JP2016109171A - High-pressure gas container cleaning method and high-pressure gas container - Google Patents
High-pressure gas container cleaning method and high-pressure gas container Download PDFInfo
- Publication number
- JP2016109171A JP2016109171A JP2014245029A JP2014245029A JP2016109171A JP 2016109171 A JP2016109171 A JP 2016109171A JP 2014245029 A JP2014245029 A JP 2014245029A JP 2014245029 A JP2014245029 A JP 2014245029A JP 2016109171 A JP2016109171 A JP 2016109171A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- gas
- gas container
- pressure gas
- cleaning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 46
- 239000007789 gas Substances 0.000 claims description 209
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 82
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 82
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 82
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 18
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 claims description 10
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims description 10
- 229910021529 ammonia Inorganic materials 0.000 claims description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 5
- 239000000460 chlorine Substances 0.000 claims description 5
- 229910052801 chlorine Inorganic materials 0.000 claims description 5
- 229910000042 hydrogen bromide Inorganic materials 0.000 claims description 5
- 239000000155 melt Substances 0.000 claims description 3
- 238000011282 treatment Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 26
- 238000007599 discharging Methods 0.000 abstract 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 27
- 230000008569 process Effects 0.000 description 21
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 9
- 238000005406 washing Methods 0.000 description 7
- 238000006467 substitution reaction Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000010407 vacuum cleaning Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/04—Arrangement or mounting of valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/02—Special adaptations of indicating, measuring, or monitoring equipment
- F17C13/025—Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/037—Containing pollutant, e.g. H2S, Cl
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/04—Methods for emptying or filling
- F17C2227/047—Methods for emptying or filling by repeating a process cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/043—Pressure
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
本発明は、高圧ガス容器内の水分を除去するための洗浄方法に関する。 The present invention relates to a cleaning method for removing moisture in a high-pressure gas container.
医療機器や分析機器の校正用の標準ガスおよび半導体用高純度ガスを運搬するために、多くの高圧ガス容器が使用されている。これらの標準ガスおよび高純度ガスの品質を長期的に保持するために、ガスの充填前に適切な容器内の洗浄処理が行われている。特に、塩化水素、塩素、二酸化硫黄、アンモニア等の水分との親和性が強いガス用容器では、充填前に容器内の水分を十分に除去する必要がある。 Many high-pressure gas containers are used to carry standard gas for calibration of medical equipment and analytical equipment and high-purity gas for semiconductors. In order to maintain the quality of these standard gas and high-purity gas for a long period of time, a cleaning process in an appropriate container is performed before filling the gas. In particular, in a gas container having a strong affinity with water such as hydrogen chloride, chlorine, sulfur dioxide, and ammonia, it is necessary to sufficiently remove the water in the container before filling.
鉄、クロム、モリブデン、マンガン、およびこれらの合金を含む金属製の高圧ガス容器内の水分除去方法としては、一般的に、(1)窒素などの不活性ガスを用いて昇圧と減圧を繰り返す洗浄、(2)容器を加温して窒素などの不活性ガスを用いた昇圧と減圧を繰り返す加温真空洗浄、が挙げられる。しかし、これらの方法では、不活性ガスによる水分除去を行った後、十分には水分を除去できておらず、親水性を有するガス(水分との親和性を有するガス)を充填すると、容器内に微量に残存している水分とガスが親和し、調製時の濃度よりもガス純度が低くなるなど、安定した標準ガスおよび高純度ガスの品質が得られないといった問題があった。また、ガスの種類によっては高圧ガス容器内面の錆び、腐食の原因となることもあった。 As a method for removing moisture in a metal high-pressure gas container containing iron, chromium, molybdenum, manganese, and alloys thereof, generally, (1) cleaning with repeated pressurization and depressurization using an inert gas such as nitrogen (2) Warm vacuum cleaning in which the container is heated and the pressure is increased and reduced using an inert gas such as nitrogen. However, in these methods, after moisture removal with an inert gas, moisture cannot be removed sufficiently, and if a hydrophilic gas (gas having an affinity for moisture) is filled, There is a problem that the quality of stable standard gas and high-purity gas cannot be obtained, for example, the moisture and gas remaining in a minute amount are compatible with each other and the gas purity is lower than the concentration at the time of preparation. Further, depending on the type of gas, the inner surface of the high-pressure gas container may rust and corrode.
容器内等の水分除去のための洗浄に関し、例えば下記の特許文献1,2に記載されている。特許文献1においては、液化塩化水素を容器に充填し、30〜50℃で加温することにより、高圧ガス容器内の水分および水分の原因となる酸化物を除去している。しかし、液化塩化水素を充填し、その後排出するため、多量の製品(液化塩化水素)を使用し、経済的な方法ではない。 For example, Patent Documents 1 and 2 listed below relate to cleaning for removing moisture in a container or the like. In Patent Document 1, liquefied hydrogen chloride is filled in a container and heated at 30 to 50 ° C. to remove moisture and oxides that cause moisture in the high-pressure gas container. However, since it is filled with liquefied hydrogen chloride and then discharged, a large amount of product (liquefied hydrogen chloride) is used, which is not an economical method.
特許文献2においては、基板上の水分除去に高純度塩化水素、高純度臭化水素、高純度アンモニアを使用している。しかし、基板上にガスを吹き付けているのみのため水分の除去効率が悪く、大量の洗浄ガスを必要とする。また、一般的な高圧ガス容器ではガス吹き込み口が一箇所のため、ガスの流れが偏り、容器内の一部分のみしか高純度ガスを吹き付けることが出来ず、容器内の隅々まで水分除去を行うことは困難である。 In Patent Document 2, high purity hydrogen chloride, high purity hydrogen bromide, and high purity ammonia are used to remove moisture on the substrate. However, since only gas is sprayed on the substrate, the water removal efficiency is poor, and a large amount of cleaning gas is required. In addition, since a general high-pressure gas container has a single gas inlet, the gas flow is uneven, and only a part of the container can be sprayed with high-purity gas, and moisture is removed to every corner of the container. It is difficult.
本発明は、このような事情の下で考え出されたものであって、高圧ガス容器内の水分を除去するのに適した洗浄方法を提供することを課題としている。 The present invention has been conceived under such circumstances, and it is an object of the present invention to provide a cleaning method suitable for removing moisture in a high-pressure gas container.
本発明の第1の側面によって提供される高圧ガス容器の洗浄方法は、高圧ガス容器に親水性を有するガスを導入して昇圧する昇圧工程と、上記高圧ガス容器内のガスを排気する排気工程と、を繰り返し行うことを特徴とする。 The method for cleaning a high-pressure gas container provided by the first aspect of the present invention includes a pressure-increasing step for introducing a hydrophilic gas into the high-pressure gas container and increasing the pressure, and an exhausting step for exhausting the gas in the high-pressure gas container. And repeating the above.
好ましくは、上記昇圧工程における上記高圧ガス容器の内部の最高圧力が0.1MPaG以上である。 Preferably, the maximum pressure inside the high-pressure gas container in the pressurizing step is 0.1 MPaG or more.
好ましくは、上記排気工程における上記高圧ガス容器の内部の最低圧力が大気圧以下である。 Preferably, the minimum pressure inside the high-pressure gas container in the exhaust process is not more than atmospheric pressure.
好ましくは、上記高圧ガス容器は、所定の作動温度以上で溶融する可溶栓を有し、上記昇圧工程および上記排気工程において、上記高圧ガス容器の温度は、30℃以上かつ上記作動温度未満に維持される。 Preferably, the high-pressure gas container has a fusible plug that melts at a predetermined operating temperature or higher, and the temperature of the high-pressure gas container is 30 ° C. or higher and lower than the operating temperature in the pressurizing step and the exhausting step. Maintained.
好ましくは、上記高圧ガス容器に導入される、上記親水性を有するガスの純度は、99.99vol.%以上である。 Preferably, the purity of the gas having hydrophilicity introduced into the high-pressure gas container is 99.99 vol. % Or more.
好ましくは、上記親水性を有するガスは、塩化水素、臭化水素、塩素、二酸化硫黄、およびアンモニアからなる群より選択されるいずれか1種のガスである。 Preferably, the gas having hydrophilicity is any one gas selected from the group consisting of hydrogen chloride, hydrogen bromide, chlorine, sulfur dioxide, and ammonia.
本発明の第2の側面によって提供される高圧ガス容器は、本発明の第1の側面に係る高圧ガス容器の洗浄方法によって洗浄処理を行ったことを特徴とする。 The high-pressure gas container provided by the second aspect of the present invention is characterized by performing a cleaning process by the high-pressure gas container cleaning method according to the first aspect of the present invention.
本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。 Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the accompanying drawings.
以下、本発明の好ましい実施の形態について、図面を参照して具体的に説明する。 Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.
図1は、本発明に係る高圧ガス容器の洗浄方法を実行するのに使用することができる洗浄装置Xの概略構成を示している。本実施形態の洗浄装置Xは、高圧ガス容器1と、塩化水素ガス供給源2と、液化塩化水素供給源3と、これらをつなぐ配管4と、配管4の適所に設けられた開閉弁51,52,53,54と、を備え、高圧ガス容器1に親水性を有するガスとしての塩化水素を導入して容器内を洗浄することが可能なように構成されている。
FIG. 1 shows a schematic configuration of a cleaning apparatus X that can be used to execute the cleaning method for a high-pressure gas container according to the present invention. The cleaning device X of the present embodiment includes a high-pressure gas container 1, a hydrogen chloride gas supply source 2, a liquefied hydrogen chloride supply source 3, a pipe 4 connecting them, and an on-off
高圧ガス容器1は、例えば製品としての高純度液化ガスを充填するために用いるものである。高圧ガス容器1は、容器本体11と、この容器本体11に接続される容器弁12とを備えている。
The high-pressure gas container 1 is used for, for example, filling high purity liquefied gas as a product. The high-pressure gas container 1 includes a container
容器本体11は、所定の容量を有する耐圧容器であり、例えば鉄および鉄の合金を含む金属製である。容器弁12は、ハンドル121、接続部122、および可溶栓123を含んで構成される。ハンドル121は、このハンドル121の操作によって容器本体11と接続部122との間の流路の開閉を切り替えるものである。接続部122は、配管4との接続を担うジョイント部分である。容器弁12を閉止した状態において、高圧ガス容器1は、密閉状態を維持したまま配管4(後述の部分管路41)に対して着脱可能である。高圧ガス容器1への製品の充填に先立ち、高圧ガス容器1の内部は洗浄用ガスによって洗浄される。高圧ガス容器1の外周部には、洗浄時に当該高圧ガス容器1を所定温度に保つための加温手段(図示略)が設けられている。
The
なお、本実施形態においては、高圧ガス容器1の洗浄用ガスおよび当該高圧ガス容器1に充填される製品として塩化水素およびその液化ガスを用いる場合を例に挙げて説明するが、本発明はこれに限定されるものではない。洗浄用ガスおよび製品(液化ガス)としては、親水性を有するガス(水との親和性が強いガス)が用いられる。そのような親水性を有するガスとしては、例えば、臭化水素、塩素、二酸化硫黄およびアンモニアが挙げられる。 In the present embodiment, the case where hydrogen chloride and its liquefied gas are used as the cleaning gas for the high-pressure gas container 1 and the product filled in the high-pressure gas container 1 will be described as an example. It is not limited to. As the cleaning gas and the product (liquefied gas), a hydrophilic gas (a gas having a strong affinity with water) is used. Examples of such hydrophilic gas include hydrogen bromide, chlorine, sulfur dioxide, and ammonia.
可溶栓123は、所定の作動温度以上になると溶融して開栓することによって、容器本体11内部のガスを外部に放出することが可能に構成されている。可溶栓123は、例えば作動温度以上で溶融する可溶金属を含んで構成されており、高圧ガス容器1内が過度な高圧状態となるのを防止する安全弁として機能する。可溶栓123の作動温度は、高圧ガス容器1内に充填する液化ガスの種類によって異なる。可溶栓123の作動温度を例示すると、充填する液化ガスが、液化塩化水素あるいは液化臭化水素の場合には70℃、液化塩素の場合には61℃、液化二酸化硫黄の場合には58℃、液化アンモニアの場合には57℃である。
The
塩化水素ガス供給源2は、洗浄用ガスとしての高純度塩化水素ガスを収容するものである。当該塩化水素ガス(洗浄用ガス)の純度は、例えば99.99vol.%以上であり、好ましくは99.999vol.%以上である。 The hydrogen chloride gas supply source 2 stores high-purity hydrogen chloride gas as a cleaning gas. The purity of the hydrogen chloride gas (cleaning gas) is, for example, 99.99 vol. % Or more, preferably 99.999 vol. % Or more.
液化塩化水素供給源3は、製品としての液化塩化水素を収容するものである。 The liquefied hydrogen chloride supply source 3 stores liquefied hydrogen chloride as a product.
配管4は、部分管路41〜46を有する。部分管路41は、高圧ガス容器1に接続されており、部分管路42は、塩化水素ガス供給源2に接続されている。部分管路42には、流量調整器61および開閉弁51が設けられている。流量調整器61は、液化水素ガス供給源2から供給された洗浄用ガスを所定の流量に制御するものである。
The pipe 4 has
部分管路44は、部分管路41と部分管路42とをつないでおり、部分管路42,44,41が塩化水素ガス供給源2から高圧ガス容器1までの流路をなす。部分管路44には、圧力計62が接続されている。
The
部分管路43は、液化塩化水素供給源3に接続されており、部分管路42(44)に対して分岐状に延びている。部分管路43には、開閉弁52が設けられている。部分管路43,44,41は、液化塩化水素供給源3から高圧ガス容器1までの流路をなす。
The
部分管路45は、部分管路41(44)に対して分岐状に延びている。部分管路45には、開閉弁53および減圧弁63が設けられている。部分管路45の端部には、分析装置7が接続されている。部分管路46は、部分管路44に対して分岐状に延びている。部分管路46には、開閉弁54およびポンプ64が設けられている。
The
上記構成の洗浄装置Xを使用して高圧ガス容器1を洗浄する際には、高圧ガス容器1に塩化水素ガスを導入して昇圧し(昇圧工程)、引き続き高圧ガス容器1内のガスを排気し(排気工程)、この昇圧工程と排気工程とを繰り返す。 When cleaning the high-pressure gas container 1 using the cleaning device X having the above-described configuration, hydrogen chloride gas is introduced into the high-pressure gas container 1 to increase the pressure (pressure-increasing step), and the gas in the high-pressure gas container 1 is subsequently exhausted. (Exhaust process), and the pressure increasing process and the exhaust process are repeated.
昇圧工程においては、開閉弁51を開状態とし、かつ開閉弁52,53,54を閉状態とし、塩化水素ガス供給源2から導出されるガスが部分管路42、流量調整器61、開閉弁51、および部分管路44,41を経て高圧ガス容器1内に導入される。昇圧工程における高圧ガス容器1の内部の最高圧力は、後に行う排気工程での最低圧力が大気圧未満の場合は例えば0.0MPaG(ゲージ圧)以上であればよく、排気工程での最低圧力が大気圧程度の場合は、例えば0.1MPaG(ゲージ圧)以上とされ、好ましくは0.3MPaG以上とされる。
In the boosting step, the on-off
排気工程においては、開閉弁54を開状態とし、かつ開閉弁51,52,53を閉状態とし、高圧ガス容器1内のガスが排出される。高圧ガス容器1から排出されたガスは、部分管路41,44,46、開閉弁54、およびポンプ64を経て系外に排出される。排気工程における高圧ガス容器1の内部の最低圧力は、例えば大気圧以下とされており、好ましくは−0.05MPaG(ゲージ圧)以下とされる。なお、排気工程における高圧ガス容器1の内部圧力を大気圧程度とする場合には、ポンプ64を設ける必要はない。
In the exhaust process, the on-off
高圧ガス容器1の洗浄を行う際(即ち、昇圧工程および排気工程を繰り返す際)、高圧ガス容器1は所定温度に加温される。洗浄時における高圧ガス容器1の温度は、例えば、30℃以上かつ可溶栓123の作動温度未満に維持される。
When cleaning the high-pressure gas container 1 (that is, when repeating the pressurization process and the exhaust process), the high-pressure gas container 1 is heated to a predetermined temperature. The temperature of the high-pressure gas container 1 at the time of cleaning is maintained at, for example, 30 ° C. or higher and lower than the operating temperature of the
高圧ガス容器1の洗浄時に昇圧工程と排気工程とを繰り返す回数は、特に限定されないが、例えば10回以上とされる。また、昇圧工程において塩化水素ガス(洗浄用ガス)を高圧ガス容器1内に導入したらすぐに排気してもよいし、ガスの導入後、昇圧状態で所定時間静置させた後に排気してもよい。昇圧状態で静置させる場合、静置時間は例えば1時間以上とするのが好ましい。 The number of times of repeating the pressurization process and the exhaust process when cleaning the high-pressure gas container 1 is not particularly limited, but is, for example, 10 times or more. Further, in the pressurization process, hydrogen chloride gas (cleaning gas) may be exhausted immediately after being introduced into the high-pressure gas container 1 or may be exhausted after being allowed to stand for a predetermined time in the pressurization state after the introduction of the gas. Good. When it is allowed to stand in a pressure-increasing state, the standing time is preferably set to 1 hour or longer, for example.
高圧ガス容器1から排出されるガスは、適宜、分析装置7に送られ、当該ガス中の水分濃度が測定される。 The gas discharged from the high-pressure gas container 1 is appropriately sent to the analyzer 7, and the moisture concentration in the gas is measured.
高圧ガス容器1の洗浄を終えると、高圧ガス容器1に製品(液化塩化水素)を充填する。製品の充填は、圧縮ポンプを用いて行ってもよいし、液化塩化水素供給源3の温度よりも高圧ガス容器1の温度を低く保つことで、蒸気圧による差圧を利用して充填してもよい。当該充填の際には、開閉弁52を開状態とし、かつ開閉弁51,53,54を閉状態とし、液化塩化水素供給源3から液化塩化水素が導出される。液化塩化水素供給源3から導出された液化塩化水素は、部分管路43、開閉弁52、部分管路44,41を経て高圧ガス容器1内に導入される。
When the cleaning of the high pressure gas container 1 is completed, the high pressure gas container 1 is filled with a product (liquefied hydrogen chloride). The product may be filled by using a compression pump, or by using the differential pressure due to the vapor pressure by keeping the temperature of the high-pressure gas container 1 lower than the temperature of the liquefied hydrogen chloride supply source 3. Also good. At the time of filling, the on-off
本実施形態の高圧ガス容器1の洗浄方法によれば、高圧ガス容器1に対して塩化水素ガス(洗浄用ガス)の導入(昇圧工程)と排出(排気工程)とを繰り返すといった簡単な操作によって洗浄を行うことができる。洗浄後に高圧ガス容器1から排出されるガスの水分濃度は10vol.ppm以下程度に低下している。昇圧と排気の繰り返し回数を増やすことにより、洗浄後の排出ガスにおける水分含有量は1vol.ppm以下にまで下げることができる。このように、本洗浄方法によれば、高圧ガス容器1内の水分が十分に除去される。 According to the method for cleaning the high-pressure gas container 1 of the present embodiment, the introduction of the hydrogen chloride gas (cleaning gas) to the high-pressure gas container 1 (pressure increase process) and the discharge (exhaust process) are repeated. Cleaning can be performed. The water concentration of the gas discharged from the high-pressure gas container 1 after cleaning is 10 vol. It has fallen to about ppm or less. By increasing the number of repetitions of pressurization and exhaust, the water content in the exhaust gas after cleaning is 1 vol. It can be reduced to ppm or less. Thus, according to this cleaning method, the water in the high-pressure gas container 1 is sufficiently removed.
上記のように、高圧ガス容器1への洗浄用ガスの導入と排気を繰り返すことにより洗浄効率が上がる理由として、仕組みの解明には至っていないが、容器内の表面(微細な凹凸を有する粗面)に吸着した水分が、圧力が変化することでより表面へ現われ、新たに導入された腐食ガス(親水性を有するガス)と親和しやすくなるためと推定される。また、洗浄用ガスの導入と排気を繰り返すことによって容器内の隅々まで水親和性ガスが届き、洗浄効率が向上するためと推定される。 As described above, the reason why the cleaning efficiency is increased by repeatedly introducing and exhausting the cleaning gas into the high-pressure gas container 1 has not yet been elucidated, but the surface within the container (rough surface having fine irregularities) It is presumed that the moisture adsorbed on () appears on the surface due to the change in pressure and becomes more compatible with the newly introduced corrosive gas (hydrophilic gas). It is also presumed that water-affinity gas reaches every corner of the container by repeating the introduction and exhaust of the cleaning gas, thereby improving the cleaning efficiency.
本実施形態においては、洗浄後に高圧ガス容器1に充填される製品(液化ガス)と、洗浄処理に使用される洗浄用ガスとが同一のガス種である。このため、窒素などの不活性ガスを用いて洗浄する場合と比較して、最終的に製品を充填する直前に製品ガスを用いて容器内のガスを置換するといった後洗浄処理の必要がなく、後洗浄処理の手間を省くことができる。 In the present embodiment, the product (liquefied gas) filled in the high-pressure gas container 1 after cleaning and the cleaning gas used for the cleaning process are the same gas type. For this reason, compared with the case of cleaning with an inert gas such as nitrogen, there is no need for a post-cleaning treatment such as replacing the gas in the container with the product gas immediately before the product is finally filled, The trouble of the post-cleaning process can be saved.
本実施形態のように液化塩化水素供給源3を具備する構成によれば、高圧ガス容器1の洗浄後に引き続き製品(液化塩化水素)を充填することが可能である。ただし、液化塩化水素供給源3は、必ずしも設ける必要はない。液化塩化水素供給源3を具備しない場合、高圧ガス容器1を洗浄用ガスで洗浄した後に配管4から取り外し、別途、当該高圧ガス容器1に液化塩化水素を充填するようにしてもよい。 According to the configuration including the liquefied hydrogen chloride supply source 3 as in the present embodiment, it is possible to continuously fill the product (liquefied hydrogen chloride) after the high-pressure gas container 1 is cleaned. However, the liquefied hydrogen chloride supply source 3 is not necessarily provided. When the liquefied hydrogen chloride supply source 3 is not provided, the high pressure gas container 1 may be removed from the pipe 4 after being cleaned with the cleaning gas, and the high pressure gas container 1 may be separately filled with liquefied hydrogen chloride.
以上、本発明の具体的な実施形態を説明したが、本発明はこれに限定されるものではなく、発明の思想から逸脱しない範囲内で種々の変更が可能である。本発明に係る高圧ガス容器の洗浄方法、および当該洗浄方法を実行するための洗浄装置の具体的な構成については、上記実施形態と異なる構成としてもよい。 While specific embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the invention. The specific configuration of the high pressure gas container cleaning method and the cleaning apparatus for executing the cleaning method according to the present invention may be different from the above embodiment.
高純度製品ガスを製造する設備において本発明に係る高圧ガス容器の洗浄方法を運用する場合、洗浄後に高圧ガス容器から排出されるガスを廃棄するのではなく、例えばバッファタンクなどに通気させ、その後、脱水剤やフィルタを通して再利用することが可能である。 When operating the high-pressure gas container cleaning method according to the present invention in equipment for producing high-purity product gas, instead of discarding the gas discharged from the high-pressure gas container after cleaning, for example, it is vented to a buffer tank, etc. It can be reused through dehydrating agents and filters.
次に、本発明の有用性を比較例および実施例により説明する。以下に示す比較例および実施例での洗浄処理は、全て、容器弁(可溶栓作動温度70℃)を取り付けた金属製の高圧ガス容器(内容量47L)を用いて行った。 Next, the usefulness of the present invention will be described with reference to comparative examples and examples. The cleaning treatments in the following comparative examples and examples were all performed using a metal high-pressure gas container (internal capacity 47 L) equipped with a container valve (soluble plug operating temperature 70 ° C.).
〔比較例1〕
高圧ガス容器を65℃に保ち、前処理として、窒素(純度99.999vol.%)を導入して0.1MPaGまで昇圧し、減圧度0.1kPa(絶対圧)まで減圧排気する真空窒素置換を4回行った。その後、高純度塩化水素ガス(純度99.999vol.%)を0.4MPaGまで導入して室温(25℃)にしたのち、容器から取り出した塩化水素ガス中の水分濃度を測定すると30vol.ppmであった。また、上記前処理の後、前処理と同様の昇圧・減圧条件の真空窒素置換を30回行い、その後、高純度塩化水素ガス(純度99.999vol.%)を0.4MPaGまで導入して室温(25℃)にしたのち、容器から取り出した塩化水素ガス中の水分濃度を測定すると29vol.ppmであった。この結果から、窒素による加温減圧置換では、高圧ガス容器内の水分を十分に除去することはできないといえる。
[Comparative Example 1]
Maintaining the high-pressure gas container at 65 ° C., as a pretreatment, nitrogen (purity 99.999 vol.%) Was introduced, the pressure was increased to 0.1 MPaG, and vacuum nitrogen replacement was performed to evacuate to 0.1 kPa (absolute pressure). 4 times. Then, after introducing high-purity hydrogen chloride gas (purity 99.999 vol.%) To 0.4 MPaG and bringing it to room temperature (25 ° C.), the water concentration in the hydrogen chloride gas taken out from the container was measured to be 30 vol. ppm. Further, after the pretreatment, vacuum nitrogen replacement under the same pressure and pressure reduction conditions as in the pretreatment was performed 30 times, and then high purity hydrogen chloride gas (purity 99.999 vol.%) Was introduced to 0.4 MPaG to room temperature. (25 ° C.) After measuring the water concentration in the hydrogen chloride gas taken out from the container, 29 vol. ppm. From this result, it can be said that the water in the high-pressure gas container cannot be sufficiently removed by heating and decompression replacement with nitrogen.
〔実施例1〕
比較例1と同様の前処理(真空窒素置換を4回)を行った後、高圧ガス容器を50℃に保温し、高純度塩化水素ガス(純度99.999vol.%)を導入して0.15MPaGまで昇圧し、減圧度10kPaまで減圧排気する塩化水素ガス真空置換を30回行った。その後、高純度塩化水素ガスを0.4MPaGまで導入し、容器から取り出した塩化水素ガス中の水分濃度を室温(25℃)で測定すると1.0vol.ppm以下であった。なお、塩化水素ガス真空置換5回目時の塩化水素中の水分濃度は20vol.ppmであった。同様に15回目時の塩化水素中の水分濃度は4vol.ppmであった。洗浄に用いた高純度塩化水素は約3600L(標準状態換算)であった。参考として、47Lの容器に液化塩化水素を液充填して洗浄する際に、安全上充填できる液化塩化水素量は約25kg(標準状態のガス換算で約15500L)であり、本実施例での洗浄を用いることで、はるかに洗浄用ガスの使用量が少なくて済むことがわかる。
[Example 1]
After performing the same pretreatment as in Comparative Example 1 (vacuum nitrogen replacement four times), the high-pressure gas container was kept at 50 ° C., and high-purity hydrogen chloride gas (purity 99.999 vol.%) Was introduced. Hydrogen chloride gas vacuum replacement was performed 30 times by increasing the pressure to 15 MPaG and evacuating the pressure to 10 kPa. Thereafter, when high purity hydrogen chloride gas was introduced to 0.4 MPaG and the water concentration in the hydrogen chloride gas taken out from the container was measured at room temperature (25 ° C.), 1.0 vol. It was below ppm. In addition, the water concentration in hydrogen chloride at the time of hydrogen chloride gas vacuum substitution 5th time is 20 vol. ppm. Similarly, the water concentration in hydrogen chloride at the 15th time was 4 vol. ppm. The high-purity hydrogen chloride used for washing was about 3600 L (standard condition conversion). As a reference, the amount of liquefied hydrogen chloride that can be safely filled when cleaning with a 47 L container filled with liquefied hydrogen chloride is approximately 25 kg (approximately 15500 L in terms of gas in the standard state). It can be seen that the use of cleaning gas requires far less amount of cleaning gas.
〔実施例2〕
比較例1と同様の前処理(真空窒素置換を4回)を行った後、高圧ガス容器を50℃に保温し、高純度塩化水素ガス(純度99.999vol.%)を導入して0.15MPaGまで昇圧し、減圧度10kPa(絶対圧)まで減圧排気する塩化水素ガス真空置換を10回行った。その後、高純度塩化水素ガスを導入して0.3MPaGまで昇圧し、65時間静置させた。その後、10kPa(絶対圧)まで減圧排気したのち、高純度塩化水素ガスを導入して0.15MPaGまで昇圧し、減圧度10kPa(絶対圧)で減圧排気する塩化水素ガス真空置換を15回行った。その後、高純度塩化水素ガスを0.4MPaGまで導入し、容器から取り出した塩化水素ガス中の水分濃度を室温(25℃)で測定すると1.0vol.ppm以下であった。なお、65時間静置後直後の分析では水分濃度は20vol.ppmであり、実施例1の塩化水素減圧置換15回目時よりも濃い水分濃度となり、加圧状態で静置することによる洗浄効果がみられた。洗浄に用いた高純度塩化水素は約3000L(標準状態換算)であった。
[Example 2]
After performing the same pretreatment as in Comparative Example 1 (vacuum nitrogen replacement four times), the high-pressure gas container was kept at 50 ° C., and high-purity hydrogen chloride gas (purity 99.999 vol.%) Was introduced. The pressure was increased to 15 MPaG, and hydrogen chloride gas vacuum substitution was performed 10 times to evacuate the pressure to 10 kPa (absolute pressure). Thereafter, high purity hydrogen chloride gas was introduced, the pressure was increased to 0.3 MPaG, and the mixture was allowed to stand for 65 hours. Then, after evacuating to 10 kPa (absolute pressure), high-purity hydrogen chloride gas was introduced, the pressure was increased to 0.15 MPaG, and hydrogen chloride gas vacuum substitution was performed 15 times to evacuate at a reduced pressure of 10 kPa (absolute pressure). . Thereafter, when high purity hydrogen chloride gas was introduced to 0.4 MPaG and the water concentration in the hydrogen chloride gas taken out from the container was measured at room temperature (25 ° C.), 1.0 vol. It was below ppm. In the analysis immediately after standing for 65 hours, the water concentration was 20 vol. The water concentration was higher than that of the fifteenth hydrogen chloride vacuum replacement in Example 1, and a cleaning effect was observed by leaving it in a pressurized state. The high-purity hydrogen chloride used for washing was about 3000 L (converted to the standard state).
〔実施例3〕
比較例1と同様の前処理(真空窒素置換を4回)を行った後、高圧ガス容器を50℃に保温し、高純度塩化水素ガス(純度99.999vol.%)を導入して0.50MPaGまで昇圧し、0.05MPaG(大気圧程度)まで排気する置換を50回行った。その後、高純度塩化水素ガスを0.5MPaGまで導入し、容器から取り出した塩化水素ガス中の水分濃度を室温(25℃)で測定すると5vol.ppmであった。洗浄に用いた高純度塩化水素は約12000L(標準状態換算)であった。
Example 3
After performing the same pretreatment as in Comparative Example 1 (vacuum nitrogen replacement four times), the high-pressure gas container was kept at 50 ° C., and high-purity hydrogen chloride gas (purity 99.999 vol.%) Was introduced. Replacement was performed 50 times by increasing the pressure to 50 MPaG and exhausting to 0.05 MPaG (about atmospheric pressure). Thereafter, when high purity hydrogen chloride gas was introduced to 0.5 MPaG and the water concentration in the hydrogen chloride gas taken out from the container was measured at room temperature (25 ° C.), 5 vol. ppm. The high-purity hydrogen chloride used for washing was about 12000 L (converted to standard conditions).
〔実施例4〕
比較例1と同様の前処理(真空窒素置換を4回)を行った後、高圧ガス容器を50℃に保温し、高純度塩化水素ガス(純度99.999vol.%)を導入して0.0MPaGまで昇圧し、減圧度10kPa(絶対圧)まで減圧排気する塩化水素ガス真空置換を1回行った。その後、高純度塩化水素ガスを導入して0.4MPaGまで昇圧し、24時間静置させた。その後、10kPa(絶対圧)まで減圧排気したのち、高純度塩化水素ガスを導入して0.4MPaGまで昇圧し、減圧度10kPa(絶対圧)で減圧排気する塩化水素ガス真空置換を1回行った。その後、高純度塩化水素ガスを0.4MPaGまで導入し、容器から取り出した塩化水素ガス中の水分濃度を室温(25℃)で測定すると2.0vol.ppmであった。なお、24時間静置後直後の分析では、水分濃度は40vol.ppmであった。このことから、24時間の加温静置により、容器内の水分を十分に湧き出せたと考えられる。洗浄に用いた高純度塩化水素は約600L(標準状態換算)であった。
Example 4
After performing the same pretreatment as in Comparative Example 1 (vacuum nitrogen replacement four times), the high-pressure gas container was kept at 50 ° C., and high-purity hydrogen chloride gas (purity 99.999 vol.%) Was introduced. Hydrogen chloride gas vacuum replacement was performed once by increasing the pressure to 0 MPaG and evacuating the pressure to 10 kPa (absolute pressure). Thereafter, high-purity hydrogen chloride gas was introduced, the pressure was increased to 0.4 MPaG, and the mixture was allowed to stand for 24 hours. Then, after evacuating to 10 kPa (absolute pressure), high-purity hydrogen chloride gas was introduced, the pressure was increased to 0.4 MPaG, and hydrogen chloride gas vacuum substitution was performed once to evacuate at a reduced pressure of 10 kPa (absolute pressure). . Thereafter, when high purity hydrogen chloride gas was introduced to 0.4 MPaG and the water concentration in the hydrogen chloride gas taken out from the container was measured at room temperature (25 ° C.), 2.0 vol. ppm. In the analysis immediately after standing for 24 hours, the water concentration was 40 vol. ppm. From this, it is thought that the water | moisture content in a container was able to fully spring out by heating and leaving still for 24 hours. High-purity hydrogen chloride used for washing was about 600 L (converted to standard conditions).
〔実施例5〕
比較例1と同様の前処理(真空窒素置換を4回)を行った後、高圧ガス容器を45℃に保温し、高純度アンモニアガス(純度99.999vol.%)を導入して0.10MPaGまで昇圧し、減圧度0.1kPa(絶対圧)まで減圧排気するアンモニアガス真空置換を20回行った。その後、高純度アンモニアガスを0.4MPaGまで導入して室温(25℃)にしたのち、容器から取り出したアンモニアガス中の水分濃度を室温で測定すると1.0vol.ppm以下であった。洗浄に用いた高純度アンモニアは約2000L(標準状態換算)であった。
Example 5
After the same pretreatment as in Comparative Example 1 (vacuum nitrogen replacement four times), the high-pressure gas container was kept at 45 ° C., and high-purity ammonia gas (purity 99.999 vol.%) Was introduced, and 0.10 MPaG The pressure was increased to 1, and the ammonia gas vacuum substitution was performed 20 times to evacuate the pressure to 0.1 kPa (absolute pressure). Then, after introducing high-purity ammonia gas to 0.4 MPaG and bringing it to room temperature (25 ° C.), when the water concentration in the ammonia gas taken out from the container is measured at room temperature, 1.0 vol. It was below ppm. The high-purity ammonia used for washing was about 2000 L (converted to the standard state).
〔実施例6〕
比較例1と同様の前処理(真空窒素置換を4回)を行った後、高圧ガス容器を50℃に保温し、高純度塩化水素ガス(純度99.999vol.%)を導入して0.15MPaGまで昇圧し、減圧度10kPaまで減圧排気する塩化水素ガス真空置換を30回行った。その後、高純度塩化水素ガスを0.4MPaGまで導入し、容器から取り出した塩化水素ガス中の水分濃度を室温(25℃)で測定すると1.0vol.ppm以下であった。その後、高純度塩化水素ガスを導入して0.3MPaGまで昇圧し、65時間静置させた後、容器から取り出した塩化水素ガス中の水分濃度を室温(25℃)で測定すると1.0vol.ppm以下であった。加圧状態で静置させる前(塩化水素ガス真空置換30回実施後)と加圧状態で静置させた後とで、容器から取り出した塩化水素ガス中の水分濃度に変化がなかった。これにより、塩化水素ガス真空置換を30回行った後、容器内の水分が十分に除去できていることがわかる。
Example 6
After performing the same pretreatment as in Comparative Example 1 (vacuum nitrogen replacement four times), the high-pressure gas container was kept at 50 ° C., and high-purity hydrogen chloride gas (purity 99.999 vol.%) Was introduced. Hydrogen chloride gas vacuum replacement was performed 30 times by increasing the pressure to 15 MPaG and evacuating the pressure to 10 kPa. Thereafter, when high purity hydrogen chloride gas was introduced to 0.4 MPaG and the water concentration in the hydrogen chloride gas taken out from the container was measured at room temperature (25 ° C.), 1.0 vol. It was below ppm. Thereafter, high-purity hydrogen chloride gas was introduced, the pressure was increased to 0.3 MPaG, the mixture was allowed to stand for 65 hours, and then the water concentration in the hydrogen chloride gas taken out from the container was measured at room temperature (25 ° C.). It was below ppm. There was no change in the water concentration in the hydrogen chloride gas taken out from the container before being allowed to stand in a pressurized state (after 30 times of hydrogen chloride gas vacuum substitution) and after being left to stand in a pressurized state. Thus, it can be seen that the water in the container was sufficiently removed after the hydrogen chloride gas vacuum replacement was performed 30 times.
X 洗浄装置
1 高圧ガス容器
11 容器本体
12 容器弁
121 ハンドル
122 接続部
123 可溶栓
2 塩化水素ガス供給源
3 液化塩化水素供給源
4 配管
41〜46 部分管路
51〜54 開閉弁
61 流量調整器
62 圧力計
63 減圧弁
64 ポンプ
7 分析装置
X Cleaning device 1 High
Claims (7)
上記昇圧工程および上記排気工程において、上記高圧ガス容器の温度は、30℃以上かつ上記作動温度未満に維持される、請求項1ないし3のいずれかに記載の高圧ガス容器の洗浄方法。 The high-pressure gas container has a fusible stopper that melts at a predetermined operating temperature or higher,
The method for cleaning a high-pressure gas container according to any one of claims 1 to 3, wherein the temperature of the high-pressure gas container is maintained at 30 ° C or higher and lower than the operating temperature in the pressurization step and the exhaust step.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014245029A JP6571929B2 (en) | 2014-12-03 | 2014-12-03 | High pressure gas container cleaning method and high pressure gas container |
PCT/JP2015/083997 WO2016088829A1 (en) | 2014-12-03 | 2015-12-03 | Method for cleaning high-pressure gas container, and high-pressure gas container |
TW104140478A TWI680022B (en) | 2014-12-03 | 2015-12-03 | Cleaning method of high-pressure gas container and high-pressure gas container |
KR1020177017426A KR102430603B1 (en) | 2014-12-03 | 2015-12-03 | Method for cleaning high-pressure gas container, and high-pressure gas container |
CN201580065675.7A CN107002947B (en) | 2014-12-03 | 2015-12-03 | Method for cleaning high-pressure gas container and high-pressure gas container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014245029A JP6571929B2 (en) | 2014-12-03 | 2014-12-03 | High pressure gas container cleaning method and high pressure gas container |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016109171A true JP2016109171A (en) | 2016-06-20 |
JP6571929B2 JP6571929B2 (en) | 2019-09-04 |
Family
ID=56091769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014245029A Active JP6571929B2 (en) | 2014-12-03 | 2014-12-03 | High pressure gas container cleaning method and high pressure gas container |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6571929B2 (en) |
KR (1) | KR102430603B1 (en) |
CN (1) | CN107002947B (en) |
TW (1) | TWI680022B (en) |
WO (1) | WO2016088829A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110410662B (en) * | 2019-08-08 | 2023-07-11 | 广东华特气体股份有限公司 | Steel cylinder treatment system and method for ultra-high purity gas |
CN114589177B (en) * | 2020-12-07 | 2023-07-25 | 中国石油天然气股份有限公司 | Integrated cleaning treatment system for milky sediment in gas field water tank |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05180398A (en) * | 1991-12-26 | 1993-07-20 | Nippon Sanso Kk | Residual gas discharge and vacuum suction equipment for compressed-gas cylinder |
JP2002054799A (en) * | 2000-08-09 | 2002-02-20 | Tsurumi Soda Co Ltd | Impurity removing method for high-pressure gas vessel |
JP2003028392A (en) * | 2001-05-10 | 2003-01-29 | Mitsui Chemicals Inc | High purity hydrogen chloride for semiconductor manufacture |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2404068A1 (en) * | 1974-01-29 | 1975-08-07 | Alexander Kessels | Drying interior of steel compressed-gas bottles - by evacuation, with mild external heating |
JPH0433337Y2 (en) * | 1985-06-06 | 1992-08-10 | ||
JP3199436B2 (en) * | 1992-03-31 | 2001-08-20 | 日本酸素株式会社 | Vertical positioning mechanism of high pressure gas container |
JP3425965B2 (en) * | 1992-03-31 | 2003-07-14 | 日本酸素株式会社 | Branch pipe connection mechanism |
JPH09106974A (en) | 1995-10-09 | 1997-04-22 | Nippon Sanso Kk | Adsorbed moisture removing method and device for substrate |
US6635119B1 (en) * | 2000-10-12 | 2003-10-21 | General Electric Company | Method of cleaning pressurized containers containing liquified petroleum gas |
US6793740B1 (en) * | 2000-10-12 | 2004-09-21 | General Electric Company | Method for cleaning pressurized containers containing moisture sensitive chemicals |
US6532684B1 (en) * | 2000-10-12 | 2003-03-18 | General Electric Company | System for cleaning pressurized containers |
EP1442802A1 (en) * | 2003-01-28 | 2004-08-04 | Linde Aktiengesellschaft | Cleaning with liquid carbon dioxide |
TW200806392A (en) * | 2006-06-20 | 2008-02-01 | Lynntech Inc | Microcartridge hydrogen generator |
FR2914393B1 (en) * | 2007-03-27 | 2009-07-17 | Air Liquide | METHOD AND DEVICE FOR PREPARING GAS BOTTLES UNDER PRESSURE. |
JP5429997B2 (en) * | 2010-03-29 | 2014-02-26 | 大陽日酸株式会社 | Compressed gas filling method and compressed gas filling device |
CN203829832U (en) * | 2014-05-16 | 2014-09-17 | 冯会春 | Washing air purifier |
-
2014
- 2014-12-03 JP JP2014245029A patent/JP6571929B2/en active Active
-
2015
- 2015-12-03 WO PCT/JP2015/083997 patent/WO2016088829A1/en active Application Filing
- 2015-12-03 TW TW104140478A patent/TWI680022B/en active
- 2015-12-03 KR KR1020177017426A patent/KR102430603B1/en active IP Right Grant
- 2015-12-03 CN CN201580065675.7A patent/CN107002947B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05180398A (en) * | 1991-12-26 | 1993-07-20 | Nippon Sanso Kk | Residual gas discharge and vacuum suction equipment for compressed-gas cylinder |
JP2002054799A (en) * | 2000-08-09 | 2002-02-20 | Tsurumi Soda Co Ltd | Impurity removing method for high-pressure gas vessel |
JP2003028392A (en) * | 2001-05-10 | 2003-01-29 | Mitsui Chemicals Inc | High purity hydrogen chloride for semiconductor manufacture |
Non-Patent Citations (1)
Title |
---|
INTERNATIONAL CRITICAL TABLES OF NUMERICAL DATA,PH, vol. 3, JPN6018048349, 1928, US, pages 228, ISSN: 0003938945 * |
Also Published As
Publication number | Publication date |
---|---|
KR20170093164A (en) | 2017-08-14 |
TW201637740A (en) | 2016-11-01 |
CN107002947B (en) | 2020-02-18 |
TWI680022B (en) | 2019-12-21 |
WO2016088829A1 (en) | 2016-06-09 |
JP6571929B2 (en) | 2019-09-04 |
CN107002947A (en) | 2017-08-01 |
KR102430603B1 (en) | 2022-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5231155B2 (en) | Liquid phase compound purification equipment | |
CN110410662B (en) | Steel cylinder treatment system and method for ultra-high purity gas | |
CN103372557B (en) | A kind of purging purification method and device thereof | |
JP6571929B2 (en) | High pressure gas container cleaning method and high pressure gas container | |
JP2006329422A (en) | Enhanced purge effect in gas conduit | |
JP6845235B2 (en) | Hydrogen sulfide mixture and its manufacturing method and filling container | |
CN111017296B (en) | Method for filling closed perfluorohexanone fire extinguishing agent | |
EP2533125A1 (en) | Method for packaging a gas mixture | |
JP2023138815A (en) | Supply method and supply equipment of fluorine gas-containing gas | |
CN210266695U (en) | Steel cylinder processing system of ultra-pure gas | |
CN204437683U (en) | Silane purification devices and bulking system | |
JP5979088B2 (en) | High pressure tank expansion inspection method | |
EP2532941B2 (en) | Method for packaging NO/N2 mixtures with draining stages and prior rinsing with gas | |
CN108290734B (en) | Hydrogen chloride mixture, method for producing same, and filling container | |
JP6082361B2 (en) | Gas supply method | |
JP6195082B2 (en) | Method for removing moisture from high-pressure gas container | |
CN202638815U (en) | Blowing-sweeping purification device | |
EP0719978B1 (en) | A process for distributing ultra high purity gases with minimized corrosion | |
CN205606163U (en) | Chlorine holding vessel | |
WO2018142984A1 (en) | Method and device for purifying liquefied gas | |
TWI766215B (en) | Filling method of high-purity inorganic compound dichlorosilane (SiHCl) sub-packaging storage container | |
CN102635777A (en) | Production method and device of canned liquefied air | |
TW202408655A (en) | Isopropyl alcohol accommodating body, manufacturing method for said accommodating body, and quality control method for isopropyl alcohol accommodating body | |
JPH08296800A (en) | Distributing method of ultra-high purity gas minimally stopping corrosion | |
JP2020141039A (en) | Gas supply system and gas supply method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190806 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190809 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6571929 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |