JP2016103596A - Semiconductor device and manufacturing method of the same - Google Patents

Semiconductor device and manufacturing method of the same Download PDF

Info

Publication number
JP2016103596A
JP2016103596A JP2014241928A JP2014241928A JP2016103596A JP 2016103596 A JP2016103596 A JP 2016103596A JP 2014241928 A JP2014241928 A JP 2014241928A JP 2014241928 A JP2014241928 A JP 2014241928A JP 2016103596 A JP2016103596 A JP 2016103596A
Authority
JP
Japan
Prior art keywords
substrate
layer
semiconductor device
conductor
mram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014241928A
Other languages
Japanese (ja)
Other versions
JP6362524B2 (en
Inventor
治彦 森田
Haruhiko Morita
治彦 森田
忍 加藤
Shinobu Kato
忍 加藤
苅谷 隆
Takashi Kariya
隆 苅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2014241928A priority Critical patent/JP6362524B2/en
Publication of JP2016103596A publication Critical patent/JP2016103596A/en
Application granted granted Critical
Publication of JP6362524B2 publication Critical patent/JP6362524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Wire Bonding (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device and a manufacturing method of the same, which can suppress an adverse effect caused by magnetostriction in an MRAM.SOLUTION: In a semiconductor device 10 of the present embodiment, an MRAM 55 is arranged at a position on an F surface 30F of a substrate 30, which does not overlap an extended line of a diagonal line of an MPU 50. A first conductor layer 22 on an F surface 11F side of a core substrate 11 of the substrate 30 is thicker than a first conductor layer 22 on an S surface 11S side, and a total volume of the conductor layers on the F surface 11F side of the core substrate 11 of the substrate 30 is larger than a total volume of the conductor layers on the S surface 11S side.SELECTED DRAWING: Figure 1

Description

本発明は、基板に半導体素子と半導体メモリとが搭載されている半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device in which a semiconductor element and a semiconductor memory are mounted on a substrate, and a manufacturing method thereof.

近年、DRAM等の揮発性の半導体メモリに代わる不揮発性の半導体メモリとして、MRAM(Magnetoresistive Random Access Memory)の開発が行われている(例えば、特許文献1参照)。   In recent years, MRAM (Magnetic Resistive Random Access Memory) has been developed as a nonvolatile semiconductor memory that replaces a volatile semiconductor memory such as a DRAM (see, for example, Patent Document 1).

特開2004−023062号公報(段落[0002]、段落[0005]、図5)JP 2004-023062 A (paragraph [0002], paragraph [0005], FIG. 5)

しかしながら、MRAMは、DRAMでは問題にならなかった磁気歪みの悪影響を受けることが考えられる。   However, it is conceivable that MRAM is adversely affected by magnetostriction, which was not a problem with DRAM.

本発明は、上記事情に鑑みてなされたもので、MRAMにおける磁気歪みによる悪影響を抑えることが可能な半導体装置及びその製造方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor device capable of suppressing adverse effects due to magnetostriction in the MRAM and a manufacturing method thereof.

上記目的を達成するためになされた請求項1の発明に係る半導体装置は、基板と、基板に搭載される少なくとも1つの半導体素子と、基板に搭載されかつ半導体素子に接続される複数のMRAMと、を備える半導体装置であって、複数のMRAMは、半導体素子の周辺領域のうち半導体素子の平面形状における対角線の延長線と重ならない位置に配置されている。   In order to achieve the above object, a semiconductor device according to the invention of claim 1 includes a substrate, at least one semiconductor element mounted on the substrate, and a plurality of MRAMs mounted on the substrate and connected to the semiconductor elements. The plurality of MRAMs are arranged at positions in the peripheral region of the semiconductor element that do not overlap with the extension of the diagonal line in the planar shape of the semiconductor element.

本発明の第1実施形態に係る半導体装置の平面図The top view of the semiconductor device concerning a 1st embodiment of the present invention. 図1のA−A切断面における半導体装置の側断面図1 is a side sectional view of the semiconductor device taken along the line AA in FIG. インターポーザ基板の側断面図Side view of interposer substrate 半導体装置の製造工程を示す側断面図Side sectional view showing manufacturing process of semiconductor device 半導体装置の製造工程を示す側断面図Side sectional view showing manufacturing process of semiconductor device 半導体装置の製造工程を示す側断面図Side sectional view showing manufacturing process of semiconductor device 半導体装置の製造工程を示す側断面図Side sectional view showing manufacturing process of semiconductor device 半導体装置の製造工程を示す側断面図Side sectional view showing manufacturing process of semiconductor device 半導体装置の製造工程を示す側断面図Side sectional view showing manufacturing process of semiconductor device 基板の反りの概念図Conceptual diagram of board warpage 変形例に係る半導体装置の平面図The top view of the semiconductor device concerning a modification 変形例に係る半導体装置の平面図The top view of the semiconductor device concerning a modification 変形例に係る半導体装置の側断面図Side sectional view of a semiconductor device according to a modified example 変形例に係る半導体装置の平面図The top view of the semiconductor device concerning a modification

[第1実施形態]
以下、本発明の第1実施形態を図1〜10に基づいて説明する。本実施形態の半導体装置10は、例えば、サーバー、ノートパソコン、車載器、携帯電話、スマートフォン等用のマザーボードとして使用されるもので、基板30に、本発明の「半導体素子」に相当するMPU(Micro−processing unit)50、MRAM55、その他の各種電子部品60を搭載してなる。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. The semiconductor device 10 according to the present embodiment is used as a motherboard for a server, a notebook computer, an in-vehicle device, a mobile phone, a smartphone, and the like, for example. Micro-processing unit) 50, MRAM 55, and other various electronic components 60 are mounted.

図1に示すように、本実施形態の半導体装置10では、基板30の表側の面であるF面30Fに1つのMPU50が配置されている。MRAM55は、MPU50の周囲に4つ配置されている。これらMRAM55とMPU50とは、後述するビア導体23D及び第1導体層22(図2参照)等を介して電気的に接続されている。なお、MRAM55の平面形状は、MPU50の平面形状よりも小さくなっている。   As shown in FIG. 1, in the semiconductor device 10 of the present embodiment, one MPU 50 is disposed on the F surface 30 </ b> F that is the surface on the front side of the substrate 30. Four MRAMs 55 are arranged around the MPU 50. The MRAM 55 and the MPU 50 are electrically connected via a via conductor 23D and a first conductor layer 22 (see FIG. 2), which will be described later. Note that the planar shape of the MRAM 55 is smaller than the planar shape of the MPU 50.

図2には、MPU50及びMRAM55が配置された部分で切断された半導体装置10の断面構造が拡大して示されている。同図に示すように、半導体装置10における基板30は、コア基板11の表裏の両面にビルドアップ層20,20を有する構造になっている。コア基板11は、絶縁性部材で構成されている。コア基板11の表側の面であるF面11Fと、コア基板11の裏側の面であるS面11Sとには、導体回路層12がそれぞれ形成されている。また、コア基板11には、複数の導電用貫通孔14が形成されている。各導電用貫通孔14内にはめっきが充填されて複数のスルーホール導電導体15がそれぞれ形成され、それらスルーホール導電導体15によってF面11Fの導体回路層12とS面11Sの導体回路層12との間が接続されている。   FIG. 2 shows an enlarged cross-sectional structure of the semiconductor device 10 cut at a portion where the MPU 50 and the MRAM 55 are arranged. As shown in the figure, the substrate 30 in the semiconductor device 10 has a structure having build-up layers 20 on both the front and back surfaces of the core substrate 11. The core substrate 11 is made of an insulating member. Conductor circuit layers 12 are respectively formed on an F surface 11 </ b> F that is a surface on the front side of the core substrate 11 and an S surface 11 </ b> S that is a surface on the back side of the core substrate 11. The core substrate 11 has a plurality of conductive through holes 14 formed therein. A plurality of through-hole conductive conductors 15 are formed in each conductive through-hole 14 to form a plurality of through-hole conductive conductors 15. The through-hole conductive conductors 15 form the conductor circuit layer 12 on the F surface 11F and the conductor circuit layer 12 on the S surface 11S. Is connected.

コア基板11のF面11F側のビルドアップ層20も、S面11S側のビルドアップ層20も共に、コア基板11側から順番に、第1絶縁樹脂層21、第1導体層22、第2絶縁樹脂層23、第2導体層24を積層してなり、第2導体層24上には、ソルダーレジスト層25が積層されている。   Both the build-up layer 20 on the F surface 11F side of the core substrate 11 and the build-up layer 20 on the S surface 11S side, in order from the core substrate 11 side, the first insulating resin layer 21, the first conductor layer 22, the second An insulating resin layer 23 and a second conductor layer 24 are laminated, and a solder resist layer 25 is laminated on the second conductor layer 24.

第1絶縁樹脂層21及び第2絶縁樹脂層23には、それぞれ複数のビアホール21H,23Hが形成されている。これらビアホール21H,23H内にめっきが充填されて複数のビア導体21D,23Dが形成されている。そして、第1絶縁樹脂層21のビア導体21Dによって、導体回路層12と第1導体層22との間が接続され、第2絶縁樹脂層23のビア導体23Dによって、第1導体層22と第2導体層24との間が接続されている。   A plurality of via holes 21H and 23H are formed in the first insulating resin layer 21 and the second insulating resin layer 23, respectively. The via holes 21H and 23H are filled with plating to form a plurality of via conductors 21D and 23D. The conductor circuit layer 12 and the first conductor layer 22 are connected by the via conductor 21D of the first insulating resin layer 21, and the first conductor layer 22 and the first conductor layer 22 are connected by the via conductor 23D of the second insulating resin layer 23. The two conductor layers 24 are connected.

コア基板11のF面11F側の第1導体層22は、S面11S側の第1導体層22よりも厚くなっている。これにより、基板30のうちのコア基板11のF面11F側の導体層の総体積がS面11S側の導体層の総体積よりも大きくなっている。   The first conductor layer 22 on the F surface 11F side of the core substrate 11 is thicker than the first conductor layer 22 on the S surface 11S side. Thereby, the total volume of the conductor layer on the F surface 11F side of the core substrate 11 in the substrate 30 is larger than the total volume of the conductor layer on the S surface 11S side.

ソルダーレジスト層25には、複数のパッド用孔が形成され、第2導体層24の一部がパッド用孔内に位置してパッド26になっている。同図に示すように、基板30のF面30F側の複数のパッド26上には半田バンプ27がそれぞれ形成されていて、MPU50及びMRAM55は、これら半田バンプ27群に半田付けされている。   A plurality of pad holes are formed in the solder resist layer 25, and a part of the second conductor layer 24 is located in the pad hole to form a pad 26. As shown in the figure, solder bumps 27 are respectively formed on a plurality of pads 26 on the F surface 30F side of the substrate 30, and the MPU 50 and the MRAM 55 are soldered to the solder bumps 27 group.

また、MPU50が基板30に直接実装されているのに対し、MRAM55は、基板30にインターポーザ基板53を介して実装されている(以降、MRAM55とインターポーザ基板53とを合わせたものを、「MRAM複合体56」という)。図3に示すように、インターポーザ基板53は、MRAM55と略同じ平面形状をなし、基板30と同様に、コア基板53Cの表裏の面にビルドアップ層53Bを備えてなる。また、コア基板53Cはビルドアップ層53Bよりも厚くなっている。   The MPU 50 is directly mounted on the substrate 30, whereas the MRAM 55 is mounted on the substrate 30 via the interposer substrate 53 (hereinafter, a combination of the MRAM 55 and the interposer substrate 53 is referred to as “MRAM composite Body 56 "). As shown in FIG. 3, the interposer substrate 53 has substantially the same planar shape as the MRAM 55, and includes the build-up layers 53 </ b> B on the front and back surfaces of the core substrate 53 </ b> C, like the substrate 30. The core substrate 53C is thicker than the buildup layer 53B.

なお、インターポーザ基板53のコア基板53C及びビルドアップ層53Bの絶縁樹脂層は、熱膨張係数が低い程好ましく、例えば、コア基板53Cの熱膨張係数は1〜5ppm/℃であり、ビルドアップ層53Bの絶縁樹脂層の熱膨張係数は1〜25ppm/℃である。また、ビルドアップ層53Bの導体層は、薄い程好ましい。   The core substrate 53C of the interposer substrate 53 and the insulating resin layer of the buildup layer 53B are preferably as low in thermal expansion coefficient. For example, the thermal expansion coefficient of the core substrate 53C is 1 to 5 ppm / ° C., and the buildup layer 53B The thermal expansion coefficient of the insulating resin layer is 1 to 25 ppm / ° C. Further, the conductor layer of the buildup layer 53B is preferably as thin as possible.

また、インターポーザ基板53のF面53F側のパッド53Pには、半田バンプ54が形成されている。この半田バンプ54は、基板30に形成される半田バンプ27よりも小さく、また、融点が高くなっている。この半田バンプ54群にMRAM55が半田付けされてMRAM複合体56が構成されている。   In addition, solder bumps 54 are formed on the pads 53P on the F surface 53F side of the interposer substrate 53. The solder bump 54 is smaller than the solder bump 27 formed on the substrate 30 and has a high melting point. An MRAM complex 56 is formed by soldering the MRAM 55 to the solder bumps 54 group.

そして、図1に示すように、MRAM複合体56は、基板30のF面30FのうちMPU50の4側辺の各中央部付近にそれぞれ1つずつ実装されている。つまり、MRAM複合体56は、基板30のF面30FのうちMPU50の対角線Lの延長線と重ならない位置に配置されている。また、MRAM複合体56の実装位置は、基板30の対角線とも重ならない位置となっている。なお、MPU50と同心をなしかつMPU50の相似形状の領域で、内部に4つのMRAM複合体56を含む領域が本発明の周辺領域Sに相当する。   As shown in FIG. 1, one MRAM complex 56 is mounted in the vicinity of each central portion of the four sides of the MPU 50 in the F surface 30 </ b> F of the substrate 30. That is, the MRAM complex 56 is disposed at a position that does not overlap with the extension line of the diagonal line L of the MPU 50 on the F surface 30F of the substrate 30. Further, the mounting position of the MRAM composite 56 is a position that does not overlap with the diagonal line of the substrate 30. A region that is concentric with the MPU 50 and has a similar shape to the MPU 50 and includes four MRAM complexes 56 inside corresponds to the peripheral region S of the present invention.

次に、本実施形態の半導体装置10の製造方法について説明する。まず、基板30は、以下のようにして製造される。   Next, a method for manufacturing the semiconductor device 10 of this embodiment will be described. First, the substrate 30 is manufactured as follows.

(1)図4(A)に示すように、コア基板11としてエポキシ樹脂又はBT(ビスマレイミドトリアジン)樹脂とガラスクロスなどの補強材からなる絶縁性基材11Kの表裏の両面に、銅箔11Cがラミネートされているものが用意される。   (1) As shown in FIG. 4A, copper foil 11C is formed on both front and back surfaces of an insulating base material 11K made of epoxy resin or BT (bismaleimide triazine) resin and a reinforcing material such as glass cloth as a core substrate 11. Is prepared.

(2)図4(B)に示すように、コア基板11にF面11F側から例えばCO2レーザが照射されて導電用貫通孔14を形成するためのテーパー孔14Aが穿孔される。   (2) As shown in FIG. 4B, the core substrate 11 is irradiated with, for example, CO2 laser from the F surface 11F side to form a tapered hole 14A for forming the conductive through hole 14.

(3)図4(C)に示すように、コア基板11のS面11Sのうち前述したF面11F側のテーパー孔14Aの真裏となる位置にCO2レーザが照射されてテーパー孔14Aが穿孔され、それらテーパー孔14A,14Aから導電用貫通孔14が形成される。   (3) As shown in FIG. 4C, the taper hole 14A is drilled by irradiating the CO2 laser to the position directly behind the tapered hole 14A on the F surface 11F side of the S surface 11S of the core substrate 11 described above. The conductive through-hole 14 is formed from the tapered holes 14A and 14A.

(4)無電解めっき処理が行われ、銅箔11C上と導電用貫通孔14の内面に無電解めっき膜(図示せず)が形成される。   (4) An electroless plating process is performed, and an electroless plating film (not shown) is formed on the copper foil 11 </ b> C and the inner surface of the conductive through hole 14.

(5)図4(D)に示すように、銅箔11C上の無電解めっき膜上に、所定パターンのめっきレジスト33が形成される。   (5) As shown in FIG. 4D, a predetermined pattern of plating resist 33 is formed on the electroless plating film on the copper foil 11C.

(6)電解めっき処理が行われ、図5(A)に示すように、電解めっきが導電用貫通孔14内に充填されてスルーホール導電導体15が形成されると共に、銅箔11C上の無電解めっき膜(図示せず)のうちめっきレジスト33から露出している部分に電解めっき膜34が形成される。   (6) An electrolytic plating process is performed, and as shown in FIG. 5A, the electrolytic plating is filled in the conductive through holes 14 to form the through-hole conductive conductors 15 and the copper foil 11C on the copper foil 11C. An electrolytic plating film 34 is formed on a portion of the electrolytic plating film (not shown) exposed from the plating resist 33.

(7)めっきレジスト33が剥離されると共に、めっきレジスト33の下方の無電解めっき膜(図示せず)及び銅箔11Cが除去され、図5(B)に示すように、残された電解めっき膜34、無電解めっき膜及び銅箔11Cにより、コア基板11のF面11F上に導体回路層12が形成されると共に、コア基板11のS面11S上に導体回路層12が形成される。そして、F面11Fの導体回路層12とS面11Sの導体回路層12とがスルーホール導電導体15によって接続された状態になる。   (7) The plating resist 33 is peeled off, and the electroless plating film (not shown) and the copper foil 11C below the plating resist 33 are removed. As shown in FIG. The conductor circuit layer 12 is formed on the F surface 11F of the core substrate 11 and the conductor circuit layer 12 is formed on the S surface 11S of the core substrate 11 by the film 34, the electroless plating film, and the copper foil 11C. Then, the conductor circuit layer 12 on the F surface 11F and the conductor circuit layer 12 on the S surface 11S are connected by the through-hole conductive conductor 15.

(8)図6(A)に示すように、コア基板11のF面11F上の導体回路層12上に、第1絶縁樹脂層21としてのプリプレグ(心材を樹脂含浸してなるBステージの樹脂シート)と銅箔37が積層されてから、加熱プレスされる。その際、コア基板11のF面11Fの導体回路層12,12同士の間がプリプレグにて埋められる。   (8) As shown in FIG. 6A, a prepreg (a B-stage resin formed by impregnating a core material with a resin on the conductor circuit layer 12 on the F surface 11F of the core substrate 11) Sheet) and the copper foil 37 are laminated and then heated and pressed. At that time, the space between the conductor circuit layers 12 and 12 on the F surface 11F of the core substrate 11 is filled with the prepreg.

(9)図6(B)に示すように、コア基板11のS面11S上の導体回路層12上に第1絶縁樹脂層21としてのプリプレグと銅箔37が積層されてから、加熱プレスされる。その際、コア基板11のS面11Sの導体回路層12,12同士の間がプリプレグにて埋められる。   (9) As shown in FIG. 6B, the prepreg as the first insulating resin layer 21 and the copper foil 37 are laminated on the conductor circuit layer 12 on the S surface 11S of the core substrate 11, and then heated and pressed. The At that time, the space between the conductor circuit layers 12 on the S surface 11S of the core substrate 11 is filled with the prepreg.

なお、第1絶縁樹脂層21としてプリプレグの代わりに心材を含まない樹脂フィルムを用いてもよい。その場合は、銅箔を積層することなく、樹脂フィルムの表面に、直接、セミアディティブ法で導体回路層を形成することができる。   A resin film that does not include a core material may be used as the first insulating resin layer 21 instead of the prepreg. In that case, a conductor circuit layer can be directly formed on the surface of the resin film by a semi-additive method without laminating a copper foil.

(10)図7(A)に示すように、上記したプリプレグによって形成されたコア基板11の表裏の両側の第1絶縁樹脂層21,21にCO2レーザが照射されて、複数のビアホール21Hが形成される。それら複数のビアホール21Hは、導体回路層12上に配置される。   (10) As shown in FIG. 7A, the first insulating resin layers 21 and 21 on both sides of the core substrate 11 formed by the prepreg described above are irradiated with CO2 laser to form a plurality of via holes 21H. Is done. The plurality of via holes 21 </ b> H are disposed on the conductor circuit layer 12.

(11)無電解めっき処理が行われ、第1絶縁樹脂層21,21上と、ビアホール21H,21H内とに無電解めっき膜(図示せず)が形成される。   (11) An electroless plating process is performed, and electroless plating films (not shown) are formed on the first insulating resin layers 21 and 21 and in the via holes 21H and 21H.

(12)図7(B)に示すように、銅箔37上の無電解めっき膜上に、所定パターンのめっきレジスト40が形成される。   (12) As shown in FIG. 7B, a predetermined pattern of plating resist 40 is formed on the electroless plating film on the copper foil 37.

(13)電解めっき処理が行われ、図7(C)に示すように、めっきがビアホール21H,21H内に充填されてビア導体21D,21Dが形成され、さらには、第1絶縁樹脂層21,21上の無電解めっき膜(図示せず)のうちめっきレジスト40から露出している部分に電解めっき膜39,39が形成される。   (13) Electrolytic plating treatment is performed, and as shown in FIG. 7C, the plating is filled in the via holes 21H and 21H to form via conductors 21D and 21D, and further, the first insulating resin layer 21 and Electrolytic plating films 39 and 39 are formed on portions of the electroless plating film (not shown) 21 that are exposed from the plating resist 40.

このとき、電解銅めっき液に浸漬されるコア基板11のうちF面11F側の無電解めっき膜に通電される電流がS面11S側の無電解めっき膜に通電される電流よりも大きくなっている。これにより、F面11F側の電解めっき膜39がS面11S側の電解めっき膜39よりも厚くなる。   At this time, the current supplied to the electroless plating film on the F surface 11F side of the core substrate 11 immersed in the electrolytic copper plating solution is larger than the current supplied to the electroless plating film on the S surface 11S side. Yes. As a result, the electrolytic plating film 39 on the F surface 11F side becomes thicker than the electrolytic plating film 39 on the S surface 11S side.

(14)めっきレジスト40が剥離されると共に、めっきレジスト40の下方の無電解めっき膜(図示せず)及び銅箔37が除去され、図8(A)に示すように、残された電解めっき膜39、無電解めっき膜及び銅箔37により、コア基板11の表裏の各第1絶縁樹脂層21上に第1導体層22が形成される。そして、コア基板11の表裏の各第1導体層22の一部と導体回路層12とがビア導体21Dによって接続される。   (14) The plating resist 40 is peeled off, and the electroless plating film (not shown) and the copper foil 37 below the plating resist 40 are removed. As shown in FIG. The first conductor layer 22 is formed on the first insulating resin layers 21 on the front and back of the core substrate 11 by the film 39, the electroless plating film, and the copper foil 37. And a part of each 1st conductor layer 22 of the front and back of the core board | substrate 11 and the conductor circuit layer 12 are connected by the via conductor 21D.

(15)上記した(8)〜(14)と同様の処理により、図8(B)に示すように、コア基板11の表裏の各第1導体層22上に第2絶縁樹脂層23と第2導体層24とが形成されて、各第2導体層24の一部と第1導体層22とがビア導体23Dによって接続された状態になる。なお、本実施形態では、第2導体層24を形成する際の電解めっき処理において、F面11F側の無電解めっき膜に通電される電流とS面11S側の無電解めっき膜に通電される電流とを同じとすることで、F面11F側の第2導体層24とS面11S側の第2導体層24とが同じ厚さになっている。   (15) Through the same processing as the above (8) to (14), as shown in FIG. 8B, the second insulating resin layer 23 and the second insulating resin layer 23 are formed on the first conductor layers 22 on the front and back of the core substrate 11. The two conductor layers 24 are formed, and a part of each second conductor layer 24 and the first conductor layer 22 are connected by the via conductor 23D. In the present embodiment, in the electroplating process when forming the second conductor layer 24, the current applied to the electroless plating film on the F surface 11F side and the electroless plating film on the S surface 11S side are supplied. By making the current the same, the second conductor layer 24 on the F surface 11F side and the second conductor layer 24 on the S surface 11S side have the same thickness.

(16)図8(C)に示すように、コア基板11の表裏の各第2導体層24上にソルダーレジスト層25,25が積層される。   (16) As shown in FIG. 8C, solder resist layers 25, 25 are laminated on the second conductor layers 24 on the front and back sides of the core substrate 11.

(17)図9(A)に示すように、コア基板11の表裏のソルダーレジスト層25,25の所定箇所にテーパー状のパッド用孔が形成され、コア基板11の表裏の各第2導体層24のうちパッド用孔から露出した部分がパッド26になる。   (17) As shown in FIG. 9A, tapered pad holes are formed at predetermined locations on the front and back solder resist layers 25, 25 of the core substrate 11, and the second conductor layers on the front and back of the core substrate 11 are formed. A portion exposed from the pad hole in 24 becomes the pad 26.

(18)パッド26上に、ニッケル層、パラジウム層、金層の順に積層されて図9(B)に示した金属膜41が形成される。以上で基板30が完成する。なお、パッド26上に形成される金属膜は、Ni/Au膜、Sn膜、又はOSP(Organic Solderability Preservative)膜でも良い。   (18) On the pad 26, a nickel layer, a palladium layer, and a gold layer are laminated in this order to form the metal film 41 shown in FIG. 9B. Thus, the substrate 30 is completed. The metal film formed on the pad 26 may be a Ni / Au film, a Sn film, or an OSP (Organic Solderability Preservative) film.

次に、以下のようにして、基板30にMPU50及びMRAM55が実装される。
(1)MPU50とMRAM複合体56とが用意される。MRAM複合体56は、基板30と同様の方法により製造されるインターポーザ基板53のF面53FにMRAM55が半田付けされることで予め製造される。
Next, the MPU 50 and the MRAM 55 are mounted on the substrate 30 as follows.
(1) An MPU 50 and an MRAM complex 56 are prepared. The MRAM complex 56 is manufactured in advance by soldering the MRAM 55 to the F surface 53F of the interposer substrate 53 manufactured by the same method as the substrate 30.

(2)基板30の有するパッド26上に、半田バンプ27が形成される。   (2) Solder bumps 27 are formed on the pads 26 of the substrate 30.

(3)基板30の半田バンプ27群上にMPU50とMRAM複合体56とが配置される。   (3) The MPU 50 and the MRAM composite 56 are disposed on the solder bump 27 group of the substrate 30.

(4)基板30が炉内で加熱され(以下、適宜「リフロー」という)、その後、冷却される。以上で半導体装置10が完成する。   (4) The substrate 30 is heated in a furnace (hereinafter referred to as “reflow” as appropriate), and then cooled. Thus, the semiconductor device 10 is completed.

ところで、基板30のリフロー及び冷却を行うと、図10に示す概念図のように、基板30のうちのMPU50の周辺領域SがMPU50を中心に隆起する丘陵形状に反ってしまうことが起こり得る。   By the way, when the reflow and cooling of the substrate 30 are performed, the peripheral region S of the MPU 50 in the substrate 30 may be warped in a hill shape that rises around the MPU 50 as shown in the conceptual diagram of FIG.

この基板30の反りは以下のように生じるものだと考えられる。即ち、基板30に含まれる導体が、基板30の加熱により熱膨張し、基板30の冷却により収縮する。このとき、基板30のF面30F側の導体の収縮がF面30Fに実装されたMPU50により阻害されるため、S面30S側の導体の収縮量がF面30F側の導体の収縮量よりも大きくなる。この導体の収縮量の差により、基板30のうちのMPU50の周辺領域SがF面30F側に向かって突出した丘陵形状となると考えられる。   This warpage of the substrate 30 is considered to occur as follows. That is, the conductor included in the substrate 30 is thermally expanded by heating the substrate 30 and is contracted by cooling the substrate 30. At this time, since the contraction of the conductor on the F surface 30F side of the substrate 30 is inhibited by the MPU 50 mounted on the F surface 30F, the contraction amount of the conductor on the S surface 30S side is larger than the contraction amount of the conductor on the F surface 30F side. growing. Due to the difference in contraction amount of the conductor, it is considered that the peripheral region S of the MPU 50 in the substrate 30 has a hill shape protruding toward the F surface 30F side.

また、リフロー及び冷却後の基板30においては、図10に示すように、MPU50の各辺の側方の領域が比較的なだらかとなるのに対し、MPU50の対角線Lの延長線上が比較的大きく反ると考えられる。   Further, in the substrate 30 after reflow and cooling, as shown in FIG. 10, the lateral regions of the respective sides of the MPU 50 become comparatively gentle, whereas the extension line of the diagonal line L of the MPU 50 is relatively large. It is thought.

ここで、仮にMRAM55をMPU50の対角線Lの延長線上に配置すると、基板30の反りによりMRAM55が変形してMRAM55内で磁気歪みが発生し、MRAM55が磁気歪みによる悪影響を受けるという不具合が生じることが考えられる。これに対して、本実施形態の半導体装置10では、MRAM55が、MPU50の周辺領域SのうちMPU50の対角線Lの延長線と重ならない位置に配置されているので、MRAM55が基板30の反りの影響を受けることを抑制することができ、MRAM55における磁気歪みによる悪影響を抑えることができる。   Here, if the MRAM 55 is disposed on the extension line of the diagonal line L of the MPU 50, the MRAM 55 is deformed by the warp of the substrate 30 and a magnetic distortion is generated in the MRAM 55, and the MRAM 55 is adversely affected by the magnetic distortion. Conceivable. On the other hand, in the semiconductor device 10 of the present embodiment, the MRAM 55 is disposed in a position that does not overlap with the extension line of the diagonal line L of the MPU 50 in the peripheral region S of the MPU 50, so that the MRAM 55 is affected by the warp of the substrate 30. Can be suppressed, and adverse effects due to magnetostriction in the MRAM 55 can be suppressed.

また、本実施形態では、上述したように、基板30のF面30F側の導体層の総体積が、S面30S側の導体層の総体積よりも大きくなっているため、F面30F側の導体の収縮量をS面30S側の導体の収縮量に近づけることができ、基板30が丘陵形状に反ることを緩和することができる。これによっても、MRAM55が基板30の反りの影響を受けることを抑制することができ、MRAM55における磁気歪みによる悪影響を抑えることができる。また、F面30F側の導体層の総体積とS面30S側の導体層の総体積とが第1導体層22の厚さにより調整されているので、回路パターンの変更を行わなくてもよい。   In the present embodiment, as described above, the total volume of the conductor layer on the F surface 30F side of the substrate 30 is larger than the total volume of the conductor layer on the S surface 30S side. The amount of contraction of the conductor can be brought close to the amount of contraction of the conductor on the S surface 30S side, and the substrate 30 can be mitigated from warping in a hill shape. Also by this, it can suppress that MRAM55 receives the influence of the curvature of the board | substrate 30, and the bad influence by the magnetic distortion in MRAM55 can be suppressed. Further, since the total volume of the conductor layer on the F plane 30F side and the total volume of the conductor layer on the S plane 30S side are adjusted by the thickness of the first conductor layer 22, the circuit pattern need not be changed. .

さらに、MRAM55が基板30にインターポーザ基板53を介して実装されているので、MRAM55が基板30の反りの影響を受けることをより抑制することができる。また、インターポーザ基板53がビルドアップ層53Bよりも厚いコア基板53Cを有しているため、MRAM55の変形をより抑制することができる。なお、インターポーザ基板53のコア基板53C及びビルドアップ層53Bの絶縁樹脂層の熱膨張係数を低くするほど、インターポーザ基板53の剛性が高くなり、MRAM55が基板30の反りの影響を受けることを抑制することができる。また、インターポーザ基板53のビルドアップ層53Bの導体層を薄くするほど、インターポーザ基板53の膨張、収縮を防ぐことができてインターポーザ基板53の剛性が高くなり、MRAM55が基板30の反りの影響を受けることを抑制することができる。   Furthermore, since the MRAM 55 is mounted on the substrate 30 via the interposer substrate 53, it is possible to further suppress the MRAM 55 from being affected by the warp of the substrate 30. Further, since the interposer substrate 53 has the core substrate 53C that is thicker than the buildup layer 53B, the deformation of the MRAM 55 can be further suppressed. Note that the lower the thermal expansion coefficients of the core substrate 53C of the interposer substrate 53 and the insulating resin layer of the buildup layer 53B, the higher the rigidity of the interposer substrate 53 and the MRAM 55 is prevented from being affected by the warp of the substrate 30. be able to. Further, the thinner the conductor layer of the buildup layer 53B of the interposer substrate 53, the more the expansion and contraction of the interposer substrate 53 can be prevented, and the rigidity of the interposer substrate 53 becomes higher, and the MRAM 55 is affected by the warp of the substrate 30. This can be suppressed.

また、MRAM55が基板30の反りの影響を受けにくくなる方法の一つとして、MPU50を半田付けした後にMRAM複合体56を半田付けするというようにリフローを別々に行うことも考えられるが、本実施形態の半導体装置10では、上述したようにMRAM55が基板30の反りの影響を受けにくい位置に配置されるので、MPU50の半田付けとMRAM複合体56の半田付けとを1度のリフローで行うことができる。これにより、別々にリフローする場合よりも工程数を少なくすることができる。また、別々にリフローする場合、MPU50実装用の半田とMRAM複合体56実装用の半田とに融点の異なるものが使用される必要があるが、本実施形態では半田の種類を一種類にすることができるので、コストを削減することもできる。   Further, as one method for making the MRAM 55 less susceptible to the warp of the substrate 30, it is conceivable to perform reflow separately such as soldering the MRAM complex 56 after soldering the MPU 50. In the semiconductor device 10 of the embodiment, as described above, the MRAM 55 is arranged at a position that is not easily affected by the warp of the substrate 30, so that the soldering of the MPU 50 and the soldering of the MRAM complex 56 are performed by one reflow. Can do. Thereby, the number of steps can be reduced as compared with the case of reflowing separately. In addition, when reflowing separately, it is necessary to use different soldering points for the MPU 50 mounting solder and the MRAM composite 56 mounting solder. Can also reduce costs.

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

(1)上記実施形態では、MPU50とMRAM複合体56とが1度のリフローで半田付けされていたが、MPU50を載置してリフローした後にMRAM複合体56を載置してリフローする構成であってもよい。この場合、MPU50を半田付けした後の基板30の反りに合わせてMRAM55を実装することができるので、MRAM55が基板30の反りの影響を受けることをより抑制することができる。なお、この場合、MPU50実装用の半田の融点が、MRAM複合体56実装用の半田の融点よりも高くなっている。   (1) In the above embodiment, the MPU 50 and the MRAM complex 56 are soldered by one reflow. However, after the MPU 50 is mounted and reflowed, the MRAM complex 56 is mounted and reflowed. There may be. In this case, since the MRAM 55 can be mounted in accordance with the warp of the substrate 30 after the MPU 50 is soldered, it is possible to further suppress the MRAM 55 from being affected by the warp of the substrate 30. In this case, the melting point of the solder for mounting the MPU 50 is higher than the melting point of the solder for mounting the MRAM composite 56.

(2)上記実施形態では、基板30のF面30F側の導体層の総体積とS面30S側の導体層の総体積とを異ならせるために、F面30F側とS面30S側とで導体層の厚さを異ならせていたが、導体層の厚さを等しくし、残銅率(即ち、回路パターンの面積(本発明の「導体占有面積」に相当する)/総面積)を異ならせる構成であってもよい。また、導体層の厚さと残銅率との両方を異ならせる構成であってもよい。   (2) In the above embodiment, in order to make the total volume of the conductor layer on the F surface 30F side of the substrate 30 different from the total volume of the conductor layer on the S surface 30S side, the F surface 30F side and the S surface 30S side are different. Although the thickness of the conductor layer was varied, the thickness of the conductor layer was made equal, and the remaining copper ratio (that is, the area of the circuit pattern (corresponding to the “conductor occupation area” of the present invention) / total area) was varied. The structure to be able to be used may be sufficient. Moreover, the structure which makes both the thickness of a conductor layer and the remaining copper ratios different may be sufficient.

(3)上記実施形態では、コア基板11のF面11F側の導体層の総体積がS面11S側の導体層の総体積よりも大きくなっている部分が、基板30の全体であったが、基板30のうちのMPU50の周辺領域Sのみであってもよい。この場合、例えば、基板30のうちのMPU50の周辺領域Sにおいて、F面30F側の残銅率をS面30S側の残銅率よりも大きくすること等が考えられる。   (3) In the above embodiment, the portion of the core substrate 11 where the total volume of the conductor layer on the F surface 11F side is larger than the total volume of the conductor layer on the S surface 11S side is the entire substrate 30. Only the peripheral region S of the MPU 50 in the substrate 30 may be used. In this case, for example, in the peripheral region S of the MPU 50 in the substrate 30, the remaining copper ratio on the F surface 30F side may be made larger than the remaining copper ratio on the S surface 30S side.

(4)上記実施形態では、基板30のF面30F側とS面30S側とにおいて厚さが異なる導体層が第1導体層22であったが、第2導体層24であってもよい。また、第1導体層22と第2導体層24との両方で厚さを異ならせてもよい。さらに、導体回路層12の厚さを異ならせてもよい。   (4) In the above embodiment, the conductor layer having a different thickness on the F surface 30F side and the S surface 30S side of the substrate 30 is the first conductor layer 22, but may be the second conductor layer 24. In addition, the thickness may be different between both the first conductor layer 22 and the second conductor layer 24. Furthermore, the thickness of the conductor circuit layer 12 may be varied.

(5)上記実施形態では、インターポーザ基板53がコア基板53Cを有していたが、インターポーザ基板53はコアレス構造であってもよい。   (5) In the above embodiment, the interposer substrate 53 has the core substrate 53C, but the interposer substrate 53 may have a coreless structure.

(6)上記実施形態では、MRAM55が基板30にインターポーザ基板53を介して実装されていたが、インターポーザ基板53を介さずに直接実装される構成であってもよい。   (6) In the above-described embodiment, the MRAM 55 is mounted on the substrate 30 via the interposer substrate 53. However, the MRAM 55 may be directly mounted without using the interposer substrate 53.

(7)上記実施形態では、インターポーザ基板53とMRAM55とは基板30に実装される前に予め半田付けされていたが、インターポーザ基板53と基板30とが半田付けされるのと同時にインターポーザ基板53とMRAM55とが半田付けされる構成であってもよい。   (7) In the above embodiment, the interposer substrate 53 and the MRAM 55 are pre-soldered before being mounted on the substrate 30, but the interposer substrate 53 and the substrate 30 are soldered simultaneously with the interposer substrate 53. A configuration may be employed in which the MRAM 55 is soldered.

(8)上記実施形態では、インターポーザ基板53の平面形状がMRAM55の平面形状と略同一であったが、MRAM55の平面形状よりも大きくてもよい。   (8) In the above embodiment, the planar shape of the interposer substrate 53 is substantially the same as the planar shape of the MRAM 55, but it may be larger than the planar shape of the MRAM 55.

(9)上記実施形態では、MRAM55が基板30の対角線と重ならない位置に配置されていたが、図11に示すように、基板30の対角線上に配置されてもよい。   (9) In the above embodiment, the MRAM 55 is disposed at a position that does not overlap the diagonal line of the substrate 30, but may be disposed on the diagonal line of the substrate 30 as shown in FIG. 11.

(10)上記実施形態では、MPU50が基板30の中央からずれた位置に配置されていたが、図12に示すように、基板30の中央に配置されてもよい。   (10) In the above embodiment, the MPU 50 is disposed at a position shifted from the center of the substrate 30, but may be disposed at the center of the substrate 30 as shown in FIG. 12.

(11)上記実施形態では、MPU50とMRAM55とが基板30における同一の面に配置されていたが、例えば、MPU50がF面30Fに配置され、MRAM55がS面30Sに配置される構成であってもよい。このとき、図13に示すように、MRAM55が基板30を挟んでMPU50と対向する位置に配置される構成であってもよい。   (11) In the above embodiment, the MPU 50 and the MRAM 55 are disposed on the same surface of the substrate 30. For example, the MPU 50 is disposed on the F surface 30F, and the MRAM 55 is disposed on the S surface 30S. Also good. At this time, as shown in FIG. 13, the MRAM 55 may be arranged at a position facing the MPU 50 across the substrate 30.

(12)MPU50とMRAM55との平面形状は、正方形であってもよい。   (12) The planar shape of the MPU 50 and the MRAM 55 may be a square.

(13)上記実施形態では、MPU50と接続されるMRAM55の数が4つであったが、これ以外の数(例えば、図14に示すように、8つ)であってもよい。   (13) Although the number of MRAMs 55 connected to the MPU 50 is four in the above embodiment, the number may be other numbers (for example, eight as shown in FIG. 14).

(14)上記実施形態では、本発明の「半導体素子」がMPU50であったが、例えば、CPUやパワー半導体素子等であってもよい。   (14) In the above embodiment, the “semiconductor element” of the present invention is the MPU 50. However, for example, a CPU or a power semiconductor element may be used.

10 半導体装置
11 コア基板
21 第1絶縁樹脂層
22 第1導体層
23 第2絶縁樹脂層
24 第2導体層
27 半田バンプ
30 基板
53 インターポーザ基板
53B ビルドアップ層
53C コア基板
54 半田バンプ
50 MPU(半導体素子)
55 MRAM
DESCRIPTION OF SYMBOLS 10 Semiconductor device 11 Core board | substrate 21 1st insulating resin layer 22 1st conductor layer 23 2nd insulating resin layer 24 2nd conductor layer 27 Solder bump 30 Board | substrate 53 Interposer board 53B Buildup layer 53C Core board | substrate 54 Solder bump 50 MPU (semiconductor) element)
55 MRAM

Claims (19)

基板と、
前記基板に搭載される複数のMRAMと、
前記基板に搭載されかつ前記MRAMが接続される少なくとも1つの半導体素子と、を備える半導体装置であって、
前記複数のMRAMは、前記半導体素子の周辺領域のうち前記半導体素子の平面形状における対角線の延長線と重ならない位置に配置されている。
A substrate,
A plurality of MRAMs mounted on the substrate;
At least one semiconductor element mounted on the substrate and connected to the MRAM,
The plurality of MRAMs are arranged at positions that do not overlap with an extension of a diagonal line in a planar shape of the semiconductor element in a peripheral region of the semiconductor element.
請求項1に記載の半導体装置であって、
前記半導体素子と前記複数のMRAMとの全ては、前記基板の一方の面に配置されている。
The semiconductor device according to claim 1,
All of the semiconductor element and the plurality of MRAMs are disposed on one surface of the substrate.
請求項1又は2に記載の半導体装置であって、
前記基板は、コア基板と、前記コア基板の表裏に積層されるそれぞれのビルドアップ層と、を有してなり、
前記半導体素子が搭載されている一方側の前記ビルドアップ層に形成される導体層の総体積が、他方側の前記ビルドアップ層に形成される導体層の総体積より大きい。
The semiconductor device according to claim 1 or 2,
The substrate comprises a core substrate and respective build-up layers laminated on the front and back of the core substrate,
The total volume of the conductor layer formed in the one build-up layer on which the semiconductor element is mounted is larger than the total volume of the conductor layer formed in the other build-up layer.
請求項1又は2に記載の半導体装置であって、
前記基板は、コア基板と、前記コア基板の表裏に積層されるそれぞれのビルドアップ層と、を有してなり、
前記半導体素子の前記周辺領域においては、前記半導体素子が搭載されている一方側の前記ビルドアップ層に形成される導体層の総体積が、他方側の前記ビルドアップ層に形成される導体層の総体積より大きい。
The semiconductor device according to claim 1 or 2,
The substrate comprises a core substrate and respective build-up layers laminated on the front and back of the core substrate,
In the peripheral region of the semiconductor element, the total volume of the conductor layer formed on the one build-up layer on which the semiconductor element is mounted is equal to the conductor layer formed on the other build-up layer. Greater than total volume.
請求項3又は4に記載の半導体装置であって、
前記一方側のビルドアップ層に形成される導体層が、前記他方側のビルドアップ層に形成される導体層より厚い。
The semiconductor device according to claim 3 or 4, wherein
The conductor layer formed on the one-side buildup layer is thicker than the conductor layer formed on the other-side buildup layer.
請求項3乃至5の何れか1の請求項に記載の半導体装置であって、
前記一方側のビルドアップ層に形成される導体層の導体占有面積が、前記他方側のビルドアップ層に形成される導体層の導体占有面積より大きい。
A semiconductor device according to any one of claims 3 to 5,
The conductor occupation area of the conductor layer formed in the one side buildup layer is larger than the conductor occupation area of the conductor layer formed in the other side buildup layer.
請求項3乃至5の何れか1の請求項に記載の半導体装置であって、
前記半導体素子の前記周辺領域においては、前記一方側のビルドアップ層に形成される導体層の導体占有面積が、前記他方側のビルドアップ層に形成される導体層の導体占有面積より大きい。
A semiconductor device according to any one of claims 3 to 5,
In the peripheral region of the semiconductor element, the conductor occupation area of the conductor layer formed in the one side buildup layer is larger than the conductor occupation area of the conductor layer formed in the other side buildup layer.
請求項1乃至7の何れか1の請求項に記載の半導体装置であって、
前記MRAMは、インターポーザ基板を介して前記基板に搭載されている。
A semiconductor device according to any one of claims 1 to 7,
The MRAM is mounted on the substrate via an interposer substrate.
請求項8に記載の半導体装置であって、
前記インターポーザ基板は、コア基板と、前記コア基板の表裏にそれぞれ積層されかつ厚さが前記コア基板の厚さより薄いビルドアップ層とを有してなる。
The semiconductor device according to claim 8,
The interposer substrate includes a core substrate and a build-up layer that is laminated on each of the front and back surfaces of the core substrate and has a thickness smaller than that of the core substrate.
請求項9に記載の半導体装置であって、
前記インターポーザ基板の前記コア基板の熱膨張係数は1〜5ppm/℃であり、
前記インターポーザ基板の前記ビルドアップ層に形成される層間絶縁層の熱膨張係数は1〜25ppm/℃である。
The semiconductor device according to claim 9,
The thermal expansion coefficient of the core substrate of the interposer substrate is 1 to 5 ppm / ° C.
The interlayer insulating layer formed in the buildup layer of the interposer substrate has a thermal expansion coefficient of 1 to 25 ppm / ° C.
請求項1乃至10の何れか1の請求項に記載の半導体装置であって、
複数の前記MRAMは、前記基板の平面形状における対角線と重ならない位置に配置されている。
A semiconductor device according to any one of claims 1 to 10,
The plurality of MRAMs are arranged at positions that do not overlap diagonal lines in the planar shape of the substrate.
請求項1乃至11の何れか1の請求項に記載の半導体装置であって、
前記半導体素子と前記基板とを半田接続する半田の融点は、前記MRAMと前記基板とを半田接続する半田の融点よりも高い。
A semiconductor device according to any one of claims 1 to 11,
The melting point of solder that solder-connects the semiconductor element and the substrate is higher than the melting point of solder that solder-connects the MRAM and the substrate.
基板と、前記基板に搭載される複数のMRAMと、前記基板に搭載されかつ前記MRAMが接続される少なくとも1つの半導体素子と、を備える半導体装置の製造方法であって、
前記複数のMRAMは、前記半導体素子の周辺領域のうち前記半導体素子の平面形状における対角線の延長線と重ならない位置に配置する。
A method for manufacturing a semiconductor device, comprising: a substrate; a plurality of MRAMs mounted on the substrate; and at least one semiconductor element mounted on the substrate and connected to the MRAM,
The plurality of MRAMs are arranged at positions that do not overlap with an extension of a diagonal line in a planar shape of the semiconductor element in a peripheral region of the semiconductor element.
請求項13に記載の半導体装置の製造方法であって、
スルーホール導体を有するコア基板を形成することと、
前記コア基板の表裏にそれぞれビルドアップ層を形成することと、
前記半導体素子が搭載される一方側の前記ビルドアップ層に形成される導体層の総体積を、他方側の前記ビルドアップ層に形成される導体層の総体積より大きくすることと、を行う。
A method of manufacturing a semiconductor device according to claim 13,
Forming a core substrate having through-hole conductors;
Forming build-up layers on the front and back of the core substrate,
The total volume of the conductor layer formed in the one build-up layer on which the semiconductor element is mounted is made larger than the total volume of the conductor layer formed in the other build-up layer.
請求項14に記載の半導体装置の製造方法であって、
前記一方側のビルドアップ層と前記他方側のビルドアップ層とにそれぞれ形成される絶縁層に無電解めっき層をそれぞれ積層することと、
めっき液に前記コア基板を浸漬して、前記一方側のビルドアップ層の前記無電解めっき層に通電する電流を、前記他方側のビルドアップ層の前記無電解めっき層に通電する電流より大きくして、それぞれの無電解めっき層の上に電解めっき層を積層することとを行う。
15. A method of manufacturing a semiconductor device according to claim 14,
Laminating an electroless plating layer on an insulating layer formed on each of the one side buildup layer and the other side buildup layer;
The core substrate is immersed in a plating solution, and the current applied to the electroless plating layer of the one side buildup layer is set larger than the current supplied to the electroless plating layer of the other side buildup layer. Then, an electroplating layer is laminated on each electroless plating layer.
請求項14又は15に記載の半導体装置の製造方法であって、
前記一方側のビルドアップ層に形成される導体層の導体占有面積を、前記他方側のビルドアップ層に形成される導体層の導体占有面積より大きくする。
A method of manufacturing a semiconductor device according to claim 14 or 15,
The conductor occupation area of the conductor layer formed in the one side buildup layer is made larger than the conductor occupation area of the conductor layer formed in the other side buildup layer.
請求項13乃至16の何れか1の請求項に記載の半導体装置の製造方法であって、
前記MRAMを、インターポーザ基板を介して前記基板に搭載する。
A method of manufacturing a semiconductor device according to any one of claims 13 to 16,
The MRAM is mounted on the substrate via an interposer substrate.
請求項17に記載の半導体装置の製造方法であって、
熱膨張係数が1〜5ppm/℃であるコア基板の表裏に、熱膨張係数が1〜25ppm/℃である層間絶縁層を含むビルドアップ層を積層して前記インターポーザ基板を製造する。
A method of manufacturing a semiconductor device according to claim 17,
The interposer substrate is manufactured by laminating a buildup layer including an interlayer insulating layer having a thermal expansion coefficient of 1 to 25 ppm / ° C. on both sides of the core substrate having a thermal expansion coefficient of 1 to 5 ppm / ° C.
請求項13乃至18の何れか1の請求項に記載の半導体装置の製造方法であって、
前記半導体素子を前記基板に半田実装した後に、前記MRAMを前記基板に半田実装する。
A method of manufacturing a semiconductor device according to any one of claims 13 to 18,
After the semiconductor element is solder mounted on the substrate, the MRAM is solder mounted on the substrate.
JP2014241928A 2014-11-28 2014-11-28 Semiconductor device and manufacturing method thereof Active JP6362524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014241928A JP6362524B2 (en) 2014-11-28 2014-11-28 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014241928A JP6362524B2 (en) 2014-11-28 2014-11-28 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016103596A true JP2016103596A (en) 2016-06-02
JP6362524B2 JP6362524B2 (en) 2018-07-25

Family

ID=56089636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014241928A Active JP6362524B2 (en) 2014-11-28 2014-11-28 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6362524B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020181925A (en) * 2019-04-26 2020-11-05 イビデン株式会社 Wiring board and manufacturing method of wiring board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114164A (en) * 2010-11-22 2012-06-14 Furukawa Electric Co Ltd:The Board and method of manufacturing board
WO2014100090A1 (en) * 2012-12-23 2014-06-26 Advanced Micro Devices, Inc. Die-stacked device with partitioned multi-hop network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114164A (en) * 2010-11-22 2012-06-14 Furukawa Electric Co Ltd:The Board and method of manufacturing board
WO2014100090A1 (en) * 2012-12-23 2014-06-26 Advanced Micro Devices, Inc. Die-stacked device with partitioned multi-hop network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020181925A (en) * 2019-04-26 2020-11-05 イビデン株式会社 Wiring board and manufacturing method of wiring board
JP7288339B2 (en) 2019-04-26 2023-06-07 イビデン株式会社 Wiring board and method for manufacturing wiring board

Also Published As

Publication number Publication date
JP6362524B2 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
US9723729B2 (en) Printed wiring board
JP6504665B2 (en) Printed circuit board, method of manufacturing the same, and electronic component module
US20140347837A1 (en) Wiring board and method for manufacturing the same
JP2006261246A (en) Wiring circuit board and manufacturing method thereof
US9559045B2 (en) Package structure and method for manufacturing the same
JP2014175485A (en) Wiring board and manufacturing method of the same
JP2016225620A (en) Printed circuit board, manufacturing method of the same, and semiconductor package including the same
JP6880429B2 (en) Built-in element type printed circuit board and its manufacturing method
JP2016063130A (en) Printed wiring board and semiconductor package
JP2015146346A (en) multilayer wiring board
JP2017084997A (en) Printed wiring board and method of manufacturing the same
JP2014082442A (en) Multilayer wiring board
JPWO2014034443A1 (en) Wiring board and method of manufacturing wiring board
JP6423313B2 (en) Electronic component built-in substrate, method for manufacturing the same, and electronic apparatus
JP6362524B2 (en) Semiconductor device and manufacturing method thereof
JP2014179430A (en) Multilayer printed wiring board for mounting semiconductor element
JP2008147498A (en) Multilayer wiring board, and semiconductor device package
US20160021749A1 (en) Package board, method of manufacturing the same and stack type package using the same
JP2016143860A (en) Semiconductor device and method of manufacturing the same
JP5223973B1 (en) Printed wiring board and printed wiring board manufacturing method
JP2013080823A (en) Printed wiring board and manufacturing method of the same
JP2016051747A (en) Wiring board
WO2013153717A1 (en) Electronic apparatus and method for manufacturing same
JP6806315B2 (en) Printed circuit board
JP2017069497A (en) Circuit board and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180626

R150 Certificate of patent or registration of utility model

Ref document number: 6362524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250