JP7121645B2 - Seismic structure of pile pier and seismic reinforcement method - Google Patents

Seismic structure of pile pier and seismic reinforcement method Download PDF

Info

Publication number
JP7121645B2
JP7121645B2 JP2018220895A JP2018220895A JP7121645B2 JP 7121645 B2 JP7121645 B2 JP 7121645B2 JP 2018220895 A JP2018220895 A JP 2018220895A JP 2018220895 A JP2018220895 A JP 2018220895A JP 7121645 B2 JP7121645 B2 JP 7121645B2
Authority
JP
Japan
Prior art keywords
pile
pier
seismic reinforcement
seismic
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018220895A
Other languages
Japanese (ja)
Other versions
JP2020084590A (en
Inventor
基久 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2018220895A priority Critical patent/JP7121645B2/en
Publication of JP2020084590A publication Critical patent/JP2020084590A/en
Application granted granted Critical
Publication of JP7121645B2 publication Critical patent/JP7121645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Revetment (AREA)

Description

本発明は、杭式桟橋の耐震構造および耐震補強方法に関する。 TECHNICAL FIELD The present invention relates to an earthquake-resistant structure and an earthquake-resistant reinforcement method for a pile pier.

特許文献1は、杭と上部工を有する桟橋の補強構造であって、桟橋と独立しており別の系にあり、水平方向の剛性が桟橋の水平方向の剛性の1.5倍以上ある構造物を設置し、ダンパーの一端側を構造物に連結し、他端側を上部工に連結するようにダンパーを設置した桟橋の補強構造を開示する(請求項1,図1,図2)。 Patent document 1 describes a pier reinforcement structure having piles and superstructures, which is independent from the pier and is in a separate system, and has a horizontal rigidity of 1.5 times or more that of the pier. Disclosed is a pier reinforcement structure in which a damper is installed so that one end of the damper is connected to the structure and the other end is connected to the superstructure (claim 1, FIGS. 1 and 2).

特許文献2は、杭と上部工を構成要素とする1つの桟橋を、それぞれ杭および上部工を構成要素とし異なる固有周期を有する複数の桟橋ブロックに分割し、桟橋ブロックどうしの間を、ダンパを介在させて連結した制震桟橋を開示する(請求項1,図1)。 In Patent Document 2, one pier having piles and a superstructure as constituent elements is divided into a plurality of pier blocks each having a pile and a superstructure as constituent elements and having different natural periods, and a damper is installed between the pier blocks. Disclosed is an interposed and connected seismic damping pier (Claim 1, Fig. 1).

特許第5298836号公報Patent No. 5298836 特開平10-77616号公報JP-A-10-77616

杭式桟橋の耐震補強方法の一つとして、杭の増設がある。通常、上部工を、増設杭を含む範囲に拡大し、既設構造部と増設杭による増設部とを一体化する方法が用いられる。しかし、この一体化の方法の場合、杭の増設に伴い上部構造も大きくなるため、地震時の慣性力も大きくなり、増設した杭の効果が有効に発揮されない。一方、杭径を大きくすると、群杭とならない杭間隔を確保するために杭間隔を大きくする必要があり上部工も大きくなる。また、増設杭本数を増やすと、その分上部工も大きくなる。また、場合によっては上部工が大きくなることにより既設構造への負担が補強前よりも増大することがある。 One of the seismic reinforcement methods for pile piers is to increase the number of piles. Usually, a method is used in which the superstructure is expanded to include the additional piles, and the existing structural part and the additional part by the additional piles are integrated. However, in the case of this method of integration, since the upper structure also becomes larger as the piles are added, the inertial force during an earthquake also increases, and the effect of the added piles cannot be effectively exhibited. On the other hand, if the pile diameter is increased, it is necessary to increase the distance between the piles in order to ensure that the piles do not form groups of piles, and the superstructure also becomes larger. In addition, if the number of additional piles is increased, the superstructure will be increased accordingly. In addition, depending on the situation, the burden on the existing structure may increase compared to before reinforcement due to the increase in the size of the superstructure.

特許文献1,2の補強構造は、いずれもダンパーを用いて桟橋の上部工と補強構造とを連結するものであり、また、特許文献2の構造は、新設の桟橋を対象としたものである。 Both of the reinforcing structures of Patent Documents 1 and 2 use a damper to connect the superstructure of the pier and the reinforcing structure, and the structure of Patent Document 2 is intended for a newly constructed pier. .

本発明は、上述のような従来技術の問題に鑑み、杭式桟橋に耐震補強構造を設けても地震による慣性力が増加せず、また、既設の杭式桟橋にも適用可能である杭式桟橋の耐震構造および耐震補強方法を提供することを目的とする。 In view of the problems of the prior art as described above, the present invention provides a pile-type pier that does not increase the inertial force due to earthquakes even if a seismic reinforcement structure is provided in the pile-type pier, and that can be applied to existing pile-type piers. An object of the present invention is to provide an earthquake-resistant structure for a pier and an earthquake-resistant reinforcement method.

上記目的を達成するための杭式桟橋の耐震構造は、杭式桟橋の想定される地震動による外力作用方向の少なくとも両端側における耐震のために第1および第2の耐震補強部を前記杭式桟橋に接近して設け、
前記杭式桟橋と前記第1および第2の耐震補強部とを一体化せず前記杭式桟橋と前記第1の耐震補強部との間に第1の隙間を介在させ、前記杭式桟橋と前記第2の耐震補強部との間に第2の隙間を介在させ、
前記想定される地震時に生じる前記第1および第2の耐震補強部の変位がそれぞれ前記地震時に生じる前記杭式桟橋の変位よりも小さくなるように前記第1および第2の耐震補強部は前記杭式桟橋よりも剛性が大きく構成され、
前記第1の隙間および前記第2の隙間は、前記想定される地震時に、前記杭式桟橋と前記第1および第2の耐震補強部とが前記外力作用方向において同じ方向に変位したとき、前記第1の耐震補強部と前記第2の耐震補強部とのいずれか一方と、前記杭式桟橋とが接触して前記杭式桟橋から前記第1の耐震補強部と前記第2の耐震補強部との接触した一方に力が伝達され、かつ、前記第1の耐震補強部と前記第2の耐震補強部との他方と、前記杭式桟橋とが接触せず、前記第1の耐震補強部と前記第2の耐震補強部との他方から前記杭式桟橋に押しつける力が作用しないように設定される
An earthquake-resistant structure for a pile-type pier for achieving the above-mentioned object is a pile-type pier provided with first and second earthquake- resistant reinforcing sections for earthquake resistance at least on both end sides in the direction in which an external force acts due to an assumed seismic motion of the pile-type pier. provided close to the
The pile type pier and the first and second seismic reinforcement sections are not integrated, but a first gap is interposed between the pile type pier and the first seismic reinforcement section, and the pile type pier is provided. A second gap is interposed between the second seismic reinforcement portion and the second seismic reinforcement portion,
The first and second seismic reinforcements are installed on the piles so that the displacements of the first and second seismic reinforcements that occur during the assumed earthquake are smaller than the displacements of the pile pier that occur during the earthquake. It is configured with greater rigidity than the type pier,
When the pile pier and the first and second seismic reinforcement portions are displaced in the same direction in the direction of action of the external force, the first gap and the second gap are set to the above Either one of the first seismic reinforcement and the second seismic reinforcement is in contact with the pile pier, and the first seismic reinforcement and the second seismic reinforcement are removed from the pile pier. and the other of the first seismic reinforcement and the second seismic reinforcement is not in contact with the pile pier, and the first seismic reinforcement and the second seismic reinforcement portion are set so as not to apply a pressing force to the pile type pier .

この杭式桟橋の耐震構造によれば、杭式桟橋と耐震補強部とを一体化せずに杭式桟橋と耐震補強部との間に隙間を介在させ、耐震補強部は杭式桟橋よりも剛性が大きいので、地震時に杭式桟橋と耐震補強部との間の隙間よりも耐震補強部の変位が小さく、耐震補強部が杭式桟橋を押しつける力が作用せず、このため、杭式桟橋に作用する慣性力は耐震補強部を設けても増加しない。一方、杭式桟橋に隙間を超える変位が生じた場合は、杭式桟橋が耐震補強部に接触し、耐震補強部に力が伝達され、耐震補強部による補強効果が有効に発揮される。また、本耐震構造は、杭式桟橋が新設構造物、既設構造物のいずれであっても適用可能である。なお、想定される地震動とは、対象構造物である杭式桟橋が対象としている地震による地震動である。 According to the seismic structure of this pile pier, a gap is interposed between the pile pier and the seismic reinforcement without integrating the pile pier and the seismic reinforcement. Since the rigidity is high, the displacement of the seismic reinforcement is smaller than the gap between the pile type pier and the seismic reinforcement during an earthquake, and the force of the seismic reinforcement to press the pile type pier does not act. The inertial force acting on the On the other hand, when the pile type pier is displaced beyond the gap, the pile type pier comes into contact with the seismic reinforcement section, the force is transmitted to the seismic reinforcement section, and the reinforcement effect of the seismic reinforcement section is effectively exhibited. In addition, this earthquake-resistant structure can be applied to both new and existing pile piers. The assumed seismic motion is the seismic motion caused by the earthquake targeted by the pile pier, which is the target structure.

上記杭式桟橋の耐震構造において、前記想定される地震時に、前記耐震補強部の変位が一方の前記隙間よりも小さく、前記耐震補強部が前記杭式桟橋を押しつける力が作用せず、前記杭式桟橋の変位が他方の前記隙間を超えると、前記杭式桟橋が前記耐震補強部に接触し、前記杭式桟橋から前記耐震補強部に力が伝達される。 In the earthquake-resistant structure of the pile-type pier, the displacement of the earthquake-resistant reinforcement part is smaller than the gap on one side during the assumed earthquake, and the force that the earthquake-resistant reinforcement part presses against the pile-type pier does not act, and the pile When the displacement of the pier exceeds the other gap, the pile pier comes into contact with the seismic reinforcement, and force is transmitted from the pile pier to the seismic reinforcement.

また、前記第1の隙間および前記第2の隙間は最小値と最大値との間に設定され、記最大値を、前記想定される地震時に前記杭式桟橋が前記第1または第2の耐震補強部に接触した後の前記杭式桟橋の最大変位が前記杭式桟橋の許容変位以下となるように定め、前記最小値を、前記地震時に前記第1または第2の耐震補強部から前記杭式桟橋へ力が作用しないように前記第1または第2の耐震補強部の前記地震時の最大変位以上とすることが好ましい。
Also, the first gap and the second gap are set between a minimum value and a maximum value, and the maximum value is set so that the pile type pier will not move the first or second gap during the assumed earthquake. The maximum displacement of the pile type pier after coming into contact with the seismic reinforcement part of is set to be equal to or less than the allowable displacement of the pile type pier, and the minimum value is set to the first or second seismic reinforcement at the time of the earthquake It is preferable that the maximum displacement of the first or second seismic reinforcing part at the time of an earthquake is larger than the maximum displacement of the first or second seismic reinforcing part so that force does not act from the part to the pile type pier.

また、前記杭式桟橋前記第1および第2の耐震補強部はそれぞれ上部工を備え、前記第1の隙間および前記第2の隙間を前記上部工間に設けることが好ましい。この場合、地震時に耐震補強部に作用する慣性力が、耐震補強部の上部工を杭式桟橋の上部工と一体化した場合よりも小さくなるため、耐震補強部の上部工を杭式桟橋の上部工と一体化する場合よりも小さく構成することができる。
Moreover, it is preferable that the pile type pier and the first and second seismic reinforcement sections each include a superstructure, and the first gap and the second gap are provided between the superstructure. In this case, the inertial force acting on the seismic reinforcement part during an earthquake will be smaller than when the superstructure of the seismic reinforcement part is integrated with the superstructure of the pile pier. It can be made smaller than when it is integrated with the superstructure.

また、前記杭式桟橋の想定される地震動による外力作用方向に水平面上で直交する方向の両端側にさらに第3および第4の耐震補強部を前記杭式桟橋に接近して設け、前記杭式桟橋と前記第3および第4の耐震補強部とを一体化せず、前記杭式桟橋と前記第3の耐震補強部との間に第3の隙間を介在させ、前記杭式桟橋と前記第4の耐震補強部との間に第4の隙間を介在させ、前記想定される地震時に生じる前記第3および第4の耐震補強部の変位がそれぞれ前記地震時に生じる前記杭式桟橋の変位よりも小さくなるように前記第3および第4の耐震補強部は前記杭式桟橋よりも剛性が大きく構成され、前記第3の隙間および前記第4の隙間は、前記想定される地震時に、前記杭式桟橋と前記第3および第4の耐震補強部とが前記外力作用方向に水平面上で直交する方向において同じ方向に変位したとき、前記第3の耐震補強部と前記第4の耐震補強部とのいずれか一方と、前記杭式桟橋とが接触して前記杭式桟橋から前記第3の耐震補強部と前記第4の耐震補強部との接触した一方に力が伝達され、かつ、前記第3の耐震補強部と前記第4の耐震補強部との他方と、前記杭式桟橋とが接触せず、前記第3の耐震補強部と前記第4の耐震補強部との他方から前記杭式桟橋に押しつける力が作用しないように設定されることが好ましい。
Further, third and fourth seismic reinforcements are provided close to the pile type pier on both end sides in a direction orthogonal to the direction of external force acting on the pile type pier on the horizontal plane, and the pile type The pier and the third and fourth seismic reinforcement sections are not integrated, but a third gap is interposed between the pile pier and the third seismic reinforcement section, and the pile pier and the third seismic reinforcement section are interposed. A fourth gap is interposed between the seismic reinforcement part of 4, and the displacement of the third and fourth seismic reinforcement parts caused by the assumed earthquake is greater than the displacement of the pile type pier caused by the earthquake. The third and fourth seismic reinforcement sections are configured to have a higher rigidity than the pile type pier so as to be small, and the third gap and the fourth gap are configured to have the pile type pier at the time of the assumed earthquake. When the pier and the third and fourth seismic reinforcements are displaced in the same direction in the direction orthogonal to the direction of action of the external force on the horizontal plane, the third seismic reinforcement and the fourth seismic reinforcement are displaced. Any one of them contacts the pile-type pier, and force is transmitted from the pile-type pier to the contacting one of the third seismic reinforcement and the fourth seismic reinforcement, and the third The other of the seismic reinforcement and the fourth seismic reinforcement does not contact the pile pier, and the other of the third seismic reinforcement and the fourth seismic reinforcement is connected to the pile pier It is preferably set so that no pressing force acts on the .

また、前記第1の隙間および前記第2の隙間に緩衝部材をそれぞれ配置し、 前記第1の隙間内で前記緩衝部材は前記第1の耐震補強部または前記杭式桟橋に固定され、前記第2の隙間内で前記緩衝部材は前記第2の耐震補強部または前記杭式桟橋に固定されることが好ましい。隙間に配置される緩衝部材を介して地震時に杭式桟橋から耐震補強部に伝達する力を小さくすることができる。
Further, buffering members are respectively arranged in the first gap and the second gap, and the buffering members are fixed to the first seismic reinforcement part or the pile pier in the first gap, It is preferable that the buffer member is fixed to the second seismic reinforcing part or the pile pier within two gaps . It is possible to reduce the force transmitted from the pile type pier to the seismic reinforcing part during an earthquake through the cushioning member arranged in the gap.

別の杭式桟橋の耐震構造は、
杭式桟橋の想定される地震動による外力作用方向に水平面上で直交する方向の一端側に耐震のために耐震補強部を前記杭式桟橋に接近して設け、
前記杭式桟橋と前記耐震補強部とのいずれかに第1の荷重伝達部を設け、
前記杭式桟橋と前記耐震補強部とのいずれかに第2の荷重伝達部を設け、
前記第1の荷重伝達部を設けない部材である前記耐震補強部または前記杭式桟橋と前記第1の荷重伝達部とを一体化せず、前記耐震補強部または前記杭式桟橋と前記第1の荷重伝達部との間に第5の隙間を介在させ、
前記第2の荷重伝達部を設けない部材である前記耐震補強部または前記杭式桟橋と前記第2の荷重伝達部とを一体化せず、前記耐震補強部または前記杭式桟橋と前記第2の荷重伝達部との間に第6の隙間を介在させ、
前記耐震補強部は、前記想定される地震時に生じる前記耐震補強部の変位が前記地震時に生じる前記杭式桟橋の変位よりも小さくなるように前記杭式桟橋よりも剛性が大きく構成され、
前記第5の隙間および前記第6の隙間は、前記想定される地震時に、前記杭式桟橋と前記耐震補強部とが前記外力作用方向において同じ方向に変位したとき、前記第1の荷重伝達部と前記第1の荷重伝達部を設けない部材である前記耐震補強部または前記杭式桟橋とが接触して前記杭式桟橋から前記耐震補強部に力が伝達され、かつ、前記第2の荷重伝達部と前記第2の荷重伝達部を設けない部材である前記耐震補強部または前記杭式桟橋とが接触せず、前記耐震補強部から前記杭式桟橋に押しつける力が作用しないように設定される
The seismic structure of another pile pier is
A seismic reinforcing part is provided close to the pile pier for earthquake resistance on one end side in a direction perpendicular to the direction of external force acting on the pile pier on the horizontal plane, due to the assumed seismic motion,
A first load transmission part is provided in either the pile type pier or the seismic reinforcement part,
A second load transmission part is provided in either the pile type pier or the seismic reinforcement part,
The seismic reinforcement portion or the pile pier and the first load transmission portion, which are members not provided with the first load transmission portion, are not integrated, and the seismic reinforcement portion or the pile pier and the first load transmission portion are not integrated. A fifth gap is interposed between the load transmission part of
The seismic reinforcement section or the pile type pier and the second load transmission section, which are members not provided with the second load transmission section, are not integrated, and the seismic reinforcement section or the pile type pier and the second load transmission section are not integrated. A sixth gap is interposed between the load transmission part of
The seismic reinforcement section is configured to have greater rigidity than the pile type pier so that the displacement of the seismic reinforcement section that occurs during the assumed earthquake is smaller than the displacement of the pile type pier that occurs during the earthquake,
When the pile type pier and the seismic reinforcing section are displaced in the same direction in the direction of action of the external force during the assumed earthquake, the fifth gap and the sixth gap are set to the first load transmission section. and the seismic reinforcement portion or the pile pier, which is a member not provided with the first load transmission portion, contact to transmit force from the pile pier to the seismic reinforcement portion, and the second load It is set so that the transmission part does not come into contact with the seismic reinforcement part or the pile pier, which is a member not provided with the second load transmission part, and the force that presses the pile pier from the seismic reinforcement part does not act. be .

前記第5の隙間および前記第6の隙間にそれぞれ緩衝部材を配置し、前記第5の隙間内で前記緩衝部材は前記第1の荷重伝達部、または、前記第1の荷重伝達部を設けない部材である前記耐震補強部または前記杭式桟橋に固定され、
前記第6の隙間内で前記緩衝部材は、前記第2の荷重伝達部、または、前記第2の荷重伝達部を設けない部材である前記耐震補強部または前記杭式桟橋に固定されることが好ましい
また、前記杭式桟橋の想定される地震動による外力作用方向の一端側に耐震のためにさらに別の耐震補強部を前記杭式桟橋に接近して設け、前記杭式桟橋と前記別の耐震補強部とのいずれかに第3の荷重伝達部を設け、前記杭式桟橋と前記別の耐震補強部とのいずれかに第4の荷重伝達部を設け、前記第3の荷重伝達部を設けない部材である前記別の耐震補強部または前記杭式桟橋と前記第3の荷重伝達部とを一体化せず、前記別の耐震補強部または前記杭式桟橋と前記第3の荷重伝達部との間に第7の隙間を介在させ、
前記第4の荷重伝達部を設けない部材である前記別の耐震補強部または前記杭式桟橋と前記第4の荷重伝達部とを一体化せず、前記別の耐震補強部または前記杭式桟橋と前記第4の荷重伝達部との間に第8の隙間を介在させ、
前記別の耐震補強部は、前記想定される地震時に生じる前記別の耐震補強部の変位が前記地震時に生じる前記杭式桟橋の変位よりも小さくなるように前記杭式桟橋よりも剛性が大きく構成され、
前記第7の隙間および前記第8の隙間は、前記想定される地震時に、前記杭式桟橋と前記別の耐震補強部とが前記外力作用方向に水平面上で直交する方向において同じ方向に変位したとき、前記第3の荷重伝達部と前記第3の荷重伝達部を設けない部材である前記別の耐震補強部または前記杭式桟橋とが接触して前記杭式桟橋から前記別の耐震補強部に力が伝達され、かつ、前記第4の荷重伝達部と前記第4の荷重伝達部を設けない部材である前記耐震補強部または前記杭式桟橋とが接触せず、前記別の耐震補強部から前記杭式桟橋に押しつける力が作用しないように設定されることが好ましい
A buffer member is arranged in each of the fifth gap and the sixth gap, and the buffer member in the fifth gap is provided with the first load transmission portion or not provided with the first load transmission portion. It is fixed to the seismic reinforcement part or the pile pier which is a member,
In the sixth gap, the cushioning member may be fixed to the second load transmission section, or to the seismic reinforcing section or the pile pier which is a member without the second load transmission section. Preferred .
Further, another seismic reinforcement part is provided close to the pile-type pier for earthquake resistance on one end side of the pile-type pier in the direction in which an external force acts due to an assumed seismic motion, and the pile-type pier and the another seismic reinforcement are provided. A third load transmission part is provided in either the part, a fourth load transmission part is provided in either the pile type pier or the separate seismic reinforcement part, and the third load transmission part is not provided The separate seismic reinforcement section or the pile type pier and the third load transmission section, which are members, are not integrated, and the seismic reinforcement section or the pile type pier and the third load transmission section are not integrated. A seventh gap is interposed between
The separate seismic reinforcement section or the pile type pier, which is a member not provided with the fourth load transmission section, is not integrated with the fourth load transmission section, and the separate seismic reinforcement section or the pile type pier is not integrated. and the fourth load transmission portion intervening an eighth gap,
The separate seismic reinforcement section is configured to have greater rigidity than the pile type pier so that the displacement of the separate seismic reinforcement section that occurs during the assumed earthquake is smaller than the displacement of the pile type pier that occurs during the earthquake. is,
The seventh gap and the eighth gap are displaced in the same direction in the direction orthogonal to the direction of action of the external force on the horizontal plane of the pile type pier and the separate seismic reinforcement part during the assumed earthquake. When the third load transmission part and the other seismic reinforcement part or the pile type pier which is a member not provided with the third load transmission part come into contact with each other, the pile type pier is displaced from the another seismic reinforcement part. and the seismic reinforcement portion or the pile pier, which is a member not provided with the fourth load transmission portion and the fourth load transmission portion, does not contact, and the separate seismic reinforcement portion is preferably set so that no force is applied to the pile type pier .

上記目的を達成するための杭式桟橋の耐震補強方法は、上述の杭式桟橋の耐震構造を用いる杭式桟橋の耐震補強方法であって、前記杭式桟橋は既設構造物であり、前記既設構造物に前記耐震構造により耐震補強をするものである
A method for seismic reinforcement of a pile-type pier for achieving the above object is a method for seismic reinforcement of a pile-type pier using the earthquake-resistant structure of the pile-type pier described above, wherein the pile-type pier is an existing structure, and the existing The earthquake-resistant structure is used to reinforce the structure .

本発明の杭式桟橋の耐震構造および耐震補強方法によれば、杭式桟橋に耐震補強部を設けても杭式桟橋には地震による慣性力は増加せず、また、既設の杭式桟橋にも適用可能である。 According to the earthquake-resistant structure and the earthquake-resistant reinforcement method for a pile-type pier according to the present invention, even if the pile-type pier is provided with an earthquake-resistant reinforcing part, the inertial force due to an earthquake does not increase in the pile-type pier, is also applicable.

第1の実施形態による杭式桟橋の耐震構造を概略的に示す断面図(a)および上面図(b)である。1 is a sectional view (a) and a top view (b) schematically showing an earthquake-resistant structure of a pile pier according to the first embodiment; FIG. 第2の実施形態による杭式桟橋の耐震構造を概略的に示す上面図である。It is a top view which shows roughly the earthquake-resistant structure of the pile type pier by 2nd Embodiment. 第3の実施形態による杭式桟橋の耐震構造を概略的に示す要部上面図(a)(b)である。It is a principal part top view (a) (b) which shows roughly the earthquake-resistant structure of the pile type pier by 3rd Embodiment. 第2の実施形態において杭式桟橋に荷重伝達部を設けた例を示す要部平面図(a)および要部側面図(b)である。FIG. 8A is a plan view of a main part and a side view of the main part is (b) showing an example in which a load transmission part is provided in the pile type pier in the second embodiment; 第2の実施形態において耐震補強部に荷重伝達部を設けた例を示す要部平面図(a)および要部側面図(b)である。FIG. 8A is a plan view of a main part and a side view of the main part is a side view of FIG. 図1~図3の耐震補強部を杭式桟橋に対し種々の組み合わせで配置した例(a)~(d)を示す上面図である。FIG. 4 is a top view showing examples (a) to (d) in which the seismic reinforcing sections of FIGS. 1 to 3 are arranged in various combinations with respect to the pile pier. 図1とは別の構成の杭式桟橋の耐震構造を概略的に示す要部断面図(a)および要部上面図(b)である。1. It is the principal part sectional drawing (a) and principal part top view (b) which show roughly the earthquake-resistant structure of the pile type pier of a structure different from FIG. 図2とは別の構成の杭式桟橋の耐震構造を概略的に示す要部断面図(a)および要部上面図(b)である。FIG. 3 is a cross-sectional view (a) and a top view (b) of essential parts schematically showing an earthquake-resistant structure of a pile type pier having a configuration different from that of FIG. 2 ;

以下、本発明を実施するための形態について図面を用いて説明する。図1は本発明による第1の実施形態による杭式桟橋の耐震構造を概略的に示す断面図(a)および上面図(b)である。 EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated using drawing. FIG. 1 is a cross-sectional view (a) and a top view (b) schematically showing an earthquake-resistant structure of a pile type pier according to a first embodiment of the present invention.

図1(a)(b)の杭式桟橋の耐震構造は、水底に打設された複数本の基礎杭11と基礎杭11によって支持される上部工12とから構成される既設の杭式桟橋10の両端側に耐震補強部20,30を増設したものである。耐震補強部20,30は、杭式桟橋10の想定される地震動による外力作用方向(図1の水平方向Fおよびその反対の水平方向F’)の両端側における耐震のために設置される。 The earthquake-resistant structure of the pile-type pier shown in FIGS. Seismic reinforcement parts 20 and 30 are additionally provided on both end sides of 10 . The seismic reinforcing sections 20 and 30 are installed for seismic resistance at both ends of the direction in which an external force acts on the pile pier 10 due to an assumed seismic motion (horizontal direction F in FIG. 1 and the opposite horizontal direction F′).

なお、想定される地震動とは、対象構造物である杭式桟橋が対象としている地震による地震動であり、たとえば、一般構造物であればレベル1地震(構造物の供用期間内に1~2度発生する確率をもつ地震)、耐震強化施設であればレベル2地震(現在から将来にわたって当該地点で考えられる最大級の強さをもつ地震)である。 In addition, the assumed seismic motion is the seismic motion caused by the earthquake targeted by the pile type pier, which is the target structure. level 2 earthquakes (earthquakes with the maximum intensity that can be expected at the site from now to the future) if the facilities are for seismic reinforcement.

耐震補強部20は、複数本の基礎杭21と、基礎杭21によって支持される上部工22とを有する。同じく、耐震補強部30は、複数本の基礎杭31と、基礎杭31によって支持される上部工32とを有する。耐震補強部20,30の基礎杭21,31は、鋼管から構成され、杭式桟橋10の鋼管からなる基礎杭11よりも大径および/または厚肉に構成され、耐震補強部20,30は杭式桟橋10よりも剛性が大きくなっている。なお、耐震補強部20,30の剛性を杭式桟橋10の剛性よりも大きくするには、基礎杭の径、肉厚を大きくし杭の剛性を大きくする方法の他に、杭本数を多くする、斜杭構造にする、ジャケット構造にする等の方法があり、いずれの方法によってもよい。また、耐震補強部の構造は重力式としてもよい。 The seismic reinforcement part 20 has a plurality of foundation piles 21 and a superstructure 22 supported by the foundation piles 21 . Similarly, the seismic reinforcement section 30 has a plurality of foundation piles 31 and a superstructure 32 supported by the foundation piles 31 . The foundation piles 21 and 31 of the seismic reinforcement sections 20 and 30 are made of steel pipes, and have a larger diameter and/or thickness than the steel pipe foundation piles 11 of the pile pier 10. The seismic reinforcement sections 20 and 30 are The rigidity is higher than that of the pile type pier 10. - 特許庁In order to make the rigidity of the seismic reinforcing parts 20 and 30 higher than the rigidity of the pile pier 10, the diameter and thickness of the foundation piles may be increased to increase the rigidity of the piles, or the number of piles may be increased. , a slanted pile structure, a jacket structure, etc., and any method may be used. Moreover, the structure of the seismic reinforcement part may be a gravity type.

耐震補強部20は、その上部工22が杭式桟橋10の上部工12に対し、隙間41が介在するように設置される。同様に、耐震補強部30は、その上部工32が杭式桟橋10の上部工12に対し、隙間42が介在するように設置される。このように、耐震補強部20,30は、杭式桟橋10に接近して設置されるが、隙間41,42を介在させることで、杭式桟橋10と一体化されない。 The seismic reinforcement part 20 is installed so that the superstructure 22 of the superstructure 22 of the pile-type pier 10 has a gap 41 interposed therebetween. Similarly, the seismic reinforcement part 30 is installed so that the superstructure 32 of the seismic reinforcement part 30 is provided with a gap 42 with respect to the superstructure 12 of the pile type pier 10 . In this way, the seismic reinforcing sections 20 and 30 are installed close to the pile pier 10, but are not integrated with the pile pier 10 by interposing the gaps 41 and 42 therebetween.

隙間41,42は、次のようにして設定される。すなわち、隙間41,42の最大値は、想定される地震時に杭式桟橋10の上部工12が耐震補強部20,30の上部工22,32に接触した後の杭式桟橋10の最大変位が杭式桟橋10の許容変位以下となるように構造計算により定められる。既設構造物の杭式桟橋10の許容変位は、構造物の構造から決まる場合と、構造物の使用目的から決まる場合がある。また、隙間41,42の最小値は、地震時に耐震補強部20,30の上部工22,32から杭式桟橋10の上部工12へ力が作用しないように耐震補強部20,30の地震時の最大変位以上とする。 The gaps 41 and 42 are set as follows. That is, the maximum value of the gaps 41 and 42 is the maximum displacement of the pile pier 10 after the superstructure 12 of the pile pier 10 comes into contact with the superstructures 22 and 32 of the seismic reinforcements 20 and 30 during an assumed earthquake. It is determined by structural calculation so as to be less than the allowable displacement of the pile type pier 10 . The permissible displacement of the pile type pier 10 of the existing structure may be determined depending on the structure of the structure or depending on the purpose of use of the structure. In addition, the minimum value of the gaps 41 and 42 is set so that the force from the superstructures 22 and 32 of the seismic reinforcements 20 and 30 does not act on the superstructure 12 of the pile pier 10 during an earthquake. the maximum displacement or more.

図1(a)(b)の杭式桟橋の耐震構造による作用効果について説明する。図1(a)(b)の杭式桟橋10が地震時に水平方向Fに変位したとき、耐震補強部20は基礎杭21の剛性が大きいため上部工22の変位が小さく、隙間41は耐震補強部20の地震時の最大変位以上であるので、耐震補強部20の上部工22が杭式桟橋10の上部工12に接触することはなく、耐震補強部20から杭式桟橋10へ力が作用しない。他方、隙間42では、杭式桟橋10の上部工12が耐震補強部30の上部工32に接触するが、その接触によって杭式桟橋10の最大変位が杭式桟橋10の許容変位以下となるので、杭式桟橋10には耐震補強部30による耐震効果が作用することになる。杭式桟橋10が地震時に水平方向F’に変位したときも同様である。 The effect of the earthquake-resistant structure of the pile type pier shown in FIGS. 1(a) and 1(b) will be described. When the pile pier 10 of FIGS. 1(a) and 1(b) is displaced in the horizontal direction F during an earthquake, the displacement of the superstructure 22 is small because the rigidity of the foundation piles 21 of the seismic reinforcement part 20 is large, and the gap 41 is seismically reinforced. Since the displacement of the section 20 is greater than the maximum displacement during an earthquake, the superstructure 22 of the seismic reinforcement section 20 does not come into contact with the superstructure 12 of the pile type pier 10, and force acts on the pile type pier 10 from the seismic reinforcement section 20. do not do. On the other hand, in the gap 42, the superstructure 12 of the pile-type pier 10 contacts the superstructure 32 of the seismic reinforcement section 30, but the contact causes the maximum displacement of the pile-type pier 10 to be less than the allowable displacement of the pile-type pier 10. , the pile-type pier 10 is affected by the seismic effect of the seismic reinforcement portion 30 . The same applies when the pile pier 10 is displaced in the horizontal direction F' during an earthquake.

図1(a)(b)の杭式桟橋の耐震構造によれば、杭式桟橋10と耐震補強部20,30とを一体化せずに杭式桟橋10と耐震補強部20,30との間に隙間41,42を介在させ、耐震補強部20,30は杭式桟橋10よりも剛性が大きいので、地震時に耐震補強部20,30の変位が小さく、耐震補強部20,30の上部工22,32が杭式桟橋10の上部工12を押しつける力が作用せず、このため、杭式桟橋10に地震時に作用する慣性力は耐震補強部20,30を設けても増加しない。一方、杭式桟橋10に隙間41,42を超える変位が生じた場合は、杭式桟橋10が耐震補強部20,30に接触し、耐震補強部20,30に力が伝達され、耐震補強部20,30による補強効果が有効に発揮される。 According to the earthquake-resistant structure of the pile-type pier shown in FIGS. Since the gaps 41 and 42 are interposed between the seismic reinforcements 20 and 30 and the rigidity of the seismic reinforcements 20 and 30 is greater than that of the pile-type pier 10, the displacement of the seismic reinforcements 20 and 30 is small during an earthquake, and the superstructure of the seismic reinforcements 20 and 30 is reduced. The force that presses the superstructure 12 of the pile-type pier 10 does not act on the pile-type pier 10, and therefore the inertial force acting on the pile-type pier 10 during an earthquake does not increase even if the seismic reinforcement parts 20, 30 are provided. On the other hand, when the pile type pier 10 is displaced beyond the gaps 41 and 42, the pile type pier 10 contacts the seismic reinforcements 20 and 30, the force is transmitted to the seismic reinforcements 20 and 30, and the seismic reinforcements The reinforcing effect of 20 and 30 is effectively exhibited.

また、地震時に耐震補強部20,30に作用する慣性力を杭式桟橋10と一体化した場合よりも小さくすることができるため、耐震補強部20,30の上部工22,32を杭式桟橋10の上部工12と一体化する場合よりも小さく構成できる。 In addition, since the inertial force acting on the seismic reinforcements 20 and 30 during an earthquake can be made smaller than when the pile type pier 10 is integrated, the superstructures 22 and 32 of the seismic reinforcements 20 and 30 are replaced by the pile type pier. It can be configured to be smaller than when it is integrated with 10 superstructures 12 .

次に、本発明による第2の実施形態について図2を参照して説明する。図2は、第2の実施形態による杭式桟橋の耐震構造を概略的に示す上面図である。 Next, a second embodiment according to the present invention will be described with reference to FIG. FIG. 2 is a top view schematically showing the earthquake-resistant structure of the pile type pier according to the second embodiment.

図2の杭式桟橋の耐震構造は、図1の既設の杭式桟橋10の一端側に耐震補強部50を増設し、杭式桟橋10の一端側から突き出た荷重伝達のための一対の荷重伝達部51,52を設け、荷重伝達部51,52の間に耐震補強部50を設置し、耐震補強部50の上部工と荷重伝達部51,52との間に隙間43,44を介在させたものである。耐震補強部50は、杭式桟橋10に接近して設置されるが、荷重伝達部51,52との間に隙間43,44を介在させることで、杭式桟橋10と一体化されない。なお、耐震補強部50は、図1の耐震補強部20,30と同様の構成で、基礎杭と、上部工とを有する。耐震補強部50の基礎杭は杭式桟橋10の基礎杭11よりも大径および/または厚肉に構成され、耐震補強部50は杭式桟橋10よりも剛性が大きい構造を有する。 The seismic structure of the pile pier shown in FIG. The transmission parts 51 and 52 are provided, the seismic reinforcement part 50 is installed between the load transmission parts 51 and 52, and the gaps 43 and 44 are interposed between the superstructure of the seismic reinforcement part 50 and the load transmission parts 51 and 52. It is a thing. The seismic reinforcement part 50 is installed close to the pile pier 10 , but is not integrated with the pile pier 10 by interposing gaps 43 and 44 between the load transmission parts 51 and 52 . The seismic reinforcement section 50 has the same configuration as the seismic reinforcement sections 20 and 30 in FIG. 1, and has a foundation pile and a superstructure. The foundation piles of the seismic reinforcement section 50 are configured to have a larger diameter and/or thickness than the foundation piles 11 of the pile pier 10 , and the seismic reinforcement section 50 has a structure with greater rigidity than the pile pier 10 .

図2の隙間43,44は、図1の隙間41,42と同様にして設定される。図2の杭式桟橋10が荷重伝達部51,52とともに地震時に水平方向Gに変位したとき、耐震補強部50の上部工は変位が小さく、隙間43は耐震補強部50の地震時の最大変位以上であるので、耐震補強部50の上部工が荷重伝達部51に接触することがなく、耐震補強部50から杭式桟橋10へ力が作用しない。他方、隙間44では、杭式桟橋10の荷重伝達部52が地震による変位により耐震補強部50の上部工に接触するが、その接触による杭式桟橋10の最大変位が杭式桟橋10の許容変位以下となるので、杭式桟橋10には耐震補強部50による耐震効果が作用することになる。杭式桟橋10が地震時に水平方向G’に変位したときも同様である。 The gaps 43 and 44 in FIG. 2 are set in the same manner as the gaps 41 and 42 in FIG. When the pile pier 10 of FIG. 2 is displaced in the horizontal direction G during an earthquake along with the load transmission sections 51 and 52, the superstructure of the seismic reinforcement section 50 undergoes little displacement, and the gap 43 is the maximum displacement of the seismic reinforcement section 50 during an earthquake. As described above, the superstructure of the seismic reinforcement section 50 does not come into contact with the load transmission section 51 , and no force acts on the pile pier 10 from the seismic reinforcement section 50 . On the other hand, in the gap 44, the load transmission section 52 of the pile pier 10 contacts the superstructure of the seismic reinforcement section 50 due to the displacement caused by the earthquake. Since it becomes as follows, the seismic effect by the seismic reinforcement part 50 acts on the pile type pier 10. As shown in FIG. The same applies when the pile pier 10 is displaced in the horizontal direction G' during an earthquake.

図2の杭式桟橋の耐震構造によれば、杭式桟橋10と耐震補強部50とを一体化せずに杭式桟橋10から突き出た荷重伝達部51,52と耐震補強部50との間に隙間43,44を介在させ、耐震補強部50は杭式桟橋10よりも剛性が大きいので、地震時に耐震補強部50の変位が小さく、耐震補強部50の上部工が杭式桟橋10の荷重伝達部51,52を押しつける力が作用せず、このため、杭式桟橋10に地震時に作用する慣性力は耐震補強部50を設けても増加しない。一方、杭式桟橋10に隙間43,44を超える変位が生じた場合は、杭式桟橋10の荷重伝達部51,52が耐震補強部50に接触し、耐震補強部50に力が伝達され、耐震補強部50による補強効果が有効に発揮される。 According to the earthquake-resistant structure of the pile-type pier of FIG. Since the seismic reinforcement part 50 has greater rigidity than the pile type pier 10, the displacement of the seismic reinforcement part 50 is small during an earthquake, and the superstructure of the seismic reinforcement part 50 can withstand the load of the pile type pier 10. The force that presses the transmission parts 51 and 52 does not act, and therefore the inertial force acting on the pile type pier 10 during an earthquake does not increase even if the seismic reinforcement part 50 is provided. On the other hand, when the pile type pier 10 is displaced beyond the gaps 43 and 44, the load transmission portions 51 and 52 of the pile type pier 10 come into contact with the seismic reinforcement portion 50, and the force is transmitted to the seismic reinforcement portion 50. The reinforcing effect of the seismic reinforcing portion 50 is effectively exhibited.

図2の構成によれば、杭式桟橋10の片側に配置した耐震補強部50により両方向G,G’の地震動に対応可能である。また、図2の構成は、既設構造物である杭式桟橋10の実際の位置や周囲の環境等のために杭式桟橋10の図2の紙面上下端側に図1と同様の構成で耐震補強部を配置できない場合等に適用して好ましい。なお、図2において、荷重伝達部と耐震補強部とを同様の構成で、図2の紙面左端側に配置してもよく、また、左右両端側に配置してもよい。 According to the configuration of FIG. 2, the seismic reinforcement portion 50 arranged on one side of the pile type pier 10 can cope with seismic motions in both directions G and G'. In addition, the structure of FIG. 2 is based on the actual position of the existing pile pier 10 and the surrounding environment. It is preferable to apply it when the reinforcing part cannot be arranged. In FIG. 2, the load transmitting portion and the anti-seismic reinforcement portion may be arranged on the left end side of the paper surface of FIG.

次に、本発明による第3の実施形態について図3を参照して説明する。図3は、第3の実施形態による杭式桟橋の耐震構造を概略的に示す要部上面図(a)(b)である。 Next, a third embodiment according to the present invention will be described with reference to FIG. FIGS. 3A and 3B are top views (a) and (b) of essential parts schematically showing the earthquake-resistant structure of the pile type pier according to the third embodiment.

本実施形態は、杭式桟橋と耐震補強部との間の隙間に緩衝部材を配置したものである。図3(a)の例は、図1の構成において、杭式桟橋10の上部工と耐震補強部20の上部工との間の隙間41に緩衝部材49を配置し、杭式桟橋10が耐震補強部20側へ変位した時の衝突エネルギーを緩衝部材49が吸収するように構成したものである。緩衝部材49としては、ゴム、鉛、発泡スチロール、ポリウレタン、ゴムと金属材料の混合材料等の各種の材料を使用できるが、これらに限定されず、たとえば、各種の防舷材を用いてもよい。なお、図3(a)では、緩衝部材49を二つ設けているが、これに限定されず、単数、三つ、または、それ以上設けてもよい。 In this embodiment, a cushioning member is arranged in the gap between the pile pier and the seismic reinforcement. In the example of FIG. 3(a), in the configuration of FIG. The cushioning member 49 is configured to absorb the collision energy when it is displaced toward the reinforcing portion 20 side. Various materials such as rubber, lead, polystyrene foam, polyurethane, and mixtures of rubber and metal materials can be used as the cushioning member 49, but the material is not limited to these materials. For example, various fenders may be used. Although two buffer members 49 are provided in FIG. 3A, the present invention is not limited to this, and one, three, or more may be provided.

図3(b)の例は、図2の構成において、杭式桟橋10の荷重伝達部51,52と耐震補強部50の上部工との間の隙間43,44に緩衝部材49Aを配置し、杭式桟橋10が耐震補強部50側へ変位した時の衝突エネルギーを緩衝部材49Aが吸収するように構成したものである。なお、図3(b)では、緩衝部材49Aを隙間43,44のそれぞれに一つ設けているが、これに限定されず、隙間43,44のそれぞれに二つ、または、配置方向を荷重伝達部の水平方向または垂直方向にして、それ以上設けてもよい。 In the example of FIG. 3(b), in the configuration of FIG. The buffer member 49A is configured to absorb the collision energy when the pile type pier 10 is displaced toward the seismic reinforcement portion 50 side. In FIG. 3(b), one buffer member 49A is provided for each of the gaps 43 and 44, but this is not a limitation, and two buffer members 49A are provided for each of the gaps 43 and 44. More may be provided in the horizontal or vertical direction of the part.

図3(a)(b)の緩衝部材49,49Aは、耐震補強部20,50側に設け固定したが、杭式桟橋10側に設けてもよい。しかし、緩衝部材49,49Aの設置により杭式桟橋10の重量が増加し、地震時の慣性力が大きくなる場合には、耐震補強部20,50側に設けることが好ましい。また、図3(a)の緩衝部材49を図1の耐震補強部30側の隙間42にも同様に配置することが好ましい。なお、緩衝部材49,49Aは、杭式桟橋または耐震補強部の上部工の上端近傍から下端近傍まで延在するように配置してよいが、分割して配置してもよい。 Although the cushioning members 49 and 49A in FIGS. 3(a) and 3(b) are provided and fixed on the seismic reinforcing portions 20 and 50 side, they may be provided on the pile type pier 10 side. However, if the installation of the cushioning members 49 and 49A increases the weight of the pile pier 10 and increases the inertial force during an earthquake, it is preferable to install the cushioning members 49 and 49A on the side of the seismic reinforcing sections 20 and 50 . Moreover, it is preferable to arrange the cushioning member 49 of FIG. 3A in the gap 42 on the side of the seismic reinforcing portion 30 of FIG. 1 in the same manner. The cushioning members 49 and 49A may be arranged so as to extend from the vicinity of the upper end to the vicinity of the lower end of the superstructure of the pile type pier or the seismic reinforcement section, but they may be arranged separately.

図3(a)(b)の構成によれば、地震時に杭式桟橋が耐震補強部側へ変位した時の衝突エネルギーを緩衝部材49,49Aが吸収することで、地震時に杭式桟橋から耐震補強部に伝達する力が小さくなる。 According to the configuration of FIGS. 3(a) and 3(b), the cushioning members 49 and 49A absorb the collision energy when the pile pier is displaced toward the seismic reinforcement part during an earthquake, so that the pile pier is displaced from the pile pier during an earthquake. Less force is transmitted to the reinforcement.

次に、図2の第2の実施形態の具体例について図4,図5を参照して説明する。図4は、第2の実施形態において杭式桟橋に荷重伝達部を設けた例を示す要部平面図(a)および要部側面図(b)である。図5は、第2の実施形態において耐震補強部に荷重伝達部を設けた例を示す要部平面図(a)および要部側面図(b)である。 Next, a specific example of the second embodiment of FIG. 2 will be described with reference to FIGS. 4 and 5. FIG. 4A and 4B are a plan view (a) and a side view (b) of a main part showing an example in which a load transmission part is provided on a pile type pier in the second embodiment. 5A and 5B are a plan view (a) and a side view (b) of a main part showing an example in which a load transmission part is provided in the seismic reinforcement part in the second embodiment.

図4(a)(b)の例は、杭式桟橋10の上部工12の下側から下方に突き出た基礎杭11の受け部12aの一面12bに、鋼材から構成した荷重伝達部52aをボルトにより取り付け、荷重伝達部52aと耐震補強部50の上部工との間に隙間44を介在させたものである。図2の荷重伝達部51側も同様に構成できる。なお、荷重伝達部52aの鋼材を杭式桟橋10の基礎杭11の受け部12aが鋼材である場合は溶接により取り付けてもよい。 4(a) and 4(b), a load transmitting portion 52a made of steel is bolted onto one surface 12b of a receiving portion 12a of a foundation pile 11 projecting downward from the lower side of the superstructure 12 of the pile type pier 10. A gap 44 is interposed between the load transmitting portion 52a and the superstructure of the seismic reinforcing portion 50. As shown in FIG. The load transmitting portion 51 side of FIG. 2 can be configured similarly. It should be noted that the steel material of the load transmission part 52a may be attached by welding when the receiving part 12a of the foundation pile 11 of the pile pier 10 is made of steel material.

図5(a)(b)の例は、鋼材から構成した荷重伝達部52bを耐震補強部50の上部工にボルトや溶接等により取り付け、杭式桟橋10の上部工12の受け部12aの一面12c近傍まで延在させ、荷重伝達部52bと上部工の下側の一面12cとの間に隙間44を介在させたものである。図2の荷重伝達部51側も同様に構成できる。本例によれば、荷重伝達部を杭式桟橋側に設けることによる重量増加と地震時の慣性力増加の問題がない。なお、荷重伝達部52bの鋼材を耐震補強部50の上部工の下側に埋め込みにより取り付けてもよい。 5(a) and 5(b), a load transmission portion 52b made of steel is attached to the superstructure of the seismic reinforcing portion 50 by bolts, welding, or the like, and one surface of the receiving portion 12a of the superstructure 12 of the pile pier 10 is mounted. 12c, and a gap 44 is interposed between the load transmitting portion 52b and the lower surface 12c of the superstructure. The load transmitting portion 51 side of FIG. 2 can be configured similarly. According to this example, there is no problem of an increase in weight and an increase in inertial force during an earthquake due to the provision of the load transmission section on the side of the pile type pier. The steel material of the load transmission portion 52b may be attached to the lower side of the superstructure of the seismic reinforcement portion 50 by embedding.

次に、第1~第3の実施形態を組み合わせた例について図6を参照して説明する。図6は、図1~図3の耐震補強部を杭式桟橋に対し種々の形態で配置した例(a)~(d)を示す上面図である。 Next, an example in which the first to third embodiments are combined will be described with reference to FIG. 6A to 6D are top views showing examples (a) to (d) in which the seismic reinforcing sections of FIGS. 1 to 3 are arranged in various forms with respect to the pile type pier.

図6(a)の例は、図1の構成に、補強部20,30と同様の構成の新たな耐震補強部61,62を杭式桟橋10の図の紙面上下端側に隙間45,46を介在させて追加し、方向F,その反対方向F’のみならず、方向G,その反対方向G’の地震動に対しても耐震補強を施したものである。なお、方向F,F’と方向G,G’は、互いに直交する水平方向である。 In the example of FIG. 6A, new seismic reinforcements 61 and 62 having the same configuration as the reinforcements 20 and 30 are added to the configuration of FIG. is added to provide seismic reinforcement against seismic motion not only in direction F and its opposite direction F' but also in direction G and its opposite direction G'. The directions F, F' and the directions G, G' are horizontal directions orthogonal to each other.

図6(b)の例は、図2と同様の構成に、耐震補強部20,30と同様の構成の新たな耐震補強部63,64を杭式桟橋10の図の紙面上下端側に隙間47,48を介在させて追加し、方向G,および、その反対方向G’の地震動に対してよりいっそうの耐震補強を施したものである。なお、荷重伝達部53,54は、杭式桟橋10側から耐震補強部65の下方内部に延び、荷重伝達部53,54に取り付けられた緩衝部材49Aに対し耐震補強部65の下方内部で隙間が介在するようになっている。 In the example of FIG. 6(b), new seismic reinforcements 63 and 64 having the same configuration as the seismic reinforcements 20 and 30 are added to the structure similar to that of FIG. 47 and 48 are added to provide further seismic reinforcement against seismic motion in the direction G and in the opposite direction G'. In addition, the load transmission portions 53 and 54 extend from the side of the pile pier 10 to the lower inside of the seismic reinforcement portion 65, and the gap between the cushioning member 49A attached to the load transmission portions 53 and 54 is formed in the lower inside of the seismic reinforcement portion 65. is intervening.

図6(c)の例は、図1の構成に、図2の耐震補強部50と同様の構成の新たな耐震補強部66を、荷重伝達部55,56を用いて図2と同様に構成して追加し、方向F,および、その反対方向F’の地震動に対してよりいっそうの耐震補強を施したものである。 In the example of FIG. 6(c), a new seismic reinforcement section 66 having the same configuration as the seismic reinforcement section 50 of FIG. 2 is added to the configuration of FIG. It was added as a quake, and further seismically reinforced against seismic motions in the direction F and in the opposite direction F'.

図6(d)の例は、図2の構成に、図6(c)の耐震補強部66の構成を追加し、方向G,その反対方向G’のみならず、方向F,その反対方向F’の地震動に対しても耐震補強を施したものである。 In the example of FIG. 6(d), the configuration of the seismic reinforcing part 66 of FIG. 6(c) is added to the configuration of FIG. ' was also reinforced to withstand seismic motion.

なお、図6(a)(b)の隙間45~48には図3(a)のように緩衝部材49を配置してもよく、また、図6(b)~(d)の緩衝部材49Aは省略してもよい。 6A and 6B, buffer members 49 may be arranged as shown in FIG. 3A, and buffer members 49A shown in FIGS. may be omitted.

以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。たとえば、図6(a)~(d)の耐震補強部の組み合わせは、これらに限定されず、他の形態であってもよい。また、図2,図4の荷重伝達部の構成は、これらに限定されず、他の形態であってもよい。また、本実施形態の杭式桟橋は、既設構造物であるが、新設構造物であってもよいことはもちろんである。 Although the embodiments for carrying out the present invention have been described above, the present invention is not limited to these, and various modifications are possible within the scope of the technical idea of the present invention. For example, the combination of seismic reinforcing parts in FIGS. 6(a) to (d) is not limited to these, and other forms may be used. Moreover, the configuration of the load transmitting portion shown in FIGS. 2 and 4 is not limited to these, and other configurations may be employed. Moreover, although the pile type pier of this embodiment is an existing structure, it is needless to say that it may be a new structure.

また、図1,図2の耐震補強部20,30,50の各上部工は、桟橋の一部として利用可能に構成できるが、省略してもよく、この場合、耐震補強部を杭式桟橋と天端高を合わせるように構成する必要がなく、たとえば、水底部に打設した耐震補強部の基礎杭と杭式桟橋の基礎杭との間を同様の構成にすることができる。かかる構成例を図7,図8により説明する。 1 and 2 can be configured to be usable as a part of the pier, they may be omitted. For example, the foundation pile of the seismic reinforcement placed in the bottom of the water and the foundation pile of the pile-type pier can be configured in the same manner. An example of such a configuration will be described with reference to FIGS. 7 and 8. FIG.

図7(a)(b)の杭式桟橋の耐震構造は、図1と同様の基礎杭11と上部工12とから構成される杭式桟橋10に耐震補強部70を設けたものである。耐震補強部70は、基礎杭71と、基礎杭71の天端から水平に基礎杭11に向けて突き出た荷重伝達のための荷重伝達部72とを備え、杭式桟橋10よりも剛性が大きい。荷重伝達部72の先端と杭式桟橋10の基礎杭11との間に隙間73を介在させる。同様の耐震補強部を図7の紙面左端側にも設ける。かかる杭式桟橋の耐震構造により、図1と同様の作用効果を得ることができる。 7(a) and 7(b) is a pile pier 10 composed of foundation piles 11 and superstructures 12 similar to those shown in FIG. The seismic reinforcement part 70 includes a foundation pile 71 and a load transmission part 72 for transmitting a load horizontally protruding from the top of the foundation pile 71 toward the foundation pile 11, and has greater rigidity than the pile type pier 10. . A gap 73 is interposed between the tip of the load transmission part 72 and the foundation pile 11 of the pile type pier 10 . A similar seismic reinforcing portion is also provided on the left end side of the paper surface of FIG. Such an earthquake-resistant structure of the pile type pier can provide the same effect as that of FIG.

図8(a)(b)の杭式桟橋の耐震構造は、図1と同様の基礎杭11と上部工12とから構成される杭式桟橋10に耐震補強部80を設けたものである。耐震補強部80は、基礎杭81と、基礎杭81の天端に溶接により固定されて水平に基礎杭11に向けて突き出た荷重伝達のための一対の荷重伝達部82,83とを備え、杭式桟橋10よりも剛性が大きい。荷重伝達部82,83の先端と杭式桟橋10の基礎杭11との間に隙間84,85を介在させる。かかる杭式桟橋の耐震構造により、図2と同様の作用効果を得ることができる。 8(a) and 8(b), the pile type pier 10 is composed of the same foundation piles 11 and superstructures 12 as in FIG. The seismic reinforcement part 80 includes a foundation pile 81 and a pair of load transmission parts 82 and 83 for load transmission that are fixed to the top of the foundation pile 81 by welding and protrude horizontally toward the foundation pile 11, Rigidity is greater than that of the pile type pier 10. - 特許庁Between the tips of the load transmission parts 82, 83 and the foundation piles 11 of the pile type pier 10, gaps 84, 85 are interposed. Such an earthquake-resistant structure of the pile type pier can provide the same effect as in FIG.

本発明の杭式桟橋の耐震構造および耐震補強方法によれば、杭式桟橋に耐震補強部を設けても地震による慣性力が増加せず、耐震補強部の耐震補強効果が有効に発揮され、既設・新設のいずれであっても杭式桟橋を効果的に耐震化できる。 According to the earthquake-resistant structure and the method of earthquake-resistant reinforcement of a pile-type pier of the present invention, even if the earthquake-resistant reinforcement part is provided in the pile-type pier, the inertial force caused by an earthquake does not increase, and the seismic reinforcement effect of the earthquake-resistant reinforcement part is effectively exhibited. Pile piers, whether existing or new, can be effectively made earthquake-resistant.

10 杭式桟橋
11 基礎杭
12 上部工
20,30,50 耐震補強部
21,31 基礎杭
22,32 上部工
41~48 隙間
49,49A 緩衝部材
51,52,52a,52b 荷重伝達部
53~58 荷重伝達部
61~67 耐震補強部
70,80 耐震補強部
71,81 基礎杭
10 Pile type pier 11 Foundation pile 12 Superstructure 20, 30, 50 Seismic reinforcement section 21, 31 Foundation pile 22, 32 Superstructure 41-48 Gap 49, 49A Buffer member 51, 52, 52a, 52b Load transmission section 53-58 Load transmission parts 61 to 67 Seismic reinforcement parts 70, 80 Seismic reinforcement parts 71, 81 Foundation piles

Claims (9)

杭式桟橋の想定される地震動による外力作用方向の少なくとも両端側における耐震のために第1および第2の耐震補強部を前記杭式桟橋に接近して設け、
前記杭式桟橋と前記第1および第2の耐震補強部とを一体化せず前記杭式桟橋と前記第1の耐震補強部との間に第1の隙間を介在させ、前記杭式桟橋と前記第2の耐震補強部との間に第2の隙間を介在させ、
前記想定される地震時に生じる前記第1および第2の耐震補強部の変位がそれぞれ前記地震時に生じる前記杭式桟橋の変位よりも小さくなるように前記第1および第2の耐震補強部は前記杭式桟橋よりも剛性が大きく構成され、
前記第1の隙間および前記第2の隙間は、前記想定される地震時に、前記杭式桟橋と前記第1および第2の耐震補強部とが前記外力作用方向において同じ方向に変位したとき、前記第1の耐震補強部と前記第2の耐震補強部とのいずれか一方と、前記杭式桟橋とが接触して前記杭式桟橋から前記第1の耐震補強部と前記第2の耐震補強部との接触した一方に力が伝達され、かつ、前記第1の耐震補強部と前記第2の耐震補強部との他方と、前記杭式桟橋とが接触せず、前記第1の耐震補強部と前記第2の耐震補強部との他方から前記杭式桟橋に押しつける力が作用しないように設定される杭式桟橋の耐震構造。
providing first and second seismic reinforcements close to the pile pier for earthquake resistance at least on both end sides in the direction in which an external force acts due to an assumed seismic motion of the pile pier;
The pile type pier and the first and second seismic reinforcement sections are not integrated, but a first gap is interposed between the pile type pier and the first seismic reinforcement section, and the pile type pier is provided. A second gap is interposed between the second seismic reinforcement portion and the second seismic reinforcement portion,
The first and second seismic reinforcements are installed on the piles so that the displacements of the first and second seismic reinforcements that occur during the assumed earthquake are smaller than the displacements of the pile pier that occur during the earthquake. It is configured with greater rigidity than the type pier,
When the pile pier and the first and second seismic reinforcement portions are displaced in the same direction in the direction of action of the external force, the first gap and the second gap are set to the above Either one of the first seismic reinforcement and the second seismic reinforcement is in contact with the pile type pier, and the first seismic reinforcement and the second seismic reinforcement are removed from the pile type pier. force is transmitted to one of the contact with the first seismic reinforcement and the other of the first seismic reinforcement and the second seismic reinforcement is not in contact with the pile pier, the first seismic reinforcement and the second seismic reinforcement portion are set so that the other of the pile type pier is not pressed against the pile type pier.
前記第1の隙間および前記第2の隙間は最小値と最大値との間に設定され、
記最大値を、前記想定される地震時に前記杭式桟橋が前記第1または第2の耐震補強部に接触した後の前記杭式桟橋の最大変位が前記杭式桟橋の許容変位以下となるように定め、
記最小値を、前記地震時に前記第1または第2の耐震補強部から前記杭式桟橋へ力が作用しないように前記第1または第2の耐震補強部の前記地震時の最大変位以上とする請求項1に記載の杭式桟橋の耐震構造。
the first gap and the second gap are set between a minimum value and a maximum value;
The maximum value is defined as the maximum displacement of the pile-type pier after the pile-type pier contacts the first or second seismic reinforcement part during the assumed earthquake, which is equal to or less than the allowable displacement of the pile-type pier. and
The minimum value is equal to or greater than the maximum displacement of the first or second seismic reinforcement during an earthquake so that force does not act on the pile pier from the first or second seismic reinforcement during the earthquake. The earthquake-resistant structure of the pile type pier according to claim 1 .
前記杭式桟橋前記第1および第2の耐震補強部はそれぞれ上部工を備え、
前記第1の隙間および前記第2の隙間を前記上部工間に設ける請求項1または2に記載の杭式桟橋の耐震構造。
The pile type pier and the first and second seismic reinforcement sections each have a superstructure,
An earthquake-resistant structure for a pile type pier according to claim 1 or 2 , wherein the first gap and the second gap are provided between the superstructure.
前記第1の隙間および前記第2の隙間に緩衝部材をそれぞれ配置し、
前記第1の隙間内で前記緩衝部材は前記第1の耐震補強部または前記杭式桟橋に固定され
前記第2の隙間内で前記緩衝部材は前記第2の耐震補強部または前記杭式桟橋に固定される請求項1乃至3のいずれかに記載の杭式桟橋の耐震構造。
arranging buffer members in the first gap and the second gap, respectively ;
The buffer member is fixed to the first seismic reinforcement part or the pile pier within the first gap ,
The earthquake-resistant structure for a pile pier according to any one of claims 1 to 3 , wherein the buffer member is fixed to the second earthquake-resistant reinforcement portion or the pile pier within the second gap .
前記杭式桟橋の想定される地震動による外力作用方向に水平面上で直交する方向の両端側にさらに第3および第4の耐震補強部を前記杭式桟橋に接近して設け、
前記杭式桟橋と前記第3および第4の耐震補強部とを一体化せず、前記杭式桟橋と前記第3の耐震補強部との間に第3の隙間を介在させ、前記杭式桟橋と前記第4の耐震補強部との間に第4の隙間を介在させ、
前記想定される地震時に生じる前記第3および第4の耐震補強部の変位がそれぞれ前記地震時に生じる前記杭式桟橋の変位よりも小さくなるように前記第3および第4の耐震補強部は前記杭式桟橋よりも剛性が大きく構成され、
前記第3の隙間および前記第4の隙間は、前記想定される地震時に、前記杭式桟橋と前記第3および第4の耐震補強部とが前記外力作用方向に水平面上で直交する方向において同じ方向に変位したとき、前記第3の耐震補強部と前記第4の耐震補強部とのいずれか一方と、前記杭式桟橋とが接触して前記杭式桟橋から前記第3の耐震補強部と前記第4の耐震補強部との接触した一方に力が伝達され、かつ、前記第3の耐震補強部と前記第4の耐震補強部との他方と、前記杭式桟橋とが接触せず、前記第3の耐震補強部と前記第4の耐震補強部との他方から前記杭式桟橋に押しつける力が作用しないように設定される請求項1乃至4のいずれかに記載の杭式桟橋の耐震構造。
Third and fourth seismic reinforcements are further provided close to the pile pier on both end sides in a direction perpendicular to the direction of external force acting on the pile pier due to an assumed seismic motion on the horizontal plane,
The pile type pier and the third and fourth seismic reinforcement sections are not integrated, but a third gap is interposed between the pile type pier and the third seismic reinforcement section, and the pile type pier is provided. A fourth gap is interposed between the and the fourth seismic reinforcement part,
The third and fourth seismic reinforcements are installed on the piles so that the displacements of the third and fourth seismic reinforcements that occur during the assumed earthquake are smaller than the displacements of the pile-type pier that occur during the earthquake. It is configured with greater rigidity than the type pier,
The third gap and the fourth gap are the same in the direction perpendicular to the direction of action of the external force on the horizontal plane between the pile type pier and the third and fourth seismic reinforcement parts during the assumed earthquake. direction, one of the third seismic reinforcement and the fourth seismic reinforcement is in contact with the pile pier, and the pile pier is displaced from the third seismic reinforcement. force is transmitted to one contacting the fourth seismic reinforcement, and the other of the third seismic reinforcement and the fourth seismic reinforcement does not contact the pile pier, 5. The seismic resistance of the pile type pier according to any one of claims 1 to 4 , wherein the other of the third seismic reinforcement section and the fourth seismic reinforcement section is set so as not to apply a pressing force to the pile type pier. structure.
杭式桟橋の想定される地震動による外力作用方向に水平面上で直交する方向の一端側に耐震のために耐震補強部を前記杭式桟橋に接近して設け、
前記杭式桟橋と前記耐震補強部とのいずれかに第1の荷重伝達部を設け、
前記杭式桟橋と前記耐震補強部とのいずれかに第2の荷重伝達部を設け、
前記第1の荷重伝達部を設けない部材である前記耐震補強部または前記杭式桟橋と前記第1の荷重伝達部とを一体化せず、前記耐震補強部または前記杭式桟橋と前記第1の荷重伝達部との間に第5の隙間を介在させ、
前記第2の荷重伝達部を設けない部材である前記耐震補強部または前記杭式桟橋と前記第2の荷重伝達部とを一体化せず、前記耐震補強部または前記杭式桟橋と前記第2の荷重伝達部との間に第6の隙間を介在させ、
前記耐震補強部は、前記想定される地震時に生じる前記耐震補強部の変位が前記地震時に生じる前記杭式桟橋の変位よりも小さくなるように前記杭式桟橋よりも剛性が大きく構成され、
前記第5の隙間および前記第6の隙間は、前記想定される地震時に、前記杭式桟橋と前記耐震補強部とが前記外力作用方向において同じ方向に変位したとき、前記第1の荷重伝達部と前記第1の荷重伝達部を設けない部材である前記耐震補強部または前記杭式桟橋とが接触して前記杭式桟橋から前記耐震補強部に力が伝達され、かつ、前記第2の荷重伝達部と前記第2の荷重伝達部を設けない部材である前記耐震補強部または前記杭式桟橋とが接触せず、前記耐震補強部から前記杭式桟橋に押しつける力が作用しないように設定される杭式桟橋の耐震構造。
A seismic reinforcing part is provided close to the pile pier for earthquake resistance on one end side in a direction perpendicular to the direction of external force acting on the pile pier on the horizontal plane, due to the assumed seismic motion,
A first load transmission part is provided in either the pile type pier or the seismic reinforcement part,
A second load transmission part is provided in either the pile type pier or the seismic reinforcement part,
The seismic reinforcement portion or the pile pier and the first load transmission portion, which are members not provided with the first load transmission portion, are not integrated, and the seismic reinforcement portion or the pile pier and the first load transmission portion are not integrated. A fifth gap is interposed between the load transmission part of
The seismic reinforcement section or the pile type pier and the second load transmission section, which are members not provided with the second load transmission section, are not integrated, and the seismic reinforcement section or the pile type pier and the second load transmission section are not integrated. A sixth gap is interposed between the load transmission part of
The seismic reinforcement section is configured to have greater rigidity than the pile type pier so that the displacement of the seismic reinforcement section that occurs during the assumed earthquake is smaller than the displacement of the pile type pier that occurs during the earthquake,
When the pile type pier and the seismic reinforcing section are displaced in the same direction in the direction of action of the external force during the assumed earthquake, the fifth gap and the sixth gap are set to the first load transmission section. and the seismic reinforcement portion or the pile pier, which is a member not provided with the first load transmission portion, contact to transmit force from the pile pier to the seismic reinforcement portion, and the second load It is set so that the transmission part does not come into contact with the seismic reinforcement part or the pile pier, which is a member not provided with the second load transmission part, and the force that presses the pile pier from the seismic reinforcement part does not act. earthquake-resistant structure of pile type pier.
前記第5の隙間および前記第6の隙間にそれぞれ緩衝部材を配置し、
前記第5の隙間内で前記緩衝部材は前記第1の荷重伝達部、または、前記第1の荷重伝達部を設けない部材である前記耐震補強部または前記杭式桟橋に固定され、
前記第6の隙間内で前記緩衝部材は、前記第2の荷重伝達部、または、前記第2の荷重伝達部を設けない部材である前記耐震補強部または前記杭式桟橋に固定される請求項6に記載の杭式桟橋の耐震構造
arranging cushioning members in the fifth gap and the sixth gap, respectively;
In the fifth gap, the cushioning member is fixed to the first load transmission portion, or to the seismic reinforcement portion or the pile pier that is a member without the first load transmission portion,
In the sixth gap, the buffer member is fixed to the second load transmission portion, or to the seismic reinforcing portion or the pile pier which is a member without the second load transmission portion. 6. The earthquake-resistant structure of the pile type pier according to 6 .
前記杭式桟橋の想定される地震動による外力作用方向の一端側に耐震のためにさらに別の耐震補強部を前記杭式桟橋に接近して設け、
前記杭式桟橋と前記別の耐震補強部とのいずれかに第3の荷重伝達部を設け、
前記杭式桟橋と前記別の耐震補強部とのいずれかに第4の荷重伝達部を設け、
前記第3の荷重伝達部を設けない部材である前記別の耐震補強部または前記杭式桟橋と前記第3の荷重伝達部とを一体化せず、前記別の耐震補強部または前記杭式桟橋と前記第3の荷重伝達部との間に第7の隙間を介在させ、
前記第4の荷重伝達部を設けない部材である前記別の耐震補強部または前記杭式桟橋と前記第4の荷重伝達部とを一体化せず、前記別の耐震補強部または前記杭式桟橋と前記第4の荷重伝達部との間に第8の隙間を介在させ、
前記別の耐震補強部は、前記想定される地震時に生じる前記別の耐震補強部の変位が前記地震時に生じる前記杭式桟橋の変位よりも小さくなるように前記杭式桟橋よりも剛性が大きく構成され、
前記第7の隙間および前記第8の隙間は、前記想定される地震時に、前記杭式桟橋と前記別の耐震補強部とが前記外力作用方向に水平面上で直交する方向において同じ方向に変位したとき、前記第3の荷重伝達部と前記第3の荷重伝達部を設けない部材である前記別の耐震補強部または前記杭式桟橋とが接触して前記杭式桟橋から前記別の耐震補強部に力が伝達され、かつ、前記第4の荷重伝達部と前記第4の荷重伝達部を設けない部材である前記耐震補強部または前記杭式桟橋とが接触せず、前記別の耐震補強部から前記杭式桟橋に押しつける力が作用しないように設定される請求項6または7に記載の杭式桟橋の耐震構造
Another seismic reinforcement is provided close to the pile-type pier for earthquake resistance on one end side of the pile-type pier in the direction in which an external force acts due to an assumed seismic motion,
A third load transmission section is provided in either the pile type pier or the separate seismic reinforcement section,
A fourth load transmission section is provided in either the pile type pier or the separate seismic reinforcement section,
The separate seismic reinforcement section or the pile type pier, which is a member not provided with the third load transmission section, is not integrated with the third load transmission section, and the separate seismic reinforcement section or the pile type pier is not integrated. A seventh gap is interposed between the third load transmission portion and the
The separate seismic reinforcement section or the pile type pier, which is a member not provided with the fourth load transmission section, is not integrated with the fourth load transmission section, and the separate seismic reinforcement section or the pile type pier is not integrated. and the fourth load transmission portion intervening an eighth gap,
The separate seismic reinforcement section is configured to have greater rigidity than the pile type pier so that the displacement of the separate seismic reinforcement section that occurs during the assumed earthquake is smaller than the displacement of the pile type pier that occurs during the earthquake. is,
The seventh gap and the eighth gap are displaced in the same direction in the direction orthogonal to the direction of action of the external force on the horizontal plane of the pile type pier and the separate seismic reinforcement part during the assumed earthquake. When the third load transmission part and the other seismic reinforcement part or the pile type pier which is a member not provided with the third load transmission part come into contact with each other, the pile type pier is displaced from the another seismic reinforcement part. and the seismic reinforcement portion or the pile pier, which is a member not provided with the fourth load transmission portion and the fourth load transmission portion, does not contact, and the separate seismic reinforcement portion 8. The earthquake-resistant structure of the pile type pier according to claim 6 or 7, wherein the pile type pier is set so that a force that presses against the pile type pier does not act .
請求項1~8のいずれかに記載の杭式桟橋の耐震構造を用いる杭式桟橋の耐震補強方法であって
前記杭式桟橋は既設構造物であり、
前記既設構造物に前記耐震構造により耐震補強をする杭式桟橋の耐震補強方法。
A seismic reinforcement method for a pile pier using the earthquake-resistant structure for a pile pier according to any one of claims 1 to 8 ,
The pile pier is an existing structure,
A seismic reinforcement method for a pile type pier, in which the existing structure is seismically reinforced by the seismic structure .
JP2018220895A 2018-11-27 2018-11-27 Seismic structure of pile pier and seismic reinforcement method Active JP7121645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018220895A JP7121645B2 (en) 2018-11-27 2018-11-27 Seismic structure of pile pier and seismic reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018220895A JP7121645B2 (en) 2018-11-27 2018-11-27 Seismic structure of pile pier and seismic reinforcement method

Publications (2)

Publication Number Publication Date
JP2020084590A JP2020084590A (en) 2020-06-04
JP7121645B2 true JP7121645B2 (en) 2022-08-18

Family

ID=70909807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018220895A Active JP7121645B2 (en) 2018-11-27 2018-11-27 Seismic structure of pile pier and seismic reinforcement method

Country Status (1)

Country Link
JP (1) JP7121645B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046811A (en) 2007-08-13 2009-03-05 Chugoku Electric Power Co Inc:The Method and gap material for closing gap between members, and pier
KR101095496B1 (en) 2011-07-05 2011-12-19 주식회사 유일종합기술단 Renewal construction method of decrepit open type wharf and gravity type structure of sheet pile a wharf
JP2012002008A (en) 2010-06-18 2012-01-05 Kozo Jiban Kenkyusho:Kk Environmentally considered marine structure and construction method thereof
JP2013047412A (en) 2011-08-29 2013-03-07 Jfe Steel Corp Bridging slab
JP5298836B2 (en) 2008-12-25 2013-09-25 Jfeスチール株式会社 Pier reinforcement structure and reinforcement method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592415A (en) * 1979-01-08 1980-07-12 Mitsubishi Heavy Ind Ltd Earthquake-proof device for loading-unloading pier
JPH1077616A (en) * 1996-09-03 1998-03-24 Kajima Corp Vibration-damping pier
JP2005298836A (en) * 2004-04-06 2005-10-27 Nippon Steel Corp Painted metal strip containing inner wax superior in ironing formability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046811A (en) 2007-08-13 2009-03-05 Chugoku Electric Power Co Inc:The Method and gap material for closing gap between members, and pier
JP5298836B2 (en) 2008-12-25 2013-09-25 Jfeスチール株式会社 Pier reinforcement structure and reinforcement method
JP2012002008A (en) 2010-06-18 2012-01-05 Kozo Jiban Kenkyusho:Kk Environmentally considered marine structure and construction method thereof
KR101095496B1 (en) 2011-07-05 2011-12-19 주식회사 유일종합기술단 Renewal construction method of decrepit open type wharf and gravity type structure of sheet pile a wharf
JP2013047412A (en) 2011-08-29 2013-03-07 Jfe Steel Corp Bridging slab

Also Published As

Publication number Publication date
JP2020084590A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
Yuan et al. Seismic performance of cable-sliding friction bearing system for isolated bridges
KR100635098B1 (en) Girder bridge protection device using sacrifice means
JP5597317B1 (en) Seismic reinforcement structure for bridge piers
Javanmardi et al. Seismic response characteristics of a base isolated cable-stayed bridge under moderate and strong ground motions
Javanmardi et al. Seismic isolation retrofitting solution for an existing steel cable-stayed bridge
JP2017150179A (en) Column beam structure having vibration damping structure
JP4192225B2 (en) Shear panel type vibration control stopper
TWI623674B (en) Support structure
Abbasi et al. Effect of shear keys on seismic response of irregular bridge configurations
JP2019073885A (en) Vibration displacement suppressing structure of structure group
KR101449930B1 (en) Outside type vibration control system for construction
JP7121645B2 (en) Seismic structure of pile pier and seismic reinforcement method
TWI490158B (en) Seismic isolation supporting device in traveling crane
Javanmardi et al. Seismic pounding mitigation of an existing cable-stayed bridge using metallic dampers
JP6275314B1 (en) Seismic reinforcement structure for bridges
JP5475847B2 (en) Seismic isolation device
JP5706952B1 (en) Bridge structure and existing bridge reinforcement method
Javanmardi Seismic Behaviour Investigation of a Cablestayed Bridge with Hybrid Passive Control System
JP2017043988A (en) Vibration control building
Mitoulis et al. Uplift of elastomeric bearings in isolated bridges-A possible mechanism: Effects and remediation
JP2010053527A (en) Structure
JP5769991B2 (en) Concrete filled steel columns
JP2019094630A (en) Column capital displacement restraining structure of building
Romo et al. Design and Performance of Combined Basic Devices to Control Undesirable Bridge Deck Displacements and Damage, During Major Earthquakes
JP2020204356A (en) Base isolation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220805

R150 Certificate of patent or registration of utility model

Ref document number: 7121645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150