JP2016126896A - Positive electrode for wound type lithium ion secondary battery, negative electrode for wound type lithium ion secondary battery, and wound type lithium ion secondary battery - Google Patents

Positive electrode for wound type lithium ion secondary battery, negative electrode for wound type lithium ion secondary battery, and wound type lithium ion secondary battery Download PDF

Info

Publication number
JP2016126896A
JP2016126896A JP2014266268A JP2014266268A JP2016126896A JP 2016126896 A JP2016126896 A JP 2016126896A JP 2014266268 A JP2014266268 A JP 2014266268A JP 2014266268 A JP2014266268 A JP 2014266268A JP 2016126896 A JP2016126896 A JP 2016126896A
Authority
JP
Japan
Prior art keywords
lithium ion
ion secondary
secondary battery
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014266268A
Other languages
Japanese (ja)
Other versions
JP6935983B2 (en
Inventor
博宣 深堀
Hironori Fukahori
博宣 深堀
圭介 野村
Keisuke Nomura
圭介 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2014266268A priority Critical patent/JP6935983B2/en
Priority to KR1020150141733A priority patent/KR20160079632A/en
Publication of JP2016126896A publication Critical patent/JP2016126896A/en
Application granted granted Critical
Publication of JP6935983B2 publication Critical patent/JP6935983B2/en
Priority to KR1020230078537A priority patent/KR20230093402A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/747Woven material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery high in energy density and superior in high-rate discharge characteristic, which enables the coating by a coating method for an existing lithium ion secondary battery, and enables the further increase in electrode's thickness by adopting a current collector having adequate endurance against press working and adequate endurance against winding.SOLUTION: To solve the above problem, a wound type lithium ion secondary battery is provided according to an aspect of the present invention, which comprises: a positive electrode having a positive electrode current collector into which a piece of nonporous aluminum foil and a reticular aluminum porous body laminated on at least one face of the piece of nonporous aluminum foil are integrated; and a negative electrode having a negative electrode current collector into which a piece of nonporous copper foil and a reticular metal porous body laminated on at least one face of the piece of nonporous copper foil are integrated.SELECTED DRAWING: Figure 1

Description

本発明は、巻回型リチウムイオン二次電池用正極、巻回型リチウムイオン二次電池用負極、及びこれらの正極および負極を用いた巻回型リチウムイオン二次電池に関する。   The present invention relates to a positive electrode for a wound lithium ion secondary battery, a negative electrode for a wound lithium ion secondary battery, and a wound lithium ion secondary battery using the positive electrode and the negative electrode.

近年、スマートフォンやタブレット端末等の登場により、リチウムイオン二次電池の更なる高容量化が求められている。電池の容量を増加させる方法としては、容量の大きな活物質への改良、活物質の利用効率の向上等の他に、電極(活物質層)の厚型化による活物質の使用量の増加があげられる。ところが、電極を厚型化していくと、電極の深さ方向の集電性が低下し、リチウムイオンの移動距離も増加するため、高率放電特性が大幅に低下するという問題があった。   In recent years, with the advent of smartphones and tablet terminals, there is a demand for further increase in capacity of lithium ion secondary batteries. As a method of increasing the capacity of the battery, in addition to improving the active material with a large capacity, improving the utilization efficiency of the active material, etc., there is an increase in the amount of active material used by increasing the thickness of the electrode (active material layer). can give. However, as the thickness of the electrode is increased, the current collecting property in the depth direction of the electrode is reduced and the movement distance of lithium ions is increased, resulting in a problem that the high-rate discharge characteristics are significantly lowered.

この問題を解決する手法として、例えば、特許文献1および2には、三次元網目構造を有する多孔体を集電体に用いることが開示されている。   As a technique for solving this problem, for example, Patent Documents 1 and 2 disclose that a porous body having a three-dimensional network structure is used as a current collector.

特開2010−272425号公報JP 2010-272425 A 特開2012−186139号公報JP 2012-186139 A

しかしながら、このような三次元網目構造を有する多孔体を集電体に用いる場合、既存のリチウムイオン電池の塗工方式であるダイヘットコーティング、ドクターブレードを用いたコーティング等の塗布方式での塗工が極めて困難であるため、これに適した塗工方式(例えば、圧入法、浸漬法等)の設備を新規に導入する必要がある。   However, when a porous body having such a three-dimensional network structure is used as a current collector, coating by a coating method such as die-height coating, which uses an existing lithium ion battery, or coating using a doctor blade, etc. Therefore, it is necessary to newly introduce equipment of a coating method (for example, press-fitting method, dipping method, etc.) suitable for this.

また、上記三次元網目構造を有する多孔体を集電体に用いた場合、ロールプレス加工時に多孔体の破断や崩壊が起き、集電体を含む合剤が脱落するという問題が発生していた。さらに、電極の巻回耐性も不十分であり、巻回時に集電体を含む合剤の脱落や電極破断が発生する等の不具合が生じていた。   Further, when the porous body having the above three-dimensional network structure is used as a current collector, there has been a problem that the porous body is broken or collapsed during roll press processing, and the mixture containing the current collector is dropped. . Furthermore, the winding resistance of the electrode is insufficient, and problems such as dropping of the mixture containing the current collector and electrode breakage during winding have occurred.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、既存のリチウムイオン二次電池の塗布方式による塗工が可能であり、十分なプレス加工耐性および巻回耐性を有する集電体の適用により、電極の一層の厚型化を可能とし、高エネルギー密度で且つ高率放電特性に優れた二次電池を提供することにある。   Therefore, the present invention has been made in view of the above problems, and the object of the present invention is that application by an existing lithium ion secondary battery coating method is possible, and sufficient press working resistance and An object of the present invention is to provide a secondary battery that can be made thicker by applying a current collector having winding resistance, has a high energy density, and is excellent in high rate discharge characteristics.

上記課題を解決するために、本発明のある観点によれば、無孔のアルミニウム箔の少なくとも片面に網状のアルミニウム多孔体を積層し一体化させた正極集電体を備えることを特徴とする、巻回型リチウムイオン二次電池用正極が提供される。   In order to solve the above problems, according to one aspect of the present invention, the present invention is characterized by comprising a positive electrode current collector in which a net-like aluminum porous body is laminated and integrated on at least one surface of a non-porous aluminum foil. A positive electrode for a wound lithium ion secondary battery is provided.

この観点に係る巻回型リチウムイオン二次電池用正極では、正極集電体が無孔のアルミニウム箔の少なくとも片面に網状のアルミニウム多孔体を積層し一体化させた構造を有していることから、既存のリチウムイオン二次電池の塗布方式による塗工が可能であり、十分なロールプレス加工耐性および巻回耐性を有するとともに、電極の深さ方向の集電性の低下を抑えることができる。   In the positive electrode for a wound lithium ion secondary battery according to this aspect, the positive electrode current collector has a structure in which a net-like aluminum porous body is laminated and integrated on at least one surface of a non-porous aluminum foil. Application by an application method of an existing lithium ion secondary battery is possible, and it has sufficient roll press processing resistance and winding resistance, and can suppress a decrease in current collecting performance in the depth direction of the electrode.

したがって、本観点に係る負極集電体をリチウムイオン二次電池に適用することで、電極の一層の厚型化が可能となり、高エネルギー密度で且つ高率放電特性に優れた二次電池とすることができる。   Therefore, by applying the negative electrode current collector according to this aspect to a lithium ion secondary battery, the electrode can be made thicker, and a secondary battery having high energy density and excellent high rate discharge characteristics can be obtained. be able to.

ここで、網状のアルミニウム多孔体が、アルミニウム不織布またはアルミニウムエキスパンドメタルの少なくともいずれか一つからなっていてもよい。   Here, the net-like aluminum porous body may be made of at least one of an aluminum nonwoven fabric and an aluminum expanded metal.

この観点によれば、網状のアルミニウム多孔体が、アルミニウム不織布またはアルミニウムエキスパンドメタルの少なくともいずれか一つからなるので、プレス加工耐性および巻回耐性が更に向上する。   According to this aspect, since the net-like aluminum porous body is made of at least one of an aluminum nonwoven fabric and an aluminum expanded metal, press working resistance and winding resistance are further improved.

また、アルミニウム箔の厚みが、12μm以下であることが好ましい。   Moreover, it is preferable that the thickness of aluminum foil is 12 micrometers or less.

この観点によれば、アルミニウム箔の厚みが12μm以下と薄いので、エネルギー密度がさらに向上する。   According to this viewpoint, since the thickness of the aluminum foil is as thin as 12 μm or less, the energy density is further improved.

また、正極集電体の厚みが、0.2mm以上0.5mm以下であることが好ましい。   Moreover, it is preferable that the thickness of a positive electrode electrical power collector is 0.2 mm or more and 0.5 mm or less.

この観点によれば、正極集電体の厚みが0.2mm以上0.5mm以下であるので、電極の深さ方向の集電性がさらに高まる。   According to this viewpoint, since the thickness of the positive electrode current collector is 0.2 mm or more and 0.5 mm or less, the current collecting property in the depth direction of the electrode is further enhanced.

また、正極の空隙率が、60%以上87%以下であることが好ましい。   The porosity of the positive electrode is preferably 60% or more and 87% or less.

この観点によれば、正極の空隙率が60%以上87%以下であるので、正極合剤の正極集電体に対する保持性、電解液の浸透性、およびエネルギー密度がさらに向上する。   According to this aspect, since the porosity of the positive electrode is 60% or more and 87% or less, the retention of the positive electrode mixture with respect to the positive electrode current collector, the permeability of the electrolytic solution, and the energy density are further improved.

本発明の他の観点によれば、無孔の金属箔の少なくとも片面に網状の金属多孔体を積層し一体化させた負極集電体を備えることを特徴とする、巻回型リチウムイオン二次電池用負極が提供される。   According to another aspect of the present invention, a wound lithium ion secondary comprising a negative electrode current collector in which a net-like metal porous body is laminated and integrated on at least one surface of a nonporous metal foil. A negative electrode for a battery is provided.

この観点に係る巻回型リチウムイオン二次電池用負極では、負極集電体が無孔の金属箔の少なくとも片面に網状の金属多孔体を積層し一体化させた構造を有していることから、既存のリチウムイオン二次電池の塗布方式による塗工が可能であり、十分なロールプレス加工耐性および巻回耐性を有するとともに、電極の深さ方向の集電性の低下を抑えることができる。   In the negative electrode for a wound lithium ion secondary battery according to this aspect, the negative electrode current collector has a structure in which a net-like metal porous body is laminated and integrated on at least one surface of a nonporous metal foil. Application by an application method of an existing lithium ion secondary battery is possible, and it has sufficient roll press processing resistance and winding resistance, and can suppress a decrease in current collecting performance in the depth direction of the electrode.

したがって、本観点に係る負極集電体をリチウムイオン二次電池に適用することで、電極の一層の厚型化が可能となり、高エネルギー密度で且つ高率放電特性に優れた二次電池とすることができる。   Therefore, by applying the negative electrode current collector according to this aspect to a lithium ion secondary battery, the electrode can be made thicker, and a secondary battery having high energy density and excellent high rate discharge characteristics can be obtained. be able to.

ここで、網状金属多孔体が、銅不織布、ニッケル不織布、銅エキスパンドメタルまたはニッケルエキスパンドメタルの少なくともいずれか一つからなっていてもよい。   Here, the net-like metal porous body may be made of at least one of a copper nonwoven fabric, a nickel nonwoven fabric, a copper expanded metal, or a nickel expanded metal.

この観点によれば、網状金属多孔体が、銅不織布、ニッケル不織布、銅エキスパンドメタルまたはニッケルエキスパンドメタルの少なくともいずれか一つからなるので、プレス加工耐性および巻回耐性が更に向上する。   According to this aspect, since the net-like metal porous body is made of at least one of a copper nonwoven fabric, a nickel nonwoven fabric, a copper expanded metal, or a nickel expanded metal, press working resistance and winding resistance are further improved.

また、金属箔の厚みが、6μm以下であることが好ましい。   Moreover, it is preferable that the thickness of metal foil is 6 micrometers or less.

この観点によれば、金属箔の厚みが6μm以下と薄いので、エネルギー密度がさらに向上する。   According to this aspect, since the thickness of the metal foil is as thin as 6 μm or less, the energy density is further improved.

また、負極集電体の厚みが、0.2mm以上0.5mm以下であることが好ましい。   Moreover, it is preferable that the thickness of a negative electrode collector is 0.2 mm or more and 0.5 mm or less.

この観点によれば、負極集電体の厚みが0.2mm以上0.5mm以下であるので、電極の深さ方向の集電性がさらに高まる。   According to this viewpoint, since the thickness of the negative electrode current collector is 0.2 mm or more and 0.5 mm or less, the current collecting property in the depth direction of the electrode is further enhanced.

また、負極の空隙率が、60%以上87%以下であることが好ましい。   The porosity of the negative electrode is preferably 60% or more and 87% or less.

この観点によれば、負極の空隙率が60%以上87%以下であるので、負極合剤の負極集電体に対する保持性、電解液の浸透性、およびエネルギー密度がさらに向上する。   According to this aspect, since the porosity of the negative electrode is 60% or more and 87% or less, the retention of the negative electrode mixture with respect to the negative electrode current collector, the permeability of the electrolytic solution, and the energy density are further improved.

本発明の他の観点によれば、上述した巻回型リチウムイオン二次電池用正極と、上述した巻回型リチウムイオン二次電池用負極と、を備えることを特徴とする、巻回型リチウムイオン二次電池が提供される。   According to another aspect of the present invention, a wound type lithium battery comprising: the above-described positive electrode for a wound lithium ion secondary battery; and the above-described negative electrode for a wound lithium ion secondary battery. An ion secondary battery is provided.

この観点に係る巻回型リチウムイオン二次電池は、既存のリチウムイオン二次電池の塗布方式による塗工が可能であり、十分なロールプレス加工耐性および巻回耐性を有するとともに、電極の深さ方向の集電性の低下を抑えることが可能な集電体を用いていることから、電極の一層の厚型化が可能となり、高エネルギー密度で且つ高率放電特性に優れる。   The wound type lithium ion secondary battery according to this aspect can be applied by a coating method of an existing lithium ion secondary battery, has sufficient roll press working resistance and winding resistance, and has an electrode depth. Since the current collector capable of suppressing the decrease in the direction current collecting property is used, the electrode can be made thicker, and has high energy density and excellent high rate discharge characteristics.

以上説明したように本発明によれば、正極集電体として、無孔のアルミニウム箔の少なくとも片面に網状のアルミニウム多孔体を積層し一体化させた集電体を用い、負極集電体として、無孔の金属箔の少なくとも片面に網状の金属多孔体を積層し一体化させた集電体を用いているので、既存のリチウムイオン二次電池の塗布方式による塗工が可能であり、集電体が十分なプレス加工耐性および巻回耐性を有し、これにより、電極の一層の厚型化を可能となる。よって、本発明の巻回型リチウムイオン二次電池は、高エネルギー密度で且つ高率放電特性に優れる。   As described above, according to the present invention, as a positive electrode current collector, a current collector in which a net-like aluminum porous body is laminated and integrated on at least one surface of a non-porous aluminum foil, and as a negative electrode current collector, Since the current collector is made by laminating and integrating a net-like metal porous body on at least one side of a non-porous metal foil, it can be applied by the application method of existing lithium ion secondary batteries. The body has sufficient press working resistance and winding resistance, which makes it possible to make the electrode thicker. Therefore, the wound lithium ion secondary battery of the present invention is excellent in high energy density and high rate discharge characteristics.

本発明の実施形態に係るリチウムイオン二次電池の概略構成を示す側断面図である。It is a sectional side view which shows schematic structure of the lithium ion secondary battery which concerns on embodiment of this invention. 同実施形態に係る正極(負極)集電体および活物質層の詳細構成を示す説明図である。It is explanatory drawing which shows the detailed structure of the positive electrode (negative electrode) collector and active material layer which concern on the embodiment.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

<リチウムイオン二次電池の構成>
まず、図1および図2に基づいて、本実施形態に係るリチウムイオン二次電池10の構成について説明する。
<Configuration of lithium ion secondary battery>
First, based on FIG. 1 and FIG. 2, the structure of the lithium ion secondary battery 10 which concerns on this embodiment is demonstrated.

図1に示すように、リチウムイオン二次電池10は、正極20と、負極30と、セパレータ層40とを備える。リチウムイオン二次電池10の充電到達電圧(酸化還元電位)は、例えば4.3V(vs.Li/Li)以上5.0V以下となる。本実施形態では、セパレータ層40を正極20と負極30とで挟んだ電極構造体が巻回型のものであれば、リチウムイオン二次電池10の形態は、特に限定されない。即ち、リチウムイオン二次電池10は、巻回型構造を有する電極構造体を収容できるものであれば、円筒形、角形等のいずれであってもよい。 As shown in FIG. 1, the lithium ion secondary battery 10 includes a positive electrode 20, a negative electrode 30, and a separator layer 40. The charge voltage (redox potential) of the lithium ion secondary battery 10 is, for example, 4.3 V (vs. Li / Li + ) or more and 5.0 V or less. In the present embodiment, the form of the lithium ion secondary battery 10 is not particularly limited as long as the electrode structure in which the separator layer 40 is sandwiched between the positive electrode 20 and the negative electrode 30 is a wound type. That is, the lithium ion secondary battery 10 may be cylindrical or rectangular as long as it can accommodate an electrode structure having a wound structure.

[正極20]
正極20は、正極集電体21と、正極活物質層22とを備える。
[Positive electrode 20]
The positive electrode 20 includes a positive electrode current collector 21 and a positive electrode active material layer 22.

(正極集電体21)
正極集電体21は、図2に示すように、無孔のアルミニウム箔211を支持体とし、当該無孔のアルミニウム箔211の少なくとも片面に網状のアルミニウム多孔体を積層し、これらを一体化させたものである。ただし、図示しているように、無孔のアルミニウム箔211の両面に網状のアルミニウム多孔体213a、213bを積層して一体化した方が、集電体のプレス加工耐性および巻回耐性がより高まる。
(Positive electrode current collector 21)
As shown in FIG. 2, the positive electrode current collector 21 has a nonporous aluminum foil 211 as a support, a net-like aluminum porous body is laminated on at least one surface of the nonporous aluminum foil 211, and these are integrated. It is a thing. However, as shown in the figure, when the net-like aluminum porous bodies 213a and 213b are laminated and integrated on both surfaces of the non-porous aluminum foil 211, the press working resistance and the winding resistance of the current collector are further increased. .

ここで、網状のアルミニウム多孔体213a、213bとしては、アルミニウム不織布またはアルミニウムエキスパンドメタル等の少なくともいずれか一つ(いずれか一つまたは組み合わせ)が挙げられる。組み合わせの例としては、片面のアルミニウム多孔体213aをアルミニウム不織布とし、もう片面のアルミニウム多孔体213bをアルミニウムエキスパンドメタルとするような場合等がある。一方、特許文献1に挙げられているようなアルミ多孔質焼結体や、特許文献2に挙げられているような樹脂多孔質体にアルミメッキを施しその後樹脂を除去して得られるアルミ多孔体は、その比表面積が高く集電性には優れるものの、既存のリチウムイオン二次電池の塗工方式(例えば、ダイヘットコーティングやドクターブレードを用いた塗布等)による塗工が困難である点、およびプレス加工耐性、巻回耐性が低く、破断や崩壊のおそれがあることから、本実施形態に係る網状アルミニウム多孔体213a、213bとしては好適でない。この理由として本発明者らは、これらのアルミ多孔質焼結体や樹脂多孔質体にアルミメッキを施しその後樹脂を除去して得られるアルミ多孔体の構造上、圧縮や引っ張りに対する強度が低く、プレスや曲げ加工に対する追従性が低いためだと考えている。一方、本実施形態で用いる不織布やエキスパンドベタルは、プレスや曲げ加工時の圧縮、引っ張りに対しても十分な追従性を示すために耐性を確保できると考えている。   Here, examples of the net-like aluminum porous bodies 213a and 213b include at least one (any one or a combination) such as an aluminum nonwoven fabric or an aluminum expanded metal. As an example of the combination, there is a case where the aluminum porous body 213a on one side is made of an aluminum nonwoven fabric and the aluminum porous body 213b on the other side is made of an aluminum expanded metal. On the other hand, an aluminum porous sintered body as described in Patent Document 1 or an aluminum porous body obtained by applying aluminum plating to a resin porous body as described in Patent Document 2 and then removing the resin Although it has a high specific surface area and excellent current collecting properties, it is difficult to apply the coating method using an existing lithium ion secondary battery (for example, application using a die-height coating or a doctor blade). In addition, since the press working resistance and the winding resistance are low and there is a risk of breakage or collapse, it is not suitable as the reticulated aluminum porous body 213a, 213b according to this embodiment. As a reason for this, the present inventors have a low strength against compression and tension on the structure of an aluminum porous body obtained by applying aluminum plating to these aluminum porous sintered bodies and resin porous bodies and then removing the resin, This is thought to be due to the low ability to follow press and bending. On the other hand, the non-woven fabric and expanded betal used in the present embodiment are considered to be able to secure resistance because they exhibit sufficient followability to compression and tension during pressing and bending.

また、無孔のアルミニウム箔211と網状アルミニウム多孔体213a、213bとを一体化させる方法としては、接着や溶接等により一体化可能な方法であれば特に制限されるものではないが、例えば、導電性樹脂による接着、スポット溶接による部分的接合等を用いることができる。導電性樹脂としては、電池材料として使われる一般的な導電材料とバインダの組み合わせが挙げられる。例えば、導電材料としては、グラファイト、カーボンブラック、カーボンナノチューブ、グラフェン等が挙げられ、バインダとしては、H−NBR、PVdF、CMC(カルボキシメチルセルロース)等が挙げられる。   The method for integrating the non-porous aluminum foil 211 and the net-like aluminum porous bodies 213a and 213b is not particularly limited as long as it can be integrated by adhesion, welding, or the like. Adhesion with a conductive resin, partial joining by spot welding, or the like can be used. Examples of the conductive resin include a combination of a general conductive material used as a battery material and a binder. For example, examples of the conductive material include graphite, carbon black, carbon nanotube, and graphene, and examples of the binder include H-NBR, PVdF, and CMC (carboxymethylcellulose).

無孔のアルミニウム箔211の厚みは、強度を確保できる範囲であれば、エネルギー密度の観点から薄い方が好ましい。具体的には、無孔のアルミニウム箔211の厚みは、正極集電体21の強度(高いプレス加工耐性および巻回耐性)を確保できる範囲として6μm以上であることが好ましい。一方、正極集電体21のエネルギー密度を高くするという観点から12μm以下であることが好ましい。   The thickness of the non-porous aluminum foil 211 is preferably thinner from the viewpoint of energy density as long as the strength can be ensured. Specifically, the thickness of the non-porous aluminum foil 211 is preferably 6 μm or more as a range in which the strength (high press working resistance and winding resistance) of the positive electrode current collector 21 can be secured. On the other hand, it is preferably 12 μm or less from the viewpoint of increasing the energy density of the positive electrode current collector 21.

また、正極集電体21全体の厚みは、電極の深さ方向の集電性を確保するため、0.2mm以上0.5mm以下であることが好ましい。   The total thickness of the positive electrode current collector 21 is preferably 0.2 mm or more and 0.5 mm or less in order to ensure the current collecting property in the depth direction of the electrode.

さらに、正極20の空隙率は、60%以上87%以下であることが好ましい。空隙率がこの範囲にあることにより、正極活物質、導電剤、およびバインダ等を含む正極合剤の正極集電体21に対する保持性、電解液の浸透性、および正極20のエネルギー密度を向上させることができる。なお、ここでいう正極20の空隙率とは、正極体積に占める正極内に存在する空隙の割合のことを意味し、例えば水銀圧入法により測定することができる。   Furthermore, the porosity of the positive electrode 20 is preferably 60% or more and 87% or less. By having the porosity in this range, the retention of the positive electrode mixture containing the positive electrode active material, the conductive agent, the binder, and the like with respect to the positive electrode current collector 21, the permeability of the electrolytic solution, and the energy density of the positive electrode 20 are improved. be able to. In addition, the porosity of the positive electrode 20 here means the ratio of the space | gap which exists in the positive electrode in the positive electrode volume, for example, can be measured by the mercury intrusion method.

以上のような正極集電体21を用いることで、既存のリチウムイオン二次電池の一般的な塗工方式での正極合剤の塗布が可能であり、且つ、プレス加工時及び巻回時の集電体の破断、集電体を含む合剤の脱落を防止することができる。また、三次元的な集電構造の構築により、電極を厚型化した場合における電極の深さ方向の集電性が改善され、電極を厚型化した際に起こる電池の高率放電特性の低下が抑制されるため、より一層の電極の厚型化とそれによる電池の高エネルギー密度化が可能となる。   By using the positive electrode current collector 21 as described above, it is possible to apply a positive electrode mixture in a general coating method of an existing lithium ion secondary battery, and at the time of pressing and winding It is possible to prevent the current collector from being broken and the mixture containing the current collector from falling off. In addition, the construction of a three-dimensional current collection structure improves the current collection in the depth direction of the electrode when the electrode is thickened, and the high-rate discharge characteristics of the battery that occur when the electrode is thickened. Since the decrease is suppressed, it is possible to further increase the thickness of the electrode and thereby increase the energy density of the battery.

(正極活物質層22)
正極活物質層22は、網状アルミ多孔体213a、213bの網目部分に保持されており、少なくとも正極活物質を含み、導電剤と、バインダとをさらに含んでいてもよい。正極活物質は、例えばリチウムを含む遷移金属酸化物または固溶体酸化物であるが、電気化学的にリチウムイオンを吸蔵及び放出することができる物質であれば特に制限されない。リチウムを含む遷移金属酸化物としては、例えば、LiCoO等のLi・Co系複合酸化物、LiNiCoMn等のLi・Ni・Co・Mn系複合酸化物、LiNiO等のLi・Ni系複合酸化物、LiMn等のLi・Mn系複合酸化物等が考えられる。固溶体酸化物は、例えば、LiMnCoNi(1.150≦a≦1.430、0.45≦x≦0.6、0.10≦y≦0.15、0.20≦z≦0.28)、LiMnCoNi(0.3≦x≦0.85、0.10≦y≦0.3、0.10≦z≦0.3)、LiMn1.5Ni0.5となる。正極活物質の含有比(含有量)は、特に制限されず、リチウムイオン二次電池の正極活物質層に適用可能な含有比であればよい。また、これらの化合物を単独又は複数混合して用いてもよい。
(Positive electrode active material layer 22)
The positive electrode active material layer 22 is held by the mesh portions of the net-like aluminum porous bodies 213a and 213b, includes at least a positive electrode active material, and may further include a conductive agent and a binder. The positive electrode active material is, for example, a transition metal oxide or a solid solution oxide containing lithium, but is not particularly limited as long as the material can electrochemically occlude and release lithium ions. Examples of the transition metal oxide containing lithium include Li / Co-based composite oxides such as LiCoO 2 , Li / Ni / Co / Mn-based composite oxides such as LiNi x Co y Mn z O 2 , and LiNiO 2 . Li / Ni-based composite oxides, Li / Mn-based composite oxides such as LiMn 2 O 4 and the like are conceivable. The solid solution oxide is, for example, Li a Mn x Co y Ni z O 2 (1.150 ≦ a ≦ 1.430, 0.45 ≦ x ≦ 0.6, 0.10 ≦ y ≦ 0.15,. 20 ≦ z ≦ 0.28), LiMn x Co y Ni z O 2 (0.3 ≦ x ≦ 0.85, 0.10 ≦ y ≦ 0.3, 0.10 ≦ z ≦ 0.3), LiMn 1.5 Ni 0.5 O 4 . The content ratio (content) of the positive electrode active material is not particularly limited as long as it is applicable to the positive electrode active material layer of the lithium ion secondary battery. Moreover, you may use these compounds individually or in mixture of multiple.

導電剤は、例えば、ケッチェンブラック、アセチレンブラック等のカーボンブラック、天然黒鉛、人造黒鉛、カーボンナノチューブ、カーボンナノファイバ等の繊維状炭素及びこれら繊維状炭素とカーボンブラックとの複合体、グラフェン等であるが、正極の導電性を高めるためのものであれば特に制限されない。導電剤の含有比は特に制限されず、リチウムイオン二次電池の正極活物質層に適用可能な含有比であればよい。   Examples of the conductive agent include carbon black such as ketjen black and acetylene black, fibrous carbon such as natural graphite, artificial graphite, carbon nanotube, and carbon nanofiber, a composite of these fibrous carbon and carbon black, graphene, and the like. There is no particular limitation as long as it is for increasing the conductivity of the positive electrode. The content ratio of the conductive agent is not particularly limited as long as it is applicable to the positive electrode active material layer of the lithium ion secondary battery.

バインダは、例えば、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、フッ化ビニリデンとテトラフルオロエチレンとの共重合体、水素化アクリロニトリルブタジエンゴム、フッ素ゴム、ポリメチルメタクリレート、ポリエチレン、及びこれらの誘導体等であるが、正極活物質及び導電剤を集電体20上に結着させることができ正極の高電位に耐える耐酸化性及び電解液安定性を有するものであれば、特に制限されない。バインダの含有比も特に制限されず、リチウムイオン二次電池の正極活物質層に適用可能な含有比であればよい。正極活物質層22の厚さも特に制限されず、リチウムイオン二次電池の正極活物質層に適用可能な厚さであればよい。本実施形態では、この正極活物質層22を厚くしても、エネルギー密度が高く、且つ高率放電特性に優れたリチウムイオン二次電池10を得ることができる。   The binder is, for example, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, a copolymer of vinylidene fluoride and tetrafluoroethylene, hydrogenated acrylonitrile butadiene rubber, fluoro rubber, polymethyl methacrylate, polyethylene, And a derivative thereof, in particular, as long as the positive electrode active material and the conductive agent can be bound on the current collector 20 and have oxidation resistance and electrolyte stability that can withstand the high potential of the positive electrode. Not limited. The content ratio of the binder is not particularly limited as long as the content ratio is applicable to the positive electrode active material layer of the lithium ion secondary battery. The thickness of the positive electrode active material layer 22 is not particularly limited as long as it is applicable to the positive electrode active material layer of the lithium ion secondary battery. In this embodiment, even if the positive electrode active material layer 22 is thickened, the lithium ion secondary battery 10 having a high energy density and excellent high rate discharge characteristics can be obtained.

正極活物質層22は、例えば、正極活物質、導電剤、及びバインダを乾式混合することで正極合剤を形成し、この正極合剤を適当な有機溶媒に分散させることで正極合剤スラリーを形成し、この正極合剤スラリーを正極集電体21上に塗工し、乾燥、プレスすることで形成される。   The positive electrode active material layer 22 is formed by, for example, dry-mixing a positive electrode active material, a conductive agent, and a binder to form a positive electrode mixture, and dispersing the positive electrode mixture in an appropriate organic solvent to form a positive electrode mixture slurry. The positive electrode mixture slurry is formed, coated on the positive electrode current collector 21, dried and pressed.

[負極30]
負極30は、負極集電体31と、負極活物質層32とを含む。
[Negative electrode 30]
The negative electrode 30 includes a negative electrode current collector 31 and a negative electrode active material layer 32.

(負極集電体31)
負極集電体31は、図2に示すように、無孔の金属箔311の少なくとも片面に網状の金属多孔体を積層し、これらを一体化させたものである。ただし、図示しているように、無孔の金属箔311の両面に網状の金属多孔体313a、313bを積層して一体化した方が、集電体のプレス加工耐性および巻回耐性がより高まる。また、金属箔311としては、例えば、銅箔、ニッケル箔、ステンレス箔等を用いることができる。
(Negative electrode current collector 31)
As shown in FIG. 2, the negative electrode current collector 31 is obtained by laminating a net-like metal porous body on at least one surface of a non-porous metal foil 311 and integrating them. However, as shown in the figure, when the net-like metal porous bodies 313a and 313b are laminated and integrated on both surfaces of the nonporous metal foil 311, the press working resistance and the winding resistance of the current collector are further increased. . As the metal foil 311, for example, a copper foil, a nickel foil, a stainless steel foil, or the like can be used.

ここで、網状の金属多孔体313a、313bとしては、銅不織布、ニッケル不織布、ステンレス鋼不織布、銅エキスパンドメタル、ニッケルエキスパンドメタル、またはステンレス鋼エキスパンドメタル等の少なくともいずれか一つ(いずれか一つまたは組み合わせ)が挙げられる。組み合わせの例としては、片面の金属多孔体313aを銅不織布とし、もう片面の金属多孔体313bをステンレスエキスパンドメタルとするような場合等がある。なお、金属多孔体313a、313bとしては、上述した例に限られず、通常リチウムイオン二次電池の負極集電体に用いられる金属の不織布やエキスパンドメタル等が挙げられる。一方、特許文献1に挙げられているような多孔質金属焼結体や、特許文献2に挙げられているような樹脂多孔質体に金属メッキを施しその後樹脂を除去して得られる金属多孔体は、その比表面積が高く集電性には優れるものの、既存のリチウムイオン二次電池の塗工方式(例えば、ダイヘットコーティングやドクターブレードを用いた塗布等)による塗工が困難である点、およびプレス加工耐性、巻回耐性が低く、破断や崩壊のおそれがあることから、本実施形態に係る網状金属多孔体313a、313bとしては好適でない。この理由は、正極集電体21の場合と同様である。   Here, as the net-like metal porous bodies 313a and 313b, at least one of copper nonwoven fabric, nickel nonwoven fabric, stainless steel nonwoven fabric, copper expanded metal, nickel expanded metal, and stainless steel expanded metal (any one or Combination). As an example of the combination, there is a case where the metal porous body 313a on one side is made of a copper nonwoven fabric and the metal porous body 313b on the other side is made of stainless steel expanded metal. The metal porous bodies 313a and 313b are not limited to the examples described above, and examples thereof include metal nonwoven fabrics and expanded metals that are generally used for negative electrode current collectors of lithium ion secondary batteries. On the other hand, a porous metal sintered body as described in Patent Document 1 or a metal porous body obtained by applying metal plating to a resin porous body as described in Patent Document 2 and then removing the resin Although it has a high specific surface area and excellent current collecting properties, it is difficult to apply the coating method using an existing lithium ion secondary battery (for example, application using a die-height coating or a doctor blade). In addition, since the press working resistance and the winding resistance are low and there is a risk of breakage or collapse, it is not suitable as the mesh metal porous bodies 313a and 313b according to the present embodiment. The reason is the same as in the case of the positive electrode current collector 21.

また、無孔の金属箔311と網状金属多孔体313a、313bとを一体化させる方法としては、正極集電体21と同様に、例えば、導電性樹脂による接着、スポット溶接による部分的接合等を用いることができる。   In addition, as a method of integrating the non-porous metal foil 311 and the net-like metal porous bodies 313a and 313b, for example, as with the positive electrode current collector 21, for example, bonding with a conductive resin, partial bonding by spot welding, etc. Can be used.

無孔の金属箔311の厚みは、強度を確保できる範囲であれば、エネルギー密度の観点から薄い方が好ましい。具体的には、例えば、無孔の金属箔311が銅箔の場合の厚みは、負極集電体31の強度(高いプレス加工耐性および巻回耐性)を確保できる範囲として4μm以上であることが好ましい。一方、負極集電体31のエネルギー密度を高くするという観点から6μm以下であることが好ましい。   The thickness of the non-porous metal foil 311 is preferably thinner from the viewpoint of energy density as long as the strength can be ensured. Specifically, for example, the thickness when the non-porous metal foil 311 is a copper foil is 4 μm or more as a range in which the strength (high press working resistance and winding resistance) of the negative electrode current collector 31 can be secured. preferable. On the other hand, it is preferably 6 μm or less from the viewpoint of increasing the energy density of the negative electrode current collector 31.

また、負極集電体31全体の厚みは、電極の深さ方向の集電性を確保するため、0.2mm以上0.5mm以下であることが好ましい。   Further, the thickness of the entire negative electrode current collector 31 is preferably 0.2 mm or more and 0.5 mm or less in order to ensure current collecting properties in the depth direction of the electrode.

さらに、負極30の空隙率は、60%以上87%以下であることが好ましい。空隙率がこの範囲にあることにより、負極活物質、導電剤、およびバインダ等を含む負極合剤の負極集電体31に対する保持性、電解液の浸透性、および負極30のエネルギー密度を向上させることができる。なお、ここでいう負極30の空隙率の定義および測定方法は、正極20と同様である。   Furthermore, the porosity of the negative electrode 30 is preferably 60% or more and 87% or less. By having the porosity in this range, the retention of the negative electrode mixture containing the negative electrode active material, the conductive agent, the binder, and the like with respect to the negative electrode current collector 31, the permeability of the electrolytic solution, and the energy density of the negative electrode 30 are improved. be able to. The definition and measurement method of the porosity of the negative electrode 30 here are the same as those of the positive electrode 20.

以上のような負極集電体31を用いることで、既存のリチウムイオン二次電池の一般的な塗工方式での負極合剤の塗布が可能であり、且つ、プレス加工時及び巻回時の集電体の破断、集電体を含む合剤の脱落を防止することができる。また、三次元的な集電構造の構築により、電極を厚型化した場合における電極の深さ方向の集電性が改善され、電極を厚型化した際に起こる電池の高率放電特性の低下が抑制されるため、より一層の電極の厚型化とそれによる電池の高エネルギー密度化が可能となる。   By using the negative electrode current collector 31 as described above, it is possible to apply a negative electrode mixture in a general coating method of an existing lithium ion secondary battery, and at the time of pressing and winding It is possible to prevent the current collector from being broken and the mixture containing the current collector from falling off. In addition, the construction of a three-dimensional current collection structure improves the current collection in the depth direction of the electrode when the electrode is thickened, and the high-rate discharge characteristics of the battery that occur when the electrode is thickened. Since the decrease is suppressed, it is possible to further increase the thickness of the electrode and thereby increase the energy density of the battery.

(負極活物質層32)
負極活物質層32は、網状金属多孔体313a、313bの網目部分に保持されており、リチウムイオン二次電池の負極活物質層として使用されるものであれば、どのようなものであってもよい。例えば、負極活物質層32は、負極活物質を含み、バインダをさらに含んでいてもよい。負極活物質は、例えば、黒鉛活物質(人造黒鉛、天然黒鉛、人造黒鉛と天然黒鉛との混合物、人造黒鉛を被覆した天然黒鉛等)、ケイ素もしくはスズもしくはそれらの酸化物の微粒子と黒鉛活物質との混合物、ケイ素もしくはスズの微粒子、ケイ素もしくはスズを基本材料とした合金、及びLiTi12等の酸化チタン系化合物等が考えられる。ケイ素の酸化物は、SiO(0≦x≦2)で表される。負極活物質としては、これらの他に、例えば金属リチウム等が挙げられる。バインダは、正極活物質層22を構成するバインダと同様のものでもある。正極活物質とバインダとの質量比は特に制限されず、従来のリチウムイオン二次電池で採用される質量比が本実施形態でも適用可能である。
(Negative electrode active material layer 32)
The negative electrode active material layer 32 is held by the mesh portions of the mesh metal porous bodies 313a and 313b, and any material can be used as long as it is used as the negative electrode active material layer of the lithium ion secondary battery. Good. For example, the negative electrode active material layer 32 includes a negative electrode active material, and may further include a binder. Examples of the negative electrode active material include graphite active material (artificial graphite, natural graphite, a mixture of artificial graphite and natural graphite, natural graphite coated with artificial graphite, etc.), fine particles of silicon or tin or oxides thereof and graphite active material. , Silicon or tin fine particles, alloys based on silicon or tin, and titanium oxide compounds such as Li 4 Ti 5 O 12 . The oxide of silicon is represented by SiO x (0 ≦ x ≦ 2). Examples of the negative electrode active material include metallic lithium and the like in addition to these. The binder is the same as the binder constituting the positive electrode active material layer 22. The mass ratio between the positive electrode active material and the binder is not particularly limited, and the mass ratio employed in the conventional lithium ion secondary battery is also applicable in this embodiment.

負極活物質層32は、例えば、負極活物質、及びバインダを乾式混合することで負極合剤を形成する。ついで、負極合剤を適当な溶媒に分散させることで負極合剤スラリー(slurry)を形成し、この負極合剤スラリーを負極集電体31上に塗工し、乾燥、プレスすることで負極活物質層32が形成される。   The negative electrode active material layer 32 forms a negative electrode mixture, for example, by dry mixing a negative electrode active material and a binder. Next, the negative electrode mixture is dispersed in a suitable solvent to form a negative electrode mixture slurry (slurry). The negative electrode mixture slurry is applied onto the negative electrode current collector 31, dried and pressed to produce a negative electrode active slurry. A material layer 32 is formed.

[セパレータ層40]
セパレータ層40は、セパレータと、電解液とを含む。セパレータは、特に制限されず、リチウムイオン二次電池のセパレータとして使用されるものであれば、どのようなものであってもよい。セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。
[Separator layer 40]
Separator layer 40 includes a separator and an electrolytic solution. The separator is not particularly limited, and any separator can be used as long as it is used as a separator for a lithium ion secondary battery. As the separator, it is preferable to use a porous film or a non-woven fabric exhibiting excellent high rate discharge performance alone or in combination. Examples of the material constituting the separator for a nonaqueous electrolyte battery include polyolefin resins typified by polyethylene and polypropylene, polyester resins typified by polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, and vinylidene fluoride-hexa. Fluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, fluorine Vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride - tetrafluoroethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer.

電解液は、従来からリチウム二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。電解液は、非水溶媒に電解質塩を含有させた組成を有する。非水溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。   As the electrolytic solution, the same non-aqueous electrolytic solution conventionally used for lithium secondary batteries can be used without any particular limitation. The electrolytic solution has a composition in which an electrolyte salt is contained in a nonaqueous solvent. Examples of the non-aqueous solvent include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, and vinylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, diethyl carbonate, Chain carbonates such as ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1 Ethers such as 1,4-dibutoxyethane and methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxolane or derivatives thereof; ethylene sulfide, sulfolane, sultone or derivatives thereof Examples thereof include, but are not limited to, one or a mixture of two or more thereof.

また、電解質塩としては、例えば、LiClO、LiBF、LiAsF、LiPF,LiSCN,LiBr,LiI,LiSO,Li10Cl10,NaClO,NaI,NaSCN,NaBr,KClO,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,(CHNBF,(CHNBr,(CNClO,(CNI,(CNBr,(n−CNClO,(n−CNI,(C2HN−maleate,(CN−benzoate,(CN−phtalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。なお、電解質塩の濃度は、従来のリチウム二次電池で使用される非水電解液と同様でよく、特に制限はない。本実施形態では、適当なリチウム化合物(電解質塩)を0.1〜5mol/L程度の濃度で含有させた電解液を使用することができる。 Examples of the electrolyte salt include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr, KClO 4. , KSCN and other inorganic ion salts containing one of lithium (Li), sodium (Na) or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , (CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 NC lO 4, (n-C 4 H 9) 4 NI, (C2H 5) 4 N-maleate, (C 2 H 5) 4 N-benzoate, (C 2 H 5) 4 N-phtalate, lithium stearyl sulfonate, Examples include organic ionic salts such as lithium octyl sulfonate and lithium dodecylbenzene sulfonate, and these ionic compounds can be used alone or in admixture of two or more. The concentration of the electrolyte salt may be the same as that of the nonaqueous electrolytic solution used in the conventional lithium secondary battery, and is not particularly limited. In the present embodiment, an electrolytic solution containing an appropriate lithium compound (electrolyte salt) at a concentration of about 0.1 to 5 mol / L can be used.

<リチウムイオン二次電池の製造方法>
次に、リチウムイオン二次電池10の製造方法について説明する。リチウムイオン二次電池10の製造方法は特に制限されず、任意の製造方法が適用可能である。
<Method for producing lithium ion secondary battery>
Next, a method for manufacturing the lithium ion secondary battery 10 will be described. The manufacturing method in particular of the lithium ion secondary battery 10 is not restrict | limited, Arbitrary manufacturing methods are applicable.

[正極20の製造]
例えば、正極20は、以下のように製造される。
[Production of Positive Electrode 20]
For example, the positive electrode 20 is manufactured as follows.

(正極集電体21の作製)
まず、無孔のアルミニウム箔211の少なくとも片面に網状アルミニウム多孔体213a、213bをそれぞれ積層する。次いで、無孔のアルミニウム箔211と網状アルミニウム多孔体213a、213bとを上述した導電性樹脂により接着するか、あるいは、スポット溶接により部分的に接合する等することで、無孔のアルミニウム箔211と網状アルミニウム多孔体213a、213bとを一体化する。これにより、正極集電体21が作製される。
(Preparation of positive electrode current collector 21)
First, the net-like aluminum porous bodies 213a and 213b are laminated on at least one surface of the non-porous aluminum foil 211, respectively. Next, the non-porous aluminum foil 211 and the net-like aluminum porous bodies 213a and 213b are bonded with the above-described conductive resin or partially joined by spot welding, etc. The net-like aluminum porous bodies 213a and 213b are integrated. Thereby, the positive electrode current collector 21 is produced.

(正極活物質層22の形成)
まず、正極活物質、導電剤、及びバインダを混合した正極合剤を、有機溶媒(例えばN−メチル−2−ピロリドン)に分散させることで正極合剤スラリーを形成する。次いで、正極合剤スラリーを集電体21上に形成(例えば塗工)し、乾燥させることで、正極活物質層22を形成する。なお、塗工の方法は、特に限定されない。塗工の方法としては、既存の方法を用いることができ、例えば、ダイヘットコーティングやドクターブレードを用いた塗布方法を用いることができる。以下の各塗工工程も同様の方法により行われる。次いで、プレス機により正極活物質層22をプレスし、その後真空乾燥を行う。これにより、正極20が作製される。
(Formation of positive electrode active material layer 22)
First, a positive electrode mixture slurry is formed by dispersing a positive electrode mixture in which a positive electrode active material, a conductive agent, and a binder are mixed in an organic solvent (for example, N-methyl-2-pyrrolidone). Next, the positive electrode mixture slurry is formed (for example, coated) on the current collector 21 and dried to form the positive electrode active material layer 22. The coating method is not particularly limited. As a coating method, an existing method can be used. For example, a coating method using a die-jet coating or a doctor blade can be used. The following coating steps are also performed by the same method. Next, the positive electrode active material layer 22 is pressed by a press machine, and then vacuum drying is performed. Thereby, the positive electrode 20 is produced.

[負極30の製造]
負極30も、正極20と同様に製造される。
[Manufacture of Negative Electrode 30]
The negative electrode 30 is also manufactured in the same manner as the positive electrode 20.

(負極集電体31の作製)
まず、無孔の金属箔311の少なくとも片面に網状金属多孔体313a、313bをそれぞれ積層する。次いで、無孔の金属箔311と網状金属多孔体313a、313bとを上述した導電性樹脂により接着するか、あるいは、スポット溶接により部分的に接合する等することで、無孔の金属箔311と網状金属多孔体313a、313bとを一体化する。これにより、負極集電体31が作製される。
(Preparation of negative electrode current collector 31)
First, the net-like metal porous bodies 313a and 313b are laminated on at least one surface of the non-porous metal foil 311. Next, the nonporous metal foil 311 and the net-like metal porous bodies 313a and 313b are bonded with the above-described conductive resin, or are partially joined by spot welding, etc. The mesh metal porous bodies 313a and 313b are integrated. Thereby, the negative electrode collector 31 is produced.

(負極活物質層32の形成)
まず、負極活物質、及びバインダを混合したものを、溶媒(例えばN−メチル−2−ピロリドン、水)に分散させることでスラリーを作製する。次いで、スラリーを負極集電体31上に形成(例えば塗工)し、乾燥させることで、負極活物質層32を作製する。塗工の方法としては、正極20と同様に、既存の方法を用いることができ、例えば、ダイヘットコーティングやドクターブレードを用いた塗布方法を用いることができる。次いで、プレス機により負極活物質層32をプレスし、その後真空乾燥を行う。これにより、負極30が作製される。
(Formation of negative electrode active material layer 32)
First, a slurry is prepared by dispersing a mixture of a negative electrode active material and a binder in a solvent (eg, N-methyl-2-pyrrolidone, water). Next, the negative electrode active material layer 32 is produced by forming (for example, coating) the slurry on the negative electrode current collector 31 and drying the slurry. As the coating method, an existing method can be used as in the case of the positive electrode 20, and for example, a coating method using a die-height coating or a doctor blade can be used. Next, the negative electrode active material layer 32 is pressed by a press machine, and then vacuum drying is performed. Thereby, the negative electrode 30 is produced.

[リチウムイオン二次電池10の組み立て]
次いで、セパレータ層40を正極20及び負極30で挟むことで、平板状の電極構造体を作製する。次いで、この平板状の電極構造体を巻き回し、電極構造体を所望の形態(例えば、円筒形、角形等)に加工し、当該形態の容器に挿入する。次いで、当該容器内に上記組成の電解液を注入することで、セパレータ内の各気孔に電解液を含浸させ、封口する。これにより、リチウムイオン二次電池10が作製される。
[Assembly of lithium ion secondary battery 10]
Next, the separator layer 40 is sandwiched between the positive electrode 20 and the negative electrode 30 to produce a flat electrode structure. Next, the flat electrode structure is wound, the electrode structure is processed into a desired shape (for example, a cylindrical shape, a rectangular shape, etc.), and inserted into the container of the shape. Next, by injecting the electrolytic solution having the above composition into the container, each pore in the separator is impregnated with the electrolytic solution and sealed. Thereby, the lithium ion secondary battery 10 is produced.

次に、本実施形態の実施例について説明する。以下の処理により実施例1、2および比較例1〜3に係るリチウムイオン二次電池を作製した。   Next, examples of the present embodiment will be described. Lithium ion secondary batteries according to Examples 1 and 2 and Comparative Examples 1 to 3 were produced by the following treatment.

<リチウムイオン二次電池の作製>
[実施例1]
(正極集電体の作製)
厚さ12μmの無孔のアルミニウム箔(以下、「無孔アルミ箔」)を支持体とし、この支持体上に導電性樹脂を塗布した。導電性樹脂としては、多層カーボンナノチューブ(CNT):カルボキシメチルセルロース(CMC)=2:1(質量比)で水に分散させた導電材ペーストを用いた。次いで、無孔アルミ箔の両面に加工後の厚さが180μmのアルミニウムエキスパンドメタルを積層し、導電材ペースト中の溶剤を揮発させ、無孔アルミ箔とアルミニウムエキスパンドメタルとを接着により一体化させることで、正極集電体を作製した。
<Production of lithium ion secondary battery>
[Example 1]
(Preparation of positive electrode current collector)
A 12-μm-thick non-porous aluminum foil (hereinafter “non-porous aluminum foil”) was used as a support, and a conductive resin was coated on the support. As the conductive resin, a conductive material paste dispersed in water with multi-walled carbon nanotubes (CNT): carboxymethyl cellulose (CMC) = 2: 1 (mass ratio) was used. Next, aluminum expanded metal with a processed thickness of 180 μm is laminated on both sides of the non-porous aluminum foil, the solvent in the conductive material paste is volatilized, and the non-porous aluminum foil and the aluminum expanded metal are integrated by bonding. Thus, a positive electrode current collector was produced.

(正極の作製)
正極活物質としての平均粒径15〜20μmのLi・Co系複合酸化物(LiCoO)と、導電材としてのカーボンブラック(CB)と、バインダとしてのPVdFとを98:1:1の割合で混合することで、正極合剤を作製した。ついで、正極合剤に溶媒であるN−メチルピロリドン(NMP)を適量加えて混合、分散することにより正極合剤スラリーを得た。次に、作製した正極合剤スラリーを、ドクターブレード法により上記で作製した正極集電体の両面に塗布した。このとき、各面における合剤固形分の面積密度(正極面積密度)が90mg/cmとなるように塗布した。その後、NMP蒸気を排気しながら80℃に保った恒温槽中で乾燥させることでNMPを揮発させた。次いで、乾燥したシートを、空隙率が80%になるまでロールプレス機を用いてプレスし、さらにこれを100℃で真空乾燥させることにより正極を得た。また、正極のプレス加工時の合剤の脱落の有無や集電体の破断・破損の有無を目視にて確認したところ、合剤の脱落や集電体の破断・破損は無かった。
(Preparation of positive electrode)
Li / Co composite oxide (LiCoO 2 ) having an average particle diameter of 15 to 20 μm as a positive electrode active material, carbon black (CB) as a conductive material, and PVdF as a binder in a ratio of 98: 1: 1. By mixing, a positive electrode mixture was produced. Next, a positive electrode mixture slurry was obtained by adding an appropriate amount of N-methylpyrrolidone (NMP) as a solvent to the positive electrode mixture, mixing, and dispersing. Next, the prepared positive electrode mixture slurry was applied to both surfaces of the positive electrode current collector prepared above by a doctor blade method. At this time, it applied so that the area density (positive electrode area density) of mixture solid content in each surface might be 90 mg / cm < 2 >. Then, NMP was volatilized by making it dry in the thermostat kept at 80 degreeC, exhausting NMP vapor | steam. Subsequently, the dried sheet was pressed using a roll press machine until the porosity became 80%, and further vacuum-dried at 100 ° C. to obtain a positive electrode. Further, when the presence or absence of the mixture was removed during the positive electrode pressing and the current collector was broken or damaged, the mixture was not dropped and the current collector was neither broken nor damaged.

(負極集電体の作製)
厚さ6μmの無孔の銅箔(以下、「無孔銅箔」)を支持体とし、この支持体上に導電性樹脂を塗布した。導電性樹脂としては、多層カーボンナノチューブ(CNT):水素化ニトリルブチルゴム(H−NBR)=2:1(質量比)で溶剤中に分散させた導電材ペーストを用いた。次いで、無孔銅箔の両面に厚さ180μmのニッケルエキスパンドメタルを積層し、導電材ペースト中の溶剤を揮発させ、無孔銅箔とニッケルエキスパンドメタルとを接着により一体化させることで、負極集電体を作製した。
(Preparation of negative electrode current collector)
A non-porous copper foil (hereinafter referred to as “non-porous copper foil”) having a thickness of 6 μm was used as a support, and a conductive resin was applied on the support. As the conductive resin, a conductive material paste dispersed in a solvent with multi-walled carbon nanotubes (CNT): hydrogenated nitrile butyl rubber (H-NBR) = 2: 1 (mass ratio) was used. Next, a nickel expanded metal having a thickness of 180 μm is laminated on both surfaces of the non-porous copper foil, the solvent in the conductive material paste is volatilized, and the non-porous copper foil and the nickel expanded metal are integrated with each other by adhesion. An electric body was produced.

(負極の作製)
人造黒鉛と、スチレンブタジエンゴムと、カルボキシメチルセルロース(CMC)とを98:1:1で混合することで、負極合剤を作製した。ついで、負極合剤に溶媒である水を適量加えて混練、分散することにより負極合剤スラリーを作製した。ついで、この負極合剤スラリーをドクターブレード法により上記で作製した負極集電体の両面に塗布した。その後、負極合剤スラリーが塗布された負極集電体を80℃に保った恒温槽中で乾燥することで水を揮発させた。乾燥後のシートを、体積密度が1.75g/cmになるようにロールプレス機を用いてプレスし、さらにこれを150℃で真空乾燥させることにより負極を得た。なお、負極合剤の塗布量は、正極に対向する有効負極活物質層の約95%を可逆的に使用するように設計し調整した。
(Preparation of negative electrode)
Artificial graphite, styrene butadiene rubber, and carboxymethyl cellulose (CMC) were mixed at 98: 1: 1 to prepare a negative electrode mixture. Next, an appropriate amount of water as a solvent was added to the negative electrode mixture and kneaded and dispersed to prepare a negative electrode mixture slurry. Next, this negative electrode mixture slurry was applied to both surfaces of the negative electrode current collector prepared above by a doctor blade method. Thereafter, the negative electrode current collector coated with the negative electrode mixture slurry was dried in a thermostatic bath maintained at 80 ° C. to volatilize water. The dried sheet was pressed using a roll press so that the volume density was 1.75 g / cm 3 , and further vacuum dried at 150 ° C. to obtain a negative electrode. The coating amount of the negative electrode mixture was designed and adjusted so that about 95% of the effective negative electrode active material layer facing the positive electrode was used reversibly.

(電解液の作製)
エチレンカーボネート(EC)及びジメチルカーボネート(DMC)を体積比3:7で混合した溶媒に対し、LiPFを1.3Mとなるように溶解することでLiPF溶液を作製した。ついで、LiPF溶液90質量部に対し10質量部のフルオロエチレンカーボネート(FEC)を混合することで電解液を得た。
(Preparation of electrolyte)
A LiPF 6 solution was prepared by dissolving LiPF 6 to 1.3 M in a solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 3: 7. Then, 10 parts by mass of fluoroethylene carbonate (FEC) was mixed with 90 parts by mass of the LiPF 6 solution to obtain an electrolytic solution.

(巻回素子及び電池の製造方法)
上記の方法で作製した正極および負極を用い、正極、セパレータ、負極、セパレータをこの順に積層することで電極積層体を作製した。セパレータとしては、ND314(旭化成イーマテリアルズ株式会社製)からなる厚さ14μmのセパレータを使用した。ついで、上記で作製した電極積層体を巻回することにより、巻回素子を作製した。ついで、この巻回素子を押しつぶすことで扁平状の巻回素子を作製した。ついで、扁平状の巻回素子を上記方法で作製した電解液とともに外装体(ラミネートフィルム)に挿入し、外装体を封止することで、厚さ4.2mm、幅33mm、高さ32mmの実施例1のリチウムイオン二次電池を得た。なお、外装体を封止する際には、各集電体に導通する端子を外装体の外部に突出させた。
(Wound element and battery manufacturing method)
Using the positive electrode and the negative electrode prepared by the above method, a positive electrode, a separator, a negative electrode, and a separator were stacked in this order to prepare an electrode laminate. As the separator, a 14 μm thick separator made of ND314 (manufactured by Asahi Kasei E-Materials Co., Ltd.) was used. Subsequently, the wound element was produced by winding the electrode laminated body produced above. Next, a flat winding element was produced by crushing the winding element. Next, the flat wound element is inserted into the outer package (laminate film) together with the electrolytic solution prepared by the above method, and the outer package is sealed, so that the thickness 4.2 mm, the width 33 mm, and the height 32 mm are implemented The lithium ion secondary battery of Example 1 was obtained. When sealing the exterior body, the terminals that are connected to the current collectors are projected outside the exterior body.

[実施例2]
正極集電体の作製において、アルミニウムエキスパンドメタルの代わりに、厚み180μmのアルミ不織布を用いた以外は実施例1と同様にして、実施例2のリチウムイオン二次電池を得た。なお、正極のプレス加工時の合剤の脱落の有無や集電体の破断・破損の有無を目視にて確認したところ、合剤の脱落や集電体の破断・破損は無かった。
[Example 2]
In producing the positive electrode current collector, a lithium ion secondary battery of Example 2 was obtained in the same manner as Example 1 except that an aluminum nonwoven fabric having a thickness of 180 μm was used instead of the aluminum expanded metal. In addition, when the presence or absence of the mixture was removed during the positive electrode pressing and the current collector was checked for breakage or damage, the mixture was not dropped or the current collector was not broken or damaged.

[比較例1]
正極集電体として厚み12μmの無孔のアルミニウム箔を用い、正極面積密度を45mg/cmとして正極を作製し、負極集電体として厚み6μmの銅箔を用いて負極を作製した以外は実施例1と同様にして、比較例1のリチウムイオン二次電池を得た。なお、正極のプレス加工時の合剤の脱落の有無や集電体の破断・破損の有無を目視にて確認したところ、合剤の脱落や集電体の破断・破損は無かった。
[Comparative Example 1]
Implemented except that a non-porous aluminum foil with a thickness of 12 μm was used as the positive electrode current collector, a positive electrode was prepared with a positive electrode area density of 45 mg / cm 2 , and a negative electrode was prepared with a copper foil with a thickness of 6 μm as the negative electrode current collector In the same manner as in Example 1, a lithium ion secondary battery of Comparative Example 1 was obtained. In addition, when the presence or absence of the mixture was removed during the positive electrode pressing and the current collector was checked for breakage or damage, the mixture was not dropped or the current collector was not broken or damaged.

[比較例2]
正極集電体として厚み12μmの無孔のアルミニウム箔を用いて正極を作製した。なお、正極のプレス加工時の合剤の脱落の有無や集電体の破断・破損の有無を目視にて確認したところ、合剤の脱落や集電体の破断・破損は無かった。ただし、後述するように、比較例2では、平板状電極体の折り曲げ試験において、電極の破断や合剤の脱落等が生じたため、リチウムイオン二次電池は作製しなかった(電池性能の評価も行わなかった)。
[Comparative Example 2]
A positive electrode was produced using a non-porous aluminum foil having a thickness of 12 μm as a positive electrode current collector. In addition, when the presence or absence of the mixture was removed during the positive electrode pressing and the current collector was checked for breakage or damage, the mixture was not dropped or the current collector was not broken or damaged. However, as will be described later, in Comparative Example 2, in the bending test of the flat electrode body, the electrode was broken or the mixture was dropped, so a lithium ion secondary battery was not manufactured (the battery performance was also evaluated). Not done).

[比較例3]
(正極の作製)
特許文献2の記載に従い、樹脂多孔質体である発泡ウレタンにアルミメッキを施しその後樹脂を除去して得られる三次元網目構造を有するアルミ多孔体を作製した。このアルミ多孔体の厚みは400μm、空孔率(実施例の空隙率に相当)は95%であった。次いで、得られたアルミ多孔体を、実施例1と同様にして調製した正極合剤スラリーに浸漬し、真空状態で正極合剤スラリーをアルミ多孔体に含浸させることで、合剤を充填した。その後、NMP蒸気を排気しながら80℃に保った恒温槽中で乾燥させることでNMPを揮発させた。次いで、乾燥したシートを、空隙率が80%になるまでロールプレス機を用いてプレスした。比較例3では、この正極のプレス加工時において、多孔体(集電体)の破断や崩壊により集電体を含む合剤が脱落する問題が発生したことが確認された。なお、後述するように、比較例3では、平板状電極体の折り曲げ試験において、電極の破断や合剤の脱落等が生じたため、リチウムイオン二次電池は作製しなかった(電池性能の評価も行わなかった)
[Comparative Example 3]
(Preparation of positive electrode)
According to the description in Patent Document 2, an aluminum porous body having a three-dimensional network structure obtained by performing aluminum plating on foamed urethane, which is a resin porous body, and then removing the resin was produced. The thickness of this aluminum porous body was 400 μm, and the porosity (corresponding to the porosity in the examples) was 95%. Next, the obtained aluminum porous body was immersed in a positive electrode mixture slurry prepared in the same manner as in Example 1, and the aluminum porous body was impregnated with the positive electrode mixture slurry in a vacuum state to fill the mixture. Then, NMP was volatilized by making it dry in the thermostat kept at 80 degreeC, exhausting NMP vapor | steam. The dried sheet was then pressed using a roll press until the porosity was 80%. In Comparative Example 3, it was confirmed that a problem that the mixture containing the current collector was dropped due to the fracture or collapse of the porous body (current collector) occurred during the press working of the positive electrode. As will be described later, in Comparative Example 3, in the bending test of the flat electrode body, the electrode was broken or the mixture was dropped, so a lithium ion secondary battery was not manufactured (the battery performance was also evaluated). Not done)

<折り曲げ試験>
実施例1、2および比較例1〜3で作製した平板状電極体について、折り曲げ試験により、折り曲げ時の電極の破断の有無を調査した。具体的には、MIT耐折度試験機(安田精機製)にて、折り曲げた際に電極が破断する荷重で評価した。折り曲げ試験にて荷重4Nで破断しなかったものを折り曲げ時の電極の破断無しと評価し、荷重4N以下で破断したものを折り曲げ時の電極の破断有りと評価した。その結果、比較例2および3については、折り曲げ時の電極の破断有りと評価された。折り曲げ試験にて4N以下で破断する電極は、電池作製時の巻回工程で破断すると考えられたため、リチウムイオン二次電池を作製せず、以下に説明する電池性能に関する評価を行わなかった。
<Bending test>
About the flat electrode body produced in Examples 1, 2 and Comparative Examples 1-3, the presence or absence of the fracture | rupture of the electrode at the time of bending was investigated by the bending test. Specifically, it was evaluated by a load at which the electrode breaks when bent by an MIT folding resistance tester (manufactured by Yasuda Seiki). In the bending test, those that did not break at a load of 4N were evaluated as having no electrode breakage during bending, and those that were broken at a load of 4N or less were evaluated as having an electrode breakage during bending. As a result, Comparative Examples 2 and 3 were evaluated as having broken electrodes during bending. The electrode that breaks at 4N or less in the bending test was considered to break in the winding process at the time of battery production. Therefore, a lithium ion secondary battery was not produced, and evaluation of battery performance described below was not performed.

<活性化処理>
以上のようにして作製した実施例1、2および比較例1に係るリチウムイオン二次電池を電池電圧について、電池電圧が4.40Vとなるまで0.2Cの定電流定電圧充電を行い、その後、電池電圧が2.75Vとなるまで0.2Cの定電流放電を行う充放電サイクルを室温環境下で1回行った。これにより、リチウムイオン二次電池を十分に活性化させた。その後、リチウムイオン二次電池を以下の各評価に供した。
<Activation processing>
The lithium ion secondary batteries according to Examples 1 and 2 and Comparative Example 1 manufactured as described above were charged at a constant current and a constant voltage of 0.2 C until the battery voltage reached 4.40 V. Then, a charge / discharge cycle in which a constant current discharge of 0.2 C was performed until the battery voltage reached 2.75 V was performed once in a room temperature environment. Thereby, the lithium ion secondary battery was fully activated. Thereafter, the lithium ion secondary battery was subjected to the following evaluations.

<放電容量比の評価>
放電容量比の評価においては、電池電圧が4.40Vとなるまで0.1Cの定電流定電圧充電を行った。すなわち、電池電圧が4.40Vに到達するまでは0.1Cの定電流で充電を行い、電池電圧が4.40Vに到達した後は、電池電圧を4.40Vに維持したまま充電を行った。充電は、電流値が0.05Cまで下がった際に終止した。その後、電池電圧が2.75Vとなるまで0.1Cの定電流放電を行った。上記放電で得られた比較例及び実施例の放電容量について、比較例1の放電容量を100(%)としたときの実施例の放電容量の相対比率(%)を表1に示した。
<Evaluation of discharge capacity ratio>
In the evaluation of the discharge capacity ratio, constant current and constant voltage charging of 0.1 C was performed until the battery voltage reached 4.40V. That is, charging was performed at a constant current of 0.1 C until the battery voltage reached 4.40 V, and after the battery voltage reached 4.40 V, charging was performed while maintaining the battery voltage at 4.40 V. . Charging was terminated when the current value dropped to 0.05C. Thereafter, constant current discharge at 0.1 C was performed until the battery voltage reached 2.75V. With respect to the discharge capacities of the comparative examples and examples obtained by the above discharge, the relative ratio (%) of the discharge capacities of the examples when the discharge capacity of the comparative example 1 is 100 (%) is shown in Table 1.

<高率放電特性の評価>
高率放電特性の評価指標としては、以下のように測定した容量維持率を使用した。1サイクル目では、電池電圧が4.40Vとなるまで0.1Cの定電流定電圧充電を行った。すなわち、電池電圧が4.40Vに到達するまでは0.1Cの定電流で充電を行い、電池電圧が4.40Vに到達した後は、電池電圧を4.40Vに維持したまま充電を行った。充電は、電流値が0.05Cまで下がった際に終止した。その後、電池電圧が2.75Vとなるまで0.1Cの定電流放電を行った。2サイクル目では、電池電圧が4.40Vとなるまで0.5Cの定電流定電圧充電を行った。すなわち、電池電圧が4.40Vに到達するまでは0.5Cの定電流で充電を行い、電池電圧が4.40Vに到達した後は、電池電圧を4.40Vに維持したまま充電を行った。充電は、電流値が0.05Cまで下がった際に終止した。その後、電池電圧が2.75Vとなるまで1.0Cの定電流放電を行った。そして、2サイクル目の放電容量を1サイクル目の放電容量で除算した値を、高率放電特性の評価値とした。なお、比較例1では、正極面積密度が低い(正極活物質層の厚みが薄い)ため、高率放電特性の評価を行っていない。
<Evaluation of high rate discharge characteristics>
As an evaluation index for high rate discharge characteristics, the capacity retention rate measured as follows was used. In the first cycle, constant current / constant voltage charging at 0.1 C was performed until the battery voltage reached 4.40V. That is, charging was performed at a constant current of 0.1 C until the battery voltage reached 4.40 V, and after the battery voltage reached 4.40 V, charging was performed while maintaining the battery voltage at 4.40 V. . Charging was terminated when the current value dropped to 0.05C. Thereafter, constant current discharge at 0.1 C was performed until the battery voltage reached 2.75V. In the second cycle, constant current / constant voltage charging at 0.5 C was performed until the battery voltage reached 4.40V. That is, charging was performed at a constant current of 0.5 C until the battery voltage reached 4.40 V, and after the battery voltage reached 4.40 V, charging was performed while maintaining the battery voltage at 4.40 V. . Charging was terminated when the current value dropped to 0.05C. Thereafter, constant current discharge at 1.0 C was performed until the battery voltage reached 2.75V. A value obtained by dividing the discharge capacity at the second cycle by the discharge capacity at the first cycle was taken as the evaluation value of the high rate discharge characteristics. In Comparative Example 1, since the positive electrode area density is low (the thickness of the positive electrode active material layer is thin), the high rate discharge characteristics are not evaluated.

以上の結果を表1に示す。   The results are shown in Table 1.

Figure 2016126896
Figure 2016126896

表1に示すように、比較例2の無孔の箔のみの集電体を用いた場合に比べ、実施例1、2のリチウムイオン二次電池では、電極深さ方向の集電性が優れ、電極を厚型化した際の高率放電特性が改善されることがわかった。   As shown in Table 1, the lithium ion secondary batteries of Examples 1 and 2 are superior in current collection in the electrode depth direction compared to the case of using the non-porous foil-only current collector of Comparative Example 2. It has been found that the high rate discharge characteristics are improved when the electrode is made thicker.

また、比較例3の三次元網目構造を有する多孔体を正極集電体に用いた場合、既存のリチウムイオン電池の塗工方式であるダイヘットコーティング、ドクターブレードの適用は極めて困難であるが、本発明の実施例1、2の集電体を用いることで、厚さ方向の中心部は無孔の箔で仕切られ且つ合剤スラリーが容易に内部に浸透するため、既存の塗工方式による塗工が可能となる。   In addition, when the porous body having the three-dimensional network structure of Comparative Example 3 is used for the positive electrode current collector, it is extremely difficult to apply a die-height coating that is a coating method of an existing lithium ion battery and a doctor blade, By using the current collectors of Examples 1 and 2 of the present invention, the center part in the thickness direction is partitioned by non-porous foil and the mixture slurry easily penetrates into the inside, so that the existing coating method is used. Coating is possible.

さらに、比較例3の三次元網目構造を有する多孔体を正極集電体に用いた場合、ロールプレス加工時に多孔体の破断、崩壊により集電体を含む合剤が脱落する問題が発生したのに対し、実施例1、2では集電体及び合剤の破断、脱落が起きることなくプレス加工が可能であった。   Furthermore, when the porous body having the three-dimensional network structure of Comparative Example 3 was used as the positive electrode current collector, there was a problem that the mixture containing the current collector dropped due to the breakage or collapse of the porous body during roll press processing. On the other hand, in Examples 1 and 2, the current collector and the mixture could be pressed without breaking or falling off.

加えて、比較例2、3の電極は巻回耐性が十分でなく、合剤の脱落や集電体の破断が発生する等の不具合が生じたのに対し、本発明の実施例1、2では、電極の剛性と巻回耐性が確保されるため、合剤の脱落や支持体である無孔箔の破断が発生することなく巻回型リチウムイオン二次電池の作製が可能であることがわかった。   In addition, the electrodes of Comparative Examples 2 and 3 have insufficient winding resistance, causing problems such as dropping of the mixture and breakage of the current collector, while Examples 1 and 2 of the present invention. Then, since the rigidity and winding resistance of the electrode are ensured, it is possible to produce a wound lithium ion secondary battery without causing the mixture to fall off or the non-porous foil as a support to break. all right.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

例えば、本発明は、巻回構造を有する円型、楕円型あるいは多角形型の二次電池について適用することができる。また、上記実施の形態および実施例では、電解質として電解液を用いる場合について説明したが、電解液を高分子化合物などの保持体に保持させたゲル状の電解質を用いるようにしてもよい。さらに、上記実施の形態では、箔の少なくとも片面に網状の多孔体を積層し一体化させた電極を正極および負極の両方に用いているが、正極または負極のいずれ一方のみに用いても本発明の効果を得ることができる。   For example, the present invention can be applied to a circular, elliptical or polygonal secondary battery having a winding structure. Moreover, although the case where electrolyte solution was used as an electrolyte was demonstrated in the said embodiment and Example, you may make it use the gel electrolyte which hold | maintained electrolyte solution to holding bodies, such as a polymer compound. Furthermore, in the above embodiment, an electrode in which a net-like porous body is laminated and integrated on at least one surface of the foil is used for both the positive electrode and the negative electrode, but the present invention may be used only for either the positive electrode or the negative electrode. The effect of can be obtained.

10 リチウムイオン二次電池
20 正極
21 正極集電体
22 正極活物質層
30 負極
31 負極集電体
32 負極活物質層
40 セパレータ層
211 アルミニウム箔
213a、213b 網状アルミニウム多孔体
311 銅箔
313a、313b 網状金属多孔体
DESCRIPTION OF SYMBOLS 10 Lithium ion secondary battery 20 Positive electrode 21 Positive electrode collector 22 Positive electrode active material layer 30 Negative electrode 31 Negative electrode collector 32 Negative electrode active material layer 40 Separator layer 211 Aluminum foil 213a, 213b Reticulated aluminum porous body 311 Copper foil 313a, 313b Reticulated Porous metal

Claims (11)

無孔のアルミニウム箔の少なくとも片面に網状のアルミニウム多孔体を積層し一体化させた正極集電体を備えることを特徴とする、巻回型リチウムイオン二次電池用正極。   A positive electrode for a wound lithium ion secondary battery, comprising a positive electrode current collector in which a net-like aluminum porous body is laminated and integrated on at least one surface of a nonporous aluminum foil. 前記網状のアルミニウム多孔体が、アルミニウム不織布またはアルミニウムエキスパンドメタルの少なくともいずれか一つからなることを特徴とする、請求項1に記載の巻回型リチウムイオン二次電池用正極。   The positive electrode for a wound lithium ion secondary battery according to claim 1, wherein the net-like aluminum porous body is made of at least one of an aluminum nonwoven fabric and an aluminum expanded metal. 前記アルミニウム箔の厚みが、12μm以下であることを特徴とする、請求項1または2に記載の巻回型リチウムイオン二次電池用正極。   The positive electrode for a wound lithium ion secondary battery according to claim 1, wherein the aluminum foil has a thickness of 12 μm or less. 前記正極集電体の厚みが、0.2mm以上0.5mm以下であることを特徴とする、請求項1〜3のいずれか一項に記載の巻回型リチウムイオン二次電池用正極。   The thickness of the said positive electrode electrical power collector is 0.2 mm or more and 0.5 mm or less, The positive electrode for wound lithium ion secondary batteries as described in any one of Claims 1-3 characterized by the above-mentioned. 前記巻回型リチウムイオン二次電池用正極の空隙率が、60%以上87%以下であることを特徴とする、請求項1〜4のいずれか一項に記載の巻回型リチウムイオン二次電池用正極。   5. The wound lithium ion secondary according to claim 1, wherein the positive electrode for the wound lithium ion secondary battery has a porosity of 60% to 87%. Battery positive electrode. 無孔の金属箔の少なくとも片面に網状の金属多孔体を積層し一体化させた負極集電体を備えることを特徴とする、巻回型リチウムイオン二次電池用負極。   A negative electrode for a wound lithium ion secondary battery, comprising a negative electrode current collector in which a net-like porous metal is laminated and integrated on at least one surface of a nonporous metal foil. 前記網状の金属多孔体が、銅不織布、ニッケル不織布、ステンレス鋼不織布、銅エキスパンドメタル、ニッケルエキスパンドメタル、またはステンレス鋼エキスパンドメタルの少なくともいずれか一つからなることを特徴とする、請求項6に記載の巻回型リチウムイオン二次電池用負極。   The said mesh-like metal porous body consists of at least any one of a copper nonwoven fabric, a nickel nonwoven fabric, a stainless steel nonwoven fabric, a copper expanded metal, a nickel expanded metal, or a stainless steel expanded metal, The Claim 6 characterized by the above-mentioned. Negative electrode for wound type lithium ion secondary battery. 前記金属箔の厚みが、6μm以下であることを特徴とする、請求項6または7に記載の巻回型リチウムイオン二次電池用負極。   The negative electrode for a wound lithium ion secondary battery according to claim 6 or 7, wherein the thickness of the metal foil is 6 µm or less. 前記負極集電体の厚みが、0.2mm以上0.5mm以下であることを特徴とする、請求項6〜8のいずれか一項に記載の巻回型リチウムイオン二次電池用負極。   The negative electrode for a wound lithium ion secondary battery according to any one of claims 6 to 8, wherein the negative electrode current collector has a thickness of 0.2 mm or more and 0.5 mm or less. 前記巻回型リチウムイオン二次電池用負極の空隙率が、60%以上87%以下であることを特徴とする、請求項6〜9のいずれか一項に記載の巻回型リチウムイオン二次電池用負極。   The wound lithium ion secondary according to any one of claims 6 to 9, wherein a porosity of the negative electrode for the wound lithium ion secondary battery is 60% or more and 87% or less. Battery negative electrode. 請求項1〜5のいずれか一項に記載の巻回型リチウムイオン二次電池用正極と、
請求項6〜10のいずれか一項に記載の巻回型リチウムイオン二次電池用負極と、
を備えることを特徴とする、巻回型リチウムイオン二次電池。
The positive electrode for a wound lithium ion secondary battery according to any one of claims 1 to 5,
A negative electrode for a wound lithium ion secondary battery according to any one of claims 6 to 10,
A wound-type lithium ion secondary battery comprising:
JP2014266268A 2014-12-26 2014-12-26 Positive electrode for wound lithium-ion secondary battery, negative electrode for wound lithium-ion secondary battery, and wound lithium-ion secondary battery Active JP6935983B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014266268A JP6935983B2 (en) 2014-12-26 2014-12-26 Positive electrode for wound lithium-ion secondary battery, negative electrode for wound lithium-ion secondary battery, and wound lithium-ion secondary battery
KR1020150141733A KR20160079632A (en) 2014-12-26 2015-10-08 Positvie electrode for rechargeable lithium battery, negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
KR1020230078537A KR20230093402A (en) 2014-12-26 2023-06-19 Positvie electrode for rechargeable lithium battery, negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014266268A JP6935983B2 (en) 2014-12-26 2014-12-26 Positive electrode for wound lithium-ion secondary battery, negative electrode for wound lithium-ion secondary battery, and wound lithium-ion secondary battery

Publications (2)

Publication Number Publication Date
JP2016126896A true JP2016126896A (en) 2016-07-11
JP6935983B2 JP6935983B2 (en) 2021-09-15

Family

ID=56358093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014266268A Active JP6935983B2 (en) 2014-12-26 2014-12-26 Positive electrode for wound lithium-ion secondary battery, negative electrode for wound lithium-ion secondary battery, and wound lithium-ion secondary battery

Country Status (2)

Country Link
JP (1) JP6935983B2 (en)
KR (2) KR20160079632A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019091571A (en) * 2017-11-13 2019-06-13 古河電池株式会社 Lithium secondary battery
CN112670441A (en) * 2019-10-15 2021-04-16 本田技研工业株式会社 Electrode for lithium ion secondary battery and lithium ion secondary battery
CN112952101A (en) * 2021-02-09 2021-06-11 大连中比动力电池有限公司 Cylindrical lithium ion secondary battery and preparation method thereof
CN113707939A (en) * 2021-08-27 2021-11-26 河南省法恩莱特新能源科技有限公司 Low-impedance high-rate electrolyte

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180070969A (en) 2016-12-19 2018-06-27 현대자동차주식회사 Lithium ion secondary battery
CN109509877B (en) * 2018-11-30 2020-12-11 清华大学深圳研究生院 Carbon-coated porous metal coating current collector, preparation method and lithium battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009918A (en) * 2008-06-26 2010-01-14 Toyota Central R&D Labs Inc Lithium-ion secondary battery
JP2012252961A (en) * 2011-06-06 2012-12-20 Hitachi Ltd Lithium ion secondary battery
JP2013120692A (en) * 2011-12-07 2013-06-17 Toyota Industries Corp Electrode, electricity storage device, secondary batty, and vehicle
WO2013168910A1 (en) * 2012-05-09 2013-11-14 한국기계연구원 Current collector for battery comprising metal mesh layer and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009918A (en) * 2008-06-26 2010-01-14 Toyota Central R&D Labs Inc Lithium-ion secondary battery
JP2012252961A (en) * 2011-06-06 2012-12-20 Hitachi Ltd Lithium ion secondary battery
JP2013120692A (en) * 2011-12-07 2013-06-17 Toyota Industries Corp Electrode, electricity storage device, secondary batty, and vehicle
WO2013168910A1 (en) * 2012-05-09 2013-11-14 한국기계연구원 Current collector for battery comprising metal mesh layer and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019091571A (en) * 2017-11-13 2019-06-13 古河電池株式会社 Lithium secondary battery
CN112670441A (en) * 2019-10-15 2021-04-16 本田技研工业株式会社 Electrode for lithium ion secondary battery and lithium ion secondary battery
CN112952101A (en) * 2021-02-09 2021-06-11 大连中比动力电池有限公司 Cylindrical lithium ion secondary battery and preparation method thereof
CN113707939A (en) * 2021-08-27 2021-11-26 河南省法恩莱特新能源科技有限公司 Low-impedance high-rate electrolyte

Also Published As

Publication number Publication date
KR20160079632A (en) 2016-07-06
JP6935983B2 (en) 2021-09-15
KR20230093402A (en) 2023-06-27

Similar Documents

Publication Publication Date Title
JP6267423B2 (en) Negative electrode active material layer for lithium ion secondary battery, lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, and method for producing negative electrode active material layer for lithium ion secondary battery
KR102434887B1 (en) Negative electrode for rechargeable lithium battery and rechargeable lithium battery
CN104577197B (en) Rechargeable nonaqueous electrolytic battery
JP6935983B2 (en) Positive electrode for wound lithium-ion secondary battery, negative electrode for wound lithium-ion secondary battery, and wound lithium-ion secondary battery
JP6469450B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6310242B2 (en) A positive electrode for a secondary battery, and a secondary battery.
JP2013045759A (en) Nonaqueous electrolyte secondary battery and manufacturing method of the same
JP6395371B2 (en) Negative electrode active material layer for lithium ion secondary battery and lithium ion secondary battery
KR102332441B1 (en) Anode for non-aqueous electrolyte seconary battery and non-aqueous electrolyte seconary battery
JP5924925B2 (en) Positive electrode for secondary battery and secondary battery
WO2018025469A1 (en) Lithium ion secondary battery and method for manufacturing same
JP6282458B2 (en) Non-aqueous electrolyte secondary battery electrode winding element, non-aqueous electrolyte secondary battery using the same, and non-aqueous electrolyte secondary battery electrode winding element manufacturing method
CN107431190B (en) Negative electrode for nonaqueous secondary battery and nonaqueous secondary battery using the same
WO2013084840A1 (en) Nonaqueous electrolyte secondary battery and assembled battery using same
JP6571330B2 (en) Positive electrode active material layer for secondary battery, winding element, and secondary battery
JP2014022321A (en) Nonaqueous electrolyte secondary battery including scavenger
JP6406813B2 (en) Negative electrode active material layer for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2016134296A (en) Separator integral type electrode, manufacturing method for the same and lithium ion secondary battery using the same
JP7345418B2 (en) Lithium ion secondary battery
JP2015187929A (en) Nonaqueous electrolyte secondary battery
JP6552788B2 (en) Electrode and lithium ion secondary battery using the same
JP6234186B2 (en) Nonaqueous electrolyte secondary battery
JP6693689B2 (en) Lithium-ion secondary battery separator and lithium-ion secondary battery
JP7417456B2 (en) Preparation liquid for non-aqueous electrolyte, non-aqueous electrolyte for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP6931986B2 (en) Negative electrode for secondary battery and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200827

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200903

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200907

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201106

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201116

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210517

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210628

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210802

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210826

R150 Certificate of patent or registration of utility model

Ref document number: 6935983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150