位置まで移動し、その結果、サンゴ礫は順次、高い位置まで堆積する。このようにして、サンゴ礫の堆積が続くことで、堆積したサンゴ礫により陸化が実現する。 According to this landing method by coral gravel deposition, the permeable structure can capture the coral gravel that moves along with the movement of the water mass while passing through the water mass that moves due to waves and tidal currents. The trapped coral gravel accumulates, and the water mass continues to act due to the permeability in the coral gravel until a certain thickness is reached, and the coral gravel moves and accumulates. And when the sedimentation thickness of coral gravel increases and the permeability decreases, the accumulated coral gravel becomes a new submarine ground, the water mass moves to a higher position, and as a result, the coral gravel gradually increases to a higher position. accumulate. In this way, the accumulation of coral gravel continues, and landing is realized by the accumulated coral gravel.
上記サンゴ礫堆積による陸化方法において、前記透過性構造物は、前記開口を有する面状の捕捉部を備え、前記捕捉部が前記水塊の移動方向に対しほぼ直交するように設置されることが好ましい。これにより、サンゴ礫を効率的に捕捉し堆積させることができる。 In the above landing method by coral gravel deposition, the permeable structure includes a planar capturing part having the opening, and the capturing part is installed so as to be substantially orthogonal to the moving direction of the water mass. Is preferred. Thereby, coral gravel can be efficiently captured and deposited.
また、前記透過性構造物の設置予定位置周辺に存在するサンゴ礫を採取し、前記採取したサンゴ礫の長手方向の寸法および短手方向の寸法を計測し、前記計測結果から平均的な寸法を算出し、前記平均的な寸法に基づいて前記開口のサイズを設定することが好ましい。実際のサンゴ礫に近似した平均的な寸法を得ることができ、サンゴ礫のより効率的な捕捉が可能となる。 In addition, coral gravel existing around the planned installation position of the permeable structure is sampled, the longitudinal dimension and the lateral dimension of the collected coral gravel are measured, and an average dimension is determined from the measurement result. It is preferable to calculate and set the size of the opening based on the average dimension. An average size approximate to actual coral gravel can be obtained, and coral gravel can be captured more efficiently.
なお、前記開口のサイズを前記平均的な寸法の長手寸法以下および短手寸法以上に設定することが好ましい。 In addition, it is preferable to set the size of the opening to be equal to or less than the longitudinal dimension and the short dimension of the average dimension.
上記目的を達成するための透過性構造物は、サンゴ礫を堆積させ陸化するための透過性構造物であって、サンゴ礫を捕捉可能な複数の開口を有し、水塊が通過可能な方向に設置されることで前記開口において前記水塊を通過させ前記サンゴ礫を捕捉するためのものである。 A permeable structure for achieving the above object is a permeable structure for depositing and landing coral gravel, having a plurality of openings capable of capturing the coral gravel and allowing a water mass to pass through. By being installed in the direction, the water mass passes through the opening and the coral gravel is captured.
この透過性構造物によれば、波や潮流などにより移動する水塊を透過する一方、水塊の移動に伴い移動するサンゴ礫を捕捉することができる。この捕捉されたサンゴ礫は堆積し、ある程度の堆積厚になるまでサンゴ礫内の透過性により水塊は作用し続け、引き続きサンゴ礫は移動し堆積する。そして、サンゴ礫の堆積厚が増加して透過性が低下すると、堆積したサンゴ礫が新しい水底地盤となって、水塊はより高い位置まで移動し、その結果、サンゴ礫は順次、高い位置まで堆積する。このようにして、サンゴ礫の堆積が続くことで、堆積したサンゴ礫により陸化が実現する。 According to this permeable structure, the coral gravel that moves along with the movement of the water mass can be captured while it passes through the water mass that moves due to waves and tidal currents. The trapped coral gravel accumulates, and the water mass continues to act due to the permeability in the coral gravel until a certain thickness is reached, and the coral gravel moves and accumulates. And when the sedimentation thickness of coral gravel increases and the permeability decreases, the accumulated coral gravel becomes a new submarine ground, the water mass moves to a higher position, and as a result, the coral gravel gradually increases to a higher position. accumulate. In this way, the accumulation of coral gravel continues, and landing is realized by the accumulated coral gravel.
上記透過性構造物は、前記開口を有する面状の捕捉部を備えることが好ましい。また、天端高さを順に変えた複数の前記捕捉部を所定間隔で配置するようにしてもよい。 The permeable structure preferably includes a planar capturing part having the opening. Moreover, you may make it arrange | position the several said capture | acquisition part which changed the top end height in order at a predetermined space | interval.
また、前記開口のサイズは、前記サンゴ礫の平均的な寸法の長手寸法以下および短手寸法以上であることが好ましい。なお、サンゴ礫の平均的な寸法とは、たとえば、上述の平均的な寸法や過去のデータ等から得られた寸法であってよい。 Moreover, it is preferable that the size of the said opening is below the longitudinal dimension of the average dimension of the said coral gravel, and above the short dimension. In addition, the average dimension of coral gravel may be a dimension obtained from the above-mentioned average dimension or past data, for example.
上記目的を達成するための構造体は、サンゴ礫を堆積させ陸化するための構造体であって、上述の透過性構造物を複数備える。 A structure for achieving the above object is a structure for depositing and landing coral gravel, and includes a plurality of the above-described permeable structures.
この構造体によれば、複数の透過性構造物を設置することで、より広い範囲でサンゴ礫の堆積による陸化が期待できる。 According to this structure, by installing a plurality of permeable structures, land formation by coral gravel accumulation can be expected in a wider range.
上記構造体としての第1の構造体は、サンゴ礫を堆積させ陸化するための構造体であって、上述の透過性構造物を複数備え、前記複数の透過性構造物が横方向に一列に並べられて設置されたものである。この構造体によれば、より幅広い範囲でサンゴ礫の堆積による陸化が期待できる。 The first structure as the structure is a structure for depositing and landing coral gravel, and includes a plurality of the permeable structures described above, and the plurality of permeable structures are arranged in a row in a lateral direction. It was installed side by side. According to this structure, land formation by coral gravel accumulation can be expected in a wider range.
同じく第2の構造体は、サンゴ礫を堆積させ陸化するための構造体であって、上述の透過性構造物を複数備え、前記複数の透過性構造物が前記水塊の移動方向に離れて設置されたものである。この構造体によれば、透過性構造物を単独または複数一列で設置した場合、水塊の移動方向が一様であれば堆積が促進されるが、期間により水塊の移動が逆方向となった場合、堆積したサンゴ礫が破壊されることが予想される。そこで、複数の透過性構造物を水塊の移動方向に離して設置することで、水塊の移動が逆方向となったとしても、各透過性構造物の間の空間でサンゴ礫の捕捉が可能となる。 Likewise, the second structure is a structure for depositing and landing coral gravel, and includes a plurality of the permeable structures described above, and the plurality of permeable structures are separated in the movement direction of the water mass. It is installed. According to this structure, when permeable structures are installed singly or in a plurality of rows, deposition is promoted if the movement direction of the water mass is uniform, but the movement of the water mass is reversed depending on the period. If this happens, it is expected that the accumulated coral gravel will be destroyed. Therefore, by installing multiple permeable structures apart in the direction of movement of the water mass, even if the movement of the water mass is reversed, the coral gravel is captured in the space between each permeable structure. It becomes possible.
同じく第3の構造体は、サンゴ礫を堆積させ陸化するための構造体であって、上述の透過性構造物を複数備え、複数の前記透過性構造物が横方向に一列に並べて設置され、さらに複数の前記透過性構造物が前記水塊の移動方向に離れて横方向に一列に並べて設置されるようにして、複数列が前記移動方向に離れて設置されたものである。この構造体によれば、より幅広い範囲でサンゴ礫の堆積による陸化が期待できるとともに、水塊の移動が逆方向となったとしても、各列の間の空間でサンゴ礫の捕捉が可能となる。 Similarly, the third structure is a structure for depositing and landing coral gravel, and includes a plurality of the above-described permeable structures, and a plurality of the permeable structures are arranged in a row in the lateral direction. In addition, a plurality of the permeable structures are arranged apart from each other in the movement direction so as to be arranged in a row in the lateral direction apart from the movement direction of the water mass. According to this structure, land can be expected to be landed by coral gravel in a wider range, and even if the movement of water mass is reversed, coral gravel can be captured in the space between each row. Become.
上記第2,第3の構造体において、前記移動方向に離れて設置された前記透過性構造物は、それらの天端高さが前記移動方向の上流側から下流側に向けて順次に高くなるように構成されることが好ましい。水塊の移動方向の上流側では天端高さを低くし、移動方向下流側になるにつれて天端高さを高くすることで、水塊の移動が逆方向となったとしても、各透過性構造物の間の空間におけるサンゴ礫の捕捉がいっそう効率的になる。 In the second and third structures, the permeable structures placed apart in the moving direction have their top heights sequentially increased from the upstream side to the downstream side in the moving direction. It is preferable to be configured as described above. Even if the water mass moves in the opposite direction by decreasing the top height on the upstream side in the direction of movement of the water mass and increasing the top height as it goes downstream in the direction of movement, each permeability Coral gravel capture in the space between structures is more efficient.
同じく第4の構造体は、サンゴ礫を堆積させ陸化するための構造体であって、上述の透過性構造物を複数備え、複数の前記透過性構造物が一領域を包囲するように設置され、さらに複数の前記透過性構造物が、前記一領域を包囲する前記複数の透過性構造物を包囲するように設置されたものである。かかる構造体の平面的設置形状例として、たとえば、同心円状、正方形状、長方形状、多角形状、長円形状などがある。 Similarly, the fourth structure is a structure for depositing coral gravel and landing, and includes a plurality of the above-described permeable structures, and the plurality of permeable structures are installed so as to surround one area. Further, a plurality of the permeable structures are installed so as to surround the plurality of permeable structures surrounding the one region. Examples of planar installation shapes of such structures include, for example, concentric circles, squares, rectangles, polygons, and ellipses.
上記第4の構造体において、前記各透過性構造物は、それらの天端高さが前記一領域のある内側から外側に向けて順次に低くなるように構成されることが好ましい。 In the fourth structure, it is preferable that each of the permeable structures is configured such that the height of the top end thereof is sequentially decreased from the inner side where the one region is located toward the outer side.
上記各構造体において、前記透過性構造物が移動しないように水底に対し固定されることが好ましい。 In each of the above structures, the permeable structure is preferably fixed to the bottom of the water so as not to move.
本発明によれば、サンゴ礫堆積による陸化方法、そのための透過構造物および構造体を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the landing method by coral gravel deposition, the permeable structure for it, and a structure can be provided.
以下、本発明を実施するための形態について図面を用いて説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
[第1の実施形態]
図1は第1の実施形態による透過性構造物の基本的構成を示す斜視図である。なお、図1等では、開口やサンゴ礫は、説明の便宜上、誇張して示されている。
[First Embodiment]
FIG. 1 is a perspective view showing a basic configuration of a permeable structure according to the first embodiment. In addition, in FIG. 1 etc., the opening and coral gravel are exaggerated for convenience of explanation.
図1に示すように、本実施形態による透過性構造物10は、底板部11と、底板部11にほぼ垂直に設けられた垂直部12と、を備える。垂直部12は、捕捉部として平面状乃至平板状に構成され、平面に多数の開口13が形成されている。
As shown in FIG. 1, the
開口13のサイズは、サンゴ礫の代表寸法の長手寸法以下、短手寸法以上とする。これにより、垂直部12に設けられた多数の開口13により、水塊を通過させながらサンゴ礫を効率的に捕捉することができる。ここで、代表寸法とは、透過性構造物10の設置予定位置周辺に存在するサンゴ礫を採取して長手方向および短手方向の寸法を計測し、統計的処理により算出した平均的な長手方向の長さ、短手方向の長さとする。なお、たとえば、サンゴ礫の寸法に関する過去のデータ等に基づいて開口のサイズを設定するようにしてもよい。
The size of the
垂直部12は、たとえば、平板状のメッシュ部材を設けて構成することができ、多数の開口13は、メッシュ部材のメッシュから構成され、開口13のサイズは、メッシュ部材のメッシュサイズに対応する。上記例では、メッシュサイズは、サンゴ礫の平均的寸法の長手寸法以下で短手寸法以上のものが選択される。
The
図1の透過性構造物10は、底板部11が水平になるように水底Gに設置され、多数の開口13を有する垂直部12が鉛直方向に立つ。このとき、垂直部12は、その平面が波や潮流などの水塊の移動方向xに直交するように位置決められる。また、透過性構造物10は、移動しないように底板部11でアンカー等の固定手段(図示省略)により水底Gに固定される。
The
次に、図1の透過性構造物10の作用効果について図2を参照して説明する。図2は、水底に設置された図1の透過性構造物10の側面図で、サンゴ礫が捕捉され堆積する過程(a)〜(d)を概略的に示す。
Next, the effect of the
図2(a)のように、波や潮流などにより移動する水塊が透過性構造物10の垂直部12にほぼ直交するように移動方向xに流れ、多数の開口13を透過する。かかる水塊の移動に伴い水中を移動したサンゴ礫1が多数の開口13で捕捉され、図2(b)のように、捕捉されたサンゴ礫1が底板部11やその周囲に堆積をはじめ、ある程度の堆積厚になるまで、堆積したサンゴ礫の透過性により、水塊は多数の開口13に作用し続け、引き続きサンゴ礫1は、水塊とともに移動し、多数の開口13に捕捉され堆積し続ける。
As illustrated in FIG. 2A, a water mass that moves due to waves, tidal currents, and the like flows in the movement direction x so as to be substantially orthogonal to the
図2(c)のように、サンゴ礫1の堆積厚が増加し、堆積したサンゴ礫1がサンゴ礫堆積物2となって、その透過性が低下すると、サンゴ礫堆積物2が新しい水底地盤となって、水塊の流れる高さがサンゴ礫堆積物2の上面よりも高い位置になる。その結果、サンゴ礫1は順次、より高い位置へと堆積し、サンゴ礫堆積物2の上面が上昇することとなる。
As shown in FIG. 2 (c), when the deposit thickness of the
図2(d)のように、サンゴ礫1の堆積が進むと、サンゴ礫堆積物2の上面がしだいに高くなるとともに、サンゴ礫堆積物2の下部が幅広で上部が幅狭となる前浜勾配が形成され、このため、水塊の移動方向がしだいに斜め上方の方向x’に変化する一方、透過性構造物10の天端が水面上よりも高い位置にある場合には、サンゴ礫1は水面上にまで打ち上げられて堆積し、その結果、サンゴ礫堆積物2の上面が水面から露出するようになる。
As shown in FIG. 2 (d), as the
すなわち、サンゴ礫堆積物2は、波により発生する岸沖方向の堆積作用と浸食作用がつりあう前浜勾配を形成しながら、サンゴ礫1は水面上まで堆積することが可能となる。なお、前浜勾配は、通常の砂浜では、高波浪時に前浜勾配はゆるくなり、静穏になると前浜勾配は急になることが知られている。つまり、来襲波の特性に応じて、海岸地形がより安定した形状に移行する。このときの岸沖方向の海岸の勾配が前浜勾配と言われる。また、前浜勾配は底質の粒形によっても異なる。
That is, the
以上のようにして、本実施形態によれば、透過性構造物10を設置した領域において、水中を水塊とともに移動するサンゴ礫1を捕捉し堆積させることで陸地化を図ることができる。すなわち、透過性構造物10を設置するのみで、自然の外力を活用することによりサンゴ礫1による陸地化が促進され、離島の保全が図られる。
As described above, according to the present embodiment, the land can be landed by capturing and depositing the
また、図2(a)〜(d)のように、透過性構造物10の天端高さH(図1)が水面高よりも高い場合、透過構造物10の天端が水面上よりも高い位置にあることで、サンゴ礫が水面上まで打ち上げられ堆積するので、サンゴ礫の堆積による陸化がいっそう実現し易くなる。
In addition, as shown in FIGS. 2A to 2D, when the top height H (FIG. 1) of the
また、透過性構造物10の天端高さが水面高よりも低い場合の堆積について図10を参照して説明する。図10は、図2と同様の側面図で、透過性構造物10の天端高さが水面高よりも低い場合にサンゴ礫が捕捉され堆積する過程(a)〜(e)を概略的に示す。
Further, the deposition when the top end height of the
図10(a)〜(d)に示すように、当初は図2(a)〜(c)と同様にサンゴ礫1が透過性構造物10の前面に堆積し、図2(d)と同様にサンゴ礫堆積物2の上面が透過性構造物10の天端まで達した後に、図10(e)のようにサンゴ礫1が透過性構造物10の上部を越えて透過性構造物10の背面に堆積しサンゴ礫堆積物2’が形成され、その後、図10(f)のように透過性構造物10の背面側においてサンゴ礫1の堆積が進行する。このように、サンゴ礫1の堆積による陸化がいっそう実現し易くなる。
As shown in FIGS. 10 (a) to 10 (d), the
なお、図2の場合も、図2(d)のように、サンゴ礫堆積物2の上面が透過性構造物10の天端まで達した後にさらにサンゴ礫1が堆積を続ける一方、図10(e)(f)と同様にして透過性構造物10の背面側においてもサンゴ礫1の堆積が進行する。
In the case of FIG. 2 as well, the
本実施形態の作用効果をさらに説明する。仮に、図1のような透過性構造物ではなく、不透過性構造物を設置した場合、不透過性構造物の周辺が洗掘されることとなり、堆積とはまったく逆効果で、逆の結果となる。 The effect of this embodiment is further demonstrated. If an impermeable structure is installed instead of the permeable structure as shown in FIG. 1, the periphery of the impermeable structure will be scoured, which is completely opposite to the deposition and the opposite result. It becomes.
また、砂を対象とした場合、粒径が小さいため、砂を捕捉する透過性構造物の開口が小さくなり、これにより水塊の移動が阻害されてしまう。その結果、不透過性構造物を設置したケースに似た現象が生じることとなり、砂を対象とする透過性構造物の前面に砂が堆積することは無く、本実施形態のような堆積効果が成立しない。 In addition, when sand is used, since the particle size is small, the opening of the permeable structure that captures the sand becomes small, thereby inhibiting the movement of the water mass. As a result, a phenomenon similar to the case where the impermeable structure is installed occurs, and sand does not accumulate on the front surface of the permeable structure targeted for sand, and the accumulation effect as in this embodiment is achieved. Not satisfied.
次に、本実施形態による別の二例について図11,図12を参照して説明する。図11は本実施形態の別の第1例による透過性構造物の基本的構成を示す斜視図である。図12は本実施形態の別の第2例による透過性構造物の基本的構成を示す斜視図である。 Next, another two examples according to the present embodiment will be described with reference to FIGS. FIG. 11 is a perspective view showing a basic configuration of a permeable structure according to another first example of the present embodiment. FIG. 12 is a perspective view showing a basic configuration of a permeable structure according to another second example of the present embodiment.
図11のように、透過性構造物16は、図1の底板部11を省略し、垂直部12の両端の下端で垂直部12に対し直交して張り出すように支持部材14,14を設けたものである。垂直部12はその両端の下端において、垂直部12の前後に延びた支持部材14,14により支持される。なお、透過性構造物16は支持部材14,14でアンカー等の固定手段(図示省略)により水底に固定される。
As shown in FIG. 11, the
図12のように、透過性構造物17は、図1の底板部11を省略し、鉛直杭15,15を設置位置の水底に打設し、垂直部12をその両端で鉛直杭15,15に固定し支持するようにしたものである。図12の例では、アンカー等の固定手段は不要となる。
As shown in FIG. 12, the
[第2の実施形態]
図3は第2の実施形態による透過性構造物を概略的に示す側面図である。図4は図1の透過性構造物を単独で設置した場合の問題点を説明するための側面図(a)(b)である。
[Second Embodiment]
FIG. 3 is a side view schematically showing a permeable structure according to the second embodiment. FIG. 4 is a side view (a) and (b) for explaining a problem when the permeable structure of FIG. 1 is installed alone.
図3(a)(b)の透過性構造物20は、図1と同様の構成であるが、底板部25に所定間隔で複数の垂直部21,22,23,24を設けた点が相違する。各垂直部21,22,23,24は、この順で天端高さが低く構成され、それぞれ図1と同様に多数の開口を有する。
3 (a) and 3 (b) has the same configuration as that of FIG. 1, except that a plurality of
図3(a)のように、透過性構造物20は、水塊の通常の移動が移動方向xである場合、移動方向xの上流側に天端高さの低い垂直部24を配置し、移動方向xの下流側に向けて順に天端高さの高い垂直部23,22,21を配置している。
As shown in FIG. 3A, when the normal movement of the water mass is the movement direction x, the
ここで、図1の透過性構造物10を単独で設置した場合の問題点について説明する。図4(a)のように水塊の移動方向xが一様であれば、サンゴ礫1の堆積が促進される。しかし、図4(b)のように、期間により水塊の移動方向が逆方向axとなった場合、その水塊の移動により、それまでの間に堆積したサンゴ礫が破壊されてしまうおそれがある。
Here, the problem when the
上記問題に対し、本実施形態によれば、複数の垂直部24,23,22,21を、水塊の移動方向xの上流側については天端高さを低くし、移動方向xの下流側につれて天端高さを高くするようにして配置することで、図3(b)のように、水塊の移動が移動方向xに対し逆方向axになったとしても、複数の垂直部21〜24がそれぞれ隣り合う各空間でサンゴ礫の捕捉・堆積が可能となるとともに、水塊が移動方向xに移動して堆積したサンゴ礫が移動して破壊されてしまうことを防止できる。
With respect to the above problem, according to the present embodiment, a plurality of
図5は、本実施形態の別の例による構造体を概略的に示す側面図である。図5の構造体30は、複数の透過性構造物10A,10B,10C,10Dから構成され、複数の透過性構造物10A〜10Dを水底に水塊の移動方向xに並べたものである。各透過性構造物10A〜10Dは、図1の透過性構造物10と基本的構成は同一であるが、それらの垂直部12a,12b,12c,12dはそれらの天端高さが順に低く構成され、それぞれ図1と同様に多数の開口を有する。
FIG. 5 is a side view schematically showing a structure according to another example of the present embodiment. The
図5の構造体30によれば、各透過性構造物10A〜10Dを、水塊の移動方向xに対し下流側から垂直部12a,12b,12c,12dの天端高さが順に低くなるように設置することで、図3(a)(b)の複数の垂直部を有する透過性構造物20と同様の作用効果を得ることができ、水塊の移動が移動方向xに対し逆方向になったとしても、複数の透過性構造物10A〜10Dの各垂直部12a〜12dがそれぞれ隣り合う各空間でサンゴ礫の捕捉・堆積が可能となるとともに、水塊が移動方向xに移動して堆積したサンゴ礫が移動して破壊されてしまうことを防止できる。
According to the
なお、図3,図5において、透過性構造物の各垂直部間の間隔は、サンゴ礫の堆積と堆積したサンゴ礫の破壊防止とが効率的に実現できるように適宜設定されることが好ましい。 3 and 5, the interval between the vertical portions of the permeable structure is preferably set as appropriate so that the accumulation of coral gravel and the prevention of the destruction of the accumulated coral gravel can be efficiently realized. .
[第3の実施形態]
図6は、第3の実施形態による構造体を概略的に示す斜視図である。図6の構造体40は、複数の透過性構造物10から構成され、複数の透過性構造物10を水底Gに水塊の移動方向xに対し直交するように横方向に一列に並べて設置したものである。各透過性構造物10は、図1と同様の構成を有し、各垂直部12はそれぞれ多数の開口13を有する。図6の構造体40によれば、複数の透過性構造物10を横方向に一列に並べることで、幅広い範囲においてサンゴ礫の捕捉・堆積が期待できる。
[Third Embodiment]
FIG. 6 is a perspective view schematically showing a structure according to the third embodiment. The
図7は、本実施形態の別の例による構造体を概略的に示す斜視図である。図7の構造体50は、複数の透過性構造物10Aと複数の透過性構造物10Bと複数の透過性構造物10Cとから構成され、複数の透過性構造物10Aを水底Gに水塊の移動方向xに対し直交するように横方向に一列aに並べ、複数の透過性構造物10Bを同じく移動方向xに対し直交するように横方向に一列bに並べ、複数の透過性構造物10Cを同じく移動方向xに対し直交するように横方向に一列cに並べて設置したものである。各透過性構造物10A〜10Cは、図1の透過性構造物10と基本的構成は同一であるが、それらの垂直部12a,12b,12cはそれらの天端高さが順に低くなっている。各垂直部12a〜12cはそれぞれ多数の開口13を有する。
FIG. 7 is a perspective view schematically showing a structure according to another example of the present embodiment. The
図7の構造体50は、複数の透過性構造物10A〜10Cの各列a〜cを水塊の移動方向xに並べたものである。各列a〜cの各透過性構造物10A〜10Cを、水塊の移動方向xに対し下流側から垂直部12a,12b,12cの天端高さが順に低くなるように設置している。
The
図6の構造体40は、複数の透過性構造物10を横方向に一列に並べているだけであるので、水塊の移動方向が時期により逆方向に変化した場合、図4(a)(b)で説明したのと同様の問題点を有しているが、図7の構造体50によれば、図3,図5と同様の作用効果を得ることができ、水塊の移動が移動方向xに対し逆方向になったとしても、各列a〜cの各垂直部12a〜12cがそれぞれ隣り合う各空間でサンゴ礫の捕捉・堆積が可能となるとともに、水塊が移動方向xに移動して堆積したサンゴ礫が移動して破壊されてしまうことを防止できる。これにより、水塊の移動方向が時期により逆方向に変化する場合でも、幅広い範囲においてサンゴ礫の捕捉・堆積が期待できる。
Since the
次に、本実施形態によるさらに別の例について図13を参照して説明する。図13は本実施形態のさらに別の例による構造体を概略的に示す斜視図である。図13の構造体70は、図12の鉛直杭15を用いた複数の透過性構造物17を、図6と同様に、水底に水塊の移動方向xに対し直交するように横方向に一列に並べて設置したものである。構造体70では、隣り合う垂直部12は共通の鉛直杭15に固定され支持される。構造体70によれば、図6と同様の効果を奏する。また、図13の構造体70を、図7と同様に配置し、垂直部の天端高さが順に低くなるように設置することで、図7と同様の効果を奏する。
Next, still another example according to the present embodiment will be described with reference to FIG. FIG. 13 is a perspective view schematically showing a structure according to still another example of the present embodiment. In the
なお、図11の複数の透過性構造物16を、図6と同様に設置してもよく、また、図7と同様に設置してもよい。 11 may be installed in the same manner as in FIG. 6 or may be installed in the same manner as in FIG.
[第4の実施形態]
図8は、第4の実施形態による構造体を概略的に示す平面図(a)およびVIIIB-VIIIB線方向に切断して見た図(b)である。図9は本実施形態による作用効果を説明するための概略的な平面図である。
[Fourth Embodiment]
FIG. 8: is the top view (a) which shows the structure by 4th Embodiment roughly, and the figure (b) seen by cut | disconnecting in the VIIIB-VIIIB line direction. FIG. 9 is a schematic plan view for explaining the operational effects of the present embodiment.
図8(a)(b)の構造体60は、複数の構造体61,62,63から構成され、構造体61は、多数の透過性構造物61Aを、水底の一平面領域Mを包囲するように平面的に正方形状に配置して構成され、構造体62は、多数の透過性構造物62Aを、構造体61を包囲するように平面的に正方形状に配置して構成され、構造体63は、多数の透過性構造物63Aを、構造体62を包囲するように平面的に正方形状に配置して構成されている。
8A and 8B includes a plurality of
透過性構造物61A〜63Aは、図1の透過性構造物10と基本的構成は同一であるが、図8(b)のように、それらの垂直部61a,62a,63aはそれらの天端高さが内側から外側に向けて順に低くなっている。各垂直部61a〜63aはそれぞれ図1と同様に多数の開口を有する。
The basic structures of the
図8の構造体60によれば、サンゴ礫により堆積した周辺が局所的に水深が浅くなることで、図9のように、移動方向xからの波が屈折しその背後に集中し(波の屈折作用)、その結果、構造体60の背面65においてサンゴ礫が左右から移動し、かかる波の集中により背面65側に形成された領域Nでサンゴ礫の堆積がいっそう促進される。これにより、サンゴ礫の捕捉・堆積による陸化が効率的に行われる。また、波や潮流などの水塊の移動方向が期間によって変化し複数方向から作用する地点に構造体60を設置することで、サンゴ礫の捕捉・堆積が効率的に行われる。
According to the
なお、図8においては、多数の透過性構造物を平面的に正方形状に配置したが、これに限定されず、同心円状、長方形状、多角形状、長円形状などに配置してもよい。 In FIG. 8, a large number of transparent structures are arranged in a square shape in a plan view, but the present invention is not limited to this and may be arranged in a concentric circle shape, a rectangular shape, a polygonal shape, an oval shape, or the like.
以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。たとえば、本実施形態の図1,図3の透過性構造物10,20を複数連続して設置することができるが、かかる設置は1箇所だけではなく、互いに離れた複数個所であってもよい。同様に、図5〜図8の構造体30,40,50,60を設置するのは1箇所だけではなく、互いに離れた複数個所であってもよい。
As described above, the modes for carrying out the present invention have been described. However, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, a plurality of the
また、図3における複数の垂直部の数や図5における複数の透過性構造物の数や図7における複数の列の数は、図示された数に限定されず、必要に応じて増減できることはもちろんである。また、図6,図7における横方向に一列に並べられる透過性構造物の数も同様に必要に応じて増減できる。 Further, the number of the plurality of vertical portions in FIG. 3, the number of the plurality of transparent structures in FIG. 5, and the number of the plurality of columns in FIG. 7 are not limited to the illustrated numbers, but can be increased or decreased as necessary. is there. Moreover, the number of the permeable structures arranged in a line in the horizontal direction in FIGS. 6 and 7 can also be increased or decreased as necessary.
また、図1,図11,図12では、複数の開口13を有する捕捉部である垂直部12は平板状に構成されるが、本発明はこれに限定されず、面状であればよく、面状の捕捉部としては、平板状のものや全面が平面状のもののみならず、たとえば、予めV字状や波形状のように変形した形状に構成されたものも含む。
Moreover, in FIG.1, FIG.11, FIG.12, although the perpendicular |
また、捕捉部が、たとえば、鉄鋼材料からなる平板やエキスパンドメタル等から構成される場合は、ある程度の剛性があるため供用中も平面状をほぼ保つが、たとえば、樹脂材料や金網のような可撓性のある材料から平面状に構成される場合は、供用中は水塊の移動により湾曲状に変形する場合がある。 In addition, when the capturing part is made of, for example, a flat plate made of a steel material or expanded metal, it has a certain degree of rigidity, so that it remains almost flat during service. If the material is made of a flexible material in a planar shape, it may be deformed into a curved shape due to the movement of the water mass during service.
図14に、複数の開口13を有する捕捉部12’が底板部11上に設けられた透過性構造物18を複数、図6と同様に、横方向に一列に並べた構造体80を示す。また、図15に、複数の鉛直杭15を水底に打設し、鉛直杭15に捕捉部12’が固定され支持された透過性構造物19を複数、図6と同様に、横方向に一列に並べた構造体90を示す。図14,図15の各捕捉部12’は、樹脂材料や金網等のような可撓性のある材料から構成され、設置時には平面状であり鉛直方向に立設されるが、供用中に水塊の移動によりその移動方向xに変形し凹状に湾曲することがある。
FIG. 14 shows a
また、図1,図11,図12の垂直部12、さらには、図14,図15の捕捉部12’は、鉛直方向に立設されるが、本発明はこれに限定されず、水塊の移動方向に対し前後に傾斜していてもよい。すなわち、本発明において、複数の開口を有する面状の捕捉部は、全体が鉛直方向に対し傾斜していてもよい。
Moreover, although the
また、本明細書のサンゴ礫とは、サンゴ礁由来のもので、形状的には木の枝のような形状やテーブル状の形状のものが多い。 Moreover, the coral gravel of this specification originates from a coral reef, and has many shapes like a tree branch or a table shape.
本発明によれば、サンゴ礫を堆積させて陸化を図る方法、そのために使用可能な透過構造物および構造体を提供できるので、新たな島を造成することが可能となる。 According to the present invention, it is possible to provide a method for depositing coral gravel to land, and a permeable structure and a structure that can be used therefor, so that a new island can be created.
1 サンゴ礫
2 サンゴ礫堆積物
10,16,17,18,19,20 透過性構造物
10A,10B,10C,10D 透過性構造物
11 底板部
12 垂直部(捕捉部)
12’ 捕捉部
12a,12b,12c,12d 垂直部(捕捉部)
13 開口
21,22,23,24 垂直部(捕捉部)
25 底板部
30,40,50,60,70,80,90 構造体
a〜c 一列
G 水底
M 一平面領域
x 移動方向
ax 逆方向
DESCRIPTION OF
12 '
13
25
ax reverse direction
Claims (7)
サンゴ礫を捕捉可能な複数の開口を有する透過性構造物を水塊が通過可能な方向に設置し、
前記透過性構造物の開口において前記水塊を通過させ前記サンゴ礫を捕捉することで前記サンゴ礫を堆積させるサンゴ礫堆積による陸化方法。 A method of depositing coral gravel and landing it,
A permeable structure having a plurality of openings capable of capturing coral gravel is installed in a direction in which a water mass can pass,
A land-based method by coral gravel deposition in which the coral gravel is deposited by passing the water mass through the opening of the permeable structure and capturing the coral gravel.
前記採取したサンゴ礫の長手寸法および短手寸法を計測し、
前記計測結果から平均的な寸法を算出し、
前記平均的な寸法に基づいて前記開口のサイズを設定する請求項1または2に記載のサンゴ礫堆積による陸化方法。 Collect coral gravel that exists around the planned installation position of the permeable structure,
Measure the long dimension and short dimension of the collected coral gravel,
An average dimension is calculated from the measurement result,
The landing method by coral gravel deposition according to claim 1 or 2, wherein the size of the opening is set based on the average dimension.
サンゴ礫を捕捉可能な複数の開口を有し、
水塊が通過可能な方向に設置されることで前記開口において前記水塊を通過させ前記サンゴ礫を捕捉するための透過性構造物。 A permeable structure to deposit and land coral gravel,
It has multiple openings that can capture coral gravel,
A permeable structure for passing the water mass through the opening and capturing the coral gravel by being installed in a direction in which the water mass can pass.
請求項4乃至6のいずれか1項に記載の透過性構造物を複数備える構造体。 A structure for depositing coral gravel and landing it,
A structure comprising a plurality of the permeable structures according to any one of claims 4 to 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015195733A JP6674220B2 (en) | 2015-10-01 | 2015-10-01 | Landing method by coral gravel accumulation, permeation structure and structure therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015195733A JP6674220B2 (en) | 2015-10-01 | 2015-10-01 | Landing method by coral gravel accumulation, permeation structure and structure therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016127819A true JP2016127819A (en) | 2016-07-14 |
JP6674220B2 JP6674220B2 (en) | 2020-04-01 |
Family
ID=56383750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015195733A Active JP6674220B2 (en) | 2015-10-01 | 2015-10-01 | Landing method by coral gravel accumulation, permeation structure and structure therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6674220B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017210832A (en) * | 2016-05-27 | 2017-11-30 | 五洋建設株式会社 | Land formation method by accumulating coral gravel, and permeable structure and structural body for the same |
JP2017210833A (en) * | 2016-05-27 | 2017-11-30 | 五洋建設株式会社 | Land formation method by accumulating coral gravel, and permeable structure and structural body for the same |
JP2022126958A (en) * | 2021-02-19 | 2022-08-31 | 五洋建設株式会社 | Arrangement method of permeable structure, land forming method by coral gravel deposition, structure, and permeable structure |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5035019U (en) * | 1973-07-24 | 1975-04-14 | ||
JPS62202104A (en) * | 1986-03-03 | 1987-09-05 | Asahi Chem Ind Co Ltd | Fence for regulating tide current |
JPH0336021U (en) * | 1989-08-11 | 1991-04-09 | ||
JPH04250209A (en) * | 1990-12-26 | 1992-09-07 | Kosutaru Eng:Kk | Fluid controller |
US5201136A (en) * | 1990-01-23 | 1993-04-13 | Lamorte David L | Artificial fish habitat structures |
US5564369A (en) * | 1994-06-22 | 1996-10-15 | Barber; Todd R. | Reef ball |
JPH10331126A (en) * | 1997-06-02 | 1998-12-15 | Ohbayashi Corp | Drifting sand controlling block and installing method thereof |
JP2000257049A (en) * | 1999-03-12 | 2000-09-19 | Hiroshi Suzuki | Flowing object capturing structure |
JP2001032229A (en) * | 1999-07-26 | 2001-02-06 | Shinichiro Hayashi | Land creation method in seashore |
JP2002339338A (en) * | 2001-05-15 | 2002-11-27 | Landcreate Kenkyusho:Kk | Capturing construction for catching flow-down matters |
JP2004316081A (en) * | 2003-04-11 | 2004-11-11 | Sabo Jisuberi Gijutsu Center | Mudflow type debris flow catching erosion control dam |
JP2006158218A (en) * | 2004-12-02 | 2006-06-22 | Tetra Co Ltd | Method for cutting off coral-attached base and method for hanging up coral |
JP2008141979A (en) * | 2006-12-07 | 2008-06-26 | Penta Ocean Construction Co Ltd | Base for coral breeding, and method of breeding coral |
JP2009077649A (en) * | 2007-09-26 | 2009-04-16 | Daikure Co Ltd | Structure for propagating and culturing coral |
JP2011125347A (en) * | 2011-02-22 | 2011-06-30 | Kajima Corp | Method for making coral reef |
JP2011125293A (en) * | 2009-12-18 | 2011-06-30 | Kajima Corp | Coral transplanting method, coral transplantation base, coral transplantation block and method for forming coral reef |
US20110283929A1 (en) * | 2009-08-06 | 2011-11-24 | Stewart Hardison | Mooring structure with habitat features for marine animals |
JP2013165693A (en) * | 2012-02-16 | 2013-08-29 | Kajima Corp | Structure for growing coral and revetment method |
JP2014212702A (en) * | 2013-04-22 | 2014-11-17 | 鹿島建設株式会社 | Coral reef regenerating method |
JP2014212704A (en) * | 2013-04-22 | 2014-11-17 | 鹿島建設株式会社 | Anchor, coral growing method and coral protection method |
JP2015045159A (en) * | 2013-08-28 | 2015-03-12 | 鹿島建設株式会社 | Land forming under-sea structure |
JP2015074919A (en) * | 2013-10-09 | 2015-04-20 | 株式会社Ihi | Pollution particle-capturing device |
-
2015
- 2015-10-01 JP JP2015195733A patent/JP6674220B2/en active Active
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5035019U (en) * | 1973-07-24 | 1975-04-14 | ||
JPS62202104A (en) * | 1986-03-03 | 1987-09-05 | Asahi Chem Ind Co Ltd | Fence for regulating tide current |
JPH0336021U (en) * | 1989-08-11 | 1991-04-09 | ||
US5201136A (en) * | 1990-01-23 | 1993-04-13 | Lamorte David L | Artificial fish habitat structures |
JPH04250209A (en) * | 1990-12-26 | 1992-09-07 | Kosutaru Eng:Kk | Fluid controller |
US5564369A (en) * | 1994-06-22 | 1996-10-15 | Barber; Todd R. | Reef ball |
JPH10331126A (en) * | 1997-06-02 | 1998-12-15 | Ohbayashi Corp | Drifting sand controlling block and installing method thereof |
JP2000257049A (en) * | 1999-03-12 | 2000-09-19 | Hiroshi Suzuki | Flowing object capturing structure |
JP2001032229A (en) * | 1999-07-26 | 2001-02-06 | Shinichiro Hayashi | Land creation method in seashore |
JP2002339338A (en) * | 2001-05-15 | 2002-11-27 | Landcreate Kenkyusho:Kk | Capturing construction for catching flow-down matters |
JP2004316081A (en) * | 2003-04-11 | 2004-11-11 | Sabo Jisuberi Gijutsu Center | Mudflow type debris flow catching erosion control dam |
JP2006158218A (en) * | 2004-12-02 | 2006-06-22 | Tetra Co Ltd | Method for cutting off coral-attached base and method for hanging up coral |
JP2008141979A (en) * | 2006-12-07 | 2008-06-26 | Penta Ocean Construction Co Ltd | Base for coral breeding, and method of breeding coral |
JP2009077649A (en) * | 2007-09-26 | 2009-04-16 | Daikure Co Ltd | Structure for propagating and culturing coral |
US20110283929A1 (en) * | 2009-08-06 | 2011-11-24 | Stewart Hardison | Mooring structure with habitat features for marine animals |
JP2011125293A (en) * | 2009-12-18 | 2011-06-30 | Kajima Corp | Coral transplanting method, coral transplantation base, coral transplantation block and method for forming coral reef |
JP2011125347A (en) * | 2011-02-22 | 2011-06-30 | Kajima Corp | Method for making coral reef |
JP2013165693A (en) * | 2012-02-16 | 2013-08-29 | Kajima Corp | Structure for growing coral and revetment method |
JP2014212702A (en) * | 2013-04-22 | 2014-11-17 | 鹿島建設株式会社 | Coral reef regenerating method |
JP2014212704A (en) * | 2013-04-22 | 2014-11-17 | 鹿島建設株式会社 | Anchor, coral growing method and coral protection method |
JP2015045159A (en) * | 2013-08-28 | 2015-03-12 | 鹿島建設株式会社 | Land forming under-sea structure |
JP2015074919A (en) * | 2013-10-09 | 2015-04-20 | 株式会社Ihi | Pollution particle-capturing device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017210832A (en) * | 2016-05-27 | 2017-11-30 | 五洋建設株式会社 | Land formation method by accumulating coral gravel, and permeable structure and structural body for the same |
JP2017210833A (en) * | 2016-05-27 | 2017-11-30 | 五洋建設株式会社 | Land formation method by accumulating coral gravel, and permeable structure and structural body for the same |
JP2022126958A (en) * | 2021-02-19 | 2022-08-31 | 五洋建設株式会社 | Arrangement method of permeable structure, land forming method by coral gravel deposition, structure, and permeable structure |
JP7274179B2 (en) | 2021-02-19 | 2023-05-16 | 五洋建設株式会社 | Arrangement method of permeable structure, method and structure of land formation by coral gravel deposition |
Also Published As
Publication number | Publication date |
---|---|
JP6674220B2 (en) | 2020-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Oost et al. | Barrier island management: Lessons from the past and directions for the future | |
Ball et al. | The geologic effects of Hurricane Donna in south Florida | |
Masselink et al. | Response of wave-dominated and mixed-energy barriers to storms | |
AU2014200674B2 (en) | Submarine construction for tsunami and flooding protection, for tidal energy and energy storage, and for fish farming | |
Morton et al. | Coarse-clast ridge complexes of the Caribbean: a preliminary basis for distinguishing tsunami and storm-wave origins | |
Morton et al. | Beach and vegetation-line changes at Galveston Island, Texas: erosion, deposition, and recovery from Hurricane Alicia | |
Jell et al. | Geology of Heron Island and adjacent reefs, great barrier reef, Australia | |
Morton | First-order controls of extreme-storm impacts on the Mississippi–Alabama barrier-island chain | |
JP2016127819A (en) | Emergence method utilizing coral gravel accumulation, and permeable structure and structure for the same | |
Priestas et al. | Morphology and hydrodynamics of wave-cut gullies | |
Sabatier et al. | Morphodynamics of beach/dune systems: examples from the coast of France | |
Matias et al. | Overwash processes: lessons from fieldwork and laboratory experiments | |
Cadigan et al. | Impacts of coastal infrastructure on shoreline response to major hurricanes in southwest Louisiana | |
Erdmann et al. | Holocene coastal sedimentation in a rocky environment: Geomorphological evidence from the Aran Islands and Galway Bay (Western Ireland) | |
Achab et al. | Evaluation of sedimentological and morphological changes induced by the rehabilitation of sandy beaches from the Ria Formosa Barrier Island System (South Portugal) | |
JP6688155B2 (en) | Landification method by coral gravel deposition, permeable structure and structure therefor | |
JP6688156B2 (en) | Landification method by coral gravel deposition, permeable structure and structure therefor | |
Frihy et al. | Wave climate and nearshore processes on the Mediterranean coast of Egypt | |
Forbes et al. | Coastal environments and drivers | |
EP2548435A1 (en) | Supporting structure, method of planting rhizomatous water plants, and use of the supporting structure | |
JP6503412B2 (en) | River structure | |
Mottershead et al. | Tsunamigenic landscapes in the Maltese Islands: the comino channel coasts | |
Sedrati et al. | Morphodynamic evolution of a microtidal barrier, the role of overwash: Bevano, Northern Adriatic Sea | |
JP4550231B2 (en) | Bottom sediment movement control method | |
RU2010127551A (en) | METHOD FOR ESTABLISHING AN EROSION-EARTH STRUCTURE OF A BIO-POSITIVE DESIGN |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20151019 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20151019 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180906 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180906 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190415 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190510 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191018 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200303 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200306 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6674220 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |