JP2016125269A - Aseismic structural body, and support structure for building - Google Patents

Aseismic structural body, and support structure for building Download PDF

Info

Publication number
JP2016125269A
JP2016125269A JP2015000194A JP2015000194A JP2016125269A JP 2016125269 A JP2016125269 A JP 2016125269A JP 2015000194 A JP2015000194 A JP 2015000194A JP 2015000194 A JP2015000194 A JP 2015000194A JP 2016125269 A JP2016125269 A JP 2016125269A
Authority
JP
Japan
Prior art keywords
movable
sandbag
vibration
building
seismic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015000194A
Other languages
Japanese (ja)
Other versions
JP6508945B2 (en
Inventor
和彦 岡下
Kazuhiko Okashita
和彦 岡下
新吾 西村
Shingo Nishimura
新吾 西村
田中 直人
Naoto Tanaka
直人 田中
貴昭 金子
Takaaki Kaneko
貴昭 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2015000194A priority Critical patent/JP6508945B2/en
Publication of JP2016125269A publication Critical patent/JP2016125269A/en
Application granted granted Critical
Publication of JP6508945B2 publication Critical patent/JP6508945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aseismic structural body of a simple configuration that inhibits residual displacement.SOLUTION: An aseismic structural body 1 is interposed between a ground G and a foundation B of a building. The aseismic structural body includes a lower layer sandbag part 4 having a conical, polygonal pyramid-shaped, or dome-shaped recess 41 formed on a top surface disposed on a ground side, a slip surface part 3 formed on a surface of the recess, and a movable sandbag part 2 of which a bottom surface 22 comes in contact with the slip surface part. When the lower layer sandbag part fluctuates due to ground vibration, a top surface 21 of the movable sandbag part is displaced relatively with regard to the lower layer sandbag part.SELECTED DRAWING: Figure 3

Description

本発明は、地震や車両の通行などによって発生した地盤の振動が建物に伝播されるのを低減させるための減震構造体及び建物の支持構造に関するものである。   The present invention relates to a seismic reduction structure and a building support structure for reducing the propagation of ground vibrations generated by an earthquake or vehicle traffic to a building.

地震動が地盤から建物にそのまま伝播されると建物の揺れが大きくなるので、建物自体が損傷しなくても、家具や備品等が移動したり転倒したりして、屋内に居る人が危険な状態に置かれるおそれがある。   If the ground motion is propagated from the ground to the building as it is, the building shakes greatly, so even if the building itself is not damaged, furniture and fixtures move and fall down, making it dangerous for people indoors There is a risk of being placed in.

このため、地震動による建物の揺れを抑えるために、様々な免震構造や制振構造が開発されてきた。特許文献1には、地盤と建物の基礎との間に土のうを積層させる減震構造体が開示されている。   For this reason, various seismic isolation structures and damping structures have been developed in order to suppress the shaking of buildings due to earthquake motion. Patent Document 1 discloses a seismic reduction structure in which a sandbag is laminated between the ground and the foundation of a building.

また、特許文献2には、基礎と建物の底面との間に設置される免震装置が開示されている。摩擦抵抗が極めて小さい免震装置の上に建物が載せられることで、地盤から建物の基礎に伝達された地震動が建物まで伝達されず、建物の揺れを抑えることができる。   Patent Document 2 discloses a seismic isolation device installed between the foundation and the bottom of the building. By placing the building on the seismic isolation device with extremely low frictional resistance, the seismic motion transmitted from the ground to the foundation of the building is not transmitted to the building, and the shaking of the building can be suppressed.

さらに、特許文献3には、板状の樹脂製発泡体からなる滑動体を積層させた、地震動の抑制が可能な建物地盤構造が開示されている。この上下に積層された滑動体間は、ゴムなどの柱状の弾性体からなる復元補助部材によって繋がれている。   Further, Patent Document 3 discloses a building ground structure in which sliding bodies made of plate-like resin foams are laminated and capable of suppressing earthquake motion. The sliding bodies stacked above and below are connected by a restoration assisting member made of a columnar elastic body such as rubber.

特許第5196059号公報Japanese Patent No. 5196059 特許第4848889号公報Japanese Patent No. 48488989 特開2012−1994号公報JP 2012-1994

しかしながら、土のうを積層させた減震構造体を使用する場合は、地震動を受けて変位した後に元の位置に戻すための仕組みがないと、大きな残留変位が発生するおそれがある。   However, in the case of using a seismic reduction structure in which sandbags are laminated, if there is no mechanism for returning to the original position after displacement due to earthquake motion, a large residual displacement may occur.

一方、特許文献2,3に開示されたような免震装置等は、摩擦抵抗が非常に小さいため、風圧力や小さな振動では動かないようにしたり、変位量が大きくなりすぎたりしないように、固定装置やストッパや復元補助部材などを別途設け、複雑な構成にする必要がある。   On the other hand, the seismic isolation devices and the like disclosed in Patent Documents 2 and 3 have very small frictional resistance, so that they do not move with wind pressure or small vibrations, or the displacement is not too large. It is necessary to provide a fixing device, a stopper, a restoration assisting member, and the like separately to form a complicated configuration.

また、特許文献2のような免震装置は、基礎と建物の底面との間に設置されるため、建物の底面に架構を設けるなど補強しなければならず、住宅や低層ビルには費用が掛かりすぎて採用されにくい。   Moreover, since the seismic isolation apparatus like patent document 2 is installed between the foundation and the bottom face of a building, it must be reinforced, such as providing a frame on the bottom face of the building. It's too hard to be adopted.

そこで、本発明は、残留変位が発生しにくいうえに、簡単な構成にすることが可能な減震構造体及び建物の支持構造を提供することを目的としている。   SUMMARY OF THE INVENTION An object of the present invention is to provide a seismic reduction structure and a building support structure that are less likely to cause residual displacement and can be simply configured.

前記目的を達成するために、本発明の減震構造体は、地盤と建物の基礎との間に介在させる減震構造体であって、前記地盤側に配置される上面に円錐状、多角錐状又はドーム状の凹部が形成された下受部と、前記凹部の表面に形成される滑面部と、前記滑面部に下面を接触させる可動土のう部とを備え、地盤の振動によって前記下受部が変動すると、前記可動土のう部の上面が前記下受部に対して相対的に変位することを特徴とする。   In order to achieve the above object, a vibration-reducing structure according to the present invention is a vibration-reducing structure interposed between a ground and a foundation of a building, and has a conical shape and a polygonal pyramid on an upper surface disposed on the ground side. And a dome-shaped recessed portion, a smooth surface portion formed on the surface of the recessed portion, and a movable soil pad portion that makes the lower surface contact the smooth surface portion, and the lower receiving portion by vibration of the ground When the distance fluctuates, the upper surface of the movable sandbag portion is displaced relative to the lower receiving portion.

ここで、前記可動土のう部の下面は、その上面よりも面積が広い構成とすることが好ましい。例えば、前記可動土のう部の下面は、下方に向けて突出させることができる。   Here, it is preferable that the lower surface of the movable sandbag has a larger area than the upper surface. For example, the lower surface of the movable sandbag can be protruded downward.

また、前記凹部と一体になる前記滑面部の剛性が、前記可動土のう部の剛性よりも大きくなるようにすることができる。   In addition, the rigidity of the smooth surface portion integrated with the concave portion can be made larger than the rigidity of the movable soil covering portion.

そして、本発明の建物の支持構造は、上記いずれかに記載の複数の減震構造体を、前記建物の基礎の下方に備えたことを特徴とする。また、上記いずれかに記載の複数の減震構造体と、前記減震構造体の側方に配置される緩衝材とによって構成することができる。   And the support structure of the building of this invention was equipped with the some earthquake-proof structure in any one of the above in the downward direction of the foundation of the said building. Moreover, it can comprise by the some damping structure as described in any of the above, and the shock absorbing material arrange | positioned at the side of the said damping structure.

さらに、上記いずれかに記載の複数の減震構造体と、前記減震構造体の下方の地盤に形成される補強部とを備えた構成とすることもできる。   Furthermore, it can also be set as the structure provided with the some vibration reduction structure in any one of the said, and the reinforcement part formed in the ground under the said vibration reduction structure.

このように構成された本発明の減震構造体は、地盤と建物の基礎との間に介在され、円錐状、多角錐状又はドーム状の凹部が形成された下受部に可動土のう部が積層された構造となる。   The seismic reduction structure of the present invention configured as described above is interposed between the ground and the foundation of the building, and a movable earthen ridge is provided in the lower receiving part in which a conical, polygonal pyramid or dome-shaped recess is formed. It becomes a laminated structure.

また、可動土のう部の下面は、凹部の表面に形成された滑面部に接触されており、地震などの振動によって下受部が変動すると、可動土のう部の上面が下受部に対して相対的に変位する構成となっている。   In addition, the lower surface of the movable sandbag portion is in contact with the smooth surface portion formed on the surface of the concave portion, and when the receiving portion fluctuates due to vibration such as an earthquake, the upper surface of the movable soilbag portion is relative to the lower receiving portion. It is the composition which is displaced to.

そして、円錐状、多角錐状又はドーム状の凹部内で移動した可動土のう部には、振動方向が反転又は振動が止まると、元の位置に戻ろうとする復元力が働く。このため、残留変位が発生しにくいうえに、簡単な構成にすることができる。   Then, when the vibration direction is reversed or the vibration stops, the restoring force that tries to return to the original position is applied to the movable soil cave portion that has moved within the conical, polygonal pyramid, or dome-shaped recess. For this reason, it is difficult for residual displacement to occur, and a simple configuration can be achieved.

このように凹部内で復元力が高くなる可動土のう部は、下面の面積を上面よりも広くすることで容易に形成することができる。具体的には、可動土のう部の下面を下方に向けて突出させることで、面積を広くすることができる。   In this way, the movable sandbag portion having a high restoring force in the recess can be easily formed by making the area of the lower surface wider than the upper surface. Specifically, the area can be widened by projecting the lower surface of the movable sandbag portion downward.

また、凹部と一体になる滑面部の剛性を可動土のう部の剛性よりも大きくすることで、可動土のう部の移動時における滑面部の局所的な変形が抑えられるので、滑面部上で可動土のう部を滑動させたり変形させたりをさせ易くすることができる。   In addition, by making the rigidity of the smooth surface part integrated with the concave part larger than the rigidity of the movable soil part, local deformation of the smooth surface part during movement of the movable soil part can be suppressed. Can be easily slid or deformed.

さらに、本発明の建物の支持構造は、減震構造体の側方に緩衝材が配置される。このため、可動土のう部の変位が妨げられにくいうえに、緩衝材の復元力によって可動土のう部が元の位置に戻りやすくなる。   Furthermore, in the building support structure of the present invention, a cushioning material is arranged on the side of the vibration-reducing structure. For this reason, it is difficult to prevent the displacement of the movable soil covering portion, and the movable soil retaining portion is easily returned to the original position by the restoring force of the cushioning material.

また、大きな荷重が作用する位置が特定できる建物であれば、減震構造体が配置される位置の地盤にだけ補強部を設けることで、弱い地盤にも経済的に減震機能を付加することができるようになる。   In addition, if the building can identify the position where a large load is applied, it is possible to economically add a seismic-reducing function to weak ground by providing a reinforcement only on the ground where the seismic-reducing structure is located. Will be able to.

本実施の形態の減震構造体の概略構成を示した分解斜視図である。It is the disassembled perspective view which showed schematic structure of the seismic-reduction structure of this Embodiment. 減震構造体の作用を説明する図であって、(a)は初期状態を示した図、(b)は下層土のう部が右方向に移動した状態を示した図、(c)は下層土のう部が左方向に移動した状態を示した図である。It is a figure explaining the effect | action of a seismic-reduction structure, (a) is the figure which showed the initial state, (b) is the figure which showed the state which the bottom part of the lower soil moved to the right direction, (c) is the lower soil It is the figure which showed the state which the part moved to the left direction. 本実施の形態の減震構造体が配置された建物の支持構造の構成を示した断面図である。It is sectional drawing which showed the structure of the support structure of the building where the seismic-reduction structure of this Embodiment is arrange | positioned. 減震構造体のせん断特性を説明するための図である。It is a figure for demonstrating the shear characteristic of a seismic-reduction structure. 住宅に作用する風圧力と考慮される自重との関係を説明する図であって、(a)は免震装置を配置した場合の模式図、(b)は本実施の形態の減震構造体を配置した場合の模式図である。It is a figure explaining the relationship between the wind pressure which acts on a house, and the self-weight considered, (a) is a schematic diagram at the time of arrange | positioning a seismic isolation apparatus, (b) is the seismic-reduction structure of this Embodiment It is a schematic diagram at the time of arranging. 実施例1で説明する減震構造体が配置された3パターンの建物の支持構造を模式的に示した説明図である。It is explanatory drawing which showed typically the support structure of the building of 3 patterns in which the seismic-reduction structure demonstrated in Example 1 is arrange | positioned. 実施例1で説明する減震構造体が配置された別の3パターンの建物の支持構造を模式的に示した説明図である。It is explanatory drawing which showed typically the support structure of the building of another 3 pattern in which the seismic-reduction structure demonstrated in Example 1 is arrange | positioned. 実施例2の減震構造体の構成を示した説明図であって、(a)は分解斜視図、(b)は側面図である。It is explanatory drawing which showed the structure of the seismic-reduction structure of Example 2, Comprising: (a) is a disassembled perspective view, (b) is a side view. 実施例2の減震構造体が配置された建物の支持構造の構成を示した説明図である。It is explanatory drawing which showed the structure of the support structure of the building where the earthquake-reduction structure of Example 2 is arrange | positioned. 実施例2の減震構造体の動作を説明する図である。It is a figure explaining operation | movement of the seismic-reduction structure of Example 2. FIG. 実施例3の表層地盤改良部上に減震構造体が配置された建物の支持構造の構成を示した断面図である。It is sectional drawing which showed the structure of the support structure of the building by which the seismic-reduction structure is arrange | positioned on the surface layer ground improvement part of Example 3. FIG. 実施例3の柱状地盤改良部上に減震構造体が配置された建物の支持構造の構成を示した断面図である。It is sectional drawing which showed the structure of the support structure of the building by which the vibration reduction structure was arrange | positioned on the columnar ground improvement part of Example 3. FIG.

以下、本発明の実施の形態について図面を参照して説明する。図1は、本実施の形態の減震構造体1の概略構成を示した分解斜視図である。また、図3は、減震構造体1が配置された建物の支持構造の構成を示した断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an exploded perspective view showing a schematic configuration of a vibration reducing structure 1 according to the present embodiment. Moreover, FIG. 3 is sectional drawing which showed the structure of the support structure of the building in which the earthquake-proof structure 1 is arrange | positioned.

本実施の形態の減震構造体1及び建物の支持構造は、住宅や小規模集合住宅などのような建物の基礎Bと、地盤Gとの間に構築される。図3では、掘削された地盤Gに複数の減震構造体1,・・・が並べられ、その上に砕石B1が敷き均されている。そして、砕石B1の上にべた基礎などの基礎Bが構築され、その基礎Bの上に建物としての住宅Hが構築される。   The seismic attenuation structure 1 and the building support structure of the present embodiment are constructed between the foundation B of a building such as a house or a small-scale apartment house and the ground G. In FIG. 3, a plurality of vibration-reducing structures 1,... Are arranged on the excavated ground G, and crushed stone B1 is spread thereon. And foundation B, such as a solid foundation, is built on crushed stone B1, and house H as a building is built on the foundation B.

まず、減震構造体1の構成について説明する。この減震構造体1は、図1に示すように、上面に凹部41が形成された下受部としての下層土のう部4と、凹部41の表面に形成される滑面部3と、その上に積層される可動土のう部2とによって主に構成される。   First, the structure of the vibration reduction structure 1 will be described. As shown in FIG. 1, the seismic attenuation structure 1 includes a lower soil crust 4 as a receiving portion having a recess 41 formed on the upper surface, a smooth surface portion 3 formed on the surface of the recess 41, It is mainly comprised by the movable earthen part 2 laminated | stacked.

下層土のう部4は、下側、換言すると地盤G側に配置される土のうである。下層土のう部4は、平面視略長方形(正方形を含む)の平板状の土のう袋に、砂などの粒状の充填材を充填することによって形成される。   The lower sandbag 4 is a sandbag arranged on the lower side, in other words, on the ground G side. The lower soil cave portion 4 is formed by filling a granular sandbag such as sand into a flat sandbag having a substantially rectangular shape (including a square) in plan view.

この下層土のう部4の凹部41は、円錐状、多角錐状又はドーム状に形成される。例えば、図2(a)に示すように凹部41の勾配θが直線的な場合は、円錐状又は多角錐状の凹部41となる。一方、凹部41の勾配が曲率を持つ曲線であれば、ドーム状となる。   The concave portion 41 of the lower soil cave portion 4 is formed in a conical shape, a polygonal pyramid shape, or a dome shape. For example, when the gradient θ of the recess 41 is linear as shown in FIG. 2A, the recess 41 has a conical or polygonal pyramid shape. On the other hand, if the slope of the recess 41 is a curved line having a curvature, it becomes a dome shape.

土のう袋は、ポリプロピレン樹脂繊維などの合成樹脂繊維を編み込んだ引張強度の高い織布などによって製作される。また、土のう袋の凹部41となる部分は、下向きに弛ませて成形しておく。   The sandbag is made of a woven fabric with high tensile strength woven with synthetic resin fibers such as polypropylene resin fibers. Moreover, the part which becomes the recessed part 41 of a sandbag is loosened and shape | molded downward.

滑面部3は、図1に示すように、ステンレスなどの摩擦係数の小さい鋼板等によって円錐状、多角錐状又はドーム状に成形される。また、滑面部3を四フッ化エチレン製のシートで形成することもできる。   As shown in FIG. 1, the smooth surface portion 3 is formed into a conical shape, a polygonal pyramid shape, or a dome shape by a steel plate having a small friction coefficient such as stainless steel. Moreover, the smooth surface part 3 can also be formed with the sheet | seat made from a tetrafluoroethylene.

さらに、土のう袋の表面を、フッ素樹脂やセラミックなどでコーティングして滑面部3とすることもできる。また、シート材やコーティング材と鋼板とを組み合わせて滑面部3を形成することもできる。   Furthermore, the surface of the sandbag can be coated with a fluororesin or ceramic to form the smooth surface portion 3. Moreover, the smooth surface part 3 can also be formed by combining a sheet material, a coating material, and a steel plate.

下層土のう部4の凹部41は、滑面部3の下面形状に合わせて変形することで、凹部41に滑面部3が密着して両者は一体になる。すなわち粒状の充填材が充填された土のうであれば、押し付けられた物の形状に追従して変形することができる。   The concave portion 41 of the lower soil claw portion 4 is deformed in accordance with the shape of the lower surface of the smooth surface portion 3, so that the smooth surface portion 3 comes into close contact with the concave portion 41 and becomes integrated. That is, if the soil is filled with granular filler, it can be deformed following the shape of the pressed object.

そして、滑面部3に、可動土のう部2の下面22を接触させる。可動土のう部2は、上側、換言すると住宅H側に配置される土のうである。可動土のう部2は、平面視略長方形(正方形を含む)の平板状の土のう袋に、砂などの粒状の充填材を充填することによって形成される。   Then, the lower surface 22 of the movable soil covering portion 2 is brought into contact with the smooth surface portion 3. The movable sandbag 2 is a sandbag arranged on the upper side, in other words, on the house H side. The movable sandbag portion 2 is formed by filling a flat sandbag bag having a substantially rectangular shape (including a square) in plan view with a granular filler such as sand.

可動土のう部2の下面22は、下方に向けて突出される。このため、下面22は、可動土のう部2の上面21よりも面積が広くなる。図2(a)は、下から下層土のう部4、滑面部3及び可動土のう部2が積層された減震構造体1の断面を示している。   The lower surface 22 of the movable sandbag portion 2 protrudes downward. For this reason, the area of the lower surface 22 is larger than that of the upper surface 21 of the movable sandbag 2. FIG. 2A shows a cross section of the vibration-reducing structure 1 in which the lower soil cradles 4, the smooth surface portions 3, and the movable soil cradles 2 are stacked from the bottom.

次に、本実施の形態の減震構造体1の作用について、図2を参照しながら説明する。   Next, the effect | action of the earthquake-reduction structure 1 of this Embodiment is demonstrated, referring FIG.

住宅Hを建設した当初は、図2(a)に示すように、下層土のう部4の真上に可動土のう部2が配置された初期状態となる。この初期状態では、滑面部3の全面に対して可動土のう部4の下面22が密着している。   At the beginning of the construction of the house H, as shown in FIG. 2 (a), it is in an initial state in which the movable soil cuff portion 2 is arranged directly above the lower soil cough portion 4. In this initial state, the lower surface 22 of the movable soil covering portion 4 is in close contact with the entire surface of the smooth surface portion 3.

また、住宅H及び基礎Bなどの上載荷重は、可動土のう部2の上面21から入って、そのまま真下の滑面部3及び下層土のう部4に伝達される。この上載荷重の伝達は、後述する変位が発生している状態のときでも安定的に継続される。   Further, the loading load such as the house H and the foundation B enters from the upper surface 21 of the movable soil couch 2 and is transmitted as it is to the smooth surface portion 3 and the lower soil couch 4 below. This transmission of the overload is stably continued even when a displacement described later is occurring.

反対に、車両の通行などによって地盤Gに発生した振動は、下層土のう部4及び可動土のう部2に充填された砂などの充填材によって減衰されて、基礎Bに伝達される。   On the contrary, the vibration generated in the ground G due to the passage of the vehicle or the like is attenuated by a filler such as sand filled in the lower soil cave portion 4 and the movable soil cave portion 2 and transmitted to the foundation B.

そして、大きな地震が発生して地震動が住宅Hの周辺の地盤Gに伝播されてくると、その地震動の水平方向の力によって、下層土のう部4が例えば図2(b)に示すように右方向に移動する。   Then, when a large earthquake occurs and the ground motion is propagated to the ground G around the house H, the horizontal force of the ground motion causes the subsoil portion 4 to move to the right as shown in FIG. 2B, for example. Move to.

ここで、下層土のう部4が右方向に移動しても、滑面部3に下面22を接触させた可動土のう部2は、下層土のう部4の動きには追従せずにその場に留まることになる。   Here, even if the subsoil part 4 moves in the right direction, the movable soil part 2 having the bottom surface 22 in contact with the smooth surface part 3 does not follow the movement of the subsoil part 4 and remains in place. Become.

この結果、可動土のう部2の上面21が下層土のう部4に対して相対的に変位したことになる。そして、下層土のう部4の動きに追従しない可動土のう部2上の住宅Hには、地震動が伝達されない、又は低減されて伝達されることになる。   As a result, the upper surface 21 of the movable soil slag portion 2 is displaced relative to the lower soil slag portion 4. And the earthquake motion is not transmitted to the house H on the movable sandbag portion 2 that does not follow the movement of the lower sandbag portion 4 or is transmitted after being reduced.

ここで、滑面部3が水平面に形成されている場合は、この相対的な変位が残留変位となる可能性がある。これに対して、滑面部3が中央が最下点となるような円錐状、多角錐状又はドーム状に成形されていれば、可動土のう部2が初期状態(図2(a)参照)に戻ろうとする復元力が働くことになる。   Here, when the smooth surface portion 3 is formed in a horizontal plane, this relative displacement may become a residual displacement. On the other hand, if the smooth surface portion 3 is formed in a conical shape, a polygonal pyramid shape or a dome shape with the center being the lowest point, the movable soil covering portion 2 is in an initial state (see FIG. 2A). The resilience to return will work.

さらに、図2(c)に示すように下層土のう部4が左方向に移動するような地震動を受けた場合も、下層土のう部4は可動土のう部2に拘束されることなく左方向に移動し、可動土のう部2の上面21と下層土のう部4との間に逆方向の相対変位が発生することになる。   Furthermore, as shown in FIG. 2 (c), even when the seismic motion such that the subsoil part 4 moves leftward, the subsoil part 4 moves leftward without being constrained by the movable soil part 2. In other words, a relative displacement in the opposite direction occurs between the upper surface 21 of the movable sandbag 2 and the lower sandbag 4.

このように摩擦抵抗が小さく中央が窪んだ滑面部3に載せられた可動土のう部2は、滑動したり流動体のように自在に変形したりすることで、下層土のう部4に対しては相対的に変位を発生させるが、住宅Hに伝搬される地震動は低減させることができる。   In this way, the movable soil couch portion 2 placed on the smooth surface portion 3 having a small frictional resistance and a depressed center is slidable or freely deformed like a fluid, so that it is relative to the lower soil crust portion 4. However, the seismic motion propagated to the house H can be reduced.

また、可動土のう部2の上面21と下層土のう部4との間に相対的な変位が生じている状態は、安定状態にはならず、可動土のう部2は常に初期状態に戻ろうとするため、残留変位の発生を抑えることができる。   In addition, the state in which the relative displacement is generated between the upper surface 21 of the movable sandbag 2 and the lower sandbag 4 is not stable, and the movable sandbag 2 always tries to return to the initial state. The occurrence of residual displacement can be suppressed.

図3は、住宅Hの基礎Bの下の全面に、複数の減震構造体1,・・・を隙間なく敷き詰めた例について図示している。上述したように減震構造体1は、地震動を受けると上下が水平方向に変位するため、基礎Bの外周側面から可動土のう部2の側面にかけて緩衝材としての外周緩衝部5を設ける。   FIG. 3 illustrates an example in which a plurality of vibration-reducing structures 1,... As described above, the seismic reduction structure 1 is displaced in the horizontal direction when subjected to earthquake motion. Therefore, the outer shock absorbing portion 5 is provided as a shock absorbing material from the outer peripheral side surface of the foundation B to the side surface of the movable soil covering portion 2.

外周緩衝部5には、ポリスチレンフォーム(発泡スチロール,EPS)などの復元力のある材料などが使用できる。すなわち、地震動によって可動土のう部2が移動すると、最外縁に配置された可動土のう部2は外周緩衝部5を押し込むことになる。   A material having a restoring force such as polystyrene foam (foamed polystyrene, EPS) or the like can be used for the outer peripheral buffer portion 5. That is, when the movable earth couch 2 moves due to the earthquake motion, the movable earth chamfer 2 arranged at the outermost edge pushes the outer periphery buffering part 5.

この際、外周緩衝部5は、可動土のう部2の移動を妨げないため、減震構造体1の減震機能を低下させることはない。そして、押し込まれた外周緩衝部5は、復元力によって可動土のう部2が元の位置に戻るのを助けることになる。   At this time, since the outer periphery buffering part 5 does not hinder the movement of the movable sandbag part 2, it does not deteriorate the vibration reducing function of the vibration reducing structure 1. And the pushed-in outer periphery buffer part 5 will help the movable earth capping part 2 to return to an original position with a restoring force.

上述したような減震構造体1のせん断特性は、例えば図4に示すように設定することができる。この図には、減震構造体1のせん断変位とせん断力係数との関係が示されている。   The shear characteristics of the vibration-reducing structure 1 as described above can be set as shown in FIG. 4, for example. This figure shows the relationship between the shear displacement of the seismic reduction structure 1 and the shear force coefficient.

通常の物体であれば、せん断変位が増加するにつれてせん断力係数が増加するというせん断特性となるが、減震構造体1では、下層土のう部4と可動土のう部2との間に滑面部3が介在されるので、ほぼ一定のせん断力係数のままでせん断変位を増加させることができる。   In the case of a normal object, the shearing force coefficient increases as the shear displacement increases. However, in the vibration-reducing structure 1, the smooth surface portion 3 is provided between the lower soil cave portion 4 and the movable soil cave portion 2. Since it is interposed, the shear displacement can be increased while maintaining a substantially constant shear force coefficient.

このようなせん断特性は、滑面部3の材質(摩擦係数)、滑面部3の勾配θの角度などを変更することによって、所望する特性に調整することができる。   Such shear characteristics can be adjusted to desired characteristics by changing the material (friction coefficient) of the smooth surface portion 3, the angle of the gradient θ of the smooth surface portion 3, and the like.

そして、このせん断力係数をその上部から作用する重量に掛け合わせることで、水平力に対する抵抗力を算定することができる。図5は、風圧力Wが作用する住宅Hを模式的に図示した図である。   Then, by multiplying the shearing force coefficient by the weight acting from above, the resistance force against the horizontal force can be calculated. FIG. 5 is a diagram schematically illustrating the house H on which the wind pressure W acts.

図5(a)は、免震装置aが配置された状態を示している。免震装置aは、住宅Hの底面と基礎Bの上面との間に配置されるため、せん断抵抗力を算定する上載荷重としては、基礎Bの重量を加味することができない。   Fig.5 (a) has shown the state by which the seismic isolation apparatus a was arrange | positioned. Since the seismic isolation device a is disposed between the bottom surface of the house H and the top surface of the foundation B, the weight of the foundation B cannot be taken into account as an upper load for calculating the shear resistance.

これに対して本実施の形態の減震構造体1,・・・によって構成される建物の支持構造10であれば、図5(b)に示すように基礎Bの下に配置されるため、せん断抵抗力を算定する上載荷重として住宅Hに加えて基礎Bの重量を加算することができる。   On the other hand, if it is a building support structure 10 constituted by the vibration-reducing structures 1,... Of the present embodiment, it is disposed under the foundation B as shown in FIG. In addition to the house H, the weight of the foundation B can be added as an overload for calculating the shear resistance.

このため、複数の減震構造体1,・・・が配置された建物の支持構造10であれば、特別な固定装置などを設けなくても、台風などの強力な風圧力Wに対抗させることが可能になる。   For this reason, if it is the support structure 10 of the building where a plurality of seismic structures 1,... Are arranged, it is possible to counter strong wind pressure W such as typhoon without providing a special fixing device. Is possible.

このように構成された本実施の形態の減震構造体1は、地盤Gと住宅Hの基礎Bとの間に介在され、円錐状、多角錐状又はドーム状の凹部41が形成された下層土のう部4に可動土のう部2が積層された構造となる。   The seismic reduction structure 1 of the present embodiment configured as described above is interposed between the ground G and the base B of the house H, and is a lower layer in which a conical, polygonal or dome-shaped concave portion 41 is formed. A structure in which the movable sandbag part 2 is laminated on the sandbag part 4 is obtained.

また、可動土のう部2の下面22は、凹部41の表面に形成された滑面部3に接触されており、地震などの振動によって下層土のう部4が変動すると、可動土のう部2の上面21が下層土のう部4に対して相対的に変位する構成となっている。   Further, the lower surface 22 of the movable soil couch 2 is in contact with the smooth surface portion 3 formed on the surface of the recess 41, and when the lower soil cough 4 changes due to vibrations such as an earthquake, the upper surface 21 of the movable soil couch 2 becomes the lower layer. It is the structure displaced relatively with respect to the earthen part 4.

そして、円錐状、多角錐状又はドーム状の凹部41内で移動した可動土のう部2には、振動方向が反転又は振動が止まると、元の位置に戻ろうとする復元力が働く。このため、残留変位が発生しにくいうえに、簡単な構成にすることができる。   And the restoring force which tries to return to the original position will act on the movable sandbag part 2 which moved in the conical, polygonal pyramid or dome-shaped recess 41 when the vibration direction is reversed or the vibration stops. For this reason, it is difficult for residual displacement to occur, and a simple configuration can be achieved.

このように凹部41内で復元力が高くなる可動土のう部2は、下面22の面積を上面21よりも広くすることで容易に製作することができる。具体的には、可動土のう部2の下面22を下方に向けて突出させることで、面積を広くすることができる。   As described above, the movable earth capping portion 2 having a high restoring force in the recess 41 can be easily manufactured by making the area of the lower surface 22 wider than that of the upper surface 21. Specifically, the area can be widened by projecting the lower surface 22 of the movable sandbag portion 2 downward.

また、凹部41と一体になる滑面部3の剛性を可動土のう部2の剛性よりも大きくすることで、可動土のう部2の移動時における滑面部3の局所的な変形が抑えられるので、滑面部3上で可動土のう部2を滑動させたり変形させたりをさせ易くすることができる。   Further, by making the rigidity of the smooth surface portion 3 integrated with the concave portion 41 larger than the rigidity of the movable soil couch portion 2, local deformation of the smooth surface portion 3 during movement of the movable soil cave portion 2 can be suppressed. It is possible to make it easy to slide or deform the movable sandbag 2 on the top 3.

ここで、「凹部41と一体になる滑面部3の剛性」であるので、滑面部3のみで剛性を高めることもできるし、凹部41のみで剛性を高めることもできる。例えば、滑面部3をステンレス板によって成形した場合は、下層土のう部4の剛性が小さくても、「凹部41と一体になる滑面部3の剛性」は大きくなる。なお、凹部41のみで剛性を高める場合については、実施例で後述する。   Here, since it is “the rigidity of the smooth surface portion 3 integrated with the concave portion 41”, the rigidity can be increased only by the smooth surface portion 3, and the rigidity can be increased only by the concave portion 41. For example, when the smooth surface portion 3 is formed of a stainless steel plate, the “rigidity of the smooth surface portion 3 integrated with the concave portion 41” increases even if the rigidity of the lower soil crust portion 4 is small. Note that the case where the rigidity is increased only by the recess 41 will be described later in the embodiment.

さらに、本実施の形態の建物の支持構造は、減震構造体1の側方に外周緩衝部5が配置される。このため、可動土のう部2の変位が妨げられにくいうえに、外周緩衝部5の復元力によって、可動土のう部2が元の位置に戻りやすくなる。   Further, in the building support structure of the present embodiment, the outer periphery buffering portion 5 is disposed on the side of the vibration-reducing structure 1. For this reason, the displacement of the movable soil clogging part 2 is not easily disturbed, and the movable soil clogging part 2 is easily returned to the original position by the restoring force of the outer peripheral buffer part 5.

以下、前記した実施の形態の減震構造体1の配置パターンについて、図6,7を参照しながら説明する。なお、前記実施の形態で説明した内容と同一乃至均等な部分の説明については、同一用語又は同一符号を付して説明する。   Hereinafter, the arrangement pattern of the vibration damping structure 1 of the above-described embodiment will be described with reference to FIGS. The description of the same or equivalent parts as the contents described in the above embodiment will be described with the same terms or the same reference numerals.

前記実施の形態の図3で説明した減震構造体1の配置パターンは、模式的に図示すると図6(a)に示したようになる。ここで、下層土のう部4は横線模様の長方形で示し、滑面部3には斜線の断面線を入れ、可動土のう部2は縦線模様の長方形で示した。   The arrangement pattern of the vibration-reducing structure 1 described with reference to FIG. 3 of the above embodiment is schematically shown in FIG. 6A. Here, the subsoil portion 4 is shown as a rectangle with a horizontal line pattern, the slanted cross section line is put into the smooth surface portion 3, and the movable soil portion 2 is shown as a rectangle with a vertical line pattern.

一方、図6(b)では、基礎Bの下方の全面に減震構造体1,・・・が配置されるが、各減震構造体1と基礎Bとの間に土のう6Aが配置されるとともに、各減震構造体1の下側にも土のう6Bが配置される。なお、土のう6A,6Bは、白抜き長方形で図示した。   On the other hand, in FIG. 6B, the seismic structures 1,... Are arranged on the entire surface below the foundation B, but a sandbag 6A is arranged between each of the earthquake damping structures 1 and the foundation B. At the same time, a sandbag 6B is also arranged below each of the vibration-reducing structures 1. The sandbags 6A and 6B are shown as white rectangles.

土のう6A,6Bは、平面視略長方形(正方形を含む)の平板状の土のう袋に、砂などの粒状の充填材を充填することによって形成される。減震構造体1の上下に土のう6A,6Bを配置することによって、基礎Bの下方の軟弱な土質などを良質な砂(充填材)に置換することができる。   The sandbags 6A and 6B are formed by filling a flat sandbag bag having a substantially rectangular shape (including a square) in plan view with a granular filler such as sand. By disposing the sandbags 6A and 6B above and below the vibration-reducing structure 1, the soft soil or the like below the foundation B can be replaced with good-quality sand (filler).

また、基礎Bの下方の土のう(1,6A,6B)の積層数が増加することによって、交通振動などが土のうを通過する距離が延びるので、振動の低減量が増えて減震効果を高めることができる。   In addition, since the number of stacks of sandbags (1, 6A, 6B) below foundation B increases, the distance that traffic vibrations pass through the sandbags increases, so the amount of vibration reduction increases and the seismic reduction effect increases. Can do.

図6(c)に図示した基礎Bには、外縁に沿って下方に突出するリブ部B2が設けられている。このため、図6(b)の配置パターンと比べて、リブ部B2の位置を除いた箇所にだけ上側の土のう6A,・・・が配置されるパターンになる。   The base B illustrated in FIG. 6C is provided with a rib portion B2 that protrudes downward along the outer edge. Therefore, as compared with the arrangement pattern of FIG. 6B, the upper sandbags 6A,... Are arranged only at the locations excluding the position of the rib portion B2.

続いて図7(a)に示した配置パターンでは、水平方向に間隔を置いて配置される減震構造体1,1間に、土のう6A,6Bの積層体が配置される。このように、基礎Bの全面に減震構造体1,・・・が配置されないパターンにすることもできる。   Subsequently, in the arrangement pattern shown in FIG. 7A, a stack of sandbags 6A and 6B is arranged between the vibration-reducing structures 1 and 1 arranged at intervals in the horizontal direction. In this way, a pattern in which the vibration-reducing structures 1,.

さらに、図7(b)に示した配置パターンでは、最下層の土のう6Bが一つ置きに配置される。例えば、地盤Gの深部の土質が良い箇所では最下層の土のう6Bの設置を省略することができる。   Further, in the arrangement pattern shown in FIG. 7 (b), the lowermost clay pads 6B are arranged alternately. For example, it is possible to omit installation of the bottom sandbag 6B at a place where the soil quality in the deep part of the ground G is good.

また、べた基礎のような基礎Bからほぼ均一な荷重が作用する場合は、面積平均で支持力が確保できればよいこともあるため、等間隔で最下層の土のう6A,6Bを省略することができる。   In addition, when a substantially uniform load is applied from the foundation B such as a solid foundation, it may be sufficient to secure a supporting force with an area average, and therefore the bottom clay pads 6A and 6B can be omitted at equal intervals. .

さらに、図7(c)に示すように、土のう6B、減震構造体1及び土のう6Aの積層体が、水平方向に間隔を置いて配置されるパターンとすることもできる。このように積層体(6A,1,6B)を杭状に配置することもできる。   Furthermore, as shown in FIG.7 (c), it can also be set as the pattern by which the laminated body of the sandbag 6B, the seismic-reduction structure 1, and the sandbag 6A is arrange | positioned at intervals in a horizontal direction. Thus, a laminated body (6A, 1, 6B) can also be arrange | positioned in pile shape.

なお、他の構成及び作用効果については、前記実施の形態又は他の実施例と略同様であるので説明を省略する。   Other configurations and functions and effects are substantially the same as those of the above-described embodiment or other examples, and thus description thereof is omitted.

以下、前記した実施の形態とは別の形態の実施例2の減震構造体1Aについて、図8−10を参照しながら説明する。なお、前記実施の形態で説明した内容と同一乃至均等な部分の説明については、同一用語又は同一符号を付して説明する。   Hereinafter, a vibration-reducing structure 1A according to Example 2 in a form different from the above-described embodiment will be described with reference to FIGS. The description of the same or equivalent parts as the contents described in the above embodiment will be described with the same terms or the same reference numerals.

本実施例2の減震構造体1Aは、図8に示すように、上面に凹部71が形成された下受部としての下層剛体部7と、凹部71の表面に形成される滑面部3Aと、その上に積層される可動土のう部2Aとによって主に構成される。   As shown in FIG. 8, the seismic attenuation structure 1 </ b> A of the second embodiment includes a lower rigid body portion 7 as a receiving portion having a recess 71 formed on the upper surface, and a smooth surface portion 3 </ b> A formed on the surface of the recess 71. , And mainly composed of a movable earth capping portion 2A laminated thereon.

この下層剛体部7は、コンクリート、鋼材、石材などの剛性の高い材料で形成することができる。例えば、鉄筋コンクリートによって、上面に外縁72が立ち上げられた直方体状に成形することができる。   The lower rigid portion 7 can be formed of a highly rigid material such as concrete, steel, or stone. For example, reinforced concrete can be formed into a rectangular parallelepiped shape with the outer edge 72 raised on the upper surface.

図8(a)に示すように、平面視略長方形(正方形を含む)に成形された外縁72の内側には、円錐状、多角錐状又はドーム状の凹部71が形成される。この下層剛体部7は、荷重が上から作用しても変形することがないので、前記実施の形態で説明した凹部41とは異なり、正確な形状に成形される。   As shown in FIG. 8A, a conical, polygonal, or dome-shaped recess 71 is formed inside an outer edge 72 formed in a substantially rectangular shape (including a square) in plan view. Since the lower rigid portion 7 does not deform even when a load is applied from above, it is formed into an accurate shape unlike the concave portion 41 described in the above embodiment.

滑面部3Aは、凹部71の剛性が充分に高いので、フッ素樹脂やセラミックなどでコーティングすることによって形成することができる。また、四フッ化エチレンシートなどのシート材を貼り付けた構成であってもよい。   The smooth surface portion 3A can be formed by coating with a fluororesin or ceramic because the recess 71 has a sufficiently high rigidity. Moreover, the structure which affixed sheet materials, such as a tetrafluoroethylene sheet, may be sufficient.

一方、可動土のう部2Aは、図8(b)に示すように、滑面部3Aの内側にすべてが収容される大きさの平面視略長方形(正方形を含む)の平板状の土のう袋に、砂などの粒状の充填材を充填することによって形成される。   On the other hand, as shown in FIG. 8 (b), the movable sandbag part 2A has a substantially rectangular shape (including a square) in the form of a flat sandbag with a size that can be accommodated inside the smooth surface part 3A. It is formed by filling a granular filler such as.

図9は、住宅Hの基礎Bの下に配置された減震構造体1A周辺を拡大して示した説明図である。減震構造体1Aの側方には、緩衝材としての中間緩衝部8,8がそれぞれ配置される。   FIG. 9 is an explanatory view showing, in an enlarged manner, the periphery of the vibration-reducing structure 1 </ b> A arranged under the foundation B of the house H. Intermediate shock-absorbing parts 8 and 8 as shock-absorbing materials are respectively arranged on the sides of the vibration-reducing structure 1A.

中間緩衝部8には、ポリスチレンフォーム(発泡スチロール,EPS)などの復元力のある材料などが使用できる。ここで、EPSは、軽量盛土材料として使用される素材であるため、基礎Bから上載荷重が伝達される位置にも使用することができる。   For the intermediate buffer portion 8, a material having a restoring force such as polystyrene foam (foamed polystyrene, EPS) can be used. Here, since EPS is a raw material used as a lightweight embankment material, it can also be used for the position where the upper load is transmitted from the foundation B.

可動土のう部2Aを下層剛体部7よりも小さく成形すると、中間緩衝部8,8の上面間に隙間が発生することになる。そこで、中間緩衝部8,8の上面間を鋼板などの蓋部23で遮蔽する。   If the movable sandbag portion 2 </ b> A is formed smaller than the lower rigid portion 7, a gap is generated between the upper surfaces of the intermediate buffer portions 8 and 8. Therefore, the upper surface of the intermediate buffer portions 8 and 8 is shielded by a lid portion 23 such as a steel plate.

滑面部3Aの上方を蓋部23で塞ぐことによって、滑面部3A上に砂や土砂等が侵入して摩擦抵抗が増加するのを防ぐことができる。   By closing the upper portion of the smooth surface portion 3A with the lid portion 23, it is possible to prevent sand, earth and sand from entering the smooth surface portion 3A and increasing the frictional resistance.

図10には、地震動が作用したときの減震構造体1Aの動きについて図示した。図の中央が、地震が起きる前の初期状態を示している。そして、地震動が下層剛体部7に伝達されると、図の3つの状態が繰り返されることになる。   FIG. 10 illustrates the movement of the seismic reduction structure 1A when seismic motion is applied. The center of the figure shows the initial state before the earthquake. And if an earthquake motion is transmitted to the lower rigid part 7, the three states of a figure will be repeated.

ここで、下層剛体部7よりも可動土のう部2Aの大きさを小さくすることによって、可動土のう部2Aの上面21の下層剛体部7に対する相対的な変位量を大きくすることができる。   Here, by making the size of the movable earth capping part 2A smaller than that of the lower layer rigid body part 7, the relative displacement amount of the upper surface 21 of the movable earth capping part 2A with respect to the lower layer rigid body part 7 can be increased.

すなわち、可動土のう部2Aは、下層剛体部7の外縁72に当たるまで下層剛体部7に対して相対的に移動することができる。この最大変位量は、可動土のう部2Aの大きさが小さくなるほど大きくなる。   In other words, the movable sandbag portion 2 </ b> A can move relative to the lower rigid body portion 7 until it hits the outer edge 72 of the lower rigid body portion 7. The maximum amount of displacement increases as the size of the movable sandbag portion 2A decreases.

また、可動土のう部2Aが小さくなると、滑面部3Aの中で移動しやすくなる。要するに、滑面部3Aの摩擦抵抗を小さくした場合と同じ効果を得ることができる。   In addition, when the movable sandbag portion 2A becomes smaller, it becomes easier to move in the smooth surface portion 3A. In short, the same effect as when the frictional resistance of the smooth surface portion 3A is reduced can be obtained.

さらに、凹部71と一体になる滑面部3Aの剛性と可動土のう部2Aの剛性との差が大きい方が、可動土のう部2Aが移動しやすくなる。すなわち、可動土のう部2Aの剛性の方が小さければ、移動に際して滑面部3Aの局所的な変形が抑制されて滑り面が保持されるので、滑りやすい状態を維持できる。   Furthermore, the movable sandbag portion 2A is more easily moved when the difference between the rigidity of the smooth surface portion 3A integrated with the recess 71 and the stiffness of the movable sandbag portion 2A is larger. That is, if the rigidity of the movable sandbag portion 2A is smaller, local deformation of the smooth surface portion 3A is suppressed during movement and the slip surface is held, so that a slippery state can be maintained.

このように構成された実施例2の減震構造体1Aは、可動土のう部2Aの上面21が下層剛体部7に対して相対的に変位しやすくなるように調整することができる。また、変位量の大きさも容易に調整することができる。   The seismic-reduction structure 1 </ b> A according to the second embodiment configured as described above can be adjusted so that the upper surface 21 of the movable sandbag portion 2 </ b> A can be easily displaced relative to the lower rigid body portion 7. Further, the magnitude of the displacement can be easily adjusted.

なお、他の構成及び作用効果については、前記実施の形態又は他の実施例と略同様であるので説明を省略する。   Other configurations and functions and effects are substantially the same as those of the above-described embodiment or other examples, and thus description thereof is omitted.

以下、前記した実施の形態及び実施例1で説明した建物の支持構造とは別の配置パターンについて、図11,12を参照しながら説明する。なお、前記実施の形態又は他の実施例で説明した内容と同一乃至均等な部分の説明については、同一用語又は同一符号を付して説明する。   Hereinafter, an arrangement pattern different from the building support structure described in the above embodiment and Example 1 will be described with reference to FIGS. Note that the description of the same or equivalent parts as those described in the above embodiment or other examples will be given with the same terms or the same reference numerals.

本実施例3では、実施例2で説明した減震構造体1Aを使った配置パターンについて説明する。なお、前記実施の形態で説明した減震構造体1を適用することもできる。   In the third embodiment, an arrangement pattern using the vibration reducing structure 1A described in the second embodiment will be described. In addition, the earthquake-reduction structure 1 demonstrated in the said embodiment is also applicable.

この実施例3で説明する建物としてのユニット住宅UHは、柱H1の位置が規格化されたユニット建物である。要するに柱H1が配置される箇所が予め決められており、基礎Bを介して集中して荷重が作用する位置もわかっているので、その箇所に対して部分的に減震構造体1Aを配置することができる。   The unit house UH as a building described in the third embodiment is a unit building in which the position of the pillar H1 is standardized. In short, the place where the column H1 is arranged is determined in advance, and since the position where the load acts by concentrating via the foundation B is also known, the vibration-reducing structure 1A is partially arranged with respect to that place. be able to.

まず、必要に応じて基礎Bの下方の全面の地盤Gに対して、地盤改良を行う。例えば、表層に軟弱な地盤がある場合は、セメント系固化材などを地盤と混合することで、表層地盤改良部91を造成する。   First, ground improvement is performed on the entire ground G below the foundation B as necessary. For example, when there is a soft ground on the surface layer, the surface ground improvement portion 91 is created by mixing cement-based solidified material or the like with the ground.

そして、柱H1,・・・が配置される真下の位置に、減震構造体1A,・・・をそれぞれ設置する。なお、柱H1の真下の位置以外にも、集中して荷重が作用することが判明している位置には、減震構造体1Aを設置することができる。   And each of the vibration-reducing structures 1A,... Is installed at a position immediately below where the columns H1,. In addition to the position directly below the column H1, the vibration-reducing structure 1A can be installed at a position where it is known that the load acts in a concentrated manner.

続いて、減震構造体1A,1A間に中間緩衝部8を敷き詰め、その上に砕石B1を敷き均す。また、基礎Bの外周位置に沿って、外周緩衝部5を設置する。さらに、砕石B1の上に鉄筋を組んでコンクリートを打設することで、べた基礎などの基礎Bを構築する。   Subsequently, the intermediate buffer portion 8 is spread between the vibration-reducing structures 1A and 1A, and the crushed stone B1 is spread thereon. Moreover, the outer periphery buffer part 5 is installed along the outer periphery position of the foundation B. Furthermore, the foundation B, such as a solid foundation, is constructed by assembling a reinforcing bar on the crushed stone B1.

そして、基礎Bの上に建物ユニットを並べていくことで、ユニット住宅UHを完成させる。このようにして構築されたユニット住宅UHの柱H1,・・・の下方には、それぞれ減震構造体1A,・・・が配置されている。   Then, the unit house UH is completed by arranging the building units on the foundation B. The seismic reduction structures 1A,... Are arranged below the columns H1,.

一方、図12は、深層混合処理工法などによって、柱状地盤改良部92を造成する場合について図示している。柱状地盤改良部92の造成は、表層を改良しただけでは所望する支持力が得られないような地盤Gで行われる。   On the other hand, FIG. 12 illustrates a case where the columnar ground improvement portion 92 is created by the deep mixing method. The columnar ground improvement portion 92 is formed on the ground G where a desired supporting force cannot be obtained only by improving the surface layer.

柱状地盤改良部92は、柱H1が配置される位置など、集中して荷重が作用する位置の地盤Gに設けられる。そして、柱状地盤改良部92の頭部に減震構造体1Aが設置される。   The columnar ground improvement unit 92 is provided on the ground G at a position where a load is applied in a concentrated manner, such as a position where the column H1 is disposed. And the 1 A of seismic-reduction structure body 1A is installed in the head of the columnar ground improvement part 92. FIG.

このように大きな荷重が作用する位置が特定できるユニット住宅UHのような建物であれば、減震構造体1A(1)をその位置にだけ配置させることができるので、経済的に減震対策を施すことができる。   If it is a building such as a unit house UH that can identify the position where a large load acts in this way, the seismic reduction structure 1A (1) can be arranged only at that position, so it is economical to take measures to reduce vibration. Can be applied.

また、減震構造体1A(1)を設置する位置の地盤Gが弱い場合に、その位置の地盤にだけ地盤改良や杭などの補強部を設けることで、弱い地盤Gにも経済的に減震機能を付加することができるようになる。   In addition, if the ground G at the position where the seismic isolation structure 1A (1) is installed is weak, it is economically reduced to the weak ground G by providing ground improvement or piles and other reinforcements only at the ground. A seismic function can be added.

なお、他の構成及び作用効果については、前記実施の形態又は他の実施例と略同様であるので説明を省略する。   Other configurations and functions and effects are substantially the same as those of the above-described embodiment or other examples, and thus description thereof is omitted.

以上、図面を参照して、本発明の実施の形態を詳述してきたが、具体的な構成は、この実施の形態又は実施例に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。   The embodiment of the present invention has been described in detail above with reference to the drawings. However, the specific configuration is not limited to this embodiment or example, and the design changes are within the scope of the present invention. Are included in the present invention.

例えば、前記実施の形態及び実施例では、べた基礎が建物の基礎Bである場合について説明したが、これに限定されるものではなく、布基礎や独立基礎が建物の基礎である場合にも本発明を適用することができる。   For example, in the above-described embodiments and examples, the case where the solid foundation is the foundation B of the building has been described. However, the present invention is not limited to this, and the present invention is also applicable when the cloth foundation or the independent foundation is the foundation of the building. The invention can be applied.

1,1A 減震構造体
10 建物の支持構造
2,2A 可動土のう部
21 上面
22 下面
3,3A 滑面部
4 下層土のう部(下受部)
41 凹部
5 外周緩衝部(緩衝材)
7 下層剛体部(下受部)
71 凹部
8 中間緩衝部(緩衝材)
91 表層地盤改良部(補強部)
92 柱状地盤改良部(補強部)
G 地盤
B 建物の基礎
H 住宅(建物)
UH ユニット住宅(建物)
1, 1A Seismic Decreasing Structure 10 Building Support Structure 2, 2A Movable Soil Part 21 Upper Surface 22 Lower Surface 3, 3A Smooth Surface Part 4 Lower Soil Part (Underside)
41 Concave part 5 Outer peripheral buffer part (buffer material)
7 Lower rigid body part (underlay part)
71 Concave portion 8 Intermediate buffer portion (buffer material)
91 Surface ground improvement part (reinforcement part)
92 Columnar ground improvement part (reinforcement part)
G Ground B Building foundation H Housing (building)
UH unit housing (building)

Claims (7)

地盤と建物の基礎との間に介在させる減震構造体であって、
前記地盤側に配置される上面に円錐状、多角錐状又はドーム状の凹部が形成された下受部と、
前記凹部の表面に形成される滑面部と、
前記滑面部に下面を接触させる可動土のう部とを備え、
地盤の振動によって前記下受部が変動すると、前記可動土のう部の上面が前記下受部に対して相対的に変位することを特徴とする減震構造体。
A seismic reduction structure interposed between the ground and the foundation of the building,
A conical portion in which a conical, polygonal pyramid or dome-shaped concave portion is formed on the upper surface disposed on the ground side;
A smooth surface formed on the surface of the recess;
A movable earth capping part that makes the lower surface contact the smooth surface part,
A seismic-reducing structure characterized in that when the under-loading part is fluctuated by vibration of the ground, the upper surface of the movable sandbag part is displaced relative to the under-receiving part.
前記可動土のう部の下面は、その上面よりも面積が広いことを特徴とする請求項1に記載の減震構造体。   The seismic attenuation structure according to claim 1, wherein the lower surface of the movable sandbag portion has a larger area than the upper surface. 前記可動土のう部の下面は、下方に向けて突出していることを特徴とする請求項2に記載の減震構造体。   The vibration-reducing structure according to claim 2, wherein a lower surface of the movable sandbag portion protrudes downward. 前記凹部と一体になる前記滑面部の剛性が、前記可動土のう部の剛性よりも大きいことを特徴とする請求項1乃至3のいずれか一項に記載の減震構造体。   4. The vibration-reducing structure according to claim 1, wherein a rigidity of the smooth surface portion integrated with the concave portion is larger than a rigidity of the movable sandbag portion. 5. 請求項1乃至4のいずれか一項に記載の複数の減震構造体を、前記建物の基礎の下方に備えたことを特徴とする建物の支持構造。   5. A building support structure comprising a plurality of vibration reduction structures according to any one of claims 1 to 4 below a foundation of the building. 請求項1乃至4のいずれか一項に記載の複数の減震構造体と、
前記減震構造体の側方に配置される緩衝材とを備えたことを特徴とする建物の支持構造。
A plurality of vibration-reducing structures according to any one of claims 1 to 4,
A building support structure comprising a cushioning material disposed on a side of the seismic reduction structure.
請求項1乃至4のいずれか一項に記載の複数の減震構造体と、
前記減震構造体の下方の地盤に形成される補強部とを備えたことを特徴とする建物の支持構造。
A plurality of vibration-reducing structures according to any one of claims 1 to 4,
A building support structure comprising a reinforcing portion formed on a ground below the seismic reduction structure.
JP2015000194A 2015-01-05 2015-01-05 Damping structure and supporting structure of building Active JP6508945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015000194A JP6508945B2 (en) 2015-01-05 2015-01-05 Damping structure and supporting structure of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015000194A JP6508945B2 (en) 2015-01-05 2015-01-05 Damping structure and supporting structure of building

Publications (2)

Publication Number Publication Date
JP2016125269A true JP2016125269A (en) 2016-07-11
JP6508945B2 JP6508945B2 (en) 2019-05-08

Family

ID=56358935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015000194A Active JP6508945B2 (en) 2015-01-05 2015-01-05 Damping structure and supporting structure of building

Country Status (1)

Country Link
JP (1) JP6508945B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113622538A (en) * 2021-08-23 2021-11-09 柏林 Steel structure building column foundation shock absorber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953248A (en) * 1995-08-14 1997-02-25 Takenaka Komuten Co Ltd Structure coping with great earthquake
JP2008050820A (en) * 2006-08-24 2008-03-06 Mitsui Home Co Ltd Base isolation device
JP2011157775A (en) * 2010-02-03 2011-08-18 Kazuhiro Hamaguchi Base isolating foundation structure for building
JP2012001994A (en) * 2010-06-18 2012-01-05 Nice Holdings Inc Building ground structure capable of restraining earthquake vibration and construction method of the same
JP2014009485A (en) * 2012-06-29 2014-01-20 Takeuchi Construction Inc Vibration damping foundation structure and vibration damping method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953248A (en) * 1995-08-14 1997-02-25 Takenaka Komuten Co Ltd Structure coping with great earthquake
JP2008050820A (en) * 2006-08-24 2008-03-06 Mitsui Home Co Ltd Base isolation device
JP2011157775A (en) * 2010-02-03 2011-08-18 Kazuhiro Hamaguchi Base isolating foundation structure for building
JP2012001994A (en) * 2010-06-18 2012-01-05 Nice Holdings Inc Building ground structure capable of restraining earthquake vibration and construction method of the same
JP2014009485A (en) * 2012-06-29 2014-01-20 Takeuchi Construction Inc Vibration damping foundation structure and vibration damping method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113622538A (en) * 2021-08-23 2021-11-09 柏林 Steel structure building column foundation shock absorber

Also Published As

Publication number Publication date
JP6508945B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
JP5406631B2 (en) Seismic isolation structure and seismic isolation structure
JP2011099544A (en) Base isolation device
JP2016125269A (en) Aseismic structural body, and support structure for building
JP6007092B2 (en) Ground liquefaction countermeasure structure using structural load
JP4812463B2 (en) Base-isolated floor structure
TWI490158B (en) Seismic isolation supporting device in traveling crane
JP4177817B2 (en) Seismic isolation structure and wooden house
TWI577859B (en) Seismic isolation structure
JP2007247167A (en) Base isolation supporting device
JP6955958B2 (en) Vibration displacement suppression structure of structure
JP5590447B2 (en) Building ground structure capable of suppressing earthquake motion and its construction method
JP2004293157A (en) Structure base isolation foundation
JP3650911B2 (en) Seismic isolation device and seismic isolation structure
JP6372604B1 (en) Lightweight embankment structure
JP5332018B2 (en) Ground-isolated structure and ground-isolated construction method using it
JP2007070857A (en) Base isolation structure of building
JP7198623B2 (en) foundation structure
JP6715452B2 (en) Ground flow countermeasure structure of pile type structure and its construction method
JP5096878B2 (en) Seismic isolation building
KR20200061761A (en) Composite damper using 3 dimensional steel stuss
JP7121645B2 (en) Seismic structure of pile pier and seismic reinforcement method
JP6918195B2 (en) Seismic isolation structure
JP7334222B2 (en) Seismic isolation structure
JP2011117280A (en) Seismic isolated foundation structure
JPH0988089A (en) Earthquake-damping footing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180920

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190402

R150 Certificate of patent or registration of utility model

Ref document number: 6508945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150