JP6395371B2 - Negative electrode active material layer for lithium ion secondary battery and lithium ion secondary battery - Google Patents

Negative electrode active material layer for lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP6395371B2
JP6395371B2 JP2013244295A JP2013244295A JP6395371B2 JP 6395371 B2 JP6395371 B2 JP 6395371B2 JP 2013244295 A JP2013244295 A JP 2013244295A JP 2013244295 A JP2013244295 A JP 2013244295A JP 6395371 B2 JP6395371 B2 JP 6395371B2
Authority
JP
Japan
Prior art keywords
active material
negative electrode
ion secondary
secondary battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013244295A
Other languages
Japanese (ja)
Other versions
JP2015103449A (en
Inventor
田中 忠佳
忠佳 田中
巌 福地
巌 福地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2013244295A priority Critical patent/JP6395371B2/en
Priority to KR1020140143466A priority patent/KR102283795B1/en
Publication of JP2015103449A publication Critical patent/JP2015103449A/en
Application granted granted Critical
Publication of JP6395371B2 publication Critical patent/JP6395371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池用負極活物質層及びリチウムイオン二次電池に関する。   The present invention relates to a negative electrode active material layer for a lithium ion secondary battery and a lithium ion secondary battery.

リチウムイオン(lithium ion)二次電池をはじめとする非水電解質二次電池は、ノート型パソコン(Note PC)や携帯電話などのポータブル(portable)機器の電源として広く用いられているが、高電圧・高容量であることから、その発展に大きな期待が寄せられている。このような非水電解質二次電池の負極材料(負極活物質)には、リチウム金属やリチウム合金の他、Liイオンを脱離・挿入可能な、天然黒鉛や人造黒鉛のような黒鉛質炭素材料等が用いられている。   Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are widely used as power sources for portable devices such as notebook PCs and mobile phones. -Because of its high capacity, great expectations are placed on its development. As a negative electrode material (negative electrode active material) of such a non-aqueous electrolyte secondary battery, in addition to lithium metal and lithium alloy, a graphitic carbon material such as natural graphite or artificial graphite that can desorb and insert Li ions. Etc. are used.

最近では、小型化及び多機能化した携帯機器の電池について更なる高容量化が望まれており、これを受けて、負極活物質として広く用いられている炭素系活物質(例えば黒鉛質炭素材料)に代わる新規負極活物質が検討されている。新規負極活物質としては、錫(Sn)合金、シリコン(Si)合金、シリコン(Si)酸化物、リチウム(Li)窒化物などが注目されているが、現時点ではいずれの上記新規負極材料も充放電サイクル特性が黒鉛質炭素材料に比べて劣っている。   Recently, a further increase in capacity has been desired for batteries for portable devices that have become smaller and more multifunctional, and in response to this, carbon-based active materials (for example, graphitic carbon materials) that are widely used as negative electrode active materials. ) New negative electrode active materials have been investigated. As a new negative electrode active material, a tin (Sn) alloy, a silicon (Si) alloy, a silicon (Si) oxide, a lithium (Li) nitride, and the like have been attracting attention. Discharge cycle characteristics are inferior to graphitic carbon materials.

炭素系活物質は層状構造を有しており、充放電時にLiがこの層間に挿入・脱離するので、Li挿入・離脱の際の膨張・収縮が小さい。これに対し、上記新規負極材料、特にケイ素系活物質は、炭素系活物質よりも構造が複雑であり、かつ、充放電時の単位質量当たりのLiの挿入・脱離するLi量が多い。このため、ケイ素系活物質は、充放電に伴う膨張・収縮が大きくなり、その結果として、膨張・収縮を繰り返す充放電サイクルにおいて、ケイ素系活物質同士の連結が切断される。そして、他のケイ素系活物質から孤立したケイ素系活物質は、電子伝導性が低下し、充放電に関与できなくなる。このため、ケイ素系活物質は、充放電サイクル特性が炭素系活物質に比べて悪くなると考えられる。   The carbon-based active material has a layered structure, and Li is inserted / extracted between the layers at the time of charge / discharge, so that expansion / contraction at the time of insertion / extraction of Li is small. On the other hand, the new negative electrode material, particularly the silicon-based active material, has a more complicated structure than the carbon-based active material, and has a large amount of Li inserted / desorbed per unit mass during charge / discharge. For this reason, the silicon-based active material is greatly expanded / contracted due to charge / discharge, and as a result, the silicon-based active material is disconnected in a charge / discharge cycle that repeats expansion / contraction. A silicon-based active material isolated from other silicon-based active materials has a reduced electron conductivity and cannot participate in charge / discharge. For this reason, it is considered that the charge / discharge cycle characteristics of the silicon-based active material are worse than those of the carbon-based active material.

特許文献1は、ケイ素系活物質を含む負極活物質層のバインダ(binder)としてポリアクリル酸及びポリメタクリル酸を使用する技術が開示されている。   Patent Document 1 discloses a technique of using polyacrylic acid and polymethacrylic acid as a binder of a negative electrode active material layer containing a silicon-based active material.

特開2007−115671号公報JP 2007-115671 A

しかし、特許文献1に開示された技術によっても、サイクル特性が十分に改善されなかった。ポリアクリル酸(Polyacrylic acid)及びポリメタクリル酸(Polymethacrylic acid)は可撓性が低いので、ケイ素系活物質の膨張収縮に追従できず、ケイ素系活物質同士を切り離してしまうからである。そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、ケイ素系活物質を負極活物質として使用したリチウムイオン二次電池のサイクル(cycle)特性を改善することが可能な、新規かつ改良されたリチウムイオン二次電池を提供することにある。   However, even with the technique disclosed in Patent Document 1, the cycle characteristics have not been sufficiently improved. This is because polyacrylic acid and polymethacrylic acid have low flexibility and cannot follow the expansion and contraction of the silicon-based active material, thereby separating the silicon-based active materials. Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to improve cycle characteristics of a lithium ion secondary battery using a silicon-based active material as a negative electrode active material. It is an object of the present invention to provide a new and improved lithium ion secondary battery that can be used.

上記課題を解決するために、本発明のある観点によれば、ケイ素系活物質及び炭素系活物質を含む負極活物質と、ポリアクリル酸アミン塩(Polyacrylic acid amine salt)を含むバインダと、を含むことを特徴とする、リチウムイオン二次電池用負極活物質層が提供される。   In order to solve the above problems, according to an aspect of the present invention, a negative electrode active material including a silicon-based active material and a carbon-based active material, and a binder including a polyacrylic acid amine salt, A negative electrode active material layer for a lithium ion secondary battery is provided.

この観点によれば、負極活物質層は、可撓性及び結着力が大きいポリアクリル酸アミン塩をバインダとして含む。ポリアクリル酸アミン塩は、充放電時のケイ素系活物質の膨張収縮に追従することができ、ケイ素系活物質同士の連結を維持することができる。このため、リチウムイオン二次電池のサイクル寿命が向上する。   According to this aspect, the negative electrode active material layer includes a polyacrylic acid amine salt having high flexibility and binding power as a binder. The polyacrylic acid amine salt can follow the expansion and contraction of the silicon-based active material during charge / discharge, and can maintain the connection between the silicon-based active materials. For this reason, the cycle life of the lithium ion secondary battery is improved.

ここで、ポリアクリル酸アミン塩を構成するアミンは、親水基を有していてもよい。   Here, the amine constituting the polyacrylic acid amine salt may have a hydrophilic group.

この観点によれば、ポリアクリル酸アミン塩の結着力及び可撓性がさらに向上する。   According to this viewpoint, the binding force and flexibility of the polyacrylic acid amine salt are further improved.

また、アミンを構成する炭化水素基は、親水基を有する側鎖を有していてもよい。   Further, the hydrocarbon group constituting the amine may have a side chain having a hydrophilic group.

この観点によれば、ポリアクリル酸アミン塩の結着力及び可撓性がさらに向上する。   According to this viewpoint, the binding force and flexibility of the polyacrylic acid amine salt are further improved.

また、親水基は水酸基を含んでいてもよい。   The hydrophilic group may contain a hydroxyl group.

この観点によれば、ポリアクリル酸アミン塩の結着力及び可撓性がさらに向上する。   According to this viewpoint, the binding force and flexibility of the polyacrylic acid amine salt are further improved.

また、ケイ素系活物質は、負極活物質の総質量に対して3〜80質量%でリチウムイオン二次電池用負極活物質層に含まれていてもよい。   Further, the silicon-based active material may be contained in the negative electrode active material layer for a lithium ion secondary battery in an amount of 3 to 80% by mass with respect to the total mass of the negative electrode active material.

この観点によれば、ポリアクリル酸アミン塩の結着力及び可撓性がさらに向上する。   According to this viewpoint, the binding force and flexibility of the polyacrylic acid amine salt are further improved.

本発明の他の観点によれば、上記リチウムイオン二次電池用負極活物質層を含むことを特徴とする、リチウムイオン二次電池が提供される。   According to another aspect of the present invention, there is provided a lithium ion secondary battery comprising the negative electrode active material layer for a lithium ion secondary battery.

この観点によれば、負極活物質層は、可撓性及び結着力が大きいポリアクリル酸アミン塩をバインダとして含む。ポリアクリル酸アミン塩は、充放電時のケイ素系活物質の膨張収縮に追従することができ、ケイ素系活物質同士の連結を維持することができる。このため、リチウムイオン二次電池のサイクル寿命が向上する。   According to this aspect, the negative electrode active material layer includes a polyacrylic acid amine salt having high flexibility and binding power as a binder. The polyacrylic acid amine salt can follow the expansion and contraction of the silicon-based active material during charge / discharge, and can maintain the connection between the silicon-based active materials. For this reason, the cycle life of the lithium ion secondary battery is improved.

本発明の他の観点によれば、ケイ素系活物質、炭素系活物質、及びポリアクリル酸アミン塩を含むスラリーを集電体上に塗工するステップと、集電体上のスラリーを150℃以上の温度で乾燥するステップと、を含むことを特徴とする、負極活物質層の製造方法が提供される。   According to another aspect of the present invention, a step of coating a slurry containing a silicon-based active material, a carbon-based active material, and a polyacrylic acid amine salt on a current collector, and a slurry on the current collector at 150 ° C. And a step of drying at the above temperature. A method for producing a negative electrode active material layer is provided.

この観点によれば、乾燥温度を150℃以上とするので、ポリアクリル酸アミン塩の一部にアミド結合が形成され、ひいては、ポリアクリル酸アミン塩の結着力及び可撓性が向上する。   According to this aspect, since the drying temperature is set to 150 ° C. or higher, an amide bond is formed in a part of the polyacrylic acid amine salt, thereby improving the binding force and flexibility of the polyacrylic acid amine salt.

以上説明したように本発明によれば、ケイ素系活物質を負極活物質として使用したリチウムイオン二次電池のサイクル寿命が向上する。   As described above, according to the present invention, the cycle life of a lithium ion secondary battery using a silicon-based active material as a negative electrode active material is improved.

リチウムイオン二次電池の構成を概略的に示す側断面図である。It is a sectional side view which shows the structure of a lithium ion secondary battery roughly.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

(リチウムイオン二次電池の構成)
まず、図1に基づいて、本実施形態に係るリチウムイオン二次電池10の構成について説明する。
(Configuration of lithium ion secondary battery)
First, based on FIG. 1, the structure of the lithium ion secondary battery 10 which concerns on this embodiment is demonstrated.

リチウムイオン二次電池10は、正極20と、負極30と、セパレータ層40とを備える。リチウムイオン二次電池10の充電到達電圧(酸化還元電位)は、例えば4.3V(vs.Li/Li)以上5.0V以下、特に4.5V以上5.0V以下となる。リチウムイオン二次電池10の形態は、特に限定されない。即ち、リチウムイオン二次電池10は、円筒形、角形、ラミネート(laminate)形、ボタン(button)形等のいずれであってもよい。 The lithium ion secondary battery 10 includes a positive electrode 20, a negative electrode 30, and a separator layer 40. The charge ultimate voltage (redox potential) of the lithium ion secondary battery 10 is, for example, 4.3 V (vs. Li / Li + ) or more and 5.0 V or less, particularly 4.5 V or more and 5.0 V or less. The form of the lithium ion secondary battery 10 is not particularly limited. That is, the lithium ion secondary battery 10 may be any one of a cylindrical shape, a square shape, a laminate shape, a button shape, and the like.

正極20は、集電体21と、正極活物質層22とを備える。集電体21は、導電体であればどのようなものでも良く、例えば、アルミニウム(aluminium)、ステンレス(stainless)鋼、及びニッケルメッキ(nickel coated)鋼等で構成される。   The positive electrode 20 includes a current collector 21 and a positive electrode active material layer 22. The current collector 21 may be any conductor as long as it is a conductor, and is made of, for example, aluminum, stainless steel, nickel-coated steel, or the like.

正極活物質層22は、少なくとも正極活物質を含み、導電剤と、バインダとをさらに含んでいてもよい。正極活物質は、例えばリチウムを含む固溶体酸化物であるが、電気化学的にリチウムイオンを吸蔵及び放出することができる物質であれば特に制限されない。固溶体酸化物は、例えば、LiMnCoNi(1.150≦a≦1.430、0.45≦x≦0.6、0.10≦y≦0.15、0.20≦z≦0.28)、LiMnCoNi(0.3≦x≦0.85、0.10≦y≦0.3、0.10≦z≦0.3)、LiMn1.5Ni0.5となる。 The positive electrode active material layer 22 includes at least a positive electrode active material, and may further include a conductive agent and a binder. The positive electrode active material is, for example, a solid solution oxide containing lithium, but is not particularly limited as long as the material can electrochemically occlude and release lithium ions. The solid solution oxide is, for example, Li a Mn x Co y Ni z O 2 (1.150 ≦ a ≦ 1.430, 0.45 ≦ x ≦ 0.6, 0.10 ≦ y ≦ 0.15,. 20 ≦ z ≦ 0.28), LiMn x Co y Ni z O 2 (0.3 ≦ x ≦ 0.85, 0.10 ≦ y ≦ 0.3, 0.10 ≦ z ≦ 0.3), LiMn 1.5 Ni 0.5 O 4 .

導電剤は、例えばケッチェンブラック(Ketjenblack)、アセチレンブラック(acetylene black)等のカーボンブラック、天然黒鉛、人造黒鉛等であるが、正極の導電性を高めるためのものであれば特に制限されない。   The conductive agent is, for example, carbon black such as ketjen black or acetylene black, natural graphite, artificial graphite, or the like, but is not particularly limited as long as it is intended to increase the conductivity of the positive electrode.

バインダは、例えばポリフッ化ビニリデン(polyvinylidene fluoride)、エチレンプロピレンジエン(ethylene−propylene−diene)三元共重合体、スチレンブタジエンゴム(Styrene−butadiene rubber)、アクリロニトリルブタジエンゴム(acrylonitrile−butadiene rubber)、フッ素ゴム(fluororubber)、ポリ酢酸ビニル(polyvinyl acetate)、ポリメチルメタクリレート(polymethylmethacrylate)、ポリエチレン(polyethylene)、ニトロセルロース(cellulose nitrate)等であるが、正極活物質及び導電剤を集電体21上に結着させることができるものであれば、特に制限されない。   Examples of the binder include polyvinylidene fluoride, ethylene-propylene-diene terpolymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, and acrylonitrile-butadiene rubber. (Fluororubber), polyvinyl acetate, polymethylmethacrylate, polyethylene, polynitroethylene, nitrocellulose, and the like, and a positive electrode active material and a conductive agent are bound on the current collector 21. The There is no particular limitation as long as it can be applied.

正極活物質層22は、例えば、以下の製法により作製される。すなわち、まず、正極活物質、導電剤、及びバインダを乾式混合することで正極合剤を作製する。ついで、正極合剤を適当な有機溶媒に分散させることで正極合剤スラリー(slurry)を形成し、この正極合剤スラリーを集電体21上に塗工し、乾燥、圧延することで正極活物質層が形成される。   The positive electrode active material layer 22 is produced, for example, by the following manufacturing method. That is, first, a positive electrode mixture is prepared by dry-mixing a positive electrode active material, a conductive agent, and a binder. Next, the positive electrode mixture is dispersed in a suitable organic solvent to form a positive electrode mixture slurry (slurry). The positive electrode mixture slurry is applied onto the current collector 21, dried, and rolled to produce a positive electrode active slurry. A material layer is formed.

負極30は、集電体31と、負極活物質層32とを含む。集電体31は、導電体であればどのようなものでも良く、例えば、アルミニウム、ステンレス鋼、及びニッケルメッキ鋼等で構成される。   The negative electrode 30 includes a current collector 31 and a negative electrode active material layer 32. The current collector 31 may be any conductor as long as it is a conductor, for example, aluminum, stainless steel, nickel-plated steel, or the like.

負極活物質層32は、負極活物質及びバインダを含む。負極活物質は、ケイ素系活物質と、炭素系活物質とを含む。ケイ素系活物質は、ケイ素(原子)を含み、かつ、電気化学的にリチウムイオンを吸蔵及び放出することができる物質である。ケイ素活物質としては、例えば、ケイ素単体の微粒子、ケイ素化合物の微粒子等が挙げられる。ケイ素化合物は、リチウムイオン二次電池の負極活物質として使用されるものであれば特に制限されない。ケイ素化合物としては、例えばケイ素酸化物及びケイ素合金等が挙げられる。ケイ素酸化物は、例えばSiO(0<x≦2)で表される。ケイ素合金としては、例えばSi−Ti−Ni合金、Si−Al−Fe合金等が挙げられる。 The negative electrode active material layer 32 includes a negative electrode active material and a binder. The negative electrode active material includes a silicon-based active material and a carbon-based active material. The silicon-based active material is a material that contains silicon (atom) and can electrochemically occlude and release lithium ions. Examples of the silicon active material include fine particles of simple silicon, fine particles of silicon compound, and the like. A silicon compound will not be restrict | limited especially if it is used as a negative electrode active material of a lithium ion secondary battery. Examples of the silicon compound include silicon oxide and silicon alloy. The silicon oxide is represented by, for example, SiO x (0 <x ≦ 2 ). Examples of silicon alloys include Si—Ti—Ni alloys and Si—Al—Fe alloys.

一方、炭素系活物質は、炭素(原子)を含み、かつ電気化学的にリチウムイオンを吸蔵及び放出することができる物質である。炭素系活物質としては、例えば、黒鉛活物質(人造黒鉛、天然黒鉛、人造黒鉛と天然黒鉛との混合物、人造黒鉛を被覆した天然黒鉛等)等が挙げられる。   On the other hand, the carbon-based active material is a material that contains carbon (atom) and can electrochemically occlude and release lithium ions. Examples of the carbon-based active material include graphite active materials (artificial graphite, natural graphite, a mixture of artificial graphite and natural graphite, natural graphite coated with artificial graphite, and the like).

なお、負極活物質中のケイ素系活物質の含有量は特に制限されないが、後述する実施例に示されるように、ケイ素系活物質は、負極活物質の総質量に対して3〜80質量%で負極活物質層32に含まれることが好ましい。ケイ素系活物質の含有量がこの範囲内となる場合に、サイクル寿命の改善効果がより顕著となる。   The content of the silicon-based active material in the negative electrode active material is not particularly limited, but as shown in the examples described later, the silicon-based active material is 3 to 80% by mass with respect to the total mass of the negative electrode active material. In the negative electrode active material layer 32, it is preferable. When the content of the silicon-based active material is within this range, the effect of improving the cycle life becomes more remarkable.

バインダは、ポリアクリル酸アミン塩を含む。好ましくは、バインダはポリアクリル酸アミン塩で構成される。すなわち、本発明者は、ポリアクリル酸アミン塩の可撓性及び結着力が非常に良好であることを見出し、負極活物質層32のバインダとしてポリアクリル酸アミン塩を使用することを試みた。この結果、本発明者は、リチウムイオン二次電池のサイクル寿命を飛躍的に向上させることに成功した。ポリアクリル酸アミン塩は高い可撓性及び結着力を有するので、ケイ素系活物質の膨張収縮に追従することができ、ケイ素系活物質同士の連結を維持することができる。この結果、リチウムイオン二次電池10のサイクル寿命が向上したと考えられる。   The binder includes a polyacrylic acid amine salt. Preferably, the binder is composed of a polyacrylic acid amine salt. That is, the present inventor found that the flexibility and binding force of the polyacrylic acid amine salt were very good, and tried to use the polyacrylic acid amine salt as a binder for the negative electrode active material layer 32. As a result, the present inventors succeeded in dramatically improving the cycle life of the lithium ion secondary battery. Since the polyacrylic acid amine salt has high flexibility and binding power, it can follow the expansion and contraction of the silicon-based active material, and can maintain the connection between the silicon-based active materials. As a result, it is considered that the cycle life of the lithium ion secondary battery 10 is improved.

ポリアクリル酸アミン塩を構成するアミンは、親水基を有することが好ましい。この場合、ポリアクリル酸アミン塩の結着力及び可撓性がさらに向上し、結果として、リチウムイオン二次電池10のサイクル寿命がさらに向上する。親水基の数が多いほど、結着力及び可撓性が向上する。さらに、アミンを構成する炭化水素基は、親水基を有する側鎖を有することが好ましい。この場合、各アミンの水酸基同士が結合することで、ポリアクリル酸アミン塩はより立体的な構造(網目構造)を有することになる。したがって、ポリアクリル酸アミン塩の結着力及び可撓性がさらに向上し、ひいては、リチウムイオン二次電池10のサイクル寿命がさらに向上する。ここで、親水基は、好ましくは水酸基である。したがって、ポリアクリル酸アミン塩の好ましい例はポリアクリル酸のアミノアルコール塩である。乾燥時の温度の上限値は例えば200℃程度である。   The amine constituting the polyacrylic acid amine salt preferably has a hydrophilic group. In this case, the binding force and flexibility of the polyacrylic acid amine salt are further improved, and as a result, the cycle life of the lithium ion secondary battery 10 is further improved. The greater the number of hydrophilic groups, the better the binding force and flexibility. Further, the hydrocarbon group constituting the amine preferably has a side chain having a hydrophilic group. In this case, the polyacrylic acid amine salt has a more three-dimensional structure (network structure) by bonding the hydroxyl groups of each amine. Therefore, the binding force and flexibility of the polyacrylic acid amine salt are further improved, and the cycle life of the lithium ion secondary battery 10 is further improved. Here, the hydrophilic group is preferably a hydroxyl group. Accordingly, a preferred example of the polyacrylic acid amine salt is an amino alcohol salt of polyacrylic acid. The upper limit of the temperature during drying is, for example, about 200 ° C.

ポリアクリル酸アミン塩の具体例としては、トリスヒドロキシメチルアミノメタン(Tris hydroxymethyl aminomethane)、エタノールアミン(ethanolamine)、エチルメタン(ethyl methane)等が挙げられる。上記の特性によれば、これらのポリアクリル酸アミン塩のうち、トリスヒドロキシメチルアミノメタンが最も好ましく、エタノールアミンが次に好ましく、エチルアミンが次に好ましい。   Specific examples of the polyacrylic acid amine salt include trishydroxymethylaminomethane (Tris hydroxymethylaminomethane), ethanolamine, ethylmethane, and the like. According to the above characteristics, among these polyacrylic acid amine salts, trishydroxymethylaminomethane is most preferred, ethanolamine is next preferred, and ethylamine is next preferred.

負極活物質層32は、例えば、以下の製法により作製される。すなわち、まず、負極活物質、及びバインダを乾式混合することで負極合剤を作製する。ついで、負極合剤を適当な溶媒に分散させることで負極合剤スラリー(slurry)を形成し、この負極合剤スラリーを集電体31上に塗工し、乾燥、圧延することで負極活物質層32が形成される。ここで、乾燥時の温度はリチウムイオン二次電池の負極活物質層に適用される温度であれば特に制限されないが、150℃以上であることが特に好ましい。負極合剤スラリーを150℃以上の温度で乾燥することで、リチウムイオン二次電池10のサイクル特性がさらに向上するからである。この理由として、負極合剤スラリーを150℃以上の温度で乾燥した際に、アクリル酸のカルボキシル基とアミンとが脱水結合することで、アミド結合が形成されることが考えられる。このようなアミド結合が形成されることで、ポリアクリル酸アミン塩の可撓性及び結着力がより向上し、ケイ素系活物質の膨張収縮により確実に追従することができる。   The negative electrode active material layer 32 is produced by the following manufacturing method, for example. That is, first, a negative electrode mixture is prepared by dry-mixing a negative electrode active material and a binder. Subsequently, the negative electrode mixture is dispersed in a suitable solvent to form a negative electrode mixture slurry (slurry). The negative electrode mixture slurry is coated on the current collector 31, dried, and rolled to form a negative electrode active material. Layer 32 is formed. Here, the temperature during drying is not particularly limited as long as it is a temperature applied to the negative electrode active material layer of the lithium ion secondary battery, but it is particularly preferably 150 ° C. or higher. This is because the cycle characteristics of the lithium ion secondary battery 10 are further improved by drying the negative electrode mixture slurry at a temperature of 150 ° C. or higher. The reason is considered that when the negative electrode mixture slurry is dried at a temperature of 150 ° C. or higher, an amide bond is formed by a dehydration bond between a carboxyl group of acrylic acid and an amine. By forming such an amide bond, the flexibility and binding force of the polyacrylic acid amine salt can be further improved, and can be reliably followed by expansion and contraction of the silicon-based active material.

セパレータ層40は、セパレータ(separator)と、電解液とを含む。セパレータは、特に制限されず、リチウムイオン二次電池のセパレータとして使用されるものであれば、どのようなものであってもよい。セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。セパレータを構成する樹脂としては、例えばポリエチレン(polyethylene),ポリプロピレン(polypropylene)等に代表されるポリオレフィン(polyolefin)系樹脂、ポリエチレンテレフタレート(Polyethylene terephthalate),ポリブチレンテレフタレート(polybutylene terephthalate)等に代表されるポリエステル(Polyester)系樹脂、PVDF、フッ化ビニリデン(VDF)−ヘキサフルオロプロピレン(HFP)共重合体、フッ化ビニリデン−パーフルオロビニルエーテル(par fluorovinyl ether)共重合体、フッ化ビニリデン−テトラフルオロエチレン(tetrafluoroethylene)共重合体、フッ化ビニリデン−トリフルオロエチレン(trifluoroethylene)共重合体、フッ化ビニリデン−フルオロエチレン(fluoroethylene)共重合体、フッ化ビニリデン−ヘキサフルオロアセトン(hexafluoroacetone)共重合体、フッ化ビニリデン−エチレン(ethylene)共重合体、フッ化ビニリデン−プロピレン(propylene)共重合体、フッ化ビニリデン−トリフルオロプロピレン(trifluoro propylene)共重合体、フッ化ビニリデン−テトラフルオロエチレン(tetrafluoroethylene)−ヘキサフルオロプロピレン(hexafluoropropylene)共重合体、フッ化ビニリデン−エチレン(ethylene)−テトラフルオロエチレン(tetrafluoroethylene)共重合体等を挙げることができる。   The separator layer 40 includes a separator and an electrolytic solution. The separator is not particularly limited, and any separator can be used as long as it is used as a separator for a lithium ion secondary battery. As the separator, it is preferable to use a porous film or a non-woven fabric exhibiting excellent high rate discharge performance alone or in combination. Examples of the resin constituting the separator include polyolefin resins typified by polyethylene, polypropylene, etc., polyethylene terephthalate, polybutylene terephthalate, and the like represented by polybutylene terephthalate. (Polyester) resin, PVDF, vinylidene fluoride (VDF) -hexafluoropropylene (HFP) copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene (tetrafluoroethylene) ) Copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride- Ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene (tetrafluoroethylene-tetrafluoroethylene-tetrafluoroethylene-tetrafluoroethylene-tetrafluoroethylene-tetrafluoroethylene-tetrafluoroethylene-tetrafluoroethylene- (tetrafluoroethylene-tetrafluoroethylene) hexafluoropropylene copolymer, vinylidene fluoride-ethylene (ethy) ene) - can be exemplified tetrafluoroethylene (tetrafluoroethylene) copolymers.

非水電解液は、従来からリチウム二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。非水電解液は、非水溶媒に電解質塩を含有させた組成を有する。非水溶媒としては、例えば、プロピレンカーボネート(propylene carbonate)、エチレンカーボネート(ethylene carbonate)、ブチレンカーボネート(ethylene carbonate)、クロロエチレンカーボネート(chloroethylene carbonate)、ビニレンカーボネート(vinylene carbonate)等の環状炭酸エステル(ester)類;γ−ブチロラクトン(butyrolactone)、γ−バレロラクトン(valerolactone)等の環状エステル類;ジメチルカーボネート(dimethyl carbonate)、ジエチルカーボネート(diethyl carbonate)、エチルメチルカーボネート(ethyl methyl carbonate)等の鎖状カーボネート類;ギ酸メチル(methyl formate)、酢酸メチル(methyl acetate)、酪酸メチル(butyric acid methyl)等の鎖状エステル類;テトラヒドロフラン(Tetrahydrofuran)またはその誘導体;1,3−ジオキサン(dioxane)、1,4−ジオキサン(dioxane)、1,2−ジメトキシエタン(dimethoxyethane)、1,4−ジブトキシエタン(dibutoxyethane)、メチルジグライム(methyl diglyme)等のエーテル(ether)類;アセトニトリル(acetonitrile)、ベンゾニトリル(benzonitrile)等のニトリル(nitrile)類;ジオキソラン(Dioxolane)またはその誘導体;エチレンスルフィド(ethylene sulfide)、スルホラン(sulfolane)、スルトン(sultone)またはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。   As the non-aqueous electrolyte, the same non-aqueous electrolyte as conventionally used for lithium secondary batteries can be used without any particular limitation. The nonaqueous electrolytic solution has a composition in which an electrolyte salt is contained in a nonaqueous solvent. Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, vinylene carbonate (vinyl carbonate), and the like. ); Cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate chain carbonates such as ethyl carbonate; chain esters such as methyl formate, methyl acetate, butyric acid methyl; tetrahydrofuran (tetrahydrofuran) or derivatives thereof; 1,3- Ethers such as dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,4-dibutoxyethane, methyl diglyme; Nitriles such as acetonitrile and benzonitrile e) class; dioxolane or a derivative thereof; ethylene sulfide, sulfolane, sultone, or a derivative thereof alone or a mixture of two or more thereof, etc. It is not limited to.

また、電解質塩としては、例えば、LiClO、LiBF、LiAsF、LiPF,LiPF6−x(C2n+1[但し、1<x<6,n=1or2],LiSCN,LiBr,LiI,LiSO,Li10Cl10,NaClO,NaI,NaSCN,NaBr,KClO,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,(CHNBF,(CHNBr,(CNClO,(CNI,(CNBr,(n−CNClO,(n−CNI,(CN−maleate,(CN−benzoate,(CN−phtalate、ステアリルスルホン酸リチウム(stearyl sulfonic acid lithium)、オクチルスルホン酸リチウム(octyl sulfonic acid)、ドデシルベンゼンスルホン酸リチウム(dodecyl benzene sulphonic acid)等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。なお、電解質塩の濃度は、従来のリチウム二次電池で使用される非水電解液と同様でよく、特に制限はない。本実施形態では、適当なリチウム化合物(電解質塩)を0.8〜1.5mol/L程度の濃度で含有させた非水電解液を使用することができる。 Examples of the electrolyte salt include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiPF 6-x (C n F 2n + 1 ) x [where 1 <x <6, n = 1or2], LiSCN, LiBr, Inorganic ions containing one kind of lithium (Li), sodium (Na) or potassium (K) such as LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr, KClO 4 , KSCN Salt, LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3, LiC (C 2 F 5 SO 2) 3, (CH 3) 4 NBF 4, (CH 3) 4 NBr, (C 2 H 5) 4 NClO 4, C 2 H 5) 4 NI, (C 3 H 7) 4 NBr, (n-C 4 H 9) 4 NClO 4, (n-C 4 H 9) 4 NI, (C 2 H 5) 4 N-maleate , (C 2 H 5 ) 4 N-benzoate, (C 2 H 5 ) 4 N-phtalate, lithium stearyl sulfonate (octyl sulfonic acid), lithium dodecylbenzene sulfonate (lithium dodecylbenzene sulfonate) organic ion salts such as dodecyl benzene sulphonic acid) and the like, and these ionic compounds can be used alone or in admixture of two or more. The concentration of the electrolyte salt may be the same as that of the nonaqueous electrolytic solution used in the conventional lithium secondary battery, and is not particularly limited. In this embodiment, a nonaqueous electrolytic solution containing an appropriate lithium compound (electrolyte salt) at a concentration of about 0.8 to 1.5 mol / L can be used.

なお、非水電解液には、各種の添加剤を添加してもよい。このような添加剤としては、負極作用添加剤、正極作用添加剤、エステル系の添加剤、炭酸エステル系の添加剤、硫酸エステル系の添加剤、リン酸エステル系の添加剤、ホウ酸エステル系の添加剤、酸無水物系の添加剤、及び電解質系の添加剤等が挙げられる。これらのうちいずれか1種を非水電解液に添加しても良いし、複数種類の添加剤を非水電解液に添加してもよい。   Various additives may be added to the nonaqueous electrolytic solution. Examples of such additives include a negative electrode action additive, a positive electrode action additive, an ester additive, a carbonate ester additive, a sulfate ester additive, a phosphate ester additive, and a borate ester additive. Additive, acid anhydride additive, electrolyte additive and the like. Any one of these may be added to the non-aqueous electrolyte, or a plurality of types of additives may be added to the non-aqueous electrolyte.

(リチウムイオン二次電池の製造方法)
次に、リチウムイオン二次電池10の製造方法について説明する。正極20は、以下のように作製される。まず、正極活物質、導電剤、及びバインダを上記の割合で混合したものを、溶媒(例えばN−メチル−2−ピロリドン)に分散させることでスラリーを形成する。次いで、スラリーを集電体21上に形成(例えば塗工)し、乾燥させることで、正極活物質層22を形成する。なお、塗工の方法は、特に限定されない。塗工の方法としては、例えば、ナイフコーター(knife coater)法、グラビアコーター(gravure coater)法等が考えられる。以下の各塗工工程も同様の方法により行われる。次いで、プレス(press)機により正極活物質層22を上記の範囲内の密度となるようにプレスする。これにより、正極20が作製される。
(Method for producing lithium ion secondary battery)
Next, a method for manufacturing the lithium ion secondary battery 10 will be described. The positive electrode 20 is produced as follows. First, a slurry is formed by dispersing a mixture of a positive electrode active material, a conductive agent, and a binder in the above ratio in a solvent (for example, N-methyl-2-pyrrolidone). Next, the positive electrode active material layer 22 is formed by forming (for example, coating) the slurry on the current collector 21 and drying the slurry. The coating method is not particularly limited. Examples of the coating method include a knife coater method and a gravure coater method. The following coating steps are also performed by the same method. Next, the positive electrode active material layer 22 is pressed by a press machine so as to have a density within the above range. Thereby, the positive electrode 20 is produced.

負極30も、正極20と同様に作製される。まず、負極活物質、及びバインダを上記の割合で混合したものを、溶媒(例えばN−メチル−2−ピロリドン)に分散させることでスラリーを形成する。次いで、スラリーを集電体31上に形成(例えば塗工)し、乾燥させることで、負極活物質層32を形成する。乾燥時の温度は150℃以上が好ましい。次いで、プレス機により負極活物質層32を上記の範囲内の密度となるようにプレスする。これにより、負極30が作製される。   The negative electrode 30 is also produced in the same manner as the positive electrode 20. First, a slurry is formed by dispersing a mixture of a negative electrode active material and a binder in the above ratio in a solvent (for example, N-methyl-2-pyrrolidone). Next, the negative electrode active material layer 32 is formed by forming (for example, coating) the slurry on the current collector 31 and drying the slurry. The temperature during drying is preferably 150 ° C. or higher. Next, the negative electrode active material layer 32 is pressed by a press machine so as to have a density within the above range. Thereby, the negative electrode 30 is produced.

次いで、セパレータを正極20及び負極30で挟むことで、電極構造体を作製する。次いで、電極構造体を所望の形態(例えば、円筒形、角形、ラミネート形、ボタン形等)に加工し、当該形態の容器に挿入する。次いで、当該容器内に上記組成の電解液を注入することで、セパレータ内の各気孔に電解液を含浸させる。これにより、リチウムイオン二次電池が作製される。   Next, an electrode structure is produced by sandwiching the separator between the positive electrode 20 and the negative electrode 30. Next, the electrode structure is processed into a desired shape (for example, a cylindrical shape, a square shape, a laminate shape, a button shape, etc.) and inserted into a container of the shape. Next, by injecting the electrolytic solution having the above composition into the container, each pore in the separator is impregnated with the electrolytic solution. Thereby, a lithium ion secondary battery is produced.

(実施例1)
(ケイ素系活物質の作成)
先ず、ケイ素系活物質(ケイ素系合金)の作製を特許公開2001−297757記載の手法を参考に、ガスアトマイズ法を用いて行った。具体的には、Si粉末60質量%、Ti粉末20質量%、及びNi粉末20質量%をアルゴン雰囲気中で高周波溶解することで溶湯を形成した。ついで、この溶湯をタンディッシュに注湯し、タンディッシュの底部に設けた細孔を通して溶湯細流を形成した。そして、この溶湯細流に高圧のアルゴンガスを噴霧することで、溶湯を粉末化した。この粉末がケイ素系合金となる。冷却速度は、同じ条件で凝固させたアルミニウム−4質量%銅合金のデンドライトの二次アーム間の距離の測定により、103〜105℃/secであった。すなわち、100℃/secより十分に速い冷却速度であった。なお、熱処理は行わなかった。
Example 1
(Creation of silicon-based active material)
First, production of a silicon-based active material (silicon-based alloy) was performed using a gas atomizing method with reference to a method described in Japanese Patent Publication No. 2001-297757. Specifically, a molten metal was formed by high-frequency melting 60 mass% of Si powder, 20 mass% of Ti powder, and 20 mass% of Ni powder in an argon atmosphere. Subsequently, this molten metal was poured into a tundish, and a trickle of molten metal was formed through pores provided at the bottom of the tundish. And the molten metal was pulverized by spraying high pressure argon gas to this molten metal trickle. This powder becomes a silicon-based alloy. The cooling rate was 103 to 105 ° C./sec by measuring the distance between secondary arms of the dendrite of aluminum-4 mass% copper alloy solidified under the same conditions. That is, the cooling rate was sufficiently faster than 100 ° C./sec. No heat treatment was performed.

(ポリアクリル酸アミン塩の作製)
ポリアクリル酸とトリスヒドロキシメチルアミノメタンとをモノマー換算で1:1で中和することでポリアクリル酸アミン塩を得た。
(Preparation of polyacrylic acid amine salt)
A polyacrylic acid amine salt was obtained by neutralizing polyacrylic acid and trishydroxymethylaminomethane at a monomer conversion of 1: 1.

(負極用スラリーの作製)
ついで、ケイ素系活物質、人造黒鉛(炭素系活物質)、アセチレンブラック、及び上記で作製されたアクリル酸アミン塩を45.5:45.5:1.0:8.0の質量比で混合することで負極合剤を作製した。ついで、負極合剤に塗布に適した粘度調整のために水を加えることで負極合剤スラリーを作製した。
(Preparation of slurry for negative electrode)
Next, the silicon-based active material, artificial graphite (carbon-based active material), acetylene black, and the acrylate amine salt prepared above were mixed at a mass ratio of 45.5: 45.5: 1.0: 8.0. Thus, a negative electrode mixture was produced. Then, a negative electrode mixture slurry was prepared by adding water to the negative electrode mixture to adjust the viscosity suitable for coating.

(負極の作製)
負極合剤スラリーを銅箔の片面に塗布し、80℃に設定した送風型乾燥機で15分乾燥し、圧延した後、150℃で6時間真空乾燥することで、負極活物質層を作製した。負極活物質層の充填密度は1.50g/cmであった。以上のステップにより負極を作製した。
(Preparation of negative electrode)
The negative electrode mixture slurry was applied to one side of a copper foil, dried for 15 minutes with a blow-type dryer set at 80 ° C., rolled, and then vacuum dried at 150 ° C. for 6 hours to prepare a negative electrode active material layer. . The packing density of the negative electrode active material layer was 1.50 g / cm 3 . The negative electrode was produced by the above steps.

(正極の作製)
固溶体酸化物Li1.20Mn0.55Co0.10Ni0.15、ケッチェンブラック、及びポリフッ化ビニリデンを96:2:2の質量比で混合することで正極合剤を作製し、正極合剤をN−メチル−2−ピロリドンに分散させることで正極合剤スラリーを作製した。ついで、正極合剤スラリーをアルミニウム箔上に均一に塗工し、80℃に設定した送風型乾燥機で15分乾燥し、圧延した後、100℃で6時間真空乾燥した。これにより、正極活物質層を作製した。以上のステップにより、正極を作製した。正極活物質層の充填密度は3.0g/cmであった。
(Preparation of positive electrode)
A positive electrode mixture was prepared by mixing solid solution oxide Li 1.20 Mn 0.55 Co 0.10 Ni 0.15 O 2 , Ketjen Black, and polyvinylidene fluoride in a mass ratio of 96: 2: 2. A positive electrode mixture slurry was prepared by dispersing the positive electrode mixture in N-methyl-2-pyrrolidone. Next, the positive electrode mixture slurry was uniformly coated on an aluminum foil, dried for 15 minutes with a blow-type dryer set at 80 ° C., rolled, and then vacuum dried at 100 ° C. for 6 hours. This produced the positive electrode active material layer. The positive electrode was produced by the above steps. The packing density of the positive electrode active material layer was 3.0 g / cm 3 .

(コインセルの作製)
上記正極を直径13mm、実施例1の負極を直径15.5mmに切断し、直径19mmの厚さ25μmのポリエチレン微多孔膜からなるセパレータを正極と負極の間に挟み、CR2032コインセル電池ケースに収容した。
(Production of coin cell)
The positive electrode was cut to a diameter of 13 mm, and the negative electrode of Example 1 was cut to a diameter of 15.5 mm. A separator made of a polyethylene microporous film having a diameter of 19 mm and a thickness of 25 μm was sandwiched between the positive electrode and the negative electrode, and accommodated in a CR2032 coin cell battery case. .

電池ケースに非水電解液(1.5MのLiPF エチレンカーボネート(EC)/ジエチルカーボネート(DEC)/フルオロエチレンカーボネート(FEC)=10/70/20混合溶液(体積比))を注入し、密閉することで、実施例1に係るリチウムイオン二次電池を作製した。 Inject nonaqueous electrolyte (1.5M LiPF 6 ethylene carbonate (EC) / diethyl carbonate (DEC) / fluoroethylene carbonate (FEC) = 10/70/20 mixed solution (volume ratio)) into the battery case and seal Thus, a lithium ion secondary battery according to Example 1 was produced.

(ピール強度(密着性)評価)
実施例1で作製した負極を幅25mm、長さ100mmの短冊状に切り出した。ついで、両面テープを用いてガラス板に活物質面を被着面として張り合わせ、ピール強度試験用サンプルとした。剥離試験機((株)島津製作所社製SHIMAZU EZ−S)にピール強度試験用サンプルを装着し、180度ピールに於けるピール強度を測定した。ピール強度が大きいほど、バインダの結着力及び可撓性が大きいと言える。
(Peel strength (adhesion) evaluation)
The negative electrode produced in Example 1 was cut into a strip shape having a width of 25 mm and a length of 100 mm. Next, a double-sided tape was used to attach the active material surface to the glass plate as the adherend surface, and a peel strength test sample was obtained. A peel strength test sample was attached to a peel tester (SHIMAZU EZ-S manufactured by Shimadzu Corporation), and the peel strength at 180 ° peel was measured. It can be said that the higher the peel strength, the greater the binding force and flexibility of the binder.

(サイクル特性の評価)
リチウムイオン二次電池を25℃で1It=5mAの定電流で4.2Vまで充電し、4.2V定電圧で1/50It=0.1mAとなるまで充電した後、10分の休止を入れ、1Itの定電流で2.75Vとなるまで放電した。このときの放電容量を1サイクル目の放電容量とし、充放電サイクルを100回繰り返し、1サイクル目の放電容量に対する、100サイクル目の放電容量の100分率を求めた。
(Evaluation of cycle characteristics)
A lithium ion secondary battery is charged to 4.2 V with a constant current of 1 It = 5 mA at 25 ° C., charged to 4.20 V with a constant current of 1/50 It = 0.1 mA, and a 10-minute pause is inserted. It discharged until it became 2.75V with the constant current of 1 It. The discharge capacity at this time was taken as the discharge capacity of the first cycle, and the charge / discharge cycle was repeated 100 times, and the 100-minute ratio of the discharge capacity of the 100th cycle to the discharge capacity of the first cycle was determined.

(実施例2)
トリスヒドロキシメチルアミノメタンをエタノールアミンとしたこと以外は実施例1と同様の処理を行った。
(Example 2)
The same treatment as in Example 1 was performed except that trishydroxymethylaminomethane was changed to ethanolamine.

(実施例3)
負極作製時の真空乾燥温度を100℃としたこと以外は実施例1と同様の処理を行った。
(Example 3)
The same treatment as in Example 1 was performed except that the vacuum drying temperature at the time of preparing the negative electrode was 100 ° C.

(実施例4)
トリスヒドロキシメチルアミノメタンをエチルアミンとしたこと以外は実施例1と同様の処理を行った。
(Example 4)
The same treatment as in Example 1 was performed except that trishydroxymethylaminomethane was changed to ethylamine.

(実施例5)
ケイ素系合金をケイ素酸化物(SiO)とした他は実施例1と同様の処理を行った。
(Example 5)
The same treatment as in Example 1 was performed except that the silicon-based alloy was silicon oxide (SiO).

(比較例1)
負極活物質層のバインダとしてポリアクリル酸を用いたこと以外は実施例1と同様の処理を行った。
(Comparative Example 1)
The same treatment as in Example 1 was performed except that polyacrylic acid was used as the binder for the negative electrode active material layer.

(比較例2)
負極活物質層のバインダとしてポリアクリル酸を用い、負極作製時の真空乾燥温度を100℃としたこと以外は実施例1と同様の処理を行った。
(Comparative Example 2)
The same treatment as in Example 1 was performed except that polyacrylic acid was used as the binder of the negative electrode active material layer, and the vacuum drying temperature at the time of producing the negative electrode was set to 100 ° C.

(比較例3)
ケイ素系合金をケイ素酸化物(SiO)とした他は比較例1と同様の処理を行った。
(Comparative Example 3)
The same treatment as in Comparative Example 1 was performed except that the silicon-based alloy was changed to silicon oxide (SiO).

(対比)
実施例1〜5、比較例1〜3のピール強度及びサイクル特性を表1に示す。
(Contrast)
Table 1 shows the peel strength and cycle characteristics of Examples 1 to 5 and Comparative Examples 1 to 3.

表1中、「Si種」はケイ素系活物質を示し、「Gr:Si」は炭素系活物質とケイ素系活物質との質量比を示す。   In Table 1, “Si species” indicates a silicon-based active material, and “Gr: Si” indicates a mass ratio between the carbon-based active material and the silicon-based active material.

実施例1〜5は比較例1〜3より、ピール強度が高くなっており、かつ、サイクル特性も向上していた。トリスヒドロキシメチルアミノメタンは水酸基を有する側鎖を有しており、かつ、この側鎖が長い。従って、トリスヒドロキシメチルアミノメタンは、より立体的な構造を有するので、負極活物質をより強い結着力で結着することができ、かつ高い可撓性を有する。このため、トリスヒドロキシメチルアミノメタンを有するポリアクリル酸アミン塩は、高いピール強度を有し、リチウムイオン二次電池のサイクル特性を向上させることができる。   In Examples 1 to 5, the peel strength was higher than in Comparative Examples 1 to 3, and the cycle characteristics were also improved. Trishydroxymethylaminomethane has a side chain having a hydroxyl group, and this side chain is long. Therefore, since trishydroxymethylaminomethane has a more steric structure, the negative electrode active material can be bound with a stronger binding force and has high flexibility. For this reason, the polyacrylic acid amine salt which has trishydroxymethylaminomethane has high peel strength, and can improve the cycling characteristics of a lithium ion secondary battery.

また、実施例1は実施例2よりピール強度が高く、サイクル特性が最も優れていた。トリスヒドロキシメチルアミノメタンは、エタノールアミンよりもヒドロキシ基を有する側鎖を多く有するので、高い可撓性及び結着力を有するためである。また、熱処理温度が高いほうが、ピール強度が向上する。この理由としては、アミノ基とカルボキシル基からなる塩で脱水反応し、一部アミド結合が形成されるためと考えられる。   In addition, Example 1 had higher peel strength than Example 2, and was most excellent in cycle characteristics. This is because trishydroxymethylaminomethane has more side chains having a hydroxy group than ethanolamine and thus has high flexibility and binding power. Also, the higher the heat treatment temperature, the better the peel strength. The reason for this is considered that a dehydration reaction is caused with a salt composed of an amino group and a carboxyl group, and a part of an amide bond is formed.

また、実施例1〜3と実施例4とを比較すると、実施例1〜3の方が実施例4よりもピール強度及びサイクル特性がいずれも良好であった。この理由として、実施例1〜3のアミンは水酸基を有するので、結着力がより向上することが考えられる。また、実施例5と比較例3とを対比すると、ケイ素系活物質がケイ素酸化物となる場合にも、ピール強度及びサイクル特性が向上することがわかった。   Further, when Examples 1 to 3 were compared with Example 4, Examples 1 to 3 had better peel strength and cycle characteristics than Example 4. As this reason, since the amine of Examples 1-3 has a hydroxyl group, it can be considered that the binding force is further improved. Further, when Example 5 and Comparative Example 3 were compared, it was found that peel strength and cycle characteristics were improved even when the silicon-based active material was silicon oxide.

(実施例6〜9)
炭素系活物質とケイ素系活物質との質量比を表2のように変更した他は、実施例1と同様の処理を行った。
(Examples 6 to 9)
The same treatment as in Example 1 was performed except that the mass ratio of the carbon-based active material and the silicon-based active material was changed as shown in Table 2.

(比較例4〜7)
炭素系活物質とケイ素系活物質との質量比を表2のように変更した他は、比較例1と同様の処理を行った。
(Comparative Examples 4-7)
The same treatment as in Comparative Example 1 was performed except that the mass ratio of the carbon-based active material and the silicon-based active material was changed as shown in Table 2.

表2によれば、ケイ素系活物質と炭素系活物質との質量比が同じである実施例と比較例とを比較すると、いずれの質量比においても、実施例のピール強度及びサイクル特性は比較例よりも良好となる。特にケイ素系活物質の質量%が3〜80質量%となる場合に実施例と比較例との差が顕著になる。   According to Table 2, when the examples in which the mass ratio of the silicon-based active material and the carbon-based active material are the same are compared with the comparative example, the peel strength and the cycle characteristics of the examples are compared at any mass ratio. Better than the example. In particular, when the mass% of the silicon-based active material is 3 to 80 mass%, the difference between the example and the comparative example becomes significant.

以上により、本実施形態によれば、負極活物質層32は、可撓性及び結着力が大きいポリアクリル酸アミン塩をバインダとして含む。ポリアクリル酸アミン塩は、充放電時のケイ素系活物質の膨張収縮に追従することができ、ひいては、リチウムイオン二次電池10のサイクル寿命が向上する。   As described above, according to the present embodiment, the negative electrode active material layer 32 includes a polyacrylic acid amine salt having high flexibility and binding force as a binder. The polyacrylic acid amine salt can follow the expansion and contraction of the silicon-based active material during charging and discharging, and as a result, the cycle life of the lithium ion secondary battery 10 is improved.

ここで、ポリアクリル酸アミン塩を構成するアミンは、親水基を有していてもよく、この場合、ポリアクリル酸アミン塩の結着力及び可撓性がさらに向上する。   Here, the amine constituting the polyacrylic acid amine salt may have a hydrophilic group, and in this case, the binding force and flexibility of the polyacrylic acid amine salt are further improved.

また、アミンを構成する炭化水素基は、親水基を有する側鎖を有していてもよく、この場合、ポリアクリル酸アミン塩の結着力及び可撓性がさらに向上する。   The hydrocarbon group constituting the amine may have a side chain having a hydrophilic group, and in this case, the binding force and flexibility of the polyacrylic acid amine salt are further improved.

また、親水基は水酸基を含んでいてもよく、この場合、ポリアクリル酸アミン塩の結着力及び可撓性がさらに向上する。   Further, the hydrophilic group may contain a hydroxyl group, and in this case, the binding force and flexibility of the polyacrylic acid amine salt are further improved.

また、ケイ素系活物質は、負極活物質の総質量に対して3〜80質量%で負極活物質層32に含まれていてもよく、この場合、リチウムイオン二次電池10のサイクル特性がさらに向上する。   Further, the silicon-based active material may be included in the negative electrode active material layer 32 in an amount of 3 to 80% by mass with respect to the total mass of the negative electrode active material. In this case, the cycle characteristics of the lithium ion secondary battery 10 are further increased. improves.

また、負極の作製時には、真空乾燥温度を150℃以上とするので、ポリアクリル酸アミン塩の一部にアミド結合が形成され、ひいては、ポリアクリル酸アミン塩の結着力及び可撓性が向上する。   In addition, since the vacuum drying temperature is set to 150 ° C. or higher when the negative electrode is manufactured, an amide bond is formed in a part of the polyacrylic acid amine salt, thereby improving the binding force and flexibility of the polyacrylic acid amine salt. .

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

10 リチウムイオン二次電池
20 正極
21 集電体
22 正極活物質層
30 負極
31 集電体
32 負極活物質層
40 セパレータ層
DESCRIPTION OF SYMBOLS 10 Lithium ion secondary battery 20 Positive electrode 21 Current collector 22 Positive electrode active material layer 30 Negative electrode 31 Current collector 32 Negative electrode active material layer 40 Separator layer

Claims (6)

ケイ素系活物質及び炭素系活物質を含む負極活物質と、
ポリアクリル酸アミン塩を含むバインダと、を含むリチウムイオン二次電池用負極活物質層であって、
前記ケイ素系活物質は、前記負極活物質の総質量に対して3〜80質量%で前記リチウムイオン二次電池用負極活物質層に含まれることを特徴とする、リチウムイオン二次電池用負極活物質層。
A negative electrode active material comprising a silicon-based active material and a carbon-based active material;
A binder containing a polyacrylic acid amine salt, and a negative electrode active material layer for a lithium ion secondary battery,
The negative electrode for a lithium ion secondary battery, wherein the silicon-based active material is included in the negative electrode active material layer for a lithium ion secondary battery in an amount of 3 to 80% by mass with respect to the total mass of the negative electrode active material. Active material layer.
前記ポリアクリル酸アミン塩を構成するアミンは、親水基を有することを特徴とする、請求項1記載のリチウムイオン二次電池用負極活物質層。   The negative electrode active material layer for a lithium ion secondary battery according to claim 1, wherein the amine constituting the polyacrylic acid amine salt has a hydrophilic group. 前記アミンを構成する炭化水素基は、前記親水基を有する側鎖を有することを特徴とする、請求項2記載のリチウムイオン二次電池用負極活物質層。   The negative electrode active material layer for a lithium ion secondary battery according to claim 2, wherein the hydrocarbon group constituting the amine has a side chain having the hydrophilic group. 前記親水基は水酸基を含むことを特徴とする、請求項2または3記載のリチウムイオン二次電池用負極活物質層。   The negative electrode active material layer for a lithium ion secondary battery according to claim 2, wherein the hydrophilic group includes a hydroxyl group. 請求項1〜のいずれか1項に記載のリチウムイオン二次電池用負極活物質層を含むことを特徴とする、リチウムイオン二次電池。 A lithium ion secondary battery comprising the negative electrode active material layer for a lithium ion secondary battery according to any one of claims 1 to 4 . ケイ素系活物質、炭素系活物質、及びポリアクリル酸アミン塩を含むスラリーを集電体上に塗工するステップと、
前記集電体上のスラリーを150℃以上の温度で乾燥するステップと、を含むリチウムイオン二次電池用負極活物質層の製造方法であって、
前記ケイ素系活物質は、前記ケイ素系活物質及び炭素系活物質の総質量に対して3〜80質量%で前記リチウムイオン二次電池用負極活物質層に含まれることを特徴とする、リチウムイオン二次電池用負極活物質層の製造方法。

Applying a slurry containing a silicon-based active material, a carbon-based active material, and a polyacrylic acid amine salt on a current collector;
Drying the slurry on the current collector at a temperature of 150 ° C. or higher, and a method for producing a negative electrode active material layer for a lithium ion secondary battery,
The silicon-based active material is included in the negative electrode active material layer for a lithium ion secondary battery in an amount of 3 to 80% by mass based on the total mass of the silicon-based active material and the carbon-based active material. The manufacturing method of the negative electrode active material layer for ion secondary batteries.

JP2013244295A 2013-11-26 2013-11-26 Negative electrode active material layer for lithium ion secondary battery and lithium ion secondary battery Active JP6395371B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013244295A JP6395371B2 (en) 2013-11-26 2013-11-26 Negative electrode active material layer for lithium ion secondary battery and lithium ion secondary battery
KR1020140143466A KR102283795B1 (en) 2013-11-26 2014-10-22 Negative electrode active material layer for rechargeable lithium battery, preparing the same, and rechargeable lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013244295A JP6395371B2 (en) 2013-11-26 2013-11-26 Negative electrode active material layer for lithium ion secondary battery and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2015103449A JP2015103449A (en) 2015-06-04
JP6395371B2 true JP6395371B2 (en) 2018-09-26

Family

ID=53378982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013244295A Active JP6395371B2 (en) 2013-11-26 2013-11-26 Negative electrode active material layer for lithium ion secondary battery and lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP6395371B2 (en)
KR (1) KR102283795B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015004779B4 (en) * 2014-10-21 2018-03-22 Kabushiki Kaisha Toyota Jidoshokki Polymer compound, intermediate composition, negative electrode, electric storage device, negative electrode slurry, process for producing a polymer compound, and process for producing a negative electrode
DE112015005307T5 (en) * 2014-11-25 2017-08-24 Kabushiki Kaisha Toyota Jidoshokki POLYMER COMPOUND, INTERMEDIATE COMPOSITION, NEGATIVE ELECTRODE ELECTRICITY STORAGE DEVICE, SMOOTHING FOR NEGATIVE ELECTRODES, METHOD FOR PRODUCING A POLYMERIC COMPOUND, AND METHOD FOR PRODUCING A NEGATIVE ELECTRODE
US11424439B2 (en) 2016-11-25 2022-08-23 Dai-Ichi Kogyo Seiyaku Co., Ltd. Negative electrode of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US20180277913A1 (en) * 2017-03-23 2018-09-27 Nanotek Instruments, Inc. Non-flammable Quasi-Solid Electrolyte and Lithium Secondary Batteries Containing Same
CN108539121A (en) * 2018-04-16 2018-09-14 江西迪芯能源科技有限公司 A kind of lithium ion battery anode slurry and lithium ion battery
KR102647045B1 (en) * 2018-12-12 2024-03-14 주식회사 엘지에너지솔루션 Anode active material for lithium secondary battery and secondary battery including the same
US20220109155A1 (en) * 2019-02-13 2022-04-07 Sekisui Chemical Co., Ltd. Carbon material-resin composite material, composite body and method for producing same, and electrode material for electricity storage devices
JP2022102228A (en) * 2020-12-25 2022-07-07 エルジー エナジー ソリューション リミテッド Negative electrode for secondary battery, slurry for negative electrode, and manufacturing method of negative electrode

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003031A (en) * 2001-06-25 2003-01-08 Hitachi Chem Co Ltd Carboxy group-containing resin composition, and battery binder resin composition, electrode and battery using the same
JP4905861B2 (en) * 2005-02-10 2012-03-28 日立化成工業株式会社 Binder resin emulsion for energy device electrode, energy device electrode and energy device using the same
JP4852700B2 (en) * 2006-04-19 2012-01-11 国立大学法人岩手大学 Lithium ion secondary battery
EP2122723B1 (en) * 2007-02-06 2017-04-12 3M Innovative Properties Company Electrodes including novel binders and methods of making and using the same
KR20090110133A (en) * 2008-04-17 2009-10-21 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery, and rechargeable lithium battery comprising the same
KR101757671B1 (en) * 2010-11-30 2017-07-14 제온 코포레이션 Slurry for secondary battery porous membranes, secondary battery porous membrane, secondary battery electrode, secondary battery separator, secondary battery, and method for producing secondary battery porous membrane
KR101201804B1 (en) * 2011-04-21 2012-11-15 삼성에스디아이 주식회사 Negative active for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2012234707A (en) * 2011-04-28 2012-11-29 Unitika Ltd Resin composition for binder of secondary battery electrode, and binder fluid using the same, secondary battery electrode, and secondary battery
JP2013206759A (en) * 2012-03-29 2013-10-07 Toyo Ink Sc Holdings Co Ltd Aqueous composition for forming secondary battery electrode, electrode for secondary battery, and secondary battery

Also Published As

Publication number Publication date
KR20150060513A (en) 2015-06-03
JP2015103449A (en) 2015-06-04
KR102283795B1 (en) 2021-07-30

Similar Documents

Publication Publication Date Title
JP6395371B2 (en) Negative electrode active material layer for lithium ion secondary battery and lithium ion secondary battery
KR102425511B1 (en) Negative electrode aqueous slurry for rechargeable lithium battery, negative electrode active materials layer including the same and rechargeable lithium battery
JP6226355B2 (en) Binder for lithium ion secondary battery, negative electrode active material layer for lithium ion secondary battery, and lithium ion secondary battery
KR102434887B1 (en) Negative electrode for rechargeable lithium battery and rechargeable lithium battery
KR102407049B1 (en) Binder for rechargeable battery, separator for rechargeable battery inclduing same, and rechargeable battery including same
JP5426763B2 (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
US10050246B2 (en) Binder for rechargeable battery, separator for rechargeable battery including same, and rechargeable battery including same
KR102525619B1 (en) Rechargeable lithium battery
KR20150067049A (en) Conductive composition for rechargeable lithium battery, positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JP6813350B2 (en) Binder for secondary battery, binder resin composition for secondary battery, electrode for secondary battery, and secondary battery
JP2008097879A (en) Lithium ion secondary battery
JP6959010B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2016505203A (en) Negative electrode for secondary battery and lithium secondary battery including the same
WO2018025469A1 (en) Lithium ion secondary battery and method for manufacturing same
WO2023179384A1 (en) Positive electrode plate and lithium ion battery
KR20160120736A (en) Lithium-ion battery comprising a lithium-rich cathode and a graphite-based anode
JP2016028376A (en) Binder for secondary batteries, secondary battery separator and secondary battery
JP5271751B2 (en) Lithium ion secondary battery
JP2013191415A (en) Nonaqueous electrolyte secondary battery
JP2019079755A (en) Negative electrode for non-aqueous electrolyte, method for producing the same, and non-aqueous electrolyte secondary battery using the same
KR101853149B1 (en) Anode active material for lithium secondary battery having core-shell structure, lithium secondary battery comprising the material, and method of preparing the material
JP2017126488A (en) Nonaqueous electrolyte solution for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6931986B2 (en) Negative electrode for secondary battery and secondary battery
JP2013084442A (en) Mixture powder, method of manufacturing electrode, electrode, and lithium secondary battery
JP4543831B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171205

AA91 Notification that invitation to amend document was cancelled

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180828

R150 Certificate of patent or registration of utility model

Ref document number: 6395371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250