JP2016120282A - 放射線治療で用いられる基準放射線画像を決定する方法及び撮影システム - Google Patents

放射線治療で用いられる基準放射線画像を決定する方法及び撮影システム Download PDF

Info

Publication number
JP2016120282A
JP2016120282A JP2015248282A JP2015248282A JP2016120282A JP 2016120282 A JP2016120282 A JP 2016120282A JP 2015248282 A JP2015248282 A JP 2015248282A JP 2015248282 A JP2015248282 A JP 2015248282A JP 2016120282 A JP2016120282 A JP 2016120282A
Authority
JP
Japan
Prior art keywords
image
cbct
radiation
radiographic
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015248282A
Other languages
English (en)
Inventor
ダヴィド ウィクラー,
Wikler David
ダヴィド ウィクラー,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ion Beam Applications SA
Original Assignee
Ion Beam Applications SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ion Beam Applications SA filed Critical Ion Beam Applications SA
Publication of JP2016120282A publication Critical patent/JP2016120282A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4064Arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
    • A61B6/4085Cone-beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/488Diagnostic techniques involving pre-scan acquisition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5288Devices using data or image processing specially adapted for radiation diagnosis involving retrospective matching to a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1037Treatment planning systems taking into account the movement of the target, e.g. 4D-image based planning

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radiation-Therapy Devices (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

【課題】リスク臓器への照射を回避し、かつ必要な照射線量の放射線を腫瘍へ照射するため、治療中の患者の組織の動きや位置を予測する方法を提供する。
【解決手段】撮影システム100は、種々の時間相に対応する複数のCBCT画像を形成できる4D−CBCT装置と、放射線画像を形成することができる放射線画像装置と、放射線画像装置により形成された放射線画像を4D−CBCT装置により形成したCBCT画像と相関付ける同期装置80とを備え、基準放射線画像を同定する。
【選択図】図1

Description

[0001]
第1の概念によれば、本発明は方法に関する。第2の概念によれば、本発明は撮影システムに関する。
[0002]
放射線治療において、例えば腫瘍やリスク臓器(OAR)の動きのような治療中における患者の組織の動きを予測する方法が望まれている。リスク臓器への照射を回避するため及び/又は必要な照射線量の放射線を腫瘍へ照射するため、治療中の患者の組織の動きや位置を予測することは特に必要である。
[0003]
治療中における組織の動きを予測する技術が開発されている。当業者に知られているように、4次元コンピュータ断層撮影(4D−CT)は、種々のCT画像を種々の時間で撮影することができる。時間は4次元、つまり形容詞で「Four-Dimensional」を表す。種々のCT画像から、時間に従う組織の動きを推定することができる。このような動きは、例えば患者の呼吸から生じる。これらの変位を知ることにより、組織の動きを考慮した治療計画をたてることができる。時間4D−CT中に発生する動きは実際の治療中にも発生し同一であると推定される。しかしながら、一般的に4D−CTは治療の十分前に撮影され、典型的には1〜2週間前に撮影される。つまり、4D−CTは治療中の組織の動きを正確に表すことはできない。例えば、4D−CTが撮影された時間と治療中の時間との間に、腫瘍の幾何学的形態(例えば、位置、形状又は大きさ)が変化し及び/又は患者の呼吸サイクルが変化する可能性がある。
[0004]
4次元コーンビームコンピュータ断層撮影(4D−CBCT)は、当業者により知られている別の技術である。4D−CBCT装置の放射源と検出器をアイソセンタの周囲の種々の角度位置に配置し、種々のCTスキャン又はCT投影が行われ又は収集される収集時間を記録又は計算することにより、アイソセンタに位置決めされた患者の部分の3D画像(4D−CBCT画像と称する)を種々の時間で再構成することができる。しかしながら、4D−CBCT画像の品質は4D−CT画像の品質よりも劣っている。特に、4D−CBCTは治療室にインストールすることができる。つまり、4D−CBCT画像は、治療の直前に治療中に、患者が位置決めされるアイソセンタの周囲から撮影することができる。これは、一般的に4D−CT手法を用いる場合可能ではない。4D−CTの精度及び品質を維持するため、一般的には4D−CBCTを用いて4D−CT画像が再スケールされる。例えば、腫瘍が呼吸サイクル中の閉経路に追従することが4D−CTから決定される場合、ベースラインのシフトは4D−CBCTから決定される。このベースラインシフトは、一般的に、4D−CT画像で観察される閉経路と4D−CBCT画像で観察される閉経路との空間シフト及びこれら閉経路間の振幅変化を含む。このベースラインシフトを知ることにより、患者の位置補正を行うことができ、及び/又は4D−CT画像に基づく治療計画を更新することができる。
[0005]
一般的に、4D−CBCTは治療中に行うことはできない。実際に、種々の角度位置に位置決めするために必要な放射源及び検出器は、治療に用いられるノズルを支持するガントリーに取り付けられている。放射線治療ビームを供給する際、治療ヘッド(例えば、ノズル)は、4D−CBCTで必要とされる種々の角度位置に位置決めすることができない。従って、4D−CBCTは、治療中に患者の組織をモニタするために用いることができない。換言すれば、4D−CBCTは、組織の直接的な追跡のために用いることができない。しかしながら、治療中に組織に関する情報を知ることが望まれており、例えばリスク臓器への照射を回避しつつ腫瘍へ正確に照射するため治療ビームを照射する時間を知ることが望まれている。4D−CT及び4D−CBCTだけを用いる場合、同一の規則的で、周期的な呼吸の動きが時間4D−CBCTにあるものと推定し、治療時間は一般的に設定される。これは、治療中における患者の組織の位置を決定する際の精度の問題を誘発する限定要因となる。従って、治療中に患者の組織の位置を追跡する直接的な方法を実現することが望まれている。
[0006]
埋め込まれた基準マーカを用いる直接腫瘍追跡方法が当業者にとって既知であり、例えば「4次元治療計画及び動く腫瘍の透視撮影リアルタイム腫瘍追跡放射線画像」Shirota H 等著 Int J RaditOncol Biol Phys. 2000 Sep 1 ,48(2), 435-42 参照。この方法は以下の欠点を有する。患者は、埋め込みによる感染症のリスクや気胸のリスクと直面する。埋め込みマーカは患者の身体中で容易に移動する可能性がある。基準マーカは、粒子線治療の治療ビームと干渉する可能性がある。特に、一連の粒子ビーム(例えば、陽子ビーム)は、基準マーカを透過すると変成するおそれがある。従って、埋め込まれたマーカに反応しない追跡方法が望まれている。
[0007]
埋め込みマーカを用いない技術も報告されており、例えば、Int J RaditOncol Biol Phys.,Vol 82, No5, pp e749-756, 2012に公開されたYin Yang 等の文献を参照されたい。治療中、例えば透視により放射線画像が種々の時間で撮影される。患者の組織をモニタするため、治療中に撮影された放射線画像は再構成シミュレーション画像(DRR)である基準放射線画像と比較される。各DRRは、一般的に所定の時間又は例えば呼吸相のような所定の時間相と相関し又は関連する。治療中に撮影された放射線画像がDRRと整合する場合、患者の組織の位置は、選択されたDRRの所定の時間相に対応する患者の組織の位置に対応するものと決定される。別の観点によれば、治療中に撮影された放射線画像がDRRと整合する場合、この放射線画像は当該DRRと関連する時間相と等価な時間相により特徴付けられていると決定される。
[0008]
所定の時間相(又は、所定の時間)に対応するDRR画像、CBCT画像又はCT画像を形成することは、4D−CBCT技術又は4D−CT技術により発生した種々の画像から選択される。続いて、このCBCT画像又はCT画像は、平坦面上に数値的に投影される。この操作を種々の時間相について行うことにより、対応する種々のDRRが構築される。
[0009]
DRRを用いる組織追跡又は時間相追跡は、いくつかの欠点を有する。第1に、種々のDRRを構築する必要があることである。これは、複雑な数学的処理を用いる必要がある。また、相当な時間がかかると共に、多くのコンピュータリソースを必要とする。第2に、治療中に撮影した放射線画像とDRRとの間の比較処理に起因する精度が著しく低いことである。これは、主としてDRRの品質が低いことに起因する。この理由は、DRRは、3D画像を平面上へ投影する数値操作により形成されるためである。一般的なように、DRRがCBCT画像の投影により形成される場合、その品質は依然として低いものである。実際には、(4D)−CBCT装置の放射源及び検出器を支持するガントリーに起因して、CBCT画像はしばしば不鮮明になる。
[0010]
従って、例えば組織追跡又は時間追跡において治療の後半で用いられるDRR以外の基準放射線画像を決定する方法を提供する必要性が存在する。特に、治療中に撮影された放射線画像との比較結果を提示すると共に一層精密な基準放射線画像を形成することが望まれている。
[0011]
本発明の第1の概念によれば、本発明の目的は、放射線治療の治療中に用いられる基準放射線画像を決定する方法を提供することであり、基準放射線画像と治療中に撮影された放射線画像との比較結果について一層良好な精度を得ることにある。この目的を達成するため、本発明者は、
(i) 患者の周囲の種々の角度位置に位置決めされる放射源及び検出器を備え、種々の時間に対応する複数のCBCT画像を形成する4次元コーンビームコンピュータ断層撮影装置(4D−CBCT)を用意する工程と、
(ii) 放射源及び放射線検出器を備え、種々の時間に対応する一連の放射線画像を撮影するように構成した放射線画像装置を用意する工程と、
(iii) 患者を位置決めするように構成した位置決め手段を用意し、前記4D−CBCT装置を用いて患者のCBCT画像を形成し、前記放射線画像装置を用いて患者の放射線画像を形成する工程と、
(iv) 前記4D−CBCT装置を用いて4D−CBCTスキャンを実行して、患者の身体の一部の複数のCBCT画像であって、患者と関連する種々の時間相に対応するCBCT画像を形成する工程とを備える方法において、
(v) 前記放射線画像装置を用いて放射線画像シーケンスを行って、前記患者と関連する種々の時間相に対応する複数の放射線画像を撮影する工程と、
(vi) 所定の時間相に対応するCBCT画像を等価な時間相に対応する放射線画像と相関させるように構成した同期装置を用意する工程と、
(vii) 前記同期装置を用いて、工程(v)で得た放射線画像と、工程(iv)で得られたCBCT画像であって、指定した時間相に対応する指定されたCBCT画像とを相関させる工程と、
(viii) 工程(vii)で得られ、相関付けられた放射線画像を基準放射線画像として同定する工程とを含むことを特徴とする方法を提案する。
[0012]
従って、本発明者は、基準放射線画像を実験的に決定することを提案し、放射線画像をCBCT画像と相関又はリンクさせて基準画像を決定することを提案する。よって、基準放射線画像と治療中に撮影された放射線画像との間の比較結果について一層良好な精度を得ることができる。実際には、比較は、同様なタイプの画像間で行われ、本発明の方法によれば、基準放射線画像は実験により得られた画像となる。特に、本発明の方法によって基準放射線画像を形成する場合、3D画像を平面上に投影する多数の操作のような多数の操作に起因する情報の喪失は生じない。基準画像は一層精細であり、治療中に撮影された放射線画像と近似している。最終的に、基準放射線画像と治療中に撮影された放射線画像との間の比較結果について一層高い精度を得ることができる。好ましくは、放射線画像シーケンス中に撮影した放射線画像は、治療中に用いられる放射線画像装置と同一の装置であって、種々の放射線画像を形成ために用いられる放射線画像装置により形成する。
[0013]
本発明による方法を用いれば、平面上への(CB)CT画像の多数の投影作業は、不要になる。従って、一層簡単化される。また、リソースの消費がほとんど不要になる。従って、本発明の方法は一層有効である。
[0014]
本発明の方法は他の利点も有する。本発明の方法を用いることにより、4D−CBCTが行われる時間と治療の時間との間において、同一の規則的で、周期的な呼吸運動が行われるとする推定は不要になる。さらに、本発明の方法によれば、基準マーカを用いることなく、患者の組織を追跡する方法又は治療におけるゲート時間を追跡する方法を実施することができる。好ましくは、放射線画像装置の透視軸を1本だけ用いて、1つ又はそれ以上の放射線画像と比較される放射線画像を治療中に形成する。3D情報はCBCT画像及びCT画像中に含まれるので、透視軸を1本だけの場合も可能である。特に、放射線画像装置の2本の透視軸は、基準放射線画像及び治療中の放射線画像を形成するために不要である。結果として、治療直前の基準放射線画像の形成中及び治療中の放射線画像の形成中に患者が受ける照射線量を低減することができる。
[0015]
好ましくは、基準放射線画像は、治療中に患者の組織を追跡するために基準放射線画像と比較される放射線画像を形成するために治療中に用いられる装置と同一の実験的装置(特に、同一の放射線画像装置を用いて)を用いて形成する。
[0016]
当業者に既知のように、放射線治療の例は、X線治療(陽子を用いる治療)及び粒子線治療(陽子又は炭素イオンのようなエネルギー性イオン粒子を用いる治療)である。
[0017]
本発明の方法は、外科的方法ではなく又は治療的な方法でもない。特に、本発明の方法は、治療的な効果を有していない。実際に、4D−CBCT装置により堆積する最大照射線量は、一般的に1cGy〜5cGyの範囲で変化する。放射線画像装置によって行われる1回の放射線画像撮影中に堆積する照射線量は、一般的数100μGy程度である。
[0018]
同期装置により、所定の時間相に対応するCBCT画像を等価的(好ましくは、同一の)時間相に対応する放射線画像と相関付けことができる。時間は、放射線画像装置により形成される放射線画像と関連する。後者の場合、この時間は、例えば収集時間を示す。CBCT画像と関連する時間より、関連する時間相を規定することができる。一般的、時間相は、下限及び上限を有する時間期間に対応する。放射線画像と関連する時間より、関連する時間相を規定することができる。その後、2つの時間相は比較される。等価な時間相とは、放射線画像を指定したCBCT画像と関連付け際に2つの時間相が正確に同一である必要がないことを意味し、たとえ好適実施例の場合でも、相関付けされた放射線画像は指定したCBCT画像と同一の時間相であるとする。例えば、時間相の下限及び上限が10%の範囲で同一の場合、好適には5%の範囲で同一の場合、当該時間相は別の時間と均等であると判断することができる。器官や腫瘍のサイクリックな運動のようなサイクリック関数、例えば呼吸サイクルを処理する場合、均等である2つ異なる時間相を有することができる。実際に、時間相がサイクリック関数の場合、時間周期Tを有する。2つの異なる時間相は、時間周期Tの倍数だけ離間している場合、これら時間相は均等とする。
[0019]
ステップ(iv)において、複数のCBCT画像は、例えば複数のCBCTスキャンないし複数のCBCT投影に適用される種々の操作から形成される。このような操作は、当業者にとって知られている。好ましくは、CT画像(3D画像)は、ステップ(iv)の各時間相と関連する。ステップ(vii)の相関付けされた放射線画像は、指定したCBCT画像と同一の時間相又は等価な時間相を有する。
[0020]
ステップ(v)の放射線画像シーケンスは、ステップ(iv)の4D−CBCTスキャンシーケンスのすなわち一部(時間)の期間中に行う。この好適実施例では、発明者は、治療の直前に、放射線画像シーケンスを4D−CBCTスキャンシーケンスと同時に行うことを提案する。この場合、DRRのような複数の基準放射線画像を作成する追加の時間が不要になる。従って、本発明の方法は一層有効である。別のとり得る実施例では、放射線画像シーケンスと4D−CBCTスキャンシーケンスとを順次行う。
[0021]
ステップ(iv)及び(v)の種々の時間相は呼吸サイクルの呼吸相に対応する。好ましくは、呼吸サイクルは患者の呼吸サイクルとする。呼吸相は呼吸サイクルの呼吸部分と称する。
[0022]
好ましくは、ステップ(iv)のCBCT画像の各々は、CT装置により前もって撮影したCT画像に対応する。すなわち、この場合、各CBCT画像はCT画像と対応するので、両方の画像は同一又は均等の時間相に対応し、例えば同一又は等価な呼吸相に対応する。
[0023]
好ましくは、工程(vii)において、工程(v)において得られた複数の放射線画像は複数の指定されたCBCT画像と相関付けられ、前記工程(viii)において複数の基準放射線画像が同定され、複数の基準放射線画像の各々は所定の指定された時間相に対応する。
[0024]
好ましくは、10個又はそれ以上(例えば、11、12、13、14、15)の種々の時間相に対応する10個又はそれ以上(例えば、11、12、13、14、15)のCBCT画像は、工程(iv)の4D−CBCTスキャンから形成される。
[0025]
好ましくは、少なくとも10個の時間相に対応する少なくとも10個の放射線画像は、工程(iv)の放射線画像シーケンスから形成され、少なくとも10個の放射線画像が決定される。例えば、11、12、13、14、又は15個の放射線画像は、工程(v)のの放射線画像シーケンスから形成され、11、12、13、14、又は15個の基準放射線画像が決定される。
[0026]
本発明者は、放射線治療において、患者の組織の位置を治療中に決定する方法であって、
A.上記の提案された方法により決定された基準放射線画像を用意する工程と、
B.放射源及び放射線検出器を備える放射線画像装置を用意する工程と、
C.患者の身体の目標物を、工程(B)の放射線画像装置の放射源と放射線検出器との間に位置決めする工程と、
D.工程(B)の放射線画像装置を用いて、患者の身体の目標物の放射線画像を形成する工程と、
E.工程(D)で形成された放射線画像を工程(A)の基準放射線画像と比較する工程と、
F.工程(D)の放射線画像が工程(A)の基準画像と十分に近似している場合、基準放射線画像と相関するCBCT画像から、工程(D)の期間に患者の組織の位置を決定する工程とを備える方法を提供する。
好ましくは、工程(B)の放射線画像装置は、1つ又はそれ以上の放射線画像を決定するために用いた放射線画像装置と同一のものとする。
[0027]
また、本発明者は、放射線治療において、治療ビームを患者に送出する時間の決定を補助する方法であって、
A.治療ビームを送出することが希望されている所定の時間相に対応し、本発明の第1の概念による方法により決定された基準放射線画像を用意する工程と、
B.放射源及び検出器を備え、治療中に患者を撮影するように構成された放射線画像装置を用意する工程と、
C.患者の身体の目標物を治療位置に位置決めする工程と、
D.工程Bの放射線画像装置を用いて、患者の身体の目標物の放射線画像を形成する工程と、
E.工程Dの放射線画像を工程Aの基準放射線画像と比較する工程と、
F.工程Dの放射線画像が工程Aの基準放射線画像と十分に近似している場合、治療ビームを患者に送出することを決定する工程を含む方法を提案する。
好ましくは、工程(B)の放射線画像装置は、1つ又はそれ以上の放射線画像を決定するために用いた放射線画像装置と同一のものとする。
[0028]
患者の種々の呼吸相は例えば肺活量計により決定することができる。
[0029]
好ましくは、工程(iv)の4D−CBCTスキャンシーケンスの期間は、4つの呼吸サイクルと8つの呼吸サイクルとの間に設定する。呼吸サイクルは、一般的に1つの呼吸相と1つの呼吸停止相とを含むものとして規定される。尚、呼吸について他の規定方法を用いることも可能である。
[0030]
好ましくは、工程(iv)の4D−CBCTスキャンシーケンスの期間は、1分と3分との間に設定する。
[0031]
好ましくは、工程(v)の放射線画像シーケンスの期間は、1つの呼吸サイクルと2つの呼吸サイクルとの間に設定する。
[0032]
好ましくは、工程(v)の放射線画像シーケンスの期間は、15秒と1分との間に設定する。
[0033]
第2の概念によれば、本発明は、放射線治療に用いられる基準放射線画像を同定する撮影システムであって、
(i) 患者の周囲の種々の角度位置に位置決めされることができる放射源及び検出器を備え、種々の時間に対応する複数のCBCT画像を形成できる4D−CBCT装置と、
(ii) 放射源及び放射線検出器を備え、種々の時間相に対応した一連の放射線画像を形成する放射線画像装置と、
(iii) 所定の時間相に対応するCBCT画像を等価な時間相に対応する放射線画像に相関付ける同期装置とを備え、
前記相関付けされた放射線画像を基準放射線画像と同定する撮影システムに関する。
前述した本発明の方法の利点は、撮影システムにも適用される。本発明の方法について述べた種々の実施例は、撮影システムにも適用される。
[0034]
好ましくは、4D−CBCT装置を用いて形成されたCBCT画像は3次元画像とし、放射線画像装置を用いて形成された放射線画像は2次元画像とする。
[0035]
好ましくは、同期装置は、4D−CBCT装置により形成されたCBCT画像と関連する時間相として等価な(好ましくは、同一)時間相に対応する放射線画像を形成する放射線画像シーケンスを実行する放射線画像装置を制御する制御手段(例えば、コントローラ、マイクロコントローラ、又は他の形式のコントローラ)を有し、基準放射線画像を決定できる。好ましくは、制御手段は、4D−CBCT装置により形成されたCBCT画像と関連する時間相として等価な(好ましくは、同一)時間相に対応する放射線画像を形成する放射線画像シーケンスを実行する放射線画像装置を制御するようにプログラムする。
[0036]
好ましくは、前記制御手段は、放射線画像を形成する4D−CBCT装置の4D−CBCTスキャンシーケンスの少なくとも一部の期間中に放射線画像シーケンスを実行するように放射線画像装置を制御して放射線画像を形成することができる。
[0037]
好ましくは、同期装置は、CBCT画像の時間相を決定することができる。
[0038]
添付図面に基づいて本発明の概念を詳細に説明する。
図1は、本発明による撮影システムの一例を示す図である。 図2は、呼吸サイクルの一例を示す図である。 図3は、放射線治療において治療前に行われる例示的ステップを示す図である。
図面はスケール通りに又は比率にそって図示されていない。図面に関して、同様な又は同一の構成要素には同一符号を付する。
[0039]
図1は本発明による撮影システム100の一例を示す。この撮影システムは、4次元コーンビームコンピュータ断層撮影装置(4D−CBCT)を備える。この4D−CBCT装置は、患者6の周囲の種々の角度位置51に位置決めされた放射源11及び検出器12を備える。一例として、放射源11として最大150kVのX線管を用いることができ、検出器12としてフラットパネルデジタル放射線検出器(aSiとCslのシンチレータ)を用いることができる。勿論、他の形式の放射源11及び検出器12を用いることができる。患者6は、一般的に所謂アイソセンタ50に位置する。このCBCT装置は、好ましくはX線を用いてCBCT画像15を形成するX線CBCT装置とする。放射源11は、X線源とし、検出器12はX線検出器とする。勿論、他の形式のCBCT装置を用いることができる。
[0040]
好ましくは、4D−CBCT装置の放射源11及び検出器12は、例えばアーム19の中間部によりノズル70上に装着する。好ましくは、ノズル70は、例えば粒子線治療のような放射線治療に用いられる装置の一部とする。当業者にとって既知のように、ノズル70は、患者6の一部に向けて放射線ビームを送出すると共に投射するために用いられる。好ましくは、ノズル70は、アイソセンタ50の周囲の種々の角度位置にノズル70を位置決めするための補助を行うガントリー75上に取り付ける。4D−CBCT装置の放射源11及び検出器12をノズル70に結合する場合、ガントリー75に沿う種々の角度位置51にノズル70を位置決めすることにより、これら放射源及び検出器は種々の角度位置に配置することができる。図1に関して、4D−CBCT装置の放射源11及び検出器12の種々の角度位置51は紙面内とする。
[0041]
当業者にとって既知のように、4D−CBCT装置によりCBCT画像を種々時間で又は種々の時間相で形成することができる。放射源11及び検出器12をアイソセンタ50の周囲の種々の角度位置に位置決し、4D−CBCT装置を用いて種々の角度位置で種々のCTスキャン13が撮影された時間を記録することにより、アイソセンタ50に位置決めされた患者の一部分の3D画像(4D−CBCT画像と称する)を再構成することができる。位置決め手段71により患者をアイソセンタ50に位置決めする。当業者にとって知られているように、位置決め手段71として種々の実施例が可能である。第1の実施例によれば、位置決め手段71はテーブルを有し、そのテーブルの上に患者6が位置する。好ましくは、このテーブルは移動することができ、例えば回転でき及び/又は垂直方向に並進移動することができる。位置決め手段71について、これ以外の他の実施例も可能である。
[0042]
この4D−CBCT装置10は、種々の時間相(temporal phase)に対応する複数のCBCT画像15を発生することができる。時間相は、例えば患者6の呼吸サイクルの時間相とする。時間相は、患者6の他の生理学的な相(phase)を表すことができる。例えば、時間相は、患者6の心臓の種々の位置のような患者6の器官の時間的な種々の位置に対応する時間相を表すことができる。
[0043]
4D−CBCT装置に加えて、撮影装置100は患者6の放射線画像25を形成する別の放射線画像装置も備える。この放射線画像装置は、放射線源21及び放射線検出器22を備える。好ましくは、この放射線画像装置は、当業者にとって既知の透視画像撮影を行うことができる。放射線源21は好ましくはX線源とし、放射線検出器22は好ましくはX線検出器とする。市販のX線検出器22の例は、Varian 4030CB、4040D、Thales Pixium 4343RF、及びPerkin Elmer XRD 1621である。例示的な構成として、放射線源21と放射線検出器22との間の放射線画像軸23は、図1の紙面の外側に位置する。この場合、放射線軸23と図1の紙面との間の角度は、好ましくは45°とする。別の実施例として、放射線軸23は、図1の紙面内に位置することができる。
[0044]
この放射線画像装置は、1つ以上の放射線源21と1つ以上の放射線検出器22を備えることができる。例えば、放射線画像装置20は2つの放射線画像撮影対を備え、各対は放射線源21と放射線検出器22をそれぞれ備える。この場合、2つの放射線画像撮影対の放射線画像軸23は、好ましくは45°と75°との間に含まれる角度に位置決めされ、より好ましくは60°の角度とする。2つの検出器を用いる別の実施例では、放射線画像軸23は、2つの直交画像対を形成するように構成する。放射線画像装置を用いれば、患者6の身体の一部の2次元画像を得ることができる。放射線画像装置は、一連の画像を時間の関数として撮影するように、つまり種々の時間相に対応する一連の放射線画像を発生するように構成する。このように構成することにより、種々の時間瞬時で2次元画像を得ることができ、例えば患者6の呼吸サイクルの種々の時間相のような周期関数の種々の時間相で2次元画像を得ることができる。従って、放射線画像装置は、例えば透視画像撮影装置とする。
[0045]
4D−CBCTの測定パラメータの例は以下の通りである。尚、これらは例示したものである(本発明は、これらの実験的なパラメータに限定されない)。CBCT装置の放射源11及び検出器12は、以下の回転速度で回転する:0.5又は1rpm。例えば、回転中に600〜900枚の投影(すなわち、CBCTスキャン13)を得ることができる。
[0046]
撮影装置100は同期装置80も備える。同期装置を備えることにより、1つ又はそれ以上のCBCT画像15を、上述した放射線画像装置を用いて撮影した一連の放射線画像の1又はそれ以上の放射線画像25と相関付けることができる。この場合、所定の時間相で得た放射線画像25を、同一の又は等価な時間相で得たCBCT画像15と相関させることができる。前述したように、時間相は、例えば患者6の呼吸サイクル90の時間相とすることができる。このような相関を得るため、同期装置80の種々の実施例が可能である。例えば、同期装置80は、治療計画システムに含まれるコンピュータユニットとすることができる。別の実施例として、同期装置80は独立したコンピュータとし、又は4D−CBCT装置や放射線画像装置と連携することができる独立した計算モジュールとする。同期装置80は、4D−CBCT装置又は放射線画像装置の1つの構成要素とすることができる。
[0047]
放射線画像装置を用いて得た放射線画像25は、4D−CBCT装置を用いて得た複数のCBCT画像15の指定したCBCT画像15と相関させることができる。指定されCBCT画像15は、指定した時間相に対応する。この指定されたCBCT画像15は、例えば目標物が安全に照射される位置に位置することが観察される画像とすることができる。相関付けされた放射線画像は基準放射線画像35として同定することができる。基準放射線画像35は、その後の治療相で用いることができ、治療中に撮影された放射線画像と比較される。基準放射線画像35との比較に基づき、治療ビームを目標物に送出できるか否かが決定される。基準放射線画像35と治療中に撮影した実際の画像との間の比較に基づき、例えば治療ビームを制御するゲート信号を決定することができる。別の実施例として、複数のCBCT画像15から複数の画像を指定して、照射の際に目標物を良好に位置決めすることができる。その後、放射線画像を用いて得た種々の放射線画像25を指定されたCBCT15と相関付けて、複数の基準画像35を得ることができる。この場合、治療中に得た1つの(又は複数の)放射線画像25を複数の基準画像35と相関付け、治療ビームを患者6に送るべきか否かを決定することができる。
[0048]
とり得る実施例によれば、同期装置80はクロックを備える。この場合、CBCTスキャン13から再構成されたCBCT画像15及び放射線画像装置から発生した放射線画像25に時間情報が含まれる。例えば、時間相をCBCT画像15及び放射線画像25に割り当てることができる。その後、放射線画像が同一又は同様な時間相を有する場合、放射線画像25をCBCT画像15にリンクさせ又は相関付けする。
[0049]
別のとり得る実施例によれば、同期装置80は、CBCT画像15を分析して時間相と関係付けることができる。これは、時間相が呼吸サイクルの呼吸相を示す場合に有効である。実際には、時間にそって形成された種々のCBCT画像15を分析することにより、CBCT画像を呼吸サイクルの呼吸相と関係付けることができる。この場合、同期装置80は、放射線画像25を分析し、放射線画像を時間相と関連付けることもできる。これは、時間相が呼吸サイクルの呼吸相を示す場合に有効である。CBCT画像15に関し、時間にそって撮影した種々の放射線画像25を分析することにより、これら放射線画像の各画像を呼吸サイクルの呼吸相と関連付けることができる。CBCT画像15及び放射線画像25の時間相を知ることにより、同一の又は同様な時間相を有するCBCT画像15と放射線画像25とをリンク又は相関させることができる。
[0050]
別のとり得る実施例によれば、同期装置80はクロックを有すると共に患者6の呼吸をモニタする手段(例えば、肺活量計)を備える。この場合、CBCTスキャン13が行われた時間を記録することにより、再構成されたCBCT画像15を呼吸相と関連付けることができる。放射線画像25が撮影された時間を記録することにより、各放射線画像25を呼吸相と関連付けることができる。最後に、同期装置は、同一の呼吸相を有するCBCT画像15と放射線画像25を同期させ又は相関させることができる。
[0051]
CBCT画像15に関して、信号処理を用いて各CBCT画像に対して時間相を決定し、放射線画像25に関して、肺活量計のような装置を用いて各放射線画像に呼吸相を関連付けることができる。この逆のことも可能である。
[0052]
図2は呼吸サイクル90の一例を示し、胸のような患者6のポイントは時間にそって周期的な運動を続ける。例えば、図2の縦軸は患者のポイントの垂直方向の座標を示す。図2の横軸は時間である。この呼吸サイクル90は時間周期Tを有する。時間周期Tは一般的に10秒と20秒との間にあり、好適値は15秒に等しい。時間周期Tは、呼吸相と称される種々の時間相に分割することができる。図2の実施例において、呼吸サイクル90の時間周期は12の呼吸サイクルに分割される。他の好適実施例では、呼吸サイクル90の時間周期Tは、10時間相と15時間相との間に含まれる多数の時間相に分割する。本発明の方法及び撮影装置を用いれば、CBCT画像15及び放射線画像5は、図2の画像と同様な各時間相(すなわち、呼吸相)と好ましく関係付けられる。
[0053]
図3は放射線治療における治療の前に行われるステップを例示的に示す。治療9の前、例えば2週間前に、4D−CT装置を用いてCT画像8を撮影する。種々のCT画像8は種々の時間相に対応し、例えば治療9'の十分前の呼吸サイクル90の種々の呼吸相に対応する、図3の右側部分を参照。矢印は、治療9'の十分前の呼吸サイクル90の呼吸相と関連する。CT画像8中の黒点は、その位置が変化しており、例えば腫瘍を示す。CT画像8から、治療計画を作成することができる。
[0054]
放射線治療における治療計画は当業者に知られている。治療計画は、目標物における所望の照射線量分布を得るために用いられる放射線セットアップと関係する物理的及び幾何学的パラメータを含む。治療計画は、一般的に医者によって決められる所望の照射線量分布の知見に基づき医療物理士により決定される。
[0055]
治療7の直前に、4D−CBCT装置の検出器12は種々のCBCTスキャン13を出力する。CBCTスキャン13の露出時間は一般的10〜20m秒 (ms)程度である。種々のCBCTスキャン13により、4D−CBCT装置は、例えば治療7'の直前の呼吸サイクル90の種々の呼吸相に対応する時間相に対応する種々のCBCT画像15を形成することができる。治療9の十分に前の呼吸サイクル90及び治療7'直前の呼吸サイクル90は、例えば肺活量計のような外部装置を用いて測定する。しかし、他の技術を用いることもできる。図3の2つの呼吸サイクルは、CT画像8及びCBCT画像15の分析から決定することができる。
[0056]
治療7の直前に、放射線画像装置の放射線検出器22は種々の放射線画像25を形成する。放射線画像25を形成するための露出時間は100ms程度である。種々の放射線画像25を種々の時間で撮影する。本発明の撮影装置100の同期装置80は、1つ又はそれ以上の放射線画像25と1つ又はそれ以上のCBCT画像15とを相関付けることができる。図3に示す例において、4つの放射線画像25の各放射線画像は、4つのCBCT画像15のうちの1つの画像と関連付けられる。1つの放射線画像25と1つのCBCT画像15を含む各対は、図3の例において、所定の時間相に対応し所定の呼吸相に対応する。これらの相関より、1つ又はそれ以上の基準放射線画像35を決定することができる。
[0057]
CBCT画像15と放射線画像25との間の相関を形成するため、同期装置80は、CBCT画像15及び放射線画像25と関連する時間スタンプ又は時間タグを読むことができ、或いは、放射線画像25とCBCT画像15が同一又は等価な時間タグを有する場合これらの画像をリンクさせることができ。所定の時間タグと等価な時間タグは、例えばこの時間タグ+/−呼吸サイクル90の時間周期Tとする。別の実施例では、時間タグ間の差異が所定の閾値以下の場合、例えば10%以下の場合、より好適には5%以下の場合、時間タグを別の時間タグと等価とする。この閾値の値に関し、別の値の閾値を用いることができる。一般的に、時間スタンプ又は時間タグは各CBCT画像15及び各放射線画像25と関連する。この様な時間タグはCBCT装置により又は放射線画像装置により出力することができる。
[0058]
好適実施例によれば、本発明の撮影装置100の同期装置80は、放射線画像シーケンスを実行して1又はそれ以上のCBCT画像15と相関する1又はそれ以上の放射線画像25を形成する放射線画像装置を制御することができる。例えば、治療7の直前に決定された呼吸サイクル90の4つ呼吸相に対応するCBCT画像15を知ることにより、同期装置80は、放射線画像装置を制御して4つの呼吸相の各々と関連する放射線画像25を出力する。
[0059]
一般的に、治療7'直前の時間と治療9'よりも十分に前の時間との間の時間相を相関させることも望ましい。図3の実施例において、2つの時間(7,9)に対応する2つの呼吸サイクル90のリング付けは、矢印により図示する。この場合、CBCT画像15とCT画像8とをリンク付けすることができる。この対応付けは、例えばCBCT装置により行うことができる。好適実施例によれば、本発明の撮影装置100の同期装置80は、CBCT装置を制御してCT画像8と関連する時間相と等価な時間相に対応するCBCT画像15を出力することができる。また、同期装置80は、CBCT画像15の1つとして同一又は等価な時間相で放射線画像25を出力する放射線画像装置を制御することもできる。これにより、基準放射線画像35を出力するに際し、放射線画像25とCBCT画像15との間の相関が促進される。
[0060]
一旦基準画像を決定すると、治療中に撮影された放射線画像25と比較することができる。第1のとり得る応用例では、治療中に撮影された放射線画像25が治療7の直前に決定された基準放射線画像35と十分に近似している場合、例えば腫瘍のような組織の位置を決定することができる。実際には、2つの画像(25,35)が近似している場合、それは、治療中の放射線画像の撮影時間における組織の位置が基準放射線画像35と関連する時間スタンプにおける同一組織の位置と同様であることを意味する。CBCT画像15は基準放射線画像と関連するので、組織の位置を容易に決定することができる。
[0061]
第2のとり得る応用例によれば、放射線治療における照射制御は、1つ又はそれ以上の放射線画像35に対する知見から行うことができる。照射制御は当業者により知られている。例えば、種々のCBCT画像15から、治療ビームの送出が望まれている1つ又はそれ以上のCBCT15を選択することができる。選択したCBCT画像15は、例えば治療ビームが高い確度で到達する腫瘍の位置に対応する。基準放射線画像35はCBCT画像15と関連するので、治療ビームが送出されることが望ましているケースに対応する1つ又はそれ以上の基準放射線画像35を選択することができる。治療中に、測定した放射線画像25は基準放射線画像35と十分に近似する場合、放射線治療ビームを患者6に送出する。
[0062]
当該技術分野において知られている種々の技術を用いて、治療中に撮影した放射線画像25を基準放射線画像35と比較でき、又は治療中に撮影された放射線画像25を基準放射線画像35に整合させることができる。例えば、画素対画素の比較をベースとして行うことができる。この場合、全ての画素について10%以上の差異が存在しない場合、放射線画像25は基準放射線画像35と対応していると結論付けることができる。別の実施例によれば、放射線画像25と基準放射線画像35との間の画素値の平均的な差異を決定することができる。平均的な差異が例えば画素値の5%の閾値以下の場合、治療中に撮影した放射線画像25は基準放射線画像35と同様であると推定することができる。
[0063]
"ラジオグラフィ アンド オンコグラフィ"102(2012)274頁〜280頁に記載された文献「モニタリング チューモ モーション バイ リアル タイム 2D/3Dレジストレーション デュアリング ラジオグラフィ」クリステル ジェンドリン等著に類似する技術を用いて、治療中に撮影した放射線画像25と基準放射線画像35とを比較することができる。この文献の内容全体は、当該特許出願に参考として含むものとする。"メッド イメージ アナル"2012年16:642〜61に記載された文献「ア レビュー オブ 3D/2D レジストレーション メソッド フォー イメージ−ガイド インターベンション」マーケルジ ピー、トマゼブィック D、ライカ ビィー、ぺルモス エフ 著に類似した技術を用いて、治療中に撮影した放射線画像25と基準放射線画像35とを比較することができる。この文献の内容全体は、当該特許出願に参考として含むものとする。
[0064]
この開示は、特有の実施例として説明したが、これら実施例は単に例示したものであり、これらに限定されない。さらに、開示された実施例は、個々に図示され及び/又は記述された事項に限定されるものではない。特許請求の範囲に記載した参照符号は、保護範囲を限定するものではない。動詞「備える」、「含む」、「構成する」又はこれらの変形語並びにこれらの活用形の使用は、これら以外の他の部材の存在を除外するものではない。構成要素の前に記載する冠詞「a」、「an」又は「the」の使用は、これら構成要素の複数の存在を除外するものではない。
[0065]
本発明は以下のように要約することができる。撮影システム100は、種々の時間相に対応する複数のCBCT画像15を形成できる4D−CBCT装置と、放射線画像25を形成することができる放射線画像装置と、放射線画像装置の放射線画像25を4D−CBCT装置により形成したCBCT画像15とを相関付ける(又は、リンク付ける)同期装置(80)とを備え、基準放射線画像35を同定することができる。

Claims (15)

  1. 放射線治療中に撮影した放射線画像と比較される基準放射線画像(35)を決定する方法であって、
    (i) 患者(6)の周囲の種々の角度位置(51)に位置決めされる放射源(11)及び検出器(12)を備え、種々の時間に対応する複数のCBCT画像(15)を形成する4次元コーンビームコンピュータ断層撮影装置(4D−CBCT)を用意する工程と、
    (ii) 放射線源(21)及び放射線検出器(22)を備え、種々の時間に対応する一連の放射線画像(25)を撮影するように構成した放射線画像装置を用意する工程と、
    (iii) 患者(6)を位置決めするように構成した位置決め手段(71)を用意し、前記4D−CBCT装置を用いて患者(6)のCBCT画像(15)を形成し、前記放射線画像装置を用いて患者(6)の放射線画像(25)を形成する工程と、
    (iv) 前記4D−CBCT装置を用いて4D−CBCTスキャンを実行して、患者(6)の身体の一部の複数のCBCT画像(15)であって、患者(6)と関連する種々の時間相に対応するCBCT画像(15)を形成する工程とを備える方法において、
    (v) 前記放射線画像装置を用いて放射線画像シーケンスを行って、前記患者(6)と関連する種々の時間相に対応する複数の放射線画像(25)を撮影する工程と、
    (vi) 所定の時間相に対応するCBCT画像(15)を等価な時間相に対応する放射線画像(25)と相関させるように構成した同期装置(80)を用意する工程と、
    (vii) 前記同期装置(80)を用いて、工程(v)で得た放射線画像(25)と、工程(iv)で得られたCBCT画像(15)であって、指定した時間相と対応する指定されたCBCT画像(15)とを相関させる工程と、
    (viii) 工程(vii)で得られ、相関付けられた放射線画像(25)を基準放射線画像(35)として同定する工程と
    を含むことを特徴とする方法。
  2. 請求項1記載の方法において、
    前記放射線画像シーケンスは、工程(iv)の4D−CBCTスキャンの少なくとも一部の期間中に行われる
    ことを特徴とする方法。
  3. 先行する請求項のいずれか1項に記載の方法において、
    前記工程(iv)及び(v)の種々の時間相は呼吸サイクル(90)の呼吸相に対応する
    ことを特徴とする方法。
  4. 先行する請求項のいずれか1項に記載の方法において、
    前記工程(iv) のCBCT画像(15)の各々は、CT装置により以前に形成されたCT画像(8)に対応する
    ことを特徴とする方法。
  5. 先行する請求項のいずれか1項に記載の方法において、
    工程(vii)において、工程(v)において得られた複数の放射線画像(25)を複数の指定されたCBCT画像(15)と相関付け、前記工程(viii)において複数の基準放射線画像(35)が同定され、同定された複数の基準放射線画像の各々は所定の指定された時間相に対応する
    ことを特徴とする方法。
  6. 先行する請求項のいずれか1項に記載の方法において、
    少なくとも10個の時間相に対応する少なくとも10個のCBCT画像(15)が、前記工程(iv)の4D−CBCTスキャンから形成される
    ことを特徴とする方法。
  7. 先行する請求項のいずれか1項に記載の方法において、
    少なくとも10個の時間相に対応する少なくとも10個の放射線画像(25)は、工程(v)の放射線画像シーケンスにより形成され、少なくとも10個の基準放射線画像が決定される
    ことを特徴とする方法。
  8. 放射線治療において、患者(6)の組織(1)の位置を治療中に決定する方法であって、
    A.請求項1乃至7のいずれか1項に記載の方法により決定された基準放射線画像(35)を用意する工程と、
    B.放射源(21)及び放射線検出器(22)を備える放射線画像装置(20)を用意する工程と、
    C.患者(6)の身体の目標物を、工程(B)の放射線画像装置(20)の放射線源(21)と放射線検出器(22)との間に位置決めする工程と、
    D.工程(B)の放射線画像装置(20)を用いて、患者(6)の身体の目標物の放射線画像を形成する工程と、
    E.工程(D)で形成された放射線画像(25)を工程(A)の基準放射線画像と比較する工程と、
    F.工程(D)の放射線画像(25)が工程(A)の基準画像と十分に近似している場合、基準放射線画像(35)と相関するCBCT画像(15)から、工程(D)の期間に患者(6)の組織の位置を決定する工程と
    を含むことを特徴とする方法。
  9. 放射線治療において、治療ビームを患者(6)に送出する時間の決定を補助する方法であって、
    A.治療ビームを送出することが望まれる所定の時間相に対応し、請求項1から7までのいずれか1項に記載の方法により決定された基準放射線画像(35)を用意する工程と、
    B.放射線源(21)及び放射線検出器(22)を備え、治療中に患者(6)を撮影するように構成された放射線画像装置(20)を用意する工程と、
    C.患者(6)の身体の目標物を治療位置に位置決めする工程と、
    D.工程Bの放射線画像装置(20)を用いて、患者(6)の身体の目標物の放射線画像(25)を形成する工程と、
    E.工程Dの放射線画像(25)を工程Aの基準放射線画像(35)と比較する工程と、
    F.工程Dの放射線画像(25)が工程Aの基準放射線画像と十分に近似している場合、治療ビームを患者(6)に送出することを決定する工程と
    を含むことを特徴とする方法。
  10. 放射線治療に用いられる基準放射線画像(35)を同定する撮影システム(100)であって、
    (i) 患者の周囲の種々の角度位置(51)に位置決めされることができる放射源及び検出器を備え、種々の時間に対応する複数のCBCT画像(15)を形成できる4D−CBCT装置と、
    (ii) 放射線源(21)及び放射線検出器(22)を備え、種々の時間に対応した一連の放射線画像(25)を形成する放射線画像装置と、
    (iii) 所定の時間相に対応するCBCT画像(15)を、等価な時間相に対応する放射線画像(25)と相関付ける同期装置(80)とを備え、
    前記相関付けされた放射線画像(25)を基準放射線画像(35)と同定する
    ことを特徴とする撮影システム。
  11. 先行する請求項に記載の撮影システムにおいて、
    前記4D−CBCT装置を用いて形成されたCBCT画像(15)は3次元画像とし、前記放射線画像装置を用いて形成された放射線画像(25)は2次元画像とした
    ことを特徴とする撮影システム。
  12. 請求項10又は11記載の撮影システムにおいて、
    前記時間相は、呼吸サイクル(90)の呼吸相とした
    ことを特徴とする撮影システム。
  13. 請求項10乃至12のいずれか1項に記載の撮影システムにおいて、
    前記同期装置(80)は、4D−CBCT装置により形成されたCBCT画像(15)と関連する時間相と等価な時間相に対応する放射線画像(25)を形成するための放射線画像シーケンスを実行する放射線画像装置を制御する制御手段を有し、基準放射線画像(35)を決定できる
    ことを特徴とする撮影システム。
  14. 先行する請求項に記載の撮影システム(100)において、
    前記制御手段は、4D−CBCT装置の4D−CBCTスキャンシーケンスの少なくとも一部の期間中に放射線画像シーケンスを実行するように放射線画像装置を制御して、前記放射線画像(25)を形成するできる
    ことを特徴とする撮影システム。
  15. 請求項10乃至14のいずれか1項に記載の撮影システム(100)において、
    前記同期装置(80)は、CBCT画像(15)の時間相を決定できる
    ことを特徴とする撮影システム。
JP2015248282A 2014-12-19 2015-12-21 放射線治療で用いられる基準放射線画像を決定する方法及び撮影システム Pending JP2016120282A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14199365.9 2014-12-19
EP14199365.9A EP3034003B1 (en) 2014-12-19 2014-12-19 Method and imaging system for determining a reference radiograph for a later use in radiation therapy

Publications (1)

Publication Number Publication Date
JP2016120282A true JP2016120282A (ja) 2016-07-07

Family

ID=52146261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015248282A Pending JP2016120282A (ja) 2014-12-19 2015-12-21 放射線治療で用いられる基準放射線画像を決定する方法及び撮影システム

Country Status (3)

Country Link
US (1) US9968321B2 (ja)
EP (1) EP3034003B1 (ja)
JP (1) JP2016120282A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018029852A (ja) * 2016-08-25 2018-03-01 株式会社東芝 医用画像処理装置、治療システム、および医用画像処理プログラム
WO2018168766A1 (ja) * 2017-03-14 2018-09-20 国立大学法人北海道大学 放射線治療装置
WO2019008793A1 (ja) * 2017-07-03 2019-01-10 三菱電機株式会社 粒子線照射装置
WO2021053891A1 (ja) * 2019-09-20 2021-03-25 株式会社日立製作所 放射線撮像装置および放射線治療装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017176301A1 (en) * 2016-04-06 2017-10-12 Carestream Health, Inc. Hybrid oct and surface contour dental imaging
JP6668902B2 (ja) * 2016-04-12 2020-03-18 株式会社島津製作所 位置決め装置および位置決め装置の作動方法
EP3255608A1 (de) * 2017-03-20 2017-12-13 Siemens Healthcare GmbH Verfahren und system zum erfassen einer lageveränderung eines objekts
ES2959341T3 (es) * 2017-06-30 2024-02-23 Dental Imaging Technologies Corp Mapeo de superficies usando un escáner intraoral con capacidades de penetración
US11132798B2 (en) * 2017-07-28 2021-09-28 Our United Corporation Tumor tracking method and device, and storage medium
JP6596679B1 (ja) * 2019-03-29 2019-10-30 株式会社ビードットメディカル 患者搬送台車、粒子線照射システム、及び粒子線照射方法
CN111275669B (zh) * 2020-01-13 2022-04-22 西安交通大学 一种先验信息引导的四维锥束ct图像重建算法
WO2022147812A1 (en) * 2021-01-11 2022-07-14 Shenzhen Xpectvision Technology Co., Ltd. Imaging methods using multiple radiation beams

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515770A (ja) * 2003-01-21 2006-06-08 エレクタ、アクチボラグ 内部構造の撮像
JP2008154861A (ja) * 2006-12-25 2008-07-10 Univ Of Tokyo 放射線治療システム
WO2013149201A1 (en) * 2012-03-31 2013-10-03 Varian Medical Systems, Inc. 4d cone beam ct using deformable registration

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007530126A (ja) * 2004-03-25 2007-11-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ゲート式コーンビームctの動き補償を用いた再構成
US8849373B2 (en) * 2007-05-11 2014-09-30 Stanford University Method and apparatus for real-time 3D target position estimation by combining single x-ray imaging and external respiratory signals
US8233690B2 (en) * 2008-04-30 2012-07-31 Real-Time Tomography, Llc Dynamic tomographic image reconstruction and rendering on-demand
US8460166B2 (en) * 2010-10-01 2013-06-11 Elekta Ab (Publ) Radiotherapy planning and delivery
EP2736415B1 (en) * 2011-07-28 2017-04-12 The Board Of Trustees Of The University Of the Leland Stanford Junior University Modulating gantry rotation speed and image acquisition in respiratory correlated (4d) cone beam ct images
US20140107390A1 (en) * 2012-10-12 2014-04-17 Elekta Ab (Publ) Implementation and experimental results of real-time 4d tumor tracking using multi-leaf collimator (mlc), and/or mlc-carriage (mlc-bank), and/or treatment table (couch)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515770A (ja) * 2003-01-21 2006-06-08 エレクタ、アクチボラグ 内部構造の撮像
JP2008154861A (ja) * 2006-12-25 2008-07-10 Univ Of Tokyo 放射線治療システム
WO2013149201A1 (en) * 2012-03-31 2013-10-03 Varian Medical Systems, Inc. 4d cone beam ct using deformable registration

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018029852A (ja) * 2016-08-25 2018-03-01 株式会社東芝 医用画像処理装置、治療システム、および医用画像処理プログラム
WO2018168766A1 (ja) * 2017-03-14 2018-09-20 国立大学法人北海道大学 放射線治療装置
JPWO2018168766A1 (ja) * 2017-03-14 2020-01-23 国立大学法人北海道大学 放射線治療装置
JP7122003B2 (ja) 2017-03-14 2022-08-19 国立大学法人北海道大学 放射線治療装置
US11446520B2 (en) 2017-03-14 2022-09-20 National Univ. Corporation Hokkaido Univ. Radiation therapy apparatus configured to track a tracking object moving in an irradiation object
WO2019008793A1 (ja) * 2017-07-03 2019-01-10 三菱電機株式会社 粒子線照射装置
WO2021053891A1 (ja) * 2019-09-20 2021-03-25 株式会社日立製作所 放射線撮像装置および放射線治療装置
JP2021045459A (ja) * 2019-09-20 2021-03-25 株式会社日立製作所 放射線撮像装置および放射線治療装置
JP7330833B2 (ja) 2019-09-20 2023-08-22 株式会社日立製作所 放射線撮像装置および放射線治療装置

Also Published As

Publication number Publication date
US20160174921A1 (en) 2016-06-23
US9968321B2 (en) 2018-05-15
EP3034003B1 (en) 2017-11-08
EP3034003A1 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP2016120282A (ja) 放射線治療で用いられる基準放射線画像を決定する方法及び撮影システム
US11890125B2 (en) Multimodal radiation apparatus and methods
JP6181459B2 (ja) 放射線治療システム
EP2633454B1 (en) Method and apparatus for planning the treatment of a target's partial motion range
EP2335188B1 (en) Sequential stereo imaging for estimating trajectory and monitoring target position
US11446520B2 (en) Radiation therapy apparatus configured to track a tracking object moving in an irradiation object
JP2019524418A (ja) 回転撮像及び追跡システムにおけるオンライン角度選択
JP2019528149A (ja) 回転撮像及び追跡システムにおけるオンライン角度選択
US20060291621A1 (en) Dynamic radiation therapy simulation system
US8358738B2 (en) Respiration-correlated radiotherapy
CN110913768A (zh) 顺序单像跟踪
US9446264B2 (en) System and method for patient-specific motion management
JP2017144000A (ja) 医用画像処理装置、方法、プログラム及び放射線治療装置
JP7397909B2 (ja) 肺癌放射線のためのガイダンス
US11241589B2 (en) Target tracking and irradiation method and device using radiotherapy apparatus and radiotherapy apparatus
JP7036601B2 (ja) 治療計画システム
JP7066353B2 (ja) 治療用寝台及び放射線治療システム
Furtado et al. Real-time 2D/3D registration for tumor motion tracking during radiotherapy
JP7451285B2 (ja) 放射線治療装置
JP6799292B2 (ja) 放射線撮影装置および放射線画像検出方法
JP2016221095A (ja) 放射線透視装置
JP2022069797A (ja) 放射線治療装置及び放射線治療方法
Hugo -Online Monitoring, Tracking, and Dose Accumulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181122

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181122

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190903