JP2016112516A - Method for treating excess ammoniacal liquor - Google Patents

Method for treating excess ammoniacal liquor Download PDF

Info

Publication number
JP2016112516A
JP2016112516A JP2014253958A JP2014253958A JP2016112516A JP 2016112516 A JP2016112516 A JP 2016112516A JP 2014253958 A JP2014253958 A JP 2014253958A JP 2014253958 A JP2014253958 A JP 2014253958A JP 2016112516 A JP2016112516 A JP 2016112516A
Authority
JP
Japan
Prior art keywords
ammonia
surplus water
condenser
water
vacuum distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014253958A
Other languages
Japanese (ja)
Other versions
JP6269465B2 (en
Inventor
純也 新田
Junya Nitta
純也 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2014253958A priority Critical patent/JP6269465B2/en
Publication of JP2016112516A publication Critical patent/JP2016112516A/en
Application granted granted Critical
Publication of JP6269465B2 publication Critical patent/JP6269465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating excess ammonia liquor continuously and stably over a long period of time.SOLUTION: A part of excess ammonia liquor generated during purifying coke oven gas is introduced into a decompression type ammonia stripper 1 and subjected to vacuum distillation, ammonia is removed from a part of the excess ammonia liquor and ammonia-containing steam distilled from the decompression type ammonia stripper 1 is introduced into a condenser 11, followed by cooling and condensation. At this time, the ammonia-containing steam is condensed while spraying the other part of the ammonia liquor to the vicinity of an introduction port into which the ammonia-containing steam is introduced of an inner surface of the condenser 11.SELECTED DRAWING: Figure 1

Description

本発明は、コークス炉ガスの精製時に発生する余剰安水の処理方法に関する。   The present invention relates to a method for treating surplus water that is generated during the purification of coke oven gas.

コークス工場では、コークス炉のドライメーンとタールデカンターの間を循環するアンモニア水でコークス炉ガスを精製しているため、アンモニア等の有害物質を含有する70〜80℃のアンモニア水(以下「熱安水」と記すこともある)が発生する。そして、余剰の熱安水(以下「余剰安水」と記すこともある)には、減圧蒸留設備によってアンモニアを除去する処理がなされる。   The coke plant purifies coke oven gas with ammonia water circulating between the dry main and tar decanter of the coke oven. Water "). The surplus hot water (hereinafter sometimes referred to as “surplus water”) may be treated to remove ammonia by a vacuum distillation facility.

余剰安水の処理時に、蒸留塔から留出された蒸気を凝縮させる凝縮器が、余剰安水中に含まれる成分によって閉塞し、減圧蒸留設備を長期間にわたって連続的且つ安定的に運転することができないおそれがあるため、凝縮器の閉塞を防ぐ技術が提案されている。例えば特許文献1には、凝縮を上流側と下流側の2段階で行うとともに、下流側の凝縮を、切り換え可能な主凝縮器と予備凝縮器の2つの凝縮器で行う方法が提案されている。しかしながら、特許文献1に開示の方法では、合計3基の凝縮器が必要となるため、減圧蒸留設備の初期コストが大きくなるという問題があった。   When the surplus water is treated, the condenser that condenses the vapor distilled from the distillation tower is blocked by the components contained in the surplus water, and the vacuum distillation equipment can be operated continuously and stably over a long period of time. Since there is a possibility that it cannot be performed, a technique for preventing clogging of the condenser has been proposed. For example, Patent Document 1 proposes a method in which condensation is performed in two stages, upstream and downstream, and downstream condensation is performed by two condensers, a switchable main condenser and a precondenser. . However, the method disclosed in Patent Document 1 requires a total of three condensers, which increases the initial cost of the vacuum distillation facility.

特開2005−239934号公報JP 2005-239934 A

そこで、本発明は上記のような従来技術が有する問題点を解決し、長期間にわたって連続的且つ安定的に運転することが可能な余剰安水の処理方法を提供することを課題とする。   Then, this invention makes it a subject to solve the trouble which the above prior arts have, and to provide the processing method of the surplus safe water which can be operated continuously and stably over a long period of time.

前記課題を解決するため、本発明の一態様に係る余剰安水の処理方法は、コークス炉ガスの精製時に発生する余剰安水の一部を減圧蒸留塔に導入して減圧蒸留し、余剰安水の一部からアンモニアを除去するとともに、減圧蒸留塔から留出するアンモニア含有蒸気を凝縮器に導入して冷却し凝縮させる工程を含み、凝縮器の内面のうちアンモニア含有蒸気が導入される導入口の近傍部分に、余剰安水の他部をスプレーしつつ、アンモニア含有蒸気の凝縮を行うことを要旨とする。   In order to solve the above-described problem, the surplus water treatment method according to one aspect of the present invention includes introducing a part of surplus water generated during refining of coke oven gas into a vacuum distillation column and performing distillation under reduced pressure. Introducing ammonia-containing steam from the inner surface of the condenser, including removing ammonia from a portion of the water and introducing ammonia-containing steam distilled from the vacuum distillation column into the condenser to cool and condense The gist is to condense the ammonia-containing vapor while spraying the other part of the surplus water in the vicinity of the mouth.

本発明によれば、長期間にわたって連続的且つ安定的に余剰安水を処理することができる。   According to the present invention, surplus water can be treated continuously and stably over a long period of time.

本発明の余剰安水の処理方法の一実施形態を説明するフロー図である。It is a flowchart explaining one Embodiment of the processing method of the surplus safe water of this invention.

本発明の一実施形態について説明する。コークス工場では、コークス炉のドライメーンとタールデカンターの間を循環するアンモニア水でコークス炉ガスを精製しているため、熱安水が発生する。発生した熱安水のうち余剰安水は減圧蒸留設備によって処理され、アンモニアが除去される。   An embodiment of the present invention will be described. In the coke factory, hot water is generated because the coke oven gas is refined with ammonia water circulating between the dry main of the coke oven and the tar decanter. Of the generated hot water, surplus water is treated by a vacuum distillation facility to remove ammonia.

本実施形態の余剰安水の処理方法においては、コークス炉ガスの精製時に発生した余剰安水の一部を減圧蒸留設備の減圧蒸留塔に導入し、減圧蒸留によりアンモニアを除去する。そして、減圧蒸留塔から留出したアンモニア含有蒸気を、減圧蒸留設備の凝縮器に導入して冷却し、凝縮させる。
このとき、アンモニア含有蒸気に含まれているタール油等の成分が、凝縮器の内面のうちアンモニア含有蒸気が導入される導入口の近傍部分に凝固又は析出し、凝縮器が閉塞するおそれがある。
In the surplus water treatment method of this embodiment, a part of surplus water generated during the purification of coke oven gas is introduced into a vacuum distillation column of a vacuum distillation facility, and ammonia is removed by vacuum distillation. And the ammonia containing vapor | steam distilled from the vacuum distillation tower is introduce | transduced into the condenser of a vacuum distillation equipment, is cooled, and is condensed.
At this time, components such as tar oil contained in the ammonia-containing vapor may solidify or precipitate in the vicinity of the introduction port where the ammonia-containing vapor is introduced on the inner surface of the condenser, and the condenser may be blocked. .

しかしながら、本実施形態の余剰安水の処理方法においては、コークス炉ガスの精製時に発生した余剰安水のうち、減圧蒸留塔に導入しなかった他部を、凝縮器の内面のうちアンモニア含有蒸気が導入される導入口の近傍部分にスプレーしつつ、凝縮器でアンモニア含有蒸気の凝縮を行うので、アンモニア含有蒸気に含まれているタール油等に由来する閉塞原因物質が余剰安水のスプレーにより洗浄される。よって、凝縮器の閉塞を回避しつつ減圧蒸留設備を長期間にわたって連続的且つ安定的に運転し、余剰安水を処理することができる。   However, in the surplus water treatment method of the present embodiment, among the surplus water generated at the time of refining the coke oven gas, the other part that was not introduced into the vacuum distillation tower was replaced with the ammonia-containing steam on the inner surface of the condenser. As the ammonia-containing vapor is condensed in the condenser while spraying in the vicinity of the inlet where the oil is introduced, the clogging cause substance derived from tar oil etc. contained in the ammonia-containing vapor is Washed. Therefore, the vacuum distillation equipment can be operated continuously and stably over a long period of time while avoiding blockage of the condenser, and surplus water can be treated.

このような本実施形態の余剰安水の処理方法によれば、例えば複数の凝縮器を必要とせず、1基の凝縮器で十分であるので、減圧蒸留設備の初期コストが小さい。また、凝縮器の閉塞を回避するために閉塞原因物質の凝固や析出が生じない温度で凝縮器を運転する必要はないので、減圧蒸留設備の真空排気装置(例えば真空ポンプ)の容量(排気量)は低くてもよい。さらに、減圧蒸留により余剰安水を処理するので、減圧蒸留塔内の余剰安水を高温にする必要はなく、低いエネルギーコストで処理することができる。   According to the surplus water treatment method of this embodiment as described above, for example, a plurality of condensers are not required and one condenser is sufficient, so that the initial cost of the vacuum distillation facility is small. In addition, since it is not necessary to operate the condenser at a temperature at which the solidification and precipitation of the clogging cause substances do not occur in order to avoid the clogging of the condenser, the capacity (displacement volume) of the vacuum evacuation device (for example, vacuum pump) of the vacuum distillation equipment ) May be low. Furthermore, since surplus water is processed by vacuum distillation, it is not necessary to make the surplus water in a vacuum distillation tower high temperature, and it can process at low energy cost.

なお、スプレーする余剰安水の温度を、凝縮器の塔頂部の温度との温度差が10℃以下となるような温度としてもよい。そうすれば、スプレーされた余剰安水がアンモニアや酸性ガスを吸収しやすいので、減圧蒸留設備の真空排気装置へ導入される気体の量が低減される。よって、減圧蒸留設備の真空排気装置の容量(排気量)を低減することができる。スプレーする余剰安水の温度が高すぎると、スプレーされた余剰安水にアンモニアや酸性ガスが吸収されにくくなる。一方、スプレーする余剰安水の温度が低すぎると、スプレーされた余剰安水中に閉塞原因物質が析出するおそれがある。   Note that the temperature of the surplus water to be sprayed may be a temperature at which the temperature difference from the top temperature of the condenser is 10 ° C. or less. If it does so, since the sprayed surplus water is easy to absorb ammonia and acidic gas, the quantity of the gas introduce | transduced into the vacuum exhaust apparatus of a vacuum distillation equipment is reduced. Therefore, the capacity | capacitance (evacuation amount) of the vacuum exhaust apparatus of a vacuum distillation equipment can be reduced. If the temperature of the surplus water to be sprayed is too high, the sprayed surplus water will not easily absorb ammonia or acid gas. On the other hand, if the temperature of the surplus water to be sprayed is too low, there is a possibility that the clogging cause substance is deposited in the sprayed surplus water.

次に、本実施形態の余剰安水の処理方法について、さらに具体的な例(図1を参照)を示して説明する。
コークス炉ガスの精製時に発生した余剰安水の一部を、径路2を介して減圧蒸留設備の減圧式アンモニアストリッパー1(本発明の構成要件である「減圧蒸留塔」に相当する)に導入する。減圧式アンモニアストリッパー1の内部は、真空ポンプ16により減圧されている。
Next, the surplus water treatment method of the present embodiment will be described with reference to a more specific example (see FIG. 1).
Part of the surplus water produced during the refining of the coke oven gas is introduced through the path 2 into the reduced pressure ammonia stripper 1 of the reduced pressure distillation facility (corresponding to the “reduced pressure distillation column” which is a constituent of the present invention). . The inside of the decompression type ammonia stripper 1 is decompressed by a vacuum pump 16.

減圧式アンモニアストリッパー1に導入された余剰安水は、ポンプ5により径路6を介して塔底部からリボイラ3に送られ、熱交換により加熱された後に径路6を介して減圧式アンモニアストリッパー1の塔底部に戻される。これにより加熱された余剰安水は減圧下で蒸気となり、アンモニア及び酸性ガスを高濃度で含有するアンモニア含有蒸気が減圧式アンモニアストリッパー1の塔頂部に至る。その結果、余剰安水はストリッピングされ、余剰安水からアンモニア及び酸性ガスが除去される。アンモニア及び酸性ガスが除去された余剰安水は、減圧式アンモニアストリッパー1の塔底部からポンプ8により抜き出され、径路9を介して送液される。   The surplus water introduced into the depressurized ammonia stripper 1 is sent from the bottom of the tower to the reboiler 3 via the path 6 by the pump 5, heated by heat exchange, and then the tower of the depressurized ammonia stripper 1 through the path 6. Returned to the bottom. As a result, the heated surplus water becomes steam under reduced pressure, and the ammonia-containing steam containing ammonia and acidic gas at a high concentration reaches the top of the reduced-pressure ammonia stripper 1. As a result, surplus water is stripped, and ammonia and acidic gas are removed from the surplus water. Excess ammonia water from which ammonia and acid gas have been removed is extracted from the bottom of the reduced pressure ammonia stripper 1 by a pump 8 and fed via a path 9.

リボイラ3の熱源は特に限定されるものではないが、コークス炉のドライメーンとタールデカンターの間を循環する熱安水を利用してもよい。すなわち、循環する熱安水を径路4を介してリボイラ3に導入することにより、熱源としてもよい。
余剰安水から除去されたアンモニア含有蒸気は、減圧式アンモニアストリッパー1の塔頂部から留出し、径路10を介して減圧蒸留設備の凝縮器11に導入される。凝縮器11内には図示しない多数の管体が鉛直方向に沿って配置されており、これらの管体の内部にアンモニア含有蒸気が導入される。そして、管体の外部を流れる冷却水によって冷却されることにより、アンモニア含有蒸気が凝縮する。
The heat source of the reboiler 3 is not particularly limited, but hot and cold water circulating between the dry main and the tar decanter of the coke oven may be used. That is, the circulating hot and cold water may be introduced into the reboiler 3 via the path 4 to serve as a heat source.
The ammonia-containing vapor removed from the surplus water is distilled from the top of the reduced pressure ammonia stripper 1 and introduced into the condenser 11 of the reduced pressure distillation facility via the path 10. A large number of tubes (not shown) are arranged in the condenser 11 along the vertical direction, and ammonia-containing vapor is introduced into these tubes. And ammonia containing vapor | steam condenses by being cooled with the cooling water which flows the exterior of a tubular body.

このとき、凝縮器11の内面のうちアンモニア含有蒸気が導入される導入口の近傍部分11aには、コークス炉ガスの精製時に発生した余剰安水の他部がスプレーされるようになっている。そのため、近傍部分11aへの余剰安水のスプレーが行われつつアンモニア含有蒸気の凝縮が行われる。余剰安水のスプレーにより、アンモニア含有蒸気に含まれているタール油等に由来する閉塞原因物質が洗浄されるため、凝縮器11の閉塞が抑制される。スプレー用の余剰安水は、例えば40℃に冷却されて、凝縮器11のうち管体よりも上流側部分に連結された径路12を介して導入される。   At this time, the other part of the surplus water generated at the time of refining the coke oven gas is sprayed on the portion 11a near the introduction port into which the ammonia-containing vapor is introduced on the inner surface of the condenser 11. For this reason, the ammonia-containing vapor is condensed while the surplus water is sprayed onto the vicinity 11a. Since the clogging cause substance derived from tar oil or the like contained in the ammonia-containing vapor is washed by the surplus water spray, clogging of the condenser 11 is suppressed. Surplus water for spraying is cooled to 40 ° C., for example, and introduced through a path 12 connected to a portion of the condenser 11 upstream of the tube.

アンモニア含有蒸気が凝縮されて得られたアンモニア水は、凝縮器11の底部からポンプ18により抜き出され、径路17を介して送液される。このアンモニア水は、循環する熱安水として利用することができるし、あるいは、蒸留して純度の高いアンモニアを得ることができる。また、凝縮しなかったアンモニア含有蒸気は、凝縮器11の底部から真空ポンプ16により径路15を介して排出され、コークス炉ガス精製設備の脱アンモニア設備に送られて処理される。   Ammonia water obtained by condensing the ammonia-containing vapor is extracted from the bottom of the condenser 11 by the pump 18 and fed through the path 17. This ammonia water can be used as circulating hot water, or it can be distilled to obtain highly pure ammonia. In addition, the ammonia-containing vapor that has not been condensed is discharged from the bottom of the condenser 11 via the path 15 by the vacuum pump 16 and sent to the deammonia facility of the coke oven gas purification facility for processing.

〔実施例〕
以下に、実施例及び比較例を示して、本発明をさらに具体的に説明する。図1に示す減圧蒸留設備を使用し、上記の実施形態と同様にして余剰安水の処理を行った(実施例)。減圧式アンモニアストリッパー1に導入する余剰安水の量は、100トン/hである。この余剰安水の組成は、アンモニア8000ppm、硫化水素1600ppm、二酸化炭素8000ppm、シアン化水素800ppmであり、残部は水である。
〔Example〕
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. The reduced-pressure distillation equipment shown in FIG. 1 was used, and surplus water was treated in the same manner as in the above embodiment (Example). The amount of surplus water introduced into the reduced pressure ammonia stripper 1 is 100 tons / h. The composition of this surplus water is 8000 ppm of ammonia, 1600 ppm of hydrogen sulfide, 8000 ppm of carbon dioxide, 800 ppm of hydrogen cyanide, and the balance is water.

リボイラ3には77℃の熱安水(コークス炉のドライメーンとタールデカンターの間を循環する熱安水)を導入し、これにより余剰安水に10000Mcal/hの熱量を供給した。減圧式アンモニアストリッパー1の運転条件は以下の通りである。
塔底部の圧力:−70kPaG
塔底部の温度:70℃
塔頂部の圧力:−71kPaG
塔頂部の温度:67℃
余剰安水のスプレー量:10Nm3 /h
スプレーする余剰安水の温度:69℃
また、凝縮器11の運転条件は以下の通りである。
冷却温度:40℃
The reboiler 3 was introduced with 77 ° C. hot and cold water (hot and cold water circulated between the coke oven dry main and the tar decanter), thereby supplying a surplus of low water with a calorific value of 10,000 Mcal / h. The operating conditions of the decompression type ammonia stripper 1 are as follows.
Pressure at the bottom of the tower: -70 kPaG
Tower bottom temperature: 70 ° C
Pressure at the top of the tower: -71 kPaG
Tower top temperature: 67 ° C
Surplus water spray rate: 10 Nm 3 / h
Surplus water temperature to spray: 69 ℃
The operating conditions of the condenser 11 are as follows.
Cooling temperature: 40 ° C

このような条件で余剰安水の処理を行った結果、経路9から排出された処理済みの余剰安水のアンモニア濃度は600ppmであった。また、1ヶ月間にわたって減圧蒸留設備の連続運転を行った結果、凝縮器11の伝熱性能の顕著な低下は見られず、減圧蒸留設備を長期間にわたって連続的且つ安定的に運転し余剰安水の処理を行うことができた。この結果から、凝縮器11の閉塞が起こらなかったことが分かる。   As a result of treating surplus water under such conditions, the ammonia concentration of the treated surplus water discharged from the route 9 was 600 ppm. In addition, as a result of continuous operation of the vacuum distillation facility for one month, no significant decrease in the heat transfer performance of the condenser 11 was observed, and the vacuum distillation facility was operated continuously and stably over a long period of time. Water treatment could be performed. From this result, it can be seen that the condenser 11 was not blocked.

一方、余剰安水のスプレーを実施しない点以外は上記の実施例と全く同様にして余剰安水の処理を行った(比較例)。その結果、約1週間後から徐々に凝縮器11の伝熱性能の低下が見られ、1ヶ月後には当初の8割程度の量しか余剰安水を処理できなくなった。この結果から、凝縮器11の閉塞が起こったことが分かる。なお、経路9から排出された処理済みの余剰安水のアンモニア濃度は600ppmであった。   On the other hand, the surplus water treatment was performed in the same manner as in the above example except that the surplus water was not sprayed (comparative example). As a result, the heat transfer performance of the condenser 11 gradually declined after about one week, and after one month, only about 80% of the initial amount of surplus water could be treated. From this result, it can be seen that the condenser 11 is blocked. The ammonia concentration in the treated surplus water discharged from the route 9 was 600 ppm.

1 減圧式アンモニアストリッパー(減圧蒸留塔)
11 凝縮器
1 Depressurized ammonia stripper (vacuum distillation tower)
11 Condenser

Claims (2)

コークス炉ガスの精製時に発生する余剰安水の一部を減圧蒸留塔に導入して減圧蒸留し、前記余剰安水の一部からアンモニアを除去するとともに、前記減圧蒸留塔から留出するアンモニア含有蒸気を凝縮器に導入して冷却し凝縮させる工程を含み、
前記凝縮器の内面のうち前記アンモニア含有蒸気が導入される導入口の近傍部分に、前記余剰安水の他部をスプレーしつつ、前記アンモニア含有蒸気の凝縮を行うことを特徴とする余剰安水の処理方法。
Introducing a portion of surplus water generated during refining of coke oven gas into a vacuum distillation column and performing distillation under reduced pressure, removing ammonia from a portion of the surplus water and containing ammonia distilled from the vacuum distillation column Including the step of introducing steam into the condenser to cool and condense,
The surplus water is obtained by condensing the ammonia-containing steam while spraying the other part of the surplus water on the inner surface of the condenser near the inlet to which the ammonia-containing steam is introduced. Processing method.
前記余剰安水の他部の温度を、前記凝縮器の塔頂部の温度との温度差が10℃以下となるような温度とすることを特徴とする請求項1に記載の余剰安水の処理方法。   2. The surplus water treatment according to claim 1, wherein the temperature of the other part of the surplus water is such that the temperature difference from the temperature at the top of the condenser is 10 ° C. or less. Method.
JP2014253958A 2014-12-16 2014-12-16 Surplus water treatment method Active JP6269465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014253958A JP6269465B2 (en) 2014-12-16 2014-12-16 Surplus water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014253958A JP6269465B2 (en) 2014-12-16 2014-12-16 Surplus water treatment method

Publications (2)

Publication Number Publication Date
JP2016112516A true JP2016112516A (en) 2016-06-23
JP6269465B2 JP6269465B2 (en) 2018-01-31

Family

ID=56140455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014253958A Active JP6269465B2 (en) 2014-12-16 2014-12-16 Surplus water treatment method

Country Status (1)

Country Link
JP (1) JP6269465B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148962A (en) * 1976-06-04 1977-12-10 Nippon Steel Chemical Co Treating method of ammonia containing drainage
JPS5541860A (en) * 1978-09-21 1980-03-24 Nippon Steel Chem Co Ltd Treatment of gas liquor
US4323430A (en) * 1981-03-16 1982-04-06 United States Steel Corporation Process for separating ammonia and acid gases from streams containing fixed ammonia salts
JPS61234982A (en) * 1985-04-09 1986-10-20 Kawasaki Heavy Ind Ltd Treatment of waste water containing ammonia, hydrogen sulfide, and so forth
JPH059476A (en) * 1991-06-28 1993-01-19 Nippon Steel Corp Method for preventing blockage in oven gas duct of continuous coke production equipment
JPH07256233A (en) * 1994-03-25 1995-10-09 Nkk Corp Method for cleaning ammonia distillation tower
JP2003112001A (en) * 2001-10-04 2003-04-15 Mitsubishi Rayon Co Ltd Method for condensing gas
JP2005213436A (en) * 2004-01-30 2005-08-11 Kawasaki Engineering Co Ltd Method for treating excess ammoniacal liquor
JP2005239934A (en) * 2004-02-27 2005-09-08 Kawasaki Engineering Co Ltd Method for treating excess ammoniacal liquor
JP2007039613A (en) * 2005-08-05 2007-02-15 Nippon Steel Corp Method and apparatus for purifying gasified gas
JP2007045852A (en) * 2005-08-05 2007-02-22 Nippon Steel Corp Method and apparatus for purifying gasified gas and method for using gasified gas

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148962A (en) * 1976-06-04 1977-12-10 Nippon Steel Chemical Co Treating method of ammonia containing drainage
JPS5541860A (en) * 1978-09-21 1980-03-24 Nippon Steel Chem Co Ltd Treatment of gas liquor
US4323430A (en) * 1981-03-16 1982-04-06 United States Steel Corporation Process for separating ammonia and acid gases from streams containing fixed ammonia salts
JPS61234982A (en) * 1985-04-09 1986-10-20 Kawasaki Heavy Ind Ltd Treatment of waste water containing ammonia, hydrogen sulfide, and so forth
JPH059476A (en) * 1991-06-28 1993-01-19 Nippon Steel Corp Method for preventing blockage in oven gas duct of continuous coke production equipment
JPH07256233A (en) * 1994-03-25 1995-10-09 Nkk Corp Method for cleaning ammonia distillation tower
JP2003112001A (en) * 2001-10-04 2003-04-15 Mitsubishi Rayon Co Ltd Method for condensing gas
JP2005213436A (en) * 2004-01-30 2005-08-11 Kawasaki Engineering Co Ltd Method for treating excess ammoniacal liquor
JP2005239934A (en) * 2004-02-27 2005-09-08 Kawasaki Engineering Co Ltd Method for treating excess ammoniacal liquor
JP2007039613A (en) * 2005-08-05 2007-02-15 Nippon Steel Corp Method and apparatus for purifying gasified gas
JP2007045852A (en) * 2005-08-05 2007-02-22 Nippon Steel Corp Method and apparatus for purifying gasified gas and method for using gasified gas

Also Published As

Publication number Publication date
JP6269465B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
KR101709101B1 (en) Nmp distilling apparatus
EA027675B1 (en) Urea production process and plant
EP1864947A2 (en) Process for the recovery of sulfuric acid
CN104817470A (en) DMAC (dimethylacetamide) or DMF (dimethyl formamide) waste liquid five-tower triple-effect rectification system and recovery method thereof
JP2015218077A (en) Production method and production facility of ammonium sulfate, and treatment method of surplus ammoniacal liquor
JP6269465B2 (en) Surplus water treatment method
CN102585854A (en) Method for purifying smoke dust discharged by coke quenching tower in wet quenching process
KR20170075008A (en) Reduction of naphthalene in coke oven gas
JP5038251B2 (en) Titanium tetrachloride distillation purification apparatus, maintenance method of the apparatus, and purification method of titanium tetrachloride using the apparatus
TW201622804A (en) Process for treating acid gas from coke plants and installation for carrying out the process
JP2007223906A (en) Method for purifying caprolactam
JP2011078951A (en) Treatment method and treatment equipment for excess ammoniacal liquor
JP6175842B2 (en) Coke oven gas cooling method
JP4386761B2 (en) Surplus water treatment method
US8668811B2 (en) Method and apparatus for producing a pyrolysis liquid
JP2016216276A (en) Method for producing ammonium sulfate and method for dissolving ammonium sulfate crystal
EP3344732B1 (en) Method for the vacuum distillation of a hydrocarbon feed stock
JP2016210855A (en) Method for refining coke-oven gas
JP2009196953A (en) Method for producing (meth)acrylonitrile
CN107935086A (en) A kind of efficiently deacidifion tower
JPS61234982A (en) Treatment of waste water containing ammonia, hydrogen sulfide, and so forth
JP2005213436A (en) Method for treating excess ammoniacal liquor
JP2018162201A (en) Ammonium sulfate manufacturing method and ammonium sulfate manufacturing facility
JP6149821B2 (en) Coke oven gas purification method
CN105536433B (en) Method and installation for separating ammonia from a gas mixture

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R150 Certificate of patent or registration of utility model

Ref document number: 6269465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250