JP6149821B2 - Coke oven gas purification method - Google Patents

Coke oven gas purification method Download PDF

Info

Publication number
JP6149821B2
JP6149821B2 JP2014158344A JP2014158344A JP6149821B2 JP 6149821 B2 JP6149821 B2 JP 6149821B2 JP 2014158344 A JP2014158344 A JP 2014158344A JP 2014158344 A JP2014158344 A JP 2014158344A JP 6149821 B2 JP6149821 B2 JP 6149821B2
Authority
JP
Japan
Prior art keywords
ammonium sulfate
gas
coke oven
hydrogen sulfide
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014158344A
Other languages
Japanese (ja)
Other versions
JP2016035015A (en
Inventor
大輔 浦上
大輔 浦上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014158344A priority Critical patent/JP6149821B2/en
Publication of JP2016035015A publication Critical patent/JP2016035015A/en
Application granted granted Critical
Publication of JP6149821B2 publication Critical patent/JP6149821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Industrial Gases (AREA)

Description

本発明はコークス炉ガスの精製方法に関し、特に、排水処理設備の負荷を低減でき、なおかつ工業用水の使用量を削減できるコークス炉ガスの精製方法に関するものである。   The present invention relates to a method for refining coke oven gas, and more particularly to a method for refining coke oven gas that can reduce the load on wastewater treatment equipment and can reduce the amount of industrial water used.

従来、コークス炉の炭化室に石炭を挿入して乾留する際に発生するガス(以下、「Cガス」と称する)は、水素やメタン、一酸化炭素等の燃料成分を多く含み、20000kJ/m3を超える高い熱量を有しているため、回収して高炉や、コークス炉、加熱炉、ボイラー用の燃料ガスとして再利用されている。 Conventionally, a gas (hereinafter referred to as “C gas”) generated when coal is inserted into a coking chamber of a coke oven and dry-distilled (hereinafter referred to as “C gas”) contains a large amount of fuel components such as hydrogen, methane, and carbon monoxide, and is 20000 kJ / m. Since it has a high heat quantity exceeding 3 , it is recovered and reused as fuel gas for blast furnaces, coke ovens, heating furnaces, and boilers.

その際、コークス炉から排出された状態のCガスにはタール分や水分、アンモニアや硫化水素、シアン等の様々な物質が混入しており、燃料として使用するためには、これらの燃焼を阻害する物質や有害物質を除去する必要がある。そのため、これらの燃焼阻害物質及び有害物質を除去する精製を経て燃料ガスとするのが通例である(例えば、特許文献1参照)。   At that time, various substances such as tar, water, ammonia, hydrogen sulfide, and cyan are mixed in the C gas discharged from the coke oven. Substances and harmful substances need to be removed. Therefore, it is customary to use fuel gas through purification to remove these combustion-inhibiting substances and harmful substances (see, for example, Patent Document 1).

また、上記Cガスの精製工程では、石炭由来の水分が排水として大量に発生する。この排水は多量のアンモニアおよび有機物を含んでいるため、排水処理設備にてアンモニアおよび有機物等を除去した後に、海に放流されている。   Further, in the C gas purification process, a large amount of coal-derived water is generated as waste water. Since this waste water contains a large amount of ammonia and organic matter, it is discharged into the sea after ammonia and organic matter are removed by the waste water treatment facility.

図1は、一般的なCガスの精製フローを示す図である。Cガスの燃料ガスへの精製は、具体的には以下のように行われる。すなわち、まず、コークス炉(図示せず)から排出されたCガスを冷却した後に設備閉塞の原因となるナフタレンを回収したCガス1を、脱硫設備2に導入して硫化水素を除去する(脱硫工程)。次いで、硫化水素を除去したCガス3を脱アンモニア設備4に導入して、Cガス3から窒素酸化物(NOx)の原因となるアンモニア分を除去する(脱アンモニア工程)。その後、アンモニアが除去されたCガス5を冷却し、Cガス5中の軽油分を回収してコークス炉から排出されたCガスを燃料ガスに精製する。 FIG. 1 is a diagram showing a general purification flow of C gas. Specifically, the purification of C gas into fuel gas is performed as follows. That is, first, after cooling C gas discharged from a coke oven (not shown), C gas 1 from which naphthalene causing equipment blockage is recovered is introduced into the desulfurization facility 2 to remove hydrogen sulfide (desulfurization). Process). Next, the C gas 3 from which hydrogen sulfide has been removed is introduced into the deammonia facility 4 to remove the ammonia component that causes nitrogen oxides (NO x ) from the C gas 3 (deammonia process). Thereafter, the C gas 5 from which ammonia has been removed is cooled, the light oil content in the C gas 5 is recovered, and the C gas discharged from the coke oven is purified into fuel gas.

上記脱硫工程における脱硫方法としては、アルカリ性水溶液等の吸収液をCガスと接触させて、Cガスに含まれる硫化水素を吸収液に吸収させるタカハックス法やフマックス法等の湿式の脱硫方法が知られている。また、これら湿式脱硫方法として、充填層を有する吸収塔内に吸収液を噴霧し、この吸収塔内にCガスを通過させて噴霧されたアルカリ水溶液にCガス中の硫化水素を吸収させることにより脱硫する方法が知られている。   As the desulfurization method in the desulfurization step, a wet desulfurization method such as a Takahax method or a Fumax method in which an absorbing solution such as an alkaline aqueous solution is brought into contact with C gas and hydrogen sulfide contained in C gas is absorbed into the absorbing solution is known. ing. Further, as these wet desulfurization methods, the absorbing liquid is sprayed into an absorption tower having a packed bed, and C gas is allowed to pass through the absorption tower so that the sprayed alkaline aqueous solution absorbs hydrogen sulfide in the C gas. Methods for desulfurization are known.

図2は、こうした湿式脱硫法に基づく脱硫設備の一例を示す図である。この図に示した脱硫設備2は、Cガス1に含まれる硫化水素を吸収液L1に吸収させる吸収塔21と、硫化水素を吸収して活性を失った吸収液L1から硫化水素をストリッピング(除去)して再生させる再生塔22とを有する。 FIG. 2 is a diagram illustrating an example of a desulfurization facility based on such a wet desulfurization method. Desulfurization 2 shown in this figure, strike the absorption column 21 to absorb hydrogen sulfide contained in the C gas 1 into the absorbing liquid L 1, the hydrogen sulfide from the absorbing liquid L 1 having no activity to absorb hydrogen sulfide And a regeneration tower 22 for regenerating by ripping (removing).

この脱硫設備2におけるCガス1の脱硫処理は以下のように行う。すなわち、まず、アンモニア水等のアルカリ性の吸収液L1を吸収塔21の上部に導いてスプレーにより噴霧し、吸収塔21内に導入されたCガス1と吸収液L1とを向流に接触させる。すると、アルカリ性を有する吸収液L1は硫化水素を吸収する能力を有するため、Cガス1に含まれる硫化水素を吸収して、吸収塔21の下部に滞留する吸収液L1中に落下する。こうして、吸収液L1を吸収塔21内で循環させ、Cガス1に含まれる硫化水素を噴霧された吸収液L1に吸収させて、硫化水素が除去されたCガス3を吸収塔21の頂部から排出する。 The desulfurization process of the C gas 1 in the desulfurization facility 2 is performed as follows. That is, first, an alkaline absorbing liquid L 1 such as ammonia water is guided to the upper part of the absorption tower 21 and sprayed by spraying, and the C gas 1 introduced into the absorption tower 21 and the absorbing liquid L 1 are brought into contact with each other in countercurrent. Let Then, since the absorbing liquid L 1 having alkalinity has the ability to absorb hydrogen sulfide, it absorbs hydrogen sulfide contained in the C gas 1 and falls into the absorbing liquid L 1 staying in the lower part of the absorption tower 21. Thus, the absorption liquid L 1 is circulated in the absorption tower 21, the hydrogen sulfide contained in the C gas 1 is absorbed by the sprayed absorption liquid L 1 , and the C gas 3 from which hydrogen sulfide has been removed is absorbed in the absorption tower 21. Drain from the top.

一方、吸収塔21の下部に滞留する、硫化水素を吸収して不活性となった吸収液L1の一部を再生塔22に導き、再生空気GAを再生塔22内に導入し、吸収液L1に吸収された硫化水素を除去することにより吸収液L1を再生する。除去された硫化水素は廃空気GBとして塔外に排出され、再生された活性な吸収液L1は吸収塔21の上部に導かれて再度硫化水素の吸収に使用される。こうして、吸収液L1を吸収塔21と再生塔22との間で循環させることにより、Cガス1を連続的に脱硫することができる。 On the other hand, it stays at the bottom of the absorption tower 21 leads to a part of the absorbing liquid L 1 became to inert absorbing hydrogen sulfide to the regenerator 22 by introducing regeneration air G A to the regenerator 22, the absorption Play absorbing liquid L 1 by removing the hydrogen sulfide absorbed in the liquid L 1. Removing hydrogen sulfide is discharged to the column outside as waste air G B, regenerated active absorbing liquid L 1 is used to absorb the upper portion guided by again hydrogen sulfide absorption tower 21. Thus, C gas 1 can be continuously desulfurized by circulating the absorbing liquid L 1 between the absorption tower 21 and the regeneration tower 22.

上記した脱硫設備2においては、吸収液L1に含まれる不純物等を抜き出して吸収液L1の性状を一定に保つために、吸収塔21から排出された吸収液L1の所定量を脱硫設備2の外に抜き出され(アンモニア含有排水)、硫酸あるいは硫酸アンモニウムの原料として使用されるのが通例である。そして、この抜き出された吸収液L1を補給するために、工業用水が添加されている。また、吸収液L1の硫化水素の吸収効率を高めるために、アンモニア水も別途添加されている。 In the desulfurization equipment 2 described above, in order to keep the properties of the absorbent L absorbing liquid L 1 by extracting impurities or the like contained in 1 constant desulfurization predetermined amount of the discharged absorbing liquid L 1 from the absorption tower 21 Typically, it is taken out of 2 (ammonia-containing wastewater) and used as a raw material for sulfuric acid or ammonium sulfate. Then, in order to replenish the withdrawn absorption liquid L 1, industrial water is added. Further, ammonia water is also added separately in order to increase the hydrogen sulfide absorption efficiency of the absorption liquid L 1 .

また、上記脱アンモニア工程におけるアンモニア除去方法としては、Cガスと希硫酸とを反応させて硫酸アンモニウム(以下、「硫安」と称する)として回収する。図3は、脱アンモニア設備の一例を示す図である。この図に示した脱アンモニア設備4は、硫安飽和塔41と、母液循環槽42と、ポンプ43とを有する。   Further, as an ammonia removal method in the deammonia step, C gas and dilute sulfuric acid are reacted and recovered as ammonium sulfate (hereinafter referred to as “ammonium sulfate”). FIG. 3 is a diagram illustrating an example of a deammonia facility. The deammonia facility 4 shown in this figure has an ammonium sulfate saturation tower 41, a mother liquor circulation tank 42, and a pump 43.

この脱アンモニア設備4において、脱硫工程を経て硫化水素が除去されたCガス3を硫安飽和塔41に導入し、スプレーにより希硫酸を噴霧して、硫安飽和塔41内に導入されたCガス3と向流に接触させる。すると、Cガス3に含まれるアンモニアを吸収して、硫安飽和塔41の下部に硫安母液L2として落下して滞留する。 In this deammonia facility 4, the C gas 3 from which hydrogen sulfide has been removed through the desulfurization step is introduced into the ammonium sulfate saturated column 41, and the dilute sulfuric acid is sprayed by spraying to introduce the C gas 3 introduced into the ammonium sulfate saturated column 41. Contact with countercurrent. Then, by absorbing ammonia contained in C gas 3, stays to fall to the bottom of the ammonium sulfate saturation tower 41 as ammonium sulfate mother liquor L 2.

ここで、硫安飽和塔41の下部に滞留する硫安母液L2の一部は、母液循環槽42に回収され、該母液循環槽42にて濃硫酸Sを添加した後、ポンプ43により硫安飽和塔41の上部に導かれて再度噴霧される。こうして、硫安母液L2を硫安飽和塔41と母液循環槽42との間を循環させてCガス3中のアンモニア分を連続的に除去し、アンモニアが除去されたCガス5を硫安飽和塔41から排出する。 Here, a part of the ammonium sulfate mother liquor L 2 staying in the lower part of the ammonium sulfate saturation column 41 is recovered in the mother liquor circulation tank 42, and after adding concentrated sulfuric acid S in the mother liquor circulation tank 42, the ammonium sulfate saturation tower is pumped by the pump 43. It is guided to the upper part of 41 and sprayed again. Thus, the ammonium sulfate mother liquor L 2 is circulated between the ammonium sulfate saturation column 41 and the mother liquor circulation tank 42 to continuously remove the ammonia content in the C gas 3, and the C gas 5 from which the ammonia has been removed is removed from the ammonium sulfate saturation column 41. To discharge from.

一方、硫安飽和塔41の下部に滞留する硫安母液L2の残りは硫安飽和塔41から排出され、排出された硫安母液6は硫安晶析装置に導入されて、硫安母液6に含まれる硫安が晶出されて結晶硫安として回収される。図4は、硫安母液6に含まれる硫安を晶出させる硫安晶析装置の一例を示している。この図に示した硫安晶析装置7は、硫安晶析槽71と、加熱器72と、蒸発槽73と、凝縮器74とを有する。 On the other hand, the remainder of the ammonium sulfate mother liquor L 2 staying in the lower part of the ammonium sulfate saturated column 41 is discharged from the ammonium sulfate saturated column 41, and the discharged ammonium sulfate mother liquor 6 is introduced into the ammonium sulfate crystallizer, and the ammonium sulfate contained in the ammonium sulfate mother liquor 6 is removed. Crystallized and recovered as crystalline ammonium sulfate. FIG. 4 shows an example of an ammonium sulfate crystallization apparatus for crystallizing ammonium sulfate contained in the ammonium sulfate mother liquor 6. The ammonium sulfate crystallization apparatus 7 shown in this figure has an ammonium sulfate crystallization tank 71, a heater 72, an evaporation tank 73, and a condenser 74.

この硫安晶析装置7において、硫安飽和塔41から排出された硫安母液6を硫安晶析槽71に導入する。導入された硫安母液6は、加熱器72により加熱されて蒸発槽73に供給され、硫安母液6に含まれる水分を蒸発させて濃縮する。濃縮した硫安母液6は硫安晶析槽71に戻され、硫安母液6を硫安晶積層71と蒸発槽73との間を循環させることにより、硫安を結晶化させて析出させる。析出した結晶硫安を含むスラリーを硫安析出槽71の下部から排出し、硫安乾燥設備(図示せず)に搬送して、遠心分離器および乾燥機等を用いて乾燥させることにより、乾燥した結晶硫安を回収することができる。   In the ammonium sulfate crystallization apparatus 7, the ammonium sulfate mother liquor 6 discharged from the ammonium sulfate saturation tower 41 is introduced into an ammonium sulfate crystallization tank 71. The introduced ammonium sulfate mother liquor 6 is heated by the heater 72 and supplied to the evaporation tank 73, and the water contained in the ammonium sulfate mother liquor 6 is evaporated and concentrated. The concentrated ammonium sulfate mother liquor 6 is returned to the ammonium sulfate crystallization tank 71, and ammonium sulfate is crystallized and precipitated by circulating the ammonium sulfate mother liquor 6 between the ammonium sulfate laminate 71 and the evaporation tank 73. The slurry containing the precipitated ammonium sulfate is discharged from the lower part of the ammonium sulfate precipitation tank 71, conveyed to an ammonium sulfate drying facility (not shown), and dried using a centrifugal separator, a drier, etc. Can be recovered.

また、蒸発槽73においては、硫安を含有する蒸気8が蒸発槽73の頂部から排出される。排出された硫安含有蒸気8は凝縮器74により凝縮され、得られた硫酸アンモニウム含有凝縮水(以下、「硫安凝縮水」と称する)9は、排水処理設備10に送られて硫安凝縮水9に含まれるアンモニアを分解した後、放流水11として海に放流される。   In the evaporation tank 73, the vapor 8 containing ammonium sulfate is discharged from the top of the evaporation tank 73. The discharged ammonium sulfate-containing steam 8 is condensed by the condenser 74, and the obtained ammonium sulfate-containing condensed water (hereinafter referred to as “ammonium sulfate condensed water”) 9 is sent to the wastewater treatment facility 10 and included in the ammonium sulfate condensed water 9. After decomposing ammonia, it is discharged into the sea as discharge water 11.

特開2001−81479号公報JP 2001-81479 A

上記凝縮器74により得られた硫安凝縮水9には、硫安母液6由来の遊離アンモニアが多く含まれており、このような硫安凝縮水9を排水処理設備10にて処理すると、排水処理設備10の負荷が増加することが問題となっていた。そして近年、環境保全の観点から、放流水11の窒素排出規制が厳しくなっている。そして、この規制は今後も続く見込みであり、各工場の排出処理設備10の負荷は益々上昇するものと予想される。   The ammonium sulfate condensate 9 obtained by the condenser 74 contains a large amount of free ammonia derived from the ammonium sulfate mother liquor 6. When such ammonium sulfate condensate 9 is treated in the wastewater treatment facility 10, the wastewater treatment facility 10. The problem was that the load on the site increased. And in recent years, from the viewpoint of environmental conservation, nitrogen emission regulation of the discharged water 11 has become stricter. And this regulation is expected to continue in the future, and it is expected that the load of the exhaust treatment facility 10 of each factory will increase more and more.

さらに、特に工業地区においては、工業用水の不足が顕在化しており、工業用水の使用量削減も工場の課題となっていた。
そこで、本発明の目的は、排水処理設備の負荷を低減でき、なおかつ工業用水の使用量を削減できるCガスの精製方法を提案することにある。
Furthermore, particularly in industrial areas, a shortage of industrial water has become apparent, and reducing the amount of industrial water used has been a problem for factories.
Therefore, an object of the present invention is to propose a method for purifying C gas that can reduce the load on the wastewater treatment facility and can reduce the amount of industrial water used.

発明者らは、上記課題を解決する方途について鋭意検討した。その結果、従来、排水処理設備に供給していた硫安凝縮水の少なくとも一部を、脱硫工程における硫化水素の吸収液として補給することが極めて有効であることを見出し、本発明を完成させるに至った。   The inventors diligently studied how to solve the above problems. As a result, it has been found that it is extremely effective to replenish at least a part of the ammonium sulfate condensate that has been supplied to the wastewater treatment facility as a hydrogen sulfide absorbing liquid in the desulfurization process, and the present invention has been completed. It was.

すなわち、本発明の要旨構成は以下の通りである。
(1)コークス炉から排出されるコークス炉ガスを硫化水素を吸収する吸収液に接触させて前記コークス炉ガスに含まれる硫化水素を前記吸収液に吸収させて回収し、次いで、該硫化水素を回収したコークス炉ガスに希硫酸を噴霧して前記硫化水素を回収したコークス炉ガスに含まれるアンモニアを前記希硫酸に吸収させて回収して、前記コークス炉ガスを燃料ガスへと精製するに当たり、前記アンモニアを吸収した希硫酸から結晶硫酸アンモニウムを晶析させる際に生じる、アンモニアを含有する硫安凝縮水の少なくとも一部を、前記コークス炉ガスから硫化水素を回収する際の吸収液の補給水として供給することを特徴とするコークス炉ガスの精製方法。
That is, the gist of the present invention is as follows.
(1) The coke oven gas discharged from the coke oven is brought into contact with an absorbing solution that absorbs hydrogen sulfide to absorb the hydrogen sulfide contained in the coke oven gas into the absorbing solution, and then the hydrogen sulfide is recovered. In refining the coke oven gas to fuel gas, the dilute sulfuric acid is sprayed on the recovered coke oven gas to recover ammonia by absorbing ammonia contained in the coke oven gas from which the hydrogen sulfide has been recovered. Supply at least part of ammonium sulfate condensed water containing ammonia, which is generated when crystallizing ammonium sulfate from the dilute sulfuric acid that has absorbed ammonia, as supplementary water for absorbing liquid when recovering hydrogen sulfide from the coke oven gas A method for purifying coke oven gas.

(2)前記吸収液はアンモニア水である、前記(1)に記載のコークス炉ガスの精製方法。 (2) The method for purifying coke oven gas according to (1), wherein the absorption liquid is ammonia water.

本発明によれば、従来、排水処理設備に供給していた硫安凝縮水を、脱硫工程における硫化水素の吸収液として補給するようにしたため、排水処理設備の負荷を低減でき、なおかつ工業用水の使用量を削減できる。   According to the present invention, the ammonium sulfate condensate that has been supplied to the wastewater treatment facility has been replenished as a hydrogen sulfide absorbing liquid in the desulfurization process, so that the load on the wastewater treatment facility can be reduced and industrial water can be used. The amount can be reduced.

従来のCガスの精製方法のフロー図である。It is a flowchart of the purification method of the conventional C gas. 脱硫設備の一例を示す図である。It is a figure which shows an example of a desulfurization installation. 脱アンモニア設備の一例を示す図である。It is a figure which shows an example of a deammonia installation. 硫安晶析装置の一例を示す図である。It is a figure which shows an example of an ammonium sulfate crystallization apparatus. 本発明に係るCガスの精製方法のフロー図である。It is a flowchart of the purification method of C gas which concerns on this invention.

以下、図面を参照して、本発明の実施形態について説明する。
図5は、本発明に係るCガスの精製方法のフロー図を示している。なお、図1に示された構成と同一の構成には同一の符号が付されている。この図に示すように、本発明に係るCガスの精製方法は、脱アンモニア工程においてアンモニアを吸収した希硫酸から硫安を晶出させる際に生じる硫安凝縮水9の少なくとも一部を、脱硫工程においてナフタレンを回収したコークス炉ガス1から硫化水素を回収する際の吸収液L1として補給することに特徴を有している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 5 shows a flow diagram of the method for purifying C gas according to the present invention. In addition, the same code | symbol is attached | subjected to the structure same as the structure shown by FIG. As shown in this figure, the method for purifying C gas according to the present invention is such that at least a part of the ammonium sulfate condensate 9 produced when crystallizing ammonium sulfate from dilute sulfuric acid that has absorbed ammonia in the deammonia step is used in the desulfurization step. It is characterized in that it is replenished as an absorbing liquid L 1 when hydrogen sulfide is recovered from the coke oven gas 1 from which naphthalene has been recovered.

上述のように、従来のCガスの精製方法においては、凝縮器74により得られた硫安凝縮水9は、排水処理設備10に導入されて、硫安凝縮水9に含まれるアンモニアを分解処理した後に海に放流されていた。しかしながら、凝縮器74により得られた硫安凝縮水9には、硫安母液6由来の遊離アンモニアが多く含まれており、このような硫安凝縮水9を排水処理設備10にて処理すると、排水処理設備10の負荷が増加してアンモニアを十分に分解できないおそれがある。   As described above, in the conventional C gas purification method, the ammonium sulfate condensate 9 obtained by the condenser 74 is introduced into the wastewater treatment facility 10 and decomposes the ammonia contained in the ammonium sulfate condensate 9. It was released into the sea. However, the ammonium sulfate condensate 9 obtained by the condenser 74 contains a large amount of free ammonia derived from the ammonium sulfate mother liquor 6. When such ammonium sulfate condensate 9 is processed by the wastewater treatment facility 10, the wastewater treatment facility The load of 10 may increase and ammonia may not be decomposed sufficiently.

そこで発明者らは、上記硫安凝縮水9の全てを排水処理設備10にて処理するのを回避する方途について鋭意検討した。その結果、硫安凝縮水9の一部を脱硫工程における吸収液L1の補給水として補給することを想到した。すなわち、硫安凝縮水9は、上述のように、脱硫工程においてCガス1に含まれる硫化水素を吸収する遊離アンモニアを多く含んでいる。また、硫安凝縮水9は、設備閉塞の原因となる油分やスラッジ分等も含んでいるが、これらは微量であり、硫安凝縮水9を脱硫工程における吸収液L1の補給水として使用するのに何ら問題は生じない。 Therefore, the inventors diligently studied how to avoid treating all of the ammonium sulfate condensate 9 with the wastewater treatment facility 10. As a result, it was conceived that a part of the ammonium sulfate condensate 9 was replenished as supplementary water for the absorbing liquid L 1 in the desulfurization process. That is, the ammonium sulfate condensate 9 contains a large amount of free ammonia that absorbs hydrogen sulfide contained in the C gas 1 in the desulfurization process, as described above. In addition, the ammonium sulfate condensate 9 contains oil and sludge that cause blockage of the equipment, but these amounts are very small, and the ammonium sulfate condensate 9 is used as makeup water for the absorbing liquid L 1 in the desulfurization process. There is no problem.

上記硫安凝縮水9を脱硫設備2に供給すると、吸収塔21と再生塔22とを循環し、最終的には脱硫設備2から排出されて硫安として回収される。よって、硫安凝縮水9の少なくとも一部を脱硫設備2に供給することによって、排水処理設備10にかかる負荷を低減することができる。   When the ammonium sulfate condensate 9 is supplied to the desulfurization facility 2, it is circulated through the absorption tower 21 and the regeneration tower 22, and finally discharged from the desulfurization facility 2 and recovered as ammonium sulfate. Therefore, by supplying at least a part of the ammonium sulfate condensate 9 to the desulfurization facility 2, the load on the wastewater treatment facility 10 can be reduced.

また、上述のように、脱硫設備2には一部排出される吸収液L1の補給水として工業用水が使用されている。よって、硫安凝縮水9を吸収液L1の補給水として脱硫設備2に供給すると、脱硫工程に供する工業用水の使用量を削減することもできる。 Further, as described above, industrial water is used in the desulfurization facility 2 as make-up water for the absorbing liquid L 1 that is partially discharged. Therefore, when supplied to the desulfurization 2 ammonium sulfate condensed water 9 as makeup water for the absorbing liquid L 1, it is also possible to reduce the amount of industrial water to be subjected to the desulfurization step.

さらに、脱硫設備2には、補給水として工業用水を供給するだけでなく、硫化水素の吸収効率を上げるために、吸収液L1にアンモニア水を添加しているのも上述の通りである。よって、硫安凝縮水9を補給することにより、工業用水のみならず、アンモニア水の使用量も削減することもできる。以下、本発明のCガスの精製方法の各工程について説明する。 Further, as described above, not only industrial water is supplied to the desulfurization facility 2 but also ammonia water is added to the absorbent L 1 in order to increase the absorption efficiency of hydrogen sulfide. Therefore, by supplementing the ammonium sulfate condensed water 9, not only industrial water but also the amount of ammonia water used can be reduced. Hereinafter, each process of the purification method of C gas of this invention is demonstrated.

まず、コークス炉から排出されたコークス炉ガスは1000℃程度の高温であるため、ドライメインでアンモニア水(安水)を接触させて直接冷却した後に、直接式および/または間接式プライマリークーラー等により35℃程度まで冷却する。   First, since the coke oven gas discharged from the coke oven has a high temperature of about 1000 ° C., it is cooled directly by contacting ammonia water (anhydrous water) with a dry main, and then directly and / or indirectly by a primary cooler or the like. Cool to about 35 ° C.

次に、上記冷却されたCガスをナフタレン回収設備に導入し、冷却されたCガスから設備閉塞の原因となるナフタレンを回収する。ナフタレンの回収方法としては、吸収油による除去方法が広く知られており、本発明においても使用することができる。   Next, the cooled C gas is introduced into a naphthalene recovery facility, and naphthalene that causes equipment blockage is recovered from the cooled C gas. As a method for recovering naphthalene, a removal method using an absorbing oil is widely known and can be used in the present invention.

続いて、ナフタレンが除去されたCガス1を脱硫設備1に導入し、Cガス1に含まれる硫化水素を除去する。図2に示した脱硫設備2を用いた具体的な脱硫方法は上述の通りであり、説明を省略する。図1に示したように、従来の方法においては吸収液L1の補給水として工業用水を使用していたところ、本発明においては、図5に示したように、後の脱アンモニア工程において生じた硫安凝縮水9を吸収液L1の補給水として供給する。これにより、補給水として使用していた工業用水、並びに硫化水素の吸収効率を上げるための添加していたアンモニア水の使用量を削減することができる。 Subsequently, the C gas 1 from which naphthalene has been removed is introduced into the desulfurization facility 1 to remove hydrogen sulfide contained in the C gas 1. A specific desulfurization method using the desulfurization facility 2 shown in FIG. 2 is as described above, and a description thereof will be omitted. As shown in FIG. 1, in the conventional method, industrial water was used as make-up water for the absorbing liquid L 1. In the present invention, as shown in FIG. The ammonium sulfate condensate 9 is supplied as make-up water for the absorbent L 1 . Thereby, the usage-amount of the industrial water used as make-up water and the ammonia water added for improving the absorption efficiency of hydrogen sulfide can be reduced.

その後、硫化水素が除去されたCガス3を脱アンモニア設備4に導入し、Cガス3に含まれるアンモニアを除去する。図3に示した脱アンモニア設備4を用いた具体的な脱アンモニア方法は上述の通りであり、説明を省略する。図1に示した従来の方法において、凝縮器74により得られた硫安凝縮水9の全てを排水処理設備10に供給して処理していたところ、本発明においては、図5に示したように、硫安凝縮水9の少なくとも一部を脱硫工程における吸収液L1の補給水として脱硫設備2に供給する。これにより、排水処理設備10の負荷を低減することができる。 Thereafter, the C gas 3 from which hydrogen sulfide has been removed is introduced into the deammonia facility 4 to remove the ammonia contained in the C gas 3. A specific deammonification method using the deammonification equipment 4 shown in FIG. 3 is as described above, and the description thereof is omitted. In the conventional method shown in FIG. 1, all of the ammonium sulfate condensate 9 obtained by the condenser 74 is supplied to the wastewater treatment facility 10 for treatment. In the present invention, as shown in FIG. At least a part of the ammonium sulfate condensed water 9 is supplied to the desulfurization facility 2 as make-up water for the absorbing liquid L 1 in the desulfurization process. Thereby, the load of the waste water treatment facility 10 can be reduced.

その後、硫安飽和塔41の頂部から排出された、アンモニアが除去されたCガス5を軽油回収設備(図示せず)に導入し、Cガス5に含まれる軽油分を回収する。軽油分の回収方法としては、吸収油による吸収法により行うのが一般的であり、Cガス5と吸収油とを向流接触させてCガス5に含まれる軽油分を吸収油に物理的に吸収させる。   Thereafter, the C gas 5 from which ammonia has been removed discharged from the top of the ammonium sulfate saturation tower 41 is introduced into a light oil recovery facility (not shown), and the light oil contained in the C gas 5 is recovered. As a method for recovering the light oil, it is generally performed by an absorption method using absorption oil. The gas oil contained in the C gas 5 is physically converted into the absorption oil by bringing the C gas 5 and the absorption oil into countercurrent contact. Absorb.

こうして、従来、排水処理設備に供給していた硫安凝縮水の少なくとも一部を、脱硫工程における硫化水素の吸収液の補給水として補給するようにしたため、排水処理設備の負荷を低減でき、なおかつ工業用水の使用量を削減してコークス炉ガスを精製することができる。   In this way, at least a part of the ammonium sulfate condensate that has been supplied to the wastewater treatment facility has been replenished as supplementary water for the hydrogen sulfide absorption liquid in the desulfurization process, so that the load on the wastewater treatment facility can be reduced, and industrial Coke oven gas can be purified by reducing the amount of water used.

(発明例)
以下、本発明の実施例について説明する。
図5に示したCガスの精製フローに従って、コークス炉ガスを精製した。すなわち、まず、コークス炉から排出され、冷却してナフタレンを除去したCガス1を脱硫設備2に導入して硫化水素を除去した。
次いで、硫化水素を除去したCガス3を脱アンモニア設備4に導入して、硫化水素が除去されたCガス3から窒素酸化物の原因となるアンモニア分を除去した。その際、脱硫設備2には、アンモニア水(24質量%)を1日当たり2640トン供給した。
脱アンモニア設備4の脱安飽和塔から排出された硫安母液6は、硫安晶析装置7に導入して硫安母液6に含まれる硫安を晶析させて結晶硫安を得た。その際、蒸発槽から排出された硫安含有蒸気8は凝縮器により凝縮させ、1日当たり得られた硫安凝縮水9(312トン)のうちの139トンを脱硫設備2の吸収液L1の補給水として供給し、残りの173トンを排水処理設備10に導入して、硫安凝縮水9に含まれるアンモニアを分解した後、放流水11として海に放流した。
一方、脱アンモニア設備4の硫安飽和塔から排出された、アンモニアが除去されたCガス5は、冷却された後にCガス5に含まれる軽油分を除去した。こうしてコークス炉から排出されたCガスを燃料ガスへと精製した。Cガス精製における各条件を表1に示す。
(Invention example)
Examples of the present invention will be described below.
The coke oven gas was purified according to the C gas purification flow shown in FIG. That is, first, C gas 1 discharged from a coke oven and cooled to remove naphthalene was introduced into the desulfurization facility 2 to remove hydrogen sulfide.
Next, the C gas 3 from which hydrogen sulfide was removed was introduced into the deammonia facility 4 to remove the ammonia component that causes nitrogen oxides from the C gas 3 from which hydrogen sulfide was removed. At that time, 2640 tons of ammonia water (24 mass%) was supplied to the desulfurization facility 2 per day.
The ammonium sulfate mother liquor 6 discharged from the de-saturation saturation column of the deammonia facility 4 was introduced into an ammonium sulfate crystallizer 7 to crystallize ammonium sulfate contained in the ammonium sulfate mother liquor 6 to obtain crystalline ammonium sulfate. At that time, the ammonium sulfate-containing steam 8 discharged from the evaporation tank is condensed by a condenser, and 139 tons of the ammonium sulfate condensate 9 (312 tons) obtained per day is replenished to the absorption liquid L 1 of the desulfurization facility 2. The remaining 173 tons were introduced into the waste water treatment facility 10 to decompose ammonia contained in the ammonium sulfate condensate 9 and then discharged into the sea as discharge water 11.
On the other hand, the C gas 5 from which ammonia was removed, which was discharged from the ammonium sulfate saturation tower of the deammonia facility 4, was cooled, and then the light oil contained in the C gas 5 was removed. Thus, the C gas discharged from the coke oven was refined into fuel gas. Table 1 shows the conditions for C gas purification.

(比較例)
図1に示したCガスの精製フローに従って、コークス炉11から排出されたCガスG0の精製を行った。すなわち、発明例において得られた硫安凝縮水9の全てを排水処理設備10に供給した。また、脱硫設備2には、工業用水およびアンモニア水(24質量%)を1日当たりそれぞれ151トン、4800トン供給した。その他の条件は発明例と全て同じである。Cガス精製における各条件を表1に示す。
(Comparative example)
The C gas G 0 discharged from the coke oven 11 was purified according to the C gas purification flow shown in FIG. That is, all of the ammonium sulfate condensate 9 obtained in the inventive example was supplied to the wastewater treatment facility 10. The desulfurization facility 2 was supplied with 151 ton and 4800 tonnes of industrial water and ammonia water (24% by mass) per day, respectively. Other conditions are the same as those of the invention examples. Table 1 shows the conditions for C gas purification.

Figure 0006149821
Figure 0006149821

表1から明らかなように、発明例においては、脱硫設備2に工業用水を供給せずに済み、また、比較例に比べてアンモニア水の補給量も削減できていることが分かる。また、排水処理設備10に導入する硫安凝縮水9の量も削減でき、排水処理設備10の負荷を低減できていることも分かる。このように、発明例は、比較例に比べて、排水処理設備10の負荷を低減して、なおかつ工業用水およびアンモニア水の使用量を削減できていることが分かる。   As can be seen from Table 1, in the inventive example, it is not necessary to supply industrial water to the desulfurization facility 2, and the amount of ammonia water to be supplied can be reduced as compared with the comparative example. It can also be seen that the amount of ammonium sulfate condensed water 9 introduced into the wastewater treatment facility 10 can be reduced, and the load on the wastewater treatment facility 10 can be reduced. Thus, it turns out that the example of an invention can reduce the load of the waste water treatment facility 10, and can also reduce the usage-amount of industrial water and ammonia water compared with a comparative example.

本発明によれば、従来、排水処理設備に供給していた硫安凝縮水の少なくとも一部を、脱硫工程における硫化水素の吸収液の補給水として供給するようにし、排水処理設備の負荷を低減でき、なおかつ工業用水の使用量を削減できるため、製鉄業において有用である。   According to the present invention, at least a part of the ammonium sulfate condensate that has been supplied to the wastewater treatment facility can be supplied as supplementary water for the hydrogen sulfide absorption liquid in the desulfurization process, thereby reducing the load on the wastewater treatment facility. In addition, since the amount of industrial water used can be reduced, it is useful in the steel industry.

1,3,5 Cガス
2 脱硫設備
4 脱アンモニア設備
6 硫安母液
7 硫安晶析装置
8 硫安含有蒸気
9 硫安凝縮水
10 排水処理設備
11 放流水
21 吸収塔
22 再生塔
41 硫安飽和塔
42 母液循環槽
43 ポンプ
71 硫安晶析槽
72 加熱器
73 蒸発槽
74 凝縮器
A 再生空気
B 廃空気
1 吸収液
2 硫安母液
1,3,5 C gas 2 desulfurization equipment 4 deammonia equipment 6 ammonium sulphate mother liquor 7 ammonium sulphate crystallizer 8 ammonium sulphate-containing steam 9 ammonium sulphate condensate 10 wastewater treatment equipment 11 effluent water 21 absorption tower 22 regeneration tower 41 ammonium sulphate saturation tower 42 mother liquor circulation bath 43 pump 71 ammonium sulfate crystallization vessel 72 heater 73 evaporates tank 74 condenser G A regeneration air G B waste air L 1 absorption liquid L 2 ammonium sulfate mother liquor

Claims (2)

コークス炉から排出されるコークス炉ガスを硫化水素を吸収する吸収液に接触させて前記コークス炉ガスに含まれる硫化水素を前記吸収液に吸収させて回収し、次いで、該硫化水素を回収したコークス炉ガスに希硫酸を噴霧して前記硫化水素を回収したコークス炉ガスに含まれるアンモニアを前記希硫酸に吸収させて回収して、前記コークス炉ガスを燃料ガスへと精製するに当たり、
前記アンモニアを吸収した希硫酸から結晶硫酸アンモニウムを晶析させる際に生じる、アンモニアを含有する硫安凝縮水の少なくとも一部を、前記コークス炉ガスから硫化水素を回収する際の吸収液の補給水として供給することを特徴とするコークス炉ガスの精製方法。
The coke oven gas discharged from the coke oven is brought into contact with an absorption liquid that absorbs hydrogen sulfide, and the hydrogen sulfide contained in the coke oven gas is absorbed into the absorption liquid and recovered, and then the coke that recovered the hydrogen sulfide is recovered. In refining the coke oven gas to fuel gas, the ammonia contained in the coke oven gas that has recovered the hydrogen sulfide by spraying dilute sulfuric acid to the furnace gas is absorbed into the dilute sulfuric acid and recovered.
Supply at least part of ammonium sulfate condensed water containing ammonia, which is generated when crystallizing ammonium sulfate from the dilute sulfuric acid that has absorbed ammonia, as supplementary water for absorbing liquid when recovering hydrogen sulfide from the coke oven gas A method for purifying coke oven gas.
前記吸収液はアンモニア水である、請求項1に記載のコークス炉ガスの精製方法。   The method for purifying coke oven gas according to claim 1, wherein the absorbing liquid is ammonia water.
JP2014158344A 2014-08-04 2014-08-04 Coke oven gas purification method Active JP6149821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014158344A JP6149821B2 (en) 2014-08-04 2014-08-04 Coke oven gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014158344A JP6149821B2 (en) 2014-08-04 2014-08-04 Coke oven gas purification method

Publications (2)

Publication Number Publication Date
JP2016035015A JP2016035015A (en) 2016-03-17
JP6149821B2 true JP6149821B2 (en) 2017-06-21

Family

ID=55523089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014158344A Active JP6149821B2 (en) 2014-08-04 2014-08-04 Coke oven gas purification method

Country Status (1)

Country Link
JP (1) JP6149821B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108192649B (en) * 2018-02-02 2020-01-14 武汉工程大学 Process system for directly producing hydrogen based on coke oven and control method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012971B2 (en) * 1980-10-21 1985-04-04 住金化工株式会社 Manufacturing method of ammonium sulfate
JPS5861182A (en) * 1981-10-08 1983-04-12 Nippon Kokan Kk <Nkk> Desulfurization using ammonia
JPH01275695A (en) * 1988-04-28 1989-11-06 Nkk Corp Method of feeding alkali to ammonia-takahax desulfurization equipment
JP2001081479A (en) * 1999-09-16 2001-03-27 Kawasaki Steel Corp Method and apparatus for purifying coke oven gas
JP2013221062A (en) * 2012-04-16 2013-10-28 Jfe Chemical Corp Method and apparatus for purifying coke oven gas

Also Published As

Publication number Publication date
JP2016035015A (en) 2016-03-17

Similar Documents

Publication Publication Date Title
KR101839225B1 (en) Method for purification of coke oven gas and device for purification of coke oven gas
CN105036438B (en) A kind of sodium alkali desulfurization waste liquid method for innocent treatment
BRPI0714113A2 (en) process for removing ammonia
KR20130091649A (en) Method for obtaining or recovering nitric acid and hydrofluoric acid from solutions of stainless steel pickling systems
WO2004016717A1 (en) Wet gas purification method and system for practicing the same
CN201658945U (en) Sintering smoke purifying system based on heat pipe afterheat recovery technology
JP2015218077A (en) Production method and production facility of ammonium sulfate, and treatment method of surplus ammoniacal liquor
JP2019098307A (en) Method and apparatus for treating aqueous solution containing urea, ammonia and carbon dioxide
EP0857509A1 (en) Process for scrubbing ammonia and hydrogen sulfide from a fluid acid stream
JP2016210855A (en) Method for refining coke-oven gas
JP2003003177A (en) Method for treating nitrogen component in waste in gasification reforming process
JP6149821B2 (en) Coke oven gas purification method
KR20020051011A (en) Apparatus and method for purifying Coke oven gas
CN101948122B (en) Treatment method of crystalline material obtained through evaporation and concentration of vanadium oxide production wastewater
CN109517630B (en) Process and system for deamination production of ammonium sulfate by coke oven gas ammonium sulfite method
KR102230898B1 (en) METHOD OF TREATING TAIL GAS AND METHOD OF Manufacturing SODIUM bICARBONATE THEREFROM
JP4386761B2 (en) Surplus water treatment method
CN107321178B (en) Gas purification apparatus and gas purification method
JP2023016753A (en) Method for refining coke oven gas
CN104449881A (en) Method for purifying coke oven gas of vacuum carbonate-process desulphurization and recovering sodium thiocyanate
JP2018162201A (en) Ammonium sulfate manufacturing method and ammonium sulfate manufacturing facility
JP2005213436A (en) Method for treating excess ammoniacal liquor
JP7311777B2 (en) Coke oven gas treatment device and coke oven gas treatment method
KR102398277B1 (en) Apparatus and method for purifying flue gas comprising acid gas
KR102209400B1 (en) Device for purification of coke oven gas and method for purification of coke oven gas

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170508

R150 Certificate of patent or registration of utility model

Ref document number: 6149821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250