JP2016115240A - 乗算回路及びそれを備えた電力センサー - Google Patents

乗算回路及びそれを備えた電力センサー Download PDF

Info

Publication number
JP2016115240A
JP2016115240A JP2014254995A JP2014254995A JP2016115240A JP 2016115240 A JP2016115240 A JP 2016115240A JP 2014254995 A JP2014254995 A JP 2014254995A JP 2014254995 A JP2014254995 A JP 2014254995A JP 2016115240 A JP2016115240 A JP 2016115240A
Authority
JP
Japan
Prior art keywords
element group
circuit
magnetoresistive
magnetoresistive element
magnetoresistive elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014254995A
Other languages
English (en)
Inventor
典弘 川岸
Norihiro Kawagishi
典弘 川岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2014254995A priority Critical patent/JP2016115240A/ja
Publication of JP2016115240A publication Critical patent/JP2016115240A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

【課題】磁気抵抗素子を用いた乗算回路を提供する。【解決手段】乗算回路1は、複数の磁気抵抗素子11,12を直列に接続して両端に所定電圧Vrefが印加される第1の磁気抵抗素子群10と、第1の磁気抵抗素子群10に含まれる複数の磁気抵抗素子11,12のそれぞれの近傍位置に配置される複数のコイル13,14と、所定電圧Vrefが分圧された分圧信号V3と第1の入力信号V1とを比較して複数のコイル13、14に電流Icを流すことにより複数の磁気抵抗素子11,12のそれぞれにコイル磁界Ha,Hbを作用させ、分圧信号V3を第1の入力信号V1に応じた電位に制御するコイル駆動回路15と、複数のコイル13,14の近傍位置に配置される複数の磁気抵抗素子17,18を直列に接続して両端に第2の入力信号V2に応じた電圧が印加される第2の磁気抵抗素子群16とを備える構成である。【選択図】図1

Description

本発明は、アナログ回路で構成される乗算回路及びそれを備えた電力センサーに関する。
従来、磁気抵抗素子を利用して負荷で消費される電力を測定できるようにした電力センサーが提案されている(例えば特許文献1)。従来の電力センサーは、負荷に対して一次導体を直列に接続すると共に、その一次導体の近傍位置に配置した磁気抵抗素子を負荷と一次導体に対して並列に接続した構成である。そして一次導体が負荷に流れる電流に応じた磁界を発生させて磁気抵抗素子の抵抗値を変化させ、磁気抵抗素子の両端の電圧を検出することにより負荷で消費される電力を測定する。この電力センサーでは、磁気抵抗素子の両端に現れる電圧に直流成分と交流成分とが含まれており、負荷で消費される電力成分が直流成分にのみ含まれる。そのため、ローパスフィルタなどを用いて交流成分を除去し、負荷で消費される電力成分のみを出力するように構成される。
このような従来の電力センサーは、磁気抵抗素子の特性がそのまま出力値に現れるため、磁気抵抗素子の抵抗値がほぼ線形状に変化する線形領域では、ある程度の測定精度を確保することができるものの、線形領域から外れると測定精度が著しく低下する。また従来の電力センサーは、外部磁場の影響を受けやすく、外部磁場によって測定精度が著しく変動する。
国際公開第2012/105459号
ところで、負荷で消費される電力は、負荷に流れる負荷電流と負荷にかかる負荷電圧との乗算によって算出される。そこで負荷電流と負荷電圧とを測定し、それらをアナログ乗算回路によって乗算するように構成すれば、ローパスフィルタなどを用いることなく、負荷で消費される電力を出力することができる。この場合、電力センサーに磁気抵抗素子を用いて負荷電流や負荷電圧を検出するのであれば、乗算回路にも磁気抵抗素子を用いることで同一のチップ上に同一工程で乗算回路を作成できるため、比較的安価に乗算回路を形成することができる。
本発明は、上記課題に鑑みてなされたものであり、磁気抵抗素子を用いた乗算回路を提供すると共に、そのような乗算回路を備えた電力センサーを提供することを目的とする。
上記目的を達成するため、第1に、本発明は、第1の入力信号と第2の入力信号とを乗算して出力する乗算回路であって、複数の磁気抵抗素子を直列に接続して両端に所定電圧が印加される第1の磁気抵抗素子群と、前記第1の磁気抵抗素子群に含まれる複数の磁気抵抗素子のそれぞれの近傍位置に配置される複数のコイルと、前記所定電圧が前記第1の磁気抵抗素子群に含まれる複数の磁気抵抗素子によって分圧された分圧値と前記第1の入力信号とを比較して前記複数のコイルに電流を流すことにより前記第1の磁気抵抗素子群に含まれる複数の磁気抵抗素子のそれぞれにコイル磁界を作用させ、前記分圧値を前記第1の入力信号に応じた電位に制御するコイル駆動手段と、前記複数のコイルのそれぞれの近傍位置に配置される複数の磁気抵抗素子を直列に接続して両端に前記第2の入力信号に応じた電圧が印加される第2の磁気抵抗素子群と、を備え、前記第2の磁気抵抗素子群は、前記コイル磁界に応じて複数の磁気抵抗素子の抵抗値を変化させることにより前記第2の磁気抵抗素子群の中間点に前記第1の入力信号と前記第2の入力信号との乗算値に応じた信号を生成して出力することを特徴とする構成である。
第2に、本発明は、第1の構成を有する乗算回路において、複数の抵抗が直列に接続された抵抗素子群を前記第1の磁気抵抗素子群と並列に接続して構成される第1のブリッジ回路と、前記第1のブリッジ回路の2つの中点の電位を検知して前記コイル駆動手段へ出力する検知回路と、複数の抵抗が直列に接続された抵抗素子群を前記第2の磁気抵抗素子群と並列に接続して構成される第2のブリッジ回路と、前記第2のブリッジ回路の2つの中点の電位に基づいて前記第1の入力信号と前記第2の入力信号との乗算信号を生成して出力する出力回路と、を更に備えることを特徴とする構成である。
第3に、本発明は、第1又は第2の構成を有する乗算回路において、前記第1の磁気抵抗素子群に含まれる複数の磁気抵抗素子は、それぞれの磁気検知方向を同一方向に向けた状態に配置されると共に、前記第2の磁気抵抗素子群に含まれる複数の磁気抵抗素子は、それぞれの磁気検知方向を同一方向に向けた状態に配置され、前記複数のコイルは、それぞれ異なる方向に巻き回した構成であることを特徴とする構成である。
第4に、本発明は、負荷で消費される電力を測定する電力センサーであって、前記負荷に流れる負荷電流を測定して電流検知信号を出力する電流測定回路と、前記負荷にかかる負荷電圧を測定して電圧検知信号を出力する電圧測定回路と、前記電流検知信号と前記電圧検知信号とを乗算して電力信号を出力する乗算回路と、を有し、前記乗算回路は、複数の磁気抵抗素子を直列に接続して両端に所定電圧が印加される第1の磁気抵抗素子群と、前記第1の磁気抵抗素子群に含まれる複数の磁気抵抗素子のそれぞれの近傍位置に配置される複数のコイルと、前記電流検知信号及び前記電圧検知信号のうちのいずれか一方の信号と、前記所定電圧が前記第1の磁気抵抗素子群に含まれる複数の磁気抵抗素子によって分圧された分圧値とを比較して前記複数のコイルに電流を流すことにより前記第1の磁気抵抗素子群に含まれる複数の磁気抵抗素子のそれぞれにコイル磁界を作用させ、前記分圧値を前記一方の信号に応じた電位に制御するコイル駆動手段と、前記複数のコイルのそれぞれの近傍位置に配置される複数の磁気抵抗素子を直列に接続し、両端に、前記電流検知信号及び前記電圧検知信号のうちの他方の信号に応じた電圧が印加される第2の磁気抵抗素子群と、を備え、前記第2の磁気抵抗素子群は、前記コイル磁界に応じて複数の磁気抵抗素子の抵抗値を変化させることにより前記第2の磁気抵抗素子群の中間点に前記電流検知信号と前記電圧検知信号とを乗算した電力信号を生成して出力することを特徴とする構成である。
第5に、本発明は、第4の構成を有する電力センサーにおいて、前記乗算回路は、複数の抵抗が直列に接続された抵抗素子群を前記第1の磁気抵抗素子群と並列に接続して構成される第1のブリッジ回路と、前記第1のブリッジ回路の2つの中点の電位を検知して前記コイル駆動手段へ出力する検知回路と、複数の抵抗が直列に接続された抵抗素子群を前記第2の磁気抵抗素子群と並列に接続して構成される第2のブリッジ回路と、前記第2のブリッジ回路の2つの中点の電位に基づいて前記電力信号を生成して出力する出力回路と、を更に備えることを特徴とする構成である。
第6に、本発明は、第4又は第5の構成を有する電力センサーにおいて、前記第1の磁気抵抗素子群に含まれる複数の磁気抵抗素子は、それぞれの磁気検知方向を同一方向に向けた状態に配置されると共に、前記第2の磁気抵抗素子群に含まれる複数の磁気抵抗素子は、それぞれの磁気検知方向を同一方向に向けた状態に配置され、前記複数のコイルは、それぞれ異なる方向に巻き回した構成であることを特徴とする構成である。
本発明によれば、外部磁場などの影響を受けることなく、高精度に乗算値を出力することが可能な磁気抵抗素子を用いた乗算回路を提供することができる。また本発明によれば、外部磁場などの影響を受けることなく、高精度に電力を測定することができる電力センサーを提供することができる。
乗算回路の動作原理を示す図である。 乗算回路の具体的な一構成例を示す回路図である。 電力センサーの一構成例を示す図である。 電力センサーの具体的な回路構成の一例を示す図である。 磁気抵抗素子の特性の一例を示す図である。 電力センサーを1チップデバイスとして構成する場合のレイアウト例を示す図である。 図4とは異なる電力センサーの構成例を示す図である。 電力センサーを1チップデバイスとして構成する場合のレイアウト例を示す図である。
以下、本発明に関する好ましい実施形態について図面を参照しつつ詳細に説明する。尚、以下に説明する実施形態において互いに共通する部材には同一符号を付しており、それらについての重複する説明は省略する。
(乗算回路の動作原理)
図1は、本発明における乗算回路1の動作原理を示す図である。乗算回路1は、第1の入力信号V1と、第2の入力信号V2とを乗算して出力信号Voutを出力する回路である。この乗算回路1は、複数の磁気抵抗素子11,12を直列に接続して構成される第1の磁気抵抗素子群10と、第1の磁気抵抗素子群10に含まれる複数の磁気抵抗素子11,12のそれぞれの近傍位置に配置される複数のコイル13,14と、複数のコイル13,14に電流を流して駆動するコイル駆動回路15と、複数のコイル13,14の近傍位置に配置される複数の磁気抵抗素子17,18を直列に接続して構成される第2の磁気抵抗素子群16とを有する。図例では、第1の磁気抵抗素子群10が2つの磁気抵抗素子11,12で構成され、第2の磁気抵抗素子群16もまた2つの磁気抵抗素子17,18で構成される。そしてコイル13が磁気抵抗素子11,17の近傍位置に配置され、コイル14が磁気抵抗素子12,18の近傍位置に配置される。
磁気抵抗素子11,12,17,18は、強磁性材を含んでおり、外部磁場の向き及び大きさに応じて磁化方向を回転させることにより電気抵抗を変化させる素子である。これら複数の磁気抵抗素子11,12,17,18は、それぞれの磁気検知方向を同一方向に向けた状態で各コイル13,14の近傍位置に配置される。尚、各磁気抵抗素子11,12,17,18は同一の特性を有する素子である。
複数の磁気抵抗素子11,12が直列に接続された第1の磁気抵抗素子群10は、その両端に所定の基準電圧Vrefが印加される。そのため、第1の磁気抵抗素子群10は、基準電圧Vrefを複数の磁気抵抗素子11,12で分圧した分圧値V3をその中間点aに生成する。
コイル駆動回路15は、例えばオペアンプなどによって構成され、第1の入力信号V1と、第1の磁気抵抗素子群10で生成される分圧値V3とを比較し、その比較結果に基づいて複数のコイル13,14にコイル電流Icを流す。ここで、磁気抵抗素子11,17の近傍位置に設けられているコイル13と、磁気抵抗素子12,18の近傍位置に設けられているコイル14とは、互いに巻き回し方向が逆向きとなるように配置される。そのため、コイル13は、コイル電流Icに応じて所定方向のコイル磁界Haを発生させ、そのコイル磁界Haを磁気抵抗素子11,17に作用させる。またコイル14は、そのコイル電流Icに応じてコイル13で発生するコイル磁界Haと同じ大きさであり、且つ、逆向きのコイル磁界Hbを発生させ、そのコイル磁界Hbを磁気抵抗素子12,18に作用させる。
第1の磁気抵抗素子群10を構成する複数の磁気抵抗素子11,12は、コイル13,14からのコイル磁界Ha,Hbが作用することにより、抵抗値を変化させる。このとき、複数の磁気抵抗素子11,12にはそれぞれ異なる方向のコイル磁界Ha,Hbが作用するため、例えば一方の磁気抵抗素子11の抵抗値が上昇すると、他方の磁気抵抗素子12の抵抗値が低下する。その結果、複数の磁気抵抗素子11,12の中間点aにおける分圧値V3は、コイル電流Icに応じて変動する。コイル駆動回路15は、分圧値V3と第1の入力信号V1とが互いに等しくなるように複数のコイル13,14に流すコイル電流Icを調整する。そして分圧値V3と第1の入力信号V1とが互いに等しくなると、コイル電流Icが安定し、複数のコイル13,14には第1の入力信号V1に応じたコイル電流Icが流れる。このときの磁気抵抗素子11の抵抗値が(R+ΔR)、磁気抵抗素子12の抵抗値が(R−ΔR)であるとすると、次式(1)が成立する。
Figure 2016115240
一方、複数の磁気抵抗素子17,18が直列に接続された第2の磁気抵抗素子群16は、その両端に第2の入力信号V2に応じた電圧が印加される。そのため、第2の磁気抵抗素子群16は、第2の入力信号V2を複数の磁気抵抗素子17,18で分圧した分圧値をその中間点cに生成し、その分圧値を出力信号Voutとして出力する。複数のコイル13,14にコイル電流Icが流れているとき、それら複数のコイル13,14から発生するコイル磁界Ha,Hbは、第2の磁気抵抗素子群16の磁気抵抗素子17,18にも作用する。このとき、複数の磁気抵抗素子17,18にはそれぞれ異なる方向のコイル磁界Ha,Hbが作用するため、例えば一方の磁気抵抗素子17の抵抗値が上昇すると、他方の磁気抵抗素子18の抵抗値が低下する。その結果、複数の磁気抵抗素子17,18の中間点cにおける出力信号Voutは、複数のコイル13,14から発生するコイル磁界Ha,Hbに応じて変動する。このときの磁気抵抗素子17の抵抗値が(R+ΔR)、磁気抵抗素子18の抵抗値が(R−ΔR)であるとすると、次式(2)が成立する。
Figure 2016115240
上記式(1)及び式(2)より、出力信号Voutは、次式(3)で表すことができる。
Figure 2016115240
つまり、第2の磁気抵抗素子群16は、2つの磁気抵抗素子17,18の中間点cに、第1の入力信号V1と第2の入力信号V2との乗算値V1・V2に応じた出力信号Voutを生成する。したがって、乗算回路1は、第1の入力信号V1と第2の入力信号V2との乗算値を出力信号Voutとして出力することが可能である。そして乗算回路1の出力信号Voutには磁気抵抗素子11,12,17,18の特性が現れないため、高精度な乗算値を出力することが可能である。
また図1に示す乗算回路1は、第1の磁気抵抗素子群10に含まれる複数の磁気抵抗素子11,12のそれぞれの磁気検知方向を同一方向に向けた状態に配置すると共に、第2の磁気抵抗素子群16に含まれる複数の磁気抵抗素子17,18のそれぞれの磁気検知方向を同一方向に向けた状態に配置している。このような構成によれば、磁気抵抗素子11,12,17,18のそれぞれに外部磁場が作用すると、各磁気抵抗素子11,12,17,18の抵抗値は共に上昇したり、又は低下したりする。そのため、外部磁場が作用しても第1及び第2の磁気抵抗素子群10,16のそれぞれの中間点a,cにおける分圧値は変動することがなく、外部磁場の影響は生じない。一方、複数のコイル13,14は、コイルを構成する導体をそれぞれ異なる方向に巻き回した状態で、磁気抵抗素子11,17及び磁気抵抗素子12,18の近傍位置に配置される。したがって、第1及び第2の磁気抵抗素子群10,16は、外部磁場の影響を打ち消しつつ、コイル電流Icに応じて各コイル13,14から発生するコイル磁界Ha,Hbだけに感度を有する構成である。
(乗算回路の具体的構成例)
図2は、乗算回路1の具体的な一構成例を示す回路図である。図2に示す乗算回路1は、複数の抵抗21,22が直列に接続された抵抗素子群を第1の磁気抵抗素子群10に含まれる複数の磁気抵抗素子11,12と並列に接続して構成される第1のブリッジ回路20と、第1のブリッジ回路20の2つの中点a,bの電位差を検知してコイル駆動回路15へ出力する検知回路26と、複数の抵抗24,25が直列に接続された抵抗素子群を第2の磁気抵抗素子群16に含まれる複数の磁気抵抗素子17,18と並列に接続して構成される第2のブリッジ回路23と、第2のブリッジ回路23の2つの中点c,dの電位に基づいて第1の入力信号V1と第2の入力信号V2とを乗算した出力信号Voutを生成して出力する出力回路30とを備えている。抵抗21,22,24,25の抵抗値は同じである。そして第1のブリッジ回路20の両端には所定電圧である基準電圧Vrefが印加され、第2のブリッジ回路23の両端には第2の入力信号V2に応じた電圧が印加される。
検知回路26は、抵抗27,28とオペアンプ29とを備える反転増幅回路によって構成され、第1のブリッジ回路20の2つの中点a,bの電位を検知して出力信号V4をコイル駆動回路15へフィードバックする。そしてコイル駆動回路15は、検知回路26の出力信号V4が第1の入力信号V1と等しくなるように複数のコイル13,14にコイル電流Icを流す。これにより、各コイル13,14からコイル磁界Ha,Hbが発生し、磁気抵抗素子11,12,17,18の抵抗値が変化する。ここで、抵抗27,28の抵抗値が互いに等しく、磁気抵抗素子11の抵抗値が(R+ΔR)、磁気抵抗素子12の抵抗値が(R−ΔR)であるとすると、次式(4)が成立する。
Figure 2016115240
また出力回路30は、検知回路26と同様、抵抗31,32とオペアンプ33とを備える反転増幅回路によって構成され、第2のブリッジ回路23の2つの中点c,dの電位を検知して出力信号Voutを生成する。ここで、抵抗31,32の抵抗値が互いに等しく、磁気抵抗素子17の抵抗値が(R+ΔR)、磁気抵抗素子18の抵抗値が(R−ΔR)であるとすると、次式(5)が成立する。
Figure 2016115240
上記式(4)及び式(5)より、出力信号Voutは、次式(6)で表すことができる。
Figure 2016115240
したがって、図2に示す乗算回路1は、出力回路30から第1の入力信号V1と第2の入力信号V2との乗算値V1・V2に応じた出力信号Voutを出力することができる。特に、図2に示す乗算回路1は、第1の磁気抵抗素子群10を含む第1のブリッジ回路20と、第2の磁気抵抗素子群16を含む第2のブリッジ回路23とを形成し、検知回路26と出力回路30とを用いて出力信号Voutを生成するため、出力信号Voutを任意の電位を基準にして生成することができるという利点がある。そのため、例えば第1の入力信号V1及び第2の入力信号V2のいずれか一方若しくは双方が負電圧側に振れる場合であっても、乗算回路1が所定の正電位を基準にして出力信号Voutを生成するように構成すれば、乗算回路1に負電源を接続する必要がないため、利便性が高くなる。このような乗算回路1は、多種多様な回路に適用可能であるが、以下においては一例として電力センサーに適用した例について説明する。
(電力センサーの構成例)
図3は、本発明における電力センサー2の一構成例を示す図である。この電力センサー2は、負荷100が設けられた測定対象回路130の近傍位置に配置され、負荷100に流れる負荷電流Iiと、負荷100にかかる負荷電圧VLとを測定して乗算することにより、負荷100で消費される電力を測定した電力信号Voutを出力するセンサーである。測定対象回路130は、例えば、負荷100に電力を供給する電源101と、負荷100に対して直列に接続される第1の導体110と、2つの外部抵抗102,103とを有する。第1の導体110は、プリント基板などの基板上に形成された配線パターンやバスバーなどによって構成される。そして第1の導体110は、負荷電流Iiが流れることにより周囲に負荷電流Iiに応じた第1の磁界H1を発生させる。一方、外部抵抗102,103は、負荷100に応じた耐圧特性を有し、互いに直列に接続される。そして外部抵抗102,103は、負荷100に対して並列に接続されることにより負荷電圧VLを所定の抵抗比で分圧した分圧信号(分圧値)Vdを出力する。電力センサー2は、第1の導体110から発生する第1の磁界H1と、外部抵抗102,103から出力される分圧信号Vdとを検知することにより、負荷100で消費される電力を測定する。
電力センサー2は、電圧測定回路3と、電流測定回路4と、乗算回路1と、基準電圧生成回路5とを備える構成である。例えば電力センサー2は、これら複数の回路を1つの基板上に形成した1チップデバイスとして構成される。この電力センサー2は、外部接続端子として、外部抵抗102,103による分圧信号Vdを入力する入力端子6と、負荷100で消費される電力を測定した電力信号Voutを出力する出力端子7と、グランドGND(接地電位)を基準に所定の正電圧VDDを出力する外部直流電源に接続される一対の電源端子8,9とを備えている。電源端子8は電源電圧VDDに接続され、電源端子9はグランドGNDに接続される。
電圧測定回路3は、外部抵抗102,103によって負荷電圧VLが分圧された分圧信号Vdに基づき、負荷電圧VLを測定する回路であり、負荷電圧VLに応じた電圧検知信号Vvを出力する。本実施例では、この電圧検知信号Vvが上述した第1の入力信号V1に相当する。
電流測定回路4は、負荷電流Iiが流れる第1の導体110の近傍位置に配置され、第1の導体110に流れる負荷電流Iiによって発生する第1の磁界H1を検出して負荷電流Iiを測定する回路である。この電流測定回路4は、磁界検出部40と負荷電流検出部50とを備えている。磁界検出部40は、第1の導体110から生じる第1の磁界H1を検出し、第1の磁界H1に応じた信号を負荷電流検出部50へ出力する。負荷電流検出部50は、磁界検出部40から出力される信号に基づいて負荷電流Iiを検知し、負荷電流Iiに応じた電流検知信号Viを出力する。本実施例では、この電流検知信号Viが上述した第2の入力信号V2に相当する。
乗算回路1は、電圧測定回路3から出力される電圧検知信号Vvと、電流測定回路4から出力される電流検知信号Viとを乗算することにより、負荷100で消費される電力を算出する回路である。そして乗算回路1は、負荷100で消費される電力を測定した電力信号Voutを出力する。
基準電圧生成回路5は、電源電圧VDDを分圧することにより、電源電圧VDDとグランドGNDとの中間電位である第1の基準電圧VDD/2と、その第1の基準電圧VDD/2に対して所定電圧Vref分だけ異なる電位である第2の基準電圧(VDD/2+Vref)とを生成する回路である。この基準電圧生成回路5は、例えばボルテージフォロアなどのバッファ回路から第1の基準電圧VDD/2と、第2の基準電圧(VDD/2+Vref)を出力する。
図4は、電力センサー2の具体的な回路構成の一例を示す図である。まず、電圧測定回路3は、例えばオペアンプ35と複数の抵抗36,37,38,39とを備える差動増幅回路によって構成される。この電圧測定回路3は、第1の基準電圧VDD/2を基準にした電圧検知信号Vvを生成して出力する。すなわち、負荷電圧VLが正のときには電圧検知信号Vvが第1の基準電圧VDD/2よりも大きくなり、負荷電圧VLが負のときには電圧検知信号Vvが第1の基準電圧VDD/2よりも小さくなる。また負荷電圧VLが0のときには電圧検知信号Vvが第1の基準電圧VDD/2と等しくなる。そして電圧測定回路3は、負荷電圧VLに応じて第1の基準電圧VDD/2を中心に変動する電圧検知信号Vvを乗算回路1のコイル駆動回路15へ出力する。
一方、第1の導体110は、図4に示すように概略U字状に構成される。そして第1の導体110は、所定間隔を隔てて互いに平行で且つ直線状に配線された一対の配線パターン111,112を有しており、それら一対の配線パターン111,112にそれぞれ異なる方向の負荷電流Iiが流れるように構成される。
電流測定回路4の磁界検出部40は、第1の導体110の近傍位置に設けられ、第1の導体110から生じる第1の磁界H1を非接触で検知する。この磁界検出部40は、複数の磁気抵抗素子43,44,45,46を備えて構成されるブリッジ回路41を有している。ブリッジ回路41では4つの磁気抵抗素子43,44,45,46がブリッジ接続されている。これらの磁気抵抗素子43,44,45,46は、乗算回路1に設けられる磁気抵抗素子11,12,17,18と同様、磁気抵抗効果によって電気抵抗が変化する素子であり、第1の導体110から発生する第1の磁界H1に応じて抵抗値を変化させる。図5は、磁気抵抗素子の特性の一例を示す図である。尚、図5では、異方性磁気抵抗効果を示すAMR素子の特性を示している。例えば磁気抵抗素子11,12,17,18,43〜46がAMR素子である場合、図5に示すように、外部からの磁界Hが作用すると、その磁界Hの方向及び大きさに応じて抵抗値Rが変化し、その抵抗値Rは外部から作用する磁界Hに応じて偶関数を示す。また磁気抵抗素子11,12,17,18,43〜46がAMR素子でない場合、特性曲線は図5とは異なるものになるが、磁界Hの方向及び大きさに応じて抵抗値Rが変化する点は同様である。そのため、磁気抵抗素子11,12,17,18,43〜46は、AMR素子以外の素子(例えば巨大磁気抵抗効果を示すGMR素子など)であっても良い。
図4に戻り、磁気抵抗素子43〜46は、磁気検知方向を同一方向に揃えた状態でU字状に構成された第1の導体110の内側に配置される。具体的に説明すると、2つの磁気抵抗素子43,44は、U字形状において互いに平行に延びる2つの配線パターン111,112のうちの一方の配線パターン111の近傍位置に設けられ、別の2つの磁気抵抗素子45,46は、他方の配線パターン112の近傍位置に設けられる。そして4つの磁気抵抗素子43〜46がブリッジ接続されたブリッジ回路41は、一端が電源電圧VDDに接続され、他端がグランドGNDに接続される。またブリッジ回路41は、磁気抵抗素子43,46を互いに接続すると共に、磁気抵抗素子45,44を互いに接続したクロス配線によって構成される。
第1の導体110に負荷電流Iiが流れていないときには、ブリッジ回路41における2つの中点e,fの電位は互いに等しくなり、電位差は生じない。これに対し、第1の導体110に負荷電流Iiが流れると、第1の導体110の周囲には負荷電流Iiの方向に対して右回り方向に第1の磁界H1が発生する。このとき、一方の配線パターン111の近傍位置にある磁気抵抗素子43,44には、例えば図4に示すように右向き方向の磁界Hcが作用し、他方の配線パターン112の近傍位置にある磁気抵抗素子45,46には、その磁界Hcと大きさが等しく、且つ、逆向きの磁界Hdが作用する。そして一方の配線パターン111の近傍位置にある磁気抵抗素子43,44の抵抗値が磁界HcによってΔRだけ増加すると、他方の配線パターン112の近傍位置にある磁気抵抗素子45,46の抵抗値は磁界HdによってΔRだけ減少し、ブリッジ回路41の2つの中点e,fのうち、第1の中点eの電位が上がり、第2の中点fの電位が下がる。したがって、ブリッジ回路41の2つの中点e,fには第1の導体110に流れる負荷電流Iiに応じた電位差が現れる。
ところで、4つの磁気抵抗素子43〜46には、第1の導体110から発生する第1の磁界H1(すなわち、Hc,Hd)だけではなく、外部環境からの外部磁界が作用する。しかし、そのような外部磁界は、4つの磁気抵抗素子43〜46のそれぞれに対して同一方向で且つ均一に作用するため、各磁気抵抗素子43〜46の抵抗値は、外部磁界に対して等しい割合で増減し、ブリッジ回路41の2つの中点e,fには外部磁界による電位差は生じない。すなわち、電流測定回路4は、外部磁界による影響を打ち消し、負荷電流Iiが流れる第1の導体110から発生する第1の磁界H1に対してのみ感度を有するように構成される。
負荷電流検出部50は、オペアンプ51と、出力抵抗52と、4つのコイル53,54,55,56とを備えており、ブリッジ回路41の2つの中点e,fに現れる電位差に基づき第1の導体110に流れる負荷電流Iiに応じた電流検知信号Viを出力する。4つのコイル53〜56は、それぞれ同一の特性を有し、ブリッジ回路41を構成する4つの磁気抵抗素子43〜46の近傍位置に1対1で設けられる。そして各コイル53〜56は直列に接続された回路構成を有し、その回路の一端が出力抵抗52を介してオペアンプ51の出力端に接続され、他端が第1の基準電圧VDD/2に接続される。オペアンプ51は、2つの中点e,fの電位差に応じて電流検知信号Viを出力することにより、出力抵抗52を介して4つのコイル53〜56にコイル電流を流す。このコイル電流は、各コイル53〜56から各磁気抵抗素子43〜46に作用している第1の磁界H1を打ち消す磁界を発生させる。つまり、オペアンプ51は、2つの中点e,fの電位差が0になるようにコイル電流をフィードバックするのである。これにより、4つの磁気抵抗素子43〜46に対して常に外部磁界だけが作用している状態となる制御が行われ、磁気抵抗素子43〜46の動作点を、例えば図5においてXで示す位置に固定することができる。ここで、Xで示す位置は、例えば外部磁界だけが作用している状態の位置である。したがって、第1の導体110に流れる負荷電流Iiが変化しても磁気抵抗素子43〜46の抵抗値Rを安定させた状態で負荷電流Iiを測定することができる。
オペアンプ51は、第1の基準電圧VDD/2を基準とした電流検知信号Viを出力する。つまり、オペアンプ51から出力される電流検知信号Viは、負荷100に流れる負荷電流Iiの方向及び大きさに応じて第1の基準電圧VDD/2を中心にして正負双方向に変動する信号となり、負荷電流Iiが0のときには電流検知信号Viは第1の基準電圧VDD/2に等しい信号となる。
乗算回路1は、図2に示した構成と同様である。ただし、この電力センサー2における乗算回路1は、第1の基準電圧VDD/2を基準にした電力信号Voutを出力することができるように構成されている。すなわち、第1のブリッジ回路20の一端には第2の基準電圧(VDD/2+Vref)が印加され、他端には第1の基準電圧VDD/2が印加される。また第2のブリッジ回路23の一端には電流測定回路4から出力される電流検知信号Viが印加され、他端には第1の基準電圧VDD/2が印加される。そしてコイル駆動回路15によるコイル電流Icが流れる複数のコイル13,14のうち、コイル14の一端には第1の基準電圧VDD/2が印加される。このような乗算回路1は、第1の基準電圧VDD/2を基準にして動作するため、電圧検知信号Vvと電流検知信号Viとを乗算した電力信号Voutを次式(7)で表すことができる。
Figure 2016115240
したがって、電力センサー2は、負荷電圧VL及び負荷電流Iiが正負双方向に振れる場合であっても、正負両電源を必要とせず、電源電圧VDDの単一電源で電力を測定することができるので利便性が高い。また上述した電力センサー2は、磁気抵抗素子43〜46,11,12,17,18を用いているものの、外部磁場の影響を受け難い構成であるため、高精度な電力測定が可能である。
図6は、電力センサー2を1チップデバイスとして構成する場合のレイアウト例を示す図である。上述したように電流測定回路4の磁気抵抗素子43〜46は第1の導体110の一対の配線パターン111,112の近傍位置に配置され、ブリッジ回路41を構成する。一方、乗算回路1に設けられる磁気抵抗素子11,12,17,18には、第1の導体110から発せられる第1の磁界H1が均一に作用することが好ましいため、例えば図6に示すように一対の配線パターン111,112のうちのいずれか一方に近接した状態に配置されることが好ましい。これにより、乗算回路1では、第1の導体110から発せられる第1の磁界H1の影響を受けず、外部磁場と同様に取り扱うことが可能となる。
(電力センサーの別の構成例)
図7は、上記とは異なる電力センサー2aの構成例を示す図である。この電力センサー2aは、負荷100が接続された測定対象回路130と絶縁された構成であり、負荷100で消費される電力を非接触で測定する点に特徴を有するものである。すなわち、測定対象回路130は、例えば、負荷100に電力を供給する電源101と、負荷100に対して直列に接続される第1の導体110と、第2の導体120と、第2の導体120に対して直列に接続される抵抗104とを有し、第2の導体120と抵抗104とが負荷100に対して並列に接続される。第1及び第2の導体110,120は、プリント基板などの基板上に形成される配線パターンやバスバーなどによって構成される。そして第1の導体110には負荷100に流れる負荷電流Iiが流れ、第2の導体120には負荷100にかかる負荷電圧VLに応じた電流Ivが流れる。第1の導体110は、負荷電流Iiが流れることにより周囲に負荷電流Iiに応じた第1の磁界H1を発生させる。また第2の導体120は、負荷電圧VLに応じた電流Ivが流れることにより周囲に電流Ivに応じた第2の磁界H2を発生させる。電力センサー2aは、測定対象回路130のグランドとは絶縁された別のグランドGNDに接続され、第1及び第2の磁界H1,H2を検知することにより、負荷100で消費される電力を非接触で測定する。
この電力センサー2aが図3に示した電力センサー2と異なる点は、電圧測定回路3である。すなわち、電圧測定回路3は、負荷電圧VLに応じた電流Ivが流れる第2の導体120の近傍位置に配置され、第2の導体120に流れる電流Ivによって発生する第2の磁界H2を検出して負荷電圧VLを測定する回路である。この電圧測定回路3は、磁界検出部60と負荷電圧検出部70とを備えている。磁界検出部60は、図4に示した電流測定回路4の磁界検出部40と同様の構成を有し、また負荷電圧検出部70は、図4に示した電流測定回路4の負荷電流検出部50と同様の構成を有する。したがって、電圧測定回路3は、第2の導体120から発生する第2の磁界H2に応じた電圧検知信号Vvを出力することができる。電力センサー2aのその他の点は、図3に示した電力センサー2と同様である。このような電力センサー2aは、測定対象回路130から絶縁された状態で電力を測定することができるため、測定対象回路130のグランドにノイズなどが混入した場合でもそのノイズの影響を受けることがない。そのため、より高精度に電力を測定することが可能である。
図8は、電力センサー2aを1チップデバイスとして構成する場合のレイアウト例を示す図である。例えば図8に示すように、電力センサー2aが実装される基板上において第1及び第2の導体110,120は、互いに絶縁された状態で上下方向に重ね合わせられ、第1の導体110を構成する一対の配線パターン111,112と、第2の導体120を構成する一対の配線パターン121,122とが直交するように配線される。そして1チップデバイスとして構成される電力センサー2aは、配線パターン111,112と配線パターン121,122とが交叉して形成される矩形領域の内側に配置される。そして電流測定回路4に含まれる4つの磁気抵抗素子43〜46は、1チップデバイスの周縁部において第1の導体110の一対の配線パターン111,112の近傍位置に設けられ、電圧測定回路3に含まれる4つの磁気抵抗素子63〜66は、1チップデバイスの周縁部において第2の導体120の一対の配線パターン121,122の近傍位置に設けられる。このような配置態様とすることにより、電圧測定回路3及び電流測定回路4のそれぞれが適切に第1の磁界H1又は第2の磁界H2を検知することが可能な状態で1チップデバイスを実現することができる。尚、この場合、乗算回路1に設けられる複数の磁気抵抗素子11,12,17,18は、第1の磁界H1と第2の磁界H2との双方が均一に作用する位置(例えばデバイスの中央位置など)に設けることが好ましい。
(変形例)
以上、本発明に関する実施例について説明したが、本発明は上述したものに限定されるものではなく、種々の変形例が適用可能である。例えば、上記実施例における電力センサー2,2aでは、電圧検知信号Vvを乗算回路1のコイル駆動回路15へ導き、電流検知信号Viを乗算回路1の第2のブリッジ回路23へ導く態様を例示したが、これに限られるものではなく、電圧検知信号Vvを乗算回路1の第2のブリッジ回路23へ導き、電流検知信号Viを乗算回路1のコイル駆動回路15へ導くようにしても良い。
1…乗算回路、2,2a…電力センサー、3…電圧測定回路、4…電流測定回路、5…基準電圧生成回路、10…第1の磁気抵抗素子群、16…第2の磁気抵抗素子群、11,12,17,18…磁気抵抗素子、13,14…コイル、15…コイル駆動回路(コイル駆動手段)、20…第1のブリッジ回路、23…第2のブリッジ回路、26…検知回路、30…出力回路。

Claims (6)

  1. 第1の入力信号と第2の入力信号とを乗算して出力する乗算回路であって、
    複数の磁気抵抗素子を直列に接続して両端に所定電圧が印加される第1の磁気抵抗素子群と、
    前記第1の磁気抵抗素子群に含まれる複数の磁気抵抗素子のそれぞれの近傍位置に配置される複数のコイルと、
    前記所定電圧が前記第1の磁気抵抗素子群に含まれる複数の磁気抵抗素子によって分圧された分圧値と前記第1の入力信号とを比較して前記複数のコイルに電流を流すことにより前記第1の磁気抵抗素子群に含まれる複数の磁気抵抗素子のそれぞれにコイル磁界を作用させ、前記分圧値を前記第1の入力信号に応じた電位に制御するコイル駆動手段と、
    前記複数のコイルのそれぞれの近傍位置に配置される複数の磁気抵抗素子を直列に接続して両端に前記第2の入力信号に応じた電圧が印加される第2の磁気抵抗素子群と、
    を備え、
    前記第2の磁気抵抗素子群は、前記コイル磁界に応じて複数の磁気抵抗素子の抵抗値を変化させることにより前記第2の磁気抵抗素子群の中間点に前記第1の入力信号と前記第2の入力信号との乗算値に応じた信号を生成して出力することを特徴とする乗算回路。
  2. 複数の抵抗が直列に接続された抵抗素子群を前記第1の磁気抵抗素子群と並列に接続して構成される第1のブリッジ回路と、
    前記第1のブリッジ回路の2つの中点の電位を検知して前記コイル駆動手段へ出力する検知回路と、
    複数の抵抗が直列に接続された抵抗素子群を前記第2の磁気抵抗素子群と並列に接続して構成される第2のブリッジ回路と、
    前記第2のブリッジ回路の2つの中点の電位に基づいて前記第1の入力信号と前記第2の入力信号との乗算信号を生成して出力する出力回路と、
    を更に備えることを特徴とする請求項1に記載の乗算回路。
  3. 前記第1の磁気抵抗素子群に含まれる複数の磁気抵抗素子は、それぞれの磁気検知方向を同一方向に向けた状態に配置されると共に、
    前記第2の磁気抵抗素子群に含まれる複数の磁気抵抗素子は、それぞれの磁気検知方向を同一方向に向けた状態に配置され、
    前記複数のコイルは、それぞれ異なる方向に巻き回した構成であることを特徴とする請求項1又は2に記載の乗算回路。
  4. 負荷で消費される電力を測定する電力センサーであって、
    前記負荷に流れる負荷電流を測定して電流検知信号を出力する電流測定回路と、
    前記負荷にかかる負荷電圧を測定して電圧検知信号を出力する電圧測定回路と、
    前記電流検知信号と前記電圧検知信号とを乗算して電力信号を出力する乗算回路と、
    を有し、
    前記乗算回路は、
    複数の磁気抵抗素子を直列に接続して両端に所定電圧が印加される第1の磁気抵抗素子群と、
    前記第1の磁気抵抗素子群に含まれる複数の磁気抵抗素子のそれぞれの近傍位置に配置される複数のコイルと、
    前記電流検知信号及び前記電圧検知信号のうちのいずれか一方の信号と、前記所定電圧が前記第1の磁気抵抗素子群に含まれる複数の磁気抵抗素子によって分圧された分圧値とを比較して前記複数のコイルに電流を流すことにより前記第1の磁気抵抗素子群に含まれる複数の磁気抵抗素子のそれぞれにコイル磁界を作用させ、前記分圧値を前記一方の信号に応じた電位に制御するコイル駆動手段と、
    前記複数のコイルのそれぞれの近傍位置に配置される複数の磁気抵抗素子を直列に接続し、両端に、前記電流検知信号及び前記電圧検知信号のうちの他方の信号に応じた電圧が印加される第2の磁気抵抗素子群と、
    を備え、
    前記第2の磁気抵抗素子群は、前記コイル磁界に応じて複数の磁気抵抗素子の抵抗値を変化させることにより前記第2の磁気抵抗素子群の中間点に前記電流検知信号と前記電圧検知信号とを乗算した電力信号を生成して出力することを特徴とする電力センサー。
  5. 前記乗算回路は、
    複数の抵抗が直列に接続された抵抗素子群を前記第1の磁気抵抗素子群と並列に接続して構成される第1のブリッジ回路と、
    前記第1のブリッジ回路の2つの中点の電位を検知して前記コイル駆動手段へ出力する検知回路と、
    複数の抵抗が直列に接続された抵抗素子群を前記第2の磁気抵抗素子群と並列に接続して構成される第2のブリッジ回路と、
    前記第2のブリッジ回路の2つの中点の電位に基づいて前記電力信号を生成して出力する出力回路と、
    を更に備えることを特徴とする請求項4に記載の電力センサー。
  6. 前記第1の磁気抵抗素子群に含まれる複数の磁気抵抗素子は、それぞれの磁気検知方向を同一方向に向けた状態に配置されると共に、
    前記第2の磁気抵抗素子群に含まれる複数の磁気抵抗素子は、それぞれの磁気検知方向を同一方向に向けた状態に配置され、
    前記複数のコイルは、それぞれ異なる方向に巻き回した構成であることを特徴とする請求項4又は5に記載の電力センサー。
JP2014254995A 2014-12-17 2014-12-17 乗算回路及びそれを備えた電力センサー Pending JP2016115240A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014254995A JP2016115240A (ja) 2014-12-17 2014-12-17 乗算回路及びそれを備えた電力センサー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014254995A JP2016115240A (ja) 2014-12-17 2014-12-17 乗算回路及びそれを備えた電力センサー

Publications (1)

Publication Number Publication Date
JP2016115240A true JP2016115240A (ja) 2016-06-23

Family

ID=56141834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014254995A Pending JP2016115240A (ja) 2014-12-17 2014-12-17 乗算回路及びそれを備えた電力センサー

Country Status (1)

Country Link
JP (1) JP2016115240A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021047083A (ja) * 2019-09-18 2021-03-25 株式会社東海理化電機製作所 磁気センサ
CN115219962A (zh) * 2022-06-29 2022-10-21 珠海多创科技有限公司 一种功率测量装置、测量设备及功率测量方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021047083A (ja) * 2019-09-18 2021-03-25 株式会社東海理化電機製作所 磁気センサ
CN115219962A (zh) * 2022-06-29 2022-10-21 珠海多创科技有限公司 一种功率测量装置、测量设备及功率测量方法

Similar Documents

Publication Publication Date Title
KR101439945B1 (ko) 2 단자 선형 센서
CN110494760B (zh) 磁传感器
US9588134B2 (en) Increased dynamic range sensor
US8847591B2 (en) Current sensor
CN113203885B (zh) 电流传感器、磁传感器和电路
US9000824B2 (en) Offset cancel circuit
JPWO2013171977A1 (ja) ブリッジ回路、及びこれを有する磁気センサ
JP2016115240A (ja) 乗算回路及びそれを備えた電力センサー
JP2016142652A (ja) 電力センサー
JP5891516B2 (ja) 電流センサ
WO2018159776A1 (ja) 磁気センサ
US10436857B2 (en) Magnetic field sensing apparatus and sensing method thereof
JP7225694B2 (ja) 磁気センサ
JP2009025280A (ja) 磁気センサ
JP2016142651A (ja) 電力センサー
JP2016121941A (ja) 電力センサー
JP6319067B2 (ja) 磁気センサ及び電流量検出器
JP7119695B2 (ja) 磁気センサ
JP2020041869A (ja) 磁気センサ
JP6339388B2 (ja) センサ閾値決定回路
WO2017141763A1 (ja) 電流センサ
JP6171526B2 (ja) 磁界検出装置および電流センサ
WO2016111278A1 (ja) 電流センサ