JP2016102598A - Hot water supply air-conditioning system - Google Patents

Hot water supply air-conditioning system Download PDF

Info

Publication number
JP2016102598A
JP2016102598A JP2014240092A JP2014240092A JP2016102598A JP 2016102598 A JP2016102598 A JP 2016102598A JP 2014240092 A JP2014240092 A JP 2014240092A JP 2014240092 A JP2014240092 A JP 2014240092A JP 2016102598 A JP2016102598 A JP 2016102598A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
liquid
gas
indoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014240092A
Other languages
Japanese (ja)
Other versions
JP6492580B2 (en
Inventor
岡本 昌和
Masakazu Okamoto
昌和 岡本
修二 藤本
Shuji Fujimoto
修二 藤本
命仁 王
Meijin O
命仁 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2014240092A priority Critical patent/JP6492580B2/en
Publication of JP2016102598A publication Critical patent/JP2016102598A/en
Application granted granted Critical
Publication of JP6492580B2 publication Critical patent/JP6492580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress degradation of a heating capacity of an indoor heat exchanger caused by liquid accumulation in the indoor heat exchanger.SOLUTION: A refrigerant circuit (20) has a compressor (21), an indoor heat exchanger (22), an outdoor heat exchanger (24), and an expansion valve (23) disposed in a liquid-refrigerant passage (PR1) connecting a liquid end of the indoor heat exchanger (22) and a liquid end of the outdoor heat exchanger (24). A refrigerant-water heat exchanger (40) is connected to a discharge side of the compressor (21) in the refrigerant circuit (20), and exchanges heat between the refrigerant discharged from the compressor (21) and water. A gas-liquid separator (50) is connected to a gas side of the indoor heat exchanger (22) in the refrigerant circuit (20), and separates the refrigerant which has passed through the refrigerant-water heat exchanger (40) into a gas refrigerant and a liquid refrigerant in a hot water supply heating operation, to supply the gas refrigerant to the gas side of the indoor heat exchanger (22) and to supply the liquid refrigerant to the liquid-refrigerant passage (PR1).SELECTED DRAWING: Figure 1

Description

この発明は、冷媒と水とを熱交換させる冷媒/水熱交換器を備えた給湯空調システムに関する。   The present invention relates to a hot water supply air conditioning system provided with a refrigerant / water heat exchanger for exchanging heat between refrigerant and water.

従来、室内の空調と給湯とを行う給湯空調システムが知られている。例えば、特許文献1には、冷媒回路において圧縮機と四方切換弁との間に給湯熱交換器(冷媒/水熱交換器)が設けられたヒートポンプシステムが記載されている。このヒートポンプシステムの暖房運転では、圧縮機から吐出された冷媒は、給湯熱交換器において水に放熱した後に、室内熱交換器において室内空気に放熱する。これにより、給湯熱交換器において水が加熱されて温水が生成され、室内熱交換器において室内空気が加熱されて室内が暖房される。   Conventionally, a hot water supply air conditioning system that performs indoor air conditioning and hot water supply is known. For example, Patent Document 1 describes a heat pump system in which a hot water supply heat exchanger (refrigerant / water heat exchanger) is provided between a compressor and a four-way switching valve in a refrigerant circuit. In the heating operation of the heat pump system, the refrigerant discharged from the compressor radiates heat to water in the hot water supply heat exchanger, and then radiates heat to indoor air in the indoor heat exchanger. Thereby, water is heated in the hot water supply heat exchanger to generate hot water, and indoor air is heated in the indoor heat exchanger to heat the room.

特開2009−92251号公報JP 2009-92251 A

しかしながら、特許文献1のヒートポンプシステムの給湯暖房運転(すなわち、給湯熱交換器および室内熱交換器が凝縮器となる暖房運転)では、圧縮機から吐出された冷媒が給湯熱交換器(冷媒/水熱交換器)において凝縮した後に室内熱交換器に流入するので、室内熱交換器における液冷媒の割合が高くなるとともにガス冷媒の割合が低くなる(すなわち、室内熱交換器に液冷媒が溜まり込む)ことになる。このように、室内熱交換器において液溜まり(液冷媒の溜まり込み)が発生すると、室内熱交換器の加熱能力(冷媒の単位時間当たりの放熱量)が低下し、その結果、室内の暖房を正常に行うことが困難となるおそれがある。   However, in the hot water supply / heating operation of the heat pump system of Patent Document 1 (that is, the heating operation in which the hot water supply heat exchanger and the indoor heat exchanger serve as a condenser), the refrigerant discharged from the compressor is the hot water supply heat exchanger (refrigerant / water). Since the refrigerant flows into the indoor heat exchanger after being condensed in the heat exchanger, the ratio of the liquid refrigerant in the indoor heat exchanger increases and the ratio of the gas refrigerant decreases (that is, the liquid refrigerant accumulates in the indoor heat exchanger). ) Thus, when a liquid pool (liquid refrigerant accumulation) occurs in the indoor heat exchanger, the heating capacity of the indoor heat exchanger (the amount of heat released per unit time of the refrigerant) decreases, and as a result, indoor heating is reduced. There is a risk that it may be difficult to perform normally.

そこで、この発明は、室内熱交換器の液溜まりに起因する室内熱交換器の加熱能力の低下を抑制することが可能な給湯空調システムを提供することを目的とする。   Then, this invention aims at providing the hot water supply air-conditioning system which can suppress the fall of the heating capability of the indoor heat exchanger resulting from the liquid pool of an indoor heat exchanger.

第1の発明は、圧縮機(21)と、室内熱交換器(22)と、室外熱交換器(24)と、該室内熱交換器(22)の液端と該室外熱交換器(24)の液端とを接続する液冷媒通路(PR1)に設けられた膨張弁(23)とを有する冷媒回路(20)と、上記冷媒回路(20)において上記圧縮機(21)の吐出側に接続され、該圧縮機(21)から吐出された冷媒と水とを熱交換させる冷媒/水熱交換器(40)と、上記冷媒回路(20)において上記室内熱交換器(22)のガス側に接続される気液分離器(50)とを備え、上記気液分離器(50)は、上記冷媒/水熱交換器(40)および上記室内熱交換器(22)が凝縮器となり上記室外熱交換器(24)が蒸発器となる給湯暖房運転において、上記冷媒/水熱交換器(40)を通過した冷媒をガス冷媒と液冷媒とに分離し、該ガス冷媒を上記室内熱交換器(22)のガス側へ供給し、該液冷媒を上記液冷媒通路(PR1)へ供給することができるように構成されていることを特徴とする給湯空調システムである。   The first invention includes a compressor (21), an indoor heat exchanger (22), an outdoor heat exchanger (24), a liquid end of the indoor heat exchanger (22), and the outdoor heat exchanger (24 ) And a refrigerant circuit (20) having an expansion valve (23) provided in a liquid refrigerant passage (PR1) connecting the liquid end to the liquid end of the compressor (21) on the discharge side of the refrigerant circuit (20). A refrigerant / water heat exchanger (40) for exchanging heat between the refrigerant discharged from the compressor (21) and water, and the gas side of the indoor heat exchanger (22) in the refrigerant circuit (20) A gas-liquid separator (50) connected to the outdoor air-cooling device, wherein the refrigerant / water heat exchanger (40) and the indoor heat exchanger (22) serve as a condenser. In the hot water supply and heating operation in which the heat exchanger (24) serves as an evaporator, the refrigerant that has passed through the refrigerant / water heat exchanger (40) is separated into a gas refrigerant and a liquid refrigerant, and the gas refrigerant is Supplied to the gas side of the exchanger (22) is a liquid refrigerant at the hot water supply air conditioning system characterized by being configured so as to supply to the liquid coolant passages (PR1).

上記第1の発明では、気液分離器(50)を設けることにより、給湯暖房運転において室内熱交換器(22)へ向かう液冷媒の流量を低減することができる。これにより、室内熱交換器(22)における液溜まり(液冷媒の溜まり込み)の発生を抑制することができる。   In the said 1st invention, the flow volume of the liquid refrigerant which goes to an indoor heat exchanger (22) can be reduced by providing a gas-liquid separator (50) in hot water supply heating operation. Thereby, generation | occurrence | production of the liquid pool (liquid refrigerant accumulation) in an indoor heat exchanger (22) can be suppressed.

第2の発明は、上記第1の発明において、上記液冷媒通路(PR1)は、上記室内熱交換器(22)の液端と上記膨張弁(23)とを接続する第1通路部(PR11)と、該膨張弁(23)と上記室内熱交換器(22)の液端とを接続する第2通路部(PR12)とを有し、上記気液分離器(50)は、上記液冷媒を上記液冷媒通路(PR1)の第1通路部(PR11)に供給することができるように構成されていることを特徴とする給湯空調システムである。   In a second aspect based on the first aspect, the liquid refrigerant passage (PR1) is a first passage portion (PR11) connecting the liquid end of the indoor heat exchanger (22) and the expansion valve (23). ) And a second passage portion (PR12) connecting the expansion valve (23) and the liquid end of the indoor heat exchanger (22), and the gas-liquid separator (50) includes the liquid refrigerant Is a hot water supply air-conditioning system that is configured to be able to supply to the first passage portion (PR11) of the liquid refrigerant passage (PR1).

上記第2の発明では、気液分離器(50)を設けることにより、給湯暖房運転において室内熱交換器(22)へ向かう液冷媒の流量を低減することができる。また、液冷媒通路(PR1)の第1通路部(PR11)と気液分離器(50)との間の圧力差は、液冷媒通路(PR1)の第2通路部(PR12)と気液分離器(50)との間の圧力差よりも小さくなっている。   In the said 2nd invention, the flow volume of the liquid refrigerant which goes to an indoor heat exchanger (22) can be reduced by providing a gas-liquid separator (50) in hot water supply heating operation. In addition, the pressure difference between the first passage portion (PR11) of the liquid refrigerant passage (PR1) and the gas-liquid separator (50) is separated from the second passage portion (PR12) of the liquid refrigerant passage (PR1). The pressure difference with the vessel (50) is smaller.

第3の発明は、上記第1の発明において、上記液冷媒通路(PR1)は、上記室内熱交換器(22)の液端と上記膨張弁(23)とを接続する第1通路部(PR11)と、該膨張弁(23)と上記室内熱交換器(22)の液端とを接続する第2通路部(PR12)とを有し、上記気液分離器(50)は、上記液冷媒を上記液冷媒通路(PR1)の第2通路部(PR12)に供給することができるように構成されていることを特徴とする給湯空調システムである。   In a third aspect based on the first aspect, the liquid refrigerant passage (PR1) is a first passage portion (PR11) that connects the liquid end of the indoor heat exchanger (22) and the expansion valve (23). ) And a second passage portion (PR12) connecting the expansion valve (23) and the liquid end of the indoor heat exchanger (22), and the gas-liquid separator (50) includes the liquid refrigerant Is a hot water supply air-conditioning system characterized in that it can be supplied to the second passage portion (PR12) of the liquid refrigerant passage (PR1).

上記第3の発明では、気液分離器(50)を設けることにより、給湯暖房運転において室内熱交換器(22)へ向かう液冷媒の流量を低減することができる。また、液冷媒通路(PR1)の第2通路部(PR12)と気液分離器(50)との間の圧力差は、液冷媒通路(PR1)の第1通路部(PR11)と気液分離器(50)との間の圧力差よりも大きくなっている。   In the said 3rd invention, the flow volume of the liquid refrigerant which goes to an indoor heat exchanger (22) can be reduced by providing a gas-liquid separator (50) in hot water supply heating operation. In addition, the pressure difference between the second passage portion (PR12) of the liquid refrigerant passage (PR1) and the gas-liquid separator (50) is separated from the first passage portion (PR11) of the liquid refrigerant passage (PR1). The pressure difference with the vessel (50) is greater.

第4の発明は、上記第1〜第3の発明のいずれか1つにおいて、上記気液分離器(50)から上記液冷媒通路(PR1)へ供給される液冷媒の流量を調節可能な流量調節弁(51)をさらに備えていることを特徴とする給湯空調システムである。   According to a fourth invention, in any one of the first to third inventions, a flow rate capable of adjusting a flow rate of the liquid refrigerant supplied from the gas-liquid separator (50) to the liquid refrigerant passage (PR1). The hot water supply air conditioning system further includes a control valve (51).

上記第4の発明では、流量調節弁(51)を設けることにより、気液分離器(50)に溜まり込む液冷媒の量を調節することができる。これにより、冷媒回路(20)における冷媒の循環量を調節することができる。   In the fourth aspect of the invention, by providing the flow rate adjustment valve (51), the amount of liquid refrigerant that accumulates in the gas-liquid separator (50) can be adjusted. Thereby, the circulation amount of the refrigerant | coolant in a refrigerant circuit (20) can be adjusted.

第5の発明は、上記第4の発明において、制御部(60)をさらに備え、上記制御部(60)は、上記給湯暖房運転において、上記室外熱交換器(24)の液側冷媒温度が該室外熱交換器(24)の吸込空気温度よりも低く、且つ、該室外熱交換器(24)の液側冷媒温度と該室外熱交換器(24)の吸込空気温度との差が予め設定された温度差閾値を大きくなっている場合に、上記流量調節弁(51)の開度を増加させることを特徴とする給湯空調システムである。   According to a fifth aspect of the present invention, the control unit (60) further includes a control unit (60), and the control unit (60) has a liquid-side refrigerant temperature of the outdoor heat exchanger (24) in the hot water supply / heating operation. It is lower than the intake air temperature of the outdoor heat exchanger (24), and the difference between the liquid side refrigerant temperature of the outdoor heat exchanger (24) and the intake air temperature of the outdoor heat exchanger (24) is preset. In the hot water supply air-conditioning system, the opening degree of the flow rate control valve (51) is increased when the temperature difference threshold value is increased.

上記第5の発明では、給湯暖房運転において気液分離器(50)に液冷媒が過剰に溜まり込んで気液分離器(50)から室内熱交換器(22)へ液冷媒が溢れ出すと、室内熱交換器(22)に液冷媒が溜まり込んで室内熱交換器(22)の加熱能力が低下してしまう。また、気液分離器(50)に液冷媒が過剰に溜まり込むことにより、冷媒回路(20)における冷媒循環量が減少してしまう。そのため、室内熱交換器(22)の加熱能力を増加させるために圧縮機(21)の回転数を増加させて、室外熱交換器(24)における蒸発圧力を室外熱交換器(24)の吸込空気温度(すなわち、室外空気温度)に対して最適な圧力に設定したとしても、圧縮機(21)に吸入される冷媒量を確保することができない。その結果、圧縮機(21)の吸込容積と冷媒の体積流量とが釣り合うようになるまで、室外熱交換器(24)における蒸発圧力が低下することになるので、室外熱交換器(24)の液側冷媒温度が室外熱交換器(24)の吸込空気温度よりも低くなり過ぎる場合がある。そこで、給湯暖房運転において、室外熱交換器(24)の液側冷媒温度が室外熱交換器(24)の吸込空気温度よりも低く、且つ、室外熱交換器(24)の液側冷媒温度と室外熱交換器(24)の吸込空気温度との差が予め設定された温度差閾値を大きくなっている場合に、流量調節弁(51)の開度を増加させることにより、気液分離器(50)に液冷媒が過剰に溜まり込んでいる場合に、液冷媒通路(PR1)への液冷媒の排出を促進させることができる。これにより、気液分離器(50)における過剰な液溜まりを抑制することができる。   In the fifth aspect of the invention, when the liquid refrigerant is excessively accumulated in the gas-liquid separator (50) in the hot water supply heating operation and the liquid refrigerant overflows from the gas-liquid separator (50) to the indoor heat exchanger (22), Liquid refrigerant accumulates in the indoor heat exchanger (22), and the heating capacity of the indoor heat exchanger (22) decreases. Moreover, when the liquid refrigerant is excessively accumulated in the gas-liquid separator (50), the refrigerant circulation amount in the refrigerant circuit (20) is reduced. Therefore, in order to increase the heating capacity of the indoor heat exchanger (22), the rotation speed of the compressor (21) is increased, and the evaporation pressure in the outdoor heat exchanger (24) is sucked into the outdoor heat exchanger (24). Even if the optimum pressure is set for the air temperature (that is, the outdoor air temperature), the amount of refrigerant sucked into the compressor (21) cannot be secured. As a result, the evaporation pressure in the outdoor heat exchanger (24) decreases until the suction volume of the compressor (21) and the volume flow rate of the refrigerant are balanced, so that the outdoor heat exchanger (24) The liquid-side refrigerant temperature may become too lower than the intake air temperature of the outdoor heat exchanger (24). Therefore, in the hot water supply and heating operation, the liquid side refrigerant temperature of the outdoor heat exchanger (24) is lower than the suction air temperature of the outdoor heat exchanger (24), and the liquid side refrigerant temperature of the outdoor heat exchanger (24) When the difference from the intake air temperature of the outdoor heat exchanger (24) is larger than the preset temperature difference threshold value, the gas-liquid separator ( When the liquid refrigerant is excessively accumulated in 50), the discharge of the liquid refrigerant to the liquid refrigerant passage (PR1) can be promoted. Thereby, the excessive liquid accumulation in a gas-liquid separator (50) can be suppressed.

第6の発明は、上記第4の発明において、上記冷媒回路(20)において上記圧縮機(21)と上記冷媒/水熱交換器(40)との間に接続されるとともに、該冷媒回路(20)において上記気液分離器(50)と上記室内熱交換器(22)との間に接続され、該圧縮機(21)と該冷媒/水熱交換器(40)との間を流れる冷媒と該気液分離器(50)と該室内熱交換器(22)との間を流れる冷媒とを熱交換させる補助熱交換器(70)と、制御部(60)とをさらに備え、上記制御部(60)は、上記暖房運転において、上記気液分離器(50)と上記補助熱交換器(70)との間を流れる冷媒の温度と該補助熱交換器(70)と上記室内熱交換器(22)との間を流れる冷媒の温度との差が予め設定された温度差閾値よりも小さくなっている場合に、上記流量調節弁(51)の開度を増加させることを特徴とする給湯空調システムである。   According to a sixth invention, in the fourth invention, the refrigerant circuit (20) is connected between the compressor (21) and the refrigerant / water heat exchanger (40), and the refrigerant circuit (20) 20), a refrigerant connected between the gas-liquid separator (50) and the indoor heat exchanger (22) and flowing between the compressor (21) and the refrigerant / water heat exchanger (40). And an auxiliary heat exchanger (70) for exchanging heat between the refrigerant flowing between the gas-liquid separator (50) and the indoor heat exchanger (22), and a control unit (60), In the heating operation, the section (60) is configured such that the temperature of the refrigerant flowing between the gas-liquid separator (50) and the auxiliary heat exchanger (70) and the heat exchange between the auxiliary heat exchanger (70) and the indoor heat exchanger. Increase the opening of the flow control valve (51) when the difference between the temperature of the refrigerant flowing between it and the condenser (22) is smaller than the preset temperature difference threshold A hot water supply air conditioning system for causing.

上記第6の発明では、給湯暖房運転において気液分離器(50)に液冷媒が過剰に溜まり込んで気液分離器(50)から補助熱交換器(70)の第2冷媒通路部(70b)を通過して室内熱交換器(22)へ液冷媒が溢れ出すと、室内熱交換器(22)に液冷媒が溜まり込んで室内熱交換器(22)の加熱能力が低下してしまう。また、気液分離器(50)に液冷媒が過剰に溜まり込んで気液分離器(50)から補助熱交換器(70)の第2冷媒通路部(70b)を通過して室内熱交換器(22)へ液冷媒が溢れ出している場合、補助熱交換器(70)の第2冷媒通路部(70b)を流れる冷媒の乾き度(ガス冷媒の割合)が低くなっている。そのため、補助熱交換器(70)の第2冷媒通路部(70b)を流れる冷媒を加熱しても冷媒の温度が上昇しにくく、気液分離器(50)と補助熱交換器(70)との間を流れる冷媒の温度と補助熱交換器(70)と室内熱交換器(22)との間を流れる冷媒の温度との差が小さくなりやすい傾向にある。そこで、給湯暖房運転において気液分離器(50)と補助熱交換器(70)との間を流れる冷媒の温度と補助熱交換器(70)と室内熱交換器(22)との間を流れる冷媒の温度との差が温度差閾値よりも小さくなっている場合に、流量調節弁(51)の開度を増加させることにより、気液分離器(50)に液冷媒が過剰に溜まり込んでいる場合に、液冷媒通路(PR1)への液冷媒の排出を促進させることができる。これにより、気液分離器(50)における過剰な液溜まりを抑制することができる。   In the sixth aspect of the present invention, the liquid refrigerant is excessively accumulated in the gas-liquid separator (50) during the hot water supply / heating operation, and the second refrigerant passage portion (70b) of the auxiliary heat exchanger (70) from the gas-liquid separator (50). ) And the liquid refrigerant overflows into the indoor heat exchanger (22), the liquid refrigerant accumulates in the indoor heat exchanger (22) and the heating capacity of the indoor heat exchanger (22) decreases. In addition, the liquid refrigerant is excessively accumulated in the gas-liquid separator (50) and passes from the gas-liquid separator (50) through the second refrigerant passage (70b) of the auxiliary heat exchanger (70) to the indoor heat exchanger. When the liquid refrigerant overflows to (22), the dryness (ratio of gas refrigerant) of the refrigerant flowing through the second refrigerant passage portion (70b) of the auxiliary heat exchanger (70) is low. Therefore, even if the refrigerant flowing through the second refrigerant passage portion (70b) of the auxiliary heat exchanger (70) is heated, the temperature of the refrigerant does not easily rise, and the gas-liquid separator (50) and the auxiliary heat exchanger (70) The difference between the temperature of the refrigerant flowing between the two and the temperature of the refrigerant flowing between the auxiliary heat exchanger (70) and the indoor heat exchanger (22) tends to be small. Therefore, the temperature of the refrigerant flowing between the gas-liquid separator (50) and the auxiliary heat exchanger (70) and the flow between the auxiliary heat exchanger (70) and the indoor heat exchanger (22) in the hot water supply / heating operation. When the difference from the temperature of the refrigerant is smaller than the temperature difference threshold, the liquid refrigerant is excessively accumulated in the gas-liquid separator (50) by increasing the opening of the flow control valve (51). When it is, discharge of the liquid refrigerant to the liquid refrigerant passage (PR1) can be promoted. Thereby, the excessive liquid accumulation in a gas-liquid separator (50) can be suppressed.

第1の発明によれば、暖房運転において、室内熱交換器(22)における液溜まりの発生を抑制することができるので、室内熱交換器(22)の液溜まりに起因する室内熱交換器(22)の加熱能力の低下を抑制することができる。   According to the first aspect of the invention, in the heating operation, it is possible to suppress the occurrence of a liquid pool in the indoor heat exchanger (22). Therefore, the indoor heat exchanger (22) caused by the liquid pool in the indoor heat exchanger (22) 22) It is possible to suppress a decrease in heating capacity.

第2の発明によれば、液冷媒通路(PR1)の第1通路部(PR11)と気液分離器(50)との間の圧力差が小さくなっているので、気液分離器(50)から液冷媒通路(PR1)へ供給される冷媒の流量の変動を抑制することができる。   According to the second invention, since the pressure difference between the first passage portion (PR11) of the liquid refrigerant passage (PR1) and the gas-liquid separator (50) is small, the gas-liquid separator (50) Fluctuations in the flow rate of the refrigerant supplied to the liquid refrigerant passage (PR1) can be suppressed.

第3の発明によれば、液冷媒通路(PR1)の第2通路部(PR12)と気液分離器(50)との間の圧力差が大きくなっているので、気液分離器(50)から液冷媒通路(PR1)への冷媒の供給を促進させることができる。   According to the third invention, since the pressure difference between the second passage portion (PR12) of the liquid refrigerant passage (PR1) and the gas-liquid separator (50) is large, the gas-liquid separator (50) Supply of refrigerant to the liquid refrigerant passage (PR1) can be promoted.

第4の発明によれば、冷媒回路(20)における冷媒の循環量を調節することができるので、暖房運転において室内熱交換器(22)の加熱能力を適切に調節することができる。   According to the fourth invention, the circulation amount of the refrigerant in the refrigerant circuit (20) can be adjusted, so that the heating capacity of the indoor heat exchanger (22) can be adjusted appropriately in the heating operation.

第5および第6の発明によれば、気液分離器(50)における過剰な液溜まりを抑制することができるので、気液分離器(50)における過剰な液溜まりに起因する室内熱交換器(22)の加熱能力の低下を抑制することができる。   According to the fifth and sixth inventions, an excessive liquid pool in the gas-liquid separator (50) can be suppressed. Therefore, the indoor heat exchanger caused by the excessive liquid pool in the gas-liquid separator (50) It is possible to suppress a decrease in the heating capacity of (22).

給湯空調システムの構成例を示した配管系統図。The piping system figure which showed the structural example of the hot water supply air conditioning system. 給湯空調システムの変形例1を示した配管系統図。The piping system figure which showed the modification 1 of the hot water supply air conditioning system. 給湯空調システムの変形例2を示した配管系統図。The piping system figure which showed the modification 2 of the hot water supply air conditioning system.

以下、実施の形態を図面を参照して詳しく説明する。なお、図中同一または相当部分には同一の符号を付しその説明は繰り返さない。   Hereinafter, embodiments will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.

(給湯空調システム)
図1は、実施形態による給湯空調システム(10)の構成例を示している。この給湯空調システム(10)は、室内の空調(暖房と冷房)と給湯(温水の供給)とを行うものであり、冷媒回路(20)と、水通路(30)と、冷媒/水熱交換器(40)と、気液分離器(50)と、流量調節弁(51)と、コントローラ(60)とを備えている。また、この給湯空調システム(10)には、冷媒吐出温度センサ(61)と、室内空気温度センサ(62)と、液側冷媒温度センサ(63)と、室外空気温度センサ(64)とが設けられている。
(Hot water supply air conditioning system)
Drawing 1 shows the example of composition of hot-water supply air-conditioning system (10) by an embodiment. This hot water supply air conditioning system (10) performs indoor air conditioning (heating and cooling) and hot water supply (hot water supply), and includes a refrigerant circuit (20), a water passage (30), and refrigerant / water heat exchange. (40), a gas-liquid separator (50), a flow control valve (51), and a controller (60). The hot water supply air conditioning system (10) includes a refrigerant discharge temperature sensor (61), an indoor air temperature sensor (62), a liquid side refrigerant temperature sensor (63), and an outdoor air temperature sensor (64). It has been.

〔冷媒回路〕
冷媒回路(20)は、冷媒を循環させる閉回路であり、圧縮機(21)と、室内熱交換器(22)と、膨張弁(23)と、室外熱交換器(24)と、四方切換弁(25)とを備えている。また、室内熱交換器(22)の近傍には、室内熱交換器(22)へ室内空気を搬送する室内ファン(26)が設けられ、室外熱交換器(24)の近傍の近傍には、室外熱交換器(24)へ室外空気を搬送する室外ファン(27)が設けられている。例えば、室内ファン(26)は、クロスフローファンによって構成され、室外ファン(27)は、プロペラファンによって構成されている。
[Refrigerant circuit]
The refrigerant circuit (20) is a closed circuit that circulates refrigerant, and switches between the compressor (21), the indoor heat exchanger (22), the expansion valve (23), and the outdoor heat exchanger (24). And a valve (25). In addition, an indoor fan (26) that conveys indoor air to the indoor heat exchanger (22) is provided in the vicinity of the indoor heat exchanger (22), and in the vicinity of the outdoor heat exchanger (24), An outdoor fan (27) for conveying outdoor air to the outdoor heat exchanger (24) is provided. For example, the indoor fan (26) is configured by a cross flow fan, and the outdoor fan (27) is configured by a propeller fan.

圧縮機(21)は、吸入した冷媒を圧縮して吐出するものであり、その回転数(容積)を調節可能に構成されている。例えば、圧縮機(21)は、圧縮機構と電動機とが一つのケーシングに収容された全密閉型圧縮機によって構成されている。   The compressor (21) compresses and discharges the sucked refrigerant, and is configured to be able to adjust its rotation speed (volume). For example, the compressor (21) is constituted by a hermetic compressor in which a compression mechanism and an electric motor are accommodated in one casing.

室内熱交換器(22)は、室内ファン(26)によって搬送された室内空気と冷媒とを熱交換させる。例えば、室内熱交換器(22)は、クロスフィン型の熱交換器によって構成されている。   The indoor heat exchanger (22) exchanges heat between the indoor air conveyed by the indoor fan (26) and the refrigerant. For example, the indoor heat exchanger (22) is constituted by a cross fin type heat exchanger.

膨張弁(23)は、冷媒を膨張させて減圧させる膨張機構であり、その開度を調節可能に構成されている。例えば、膨張弁(23)は、電子弁によって構成されている。   The expansion valve (23) is an expansion mechanism that expands and depressurizes the refrigerant, and is configured so that its opening degree can be adjusted. For example, the expansion valve (23) is an electronic valve.

室外熱交換器(24)は、室外ファン(27)によって搬送された室外空気と冷媒とを熱交換させる。例えば、室外熱交換器(24)は、クロスフィン型の熱交換器によって構成されている。   The outdoor heat exchanger (24) exchanges heat between the outdoor air conveyed by the outdoor fan (27) and the refrigerant. For example, the outdoor heat exchanger (24) is configured by a cross fin type heat exchanger.

四方切換弁(25)は、第1〜第4ポートを有する。また、四方切換弁(25)は、第1ポートと第3ポートとを連通させて第2ポートと第4ポートとを連通させる第1状態(図1の実線で示す状態)と、第1ポートと第4ポートとを連通させて第2ポートと第3ポートとを連通させる第2状態(図1の破線で示す状態)とに設定可能に構成されている。   The four-way selector valve (25) has first to fourth ports. The four-way switching valve (25) includes a first state (state indicated by a solid line in FIG. 1) in which the first port and the third port are communicated and the second port and the fourth port are communicated, and the first port. And a fourth port and a second state (state indicated by a broken line in FIG. 1) in which the second port and the third port are communicated.

冷媒回路(20)では、四方切換弁(25)の第1ポートに圧縮機(21)の吐出端が接続され、四方切換弁(25)の第2ポートに圧縮機(21)の吸入端が接続され、四方切換弁(25)の第3ポートから第4ポートへ向けて室内熱交換器(22)と膨張弁(23)と室外熱交換器(24)とが順に接続されている。   In the refrigerant circuit (20), the discharge end of the compressor (21) is connected to the first port of the four-way switching valve (25), and the suction end of the compressor (21) is connected to the second port of the four-way switching valve (25). The indoor heat exchanger (22), the expansion valve (23), and the outdoor heat exchanger (24) are connected in order from the third port to the fourth port of the four-way switching valve (25).

膨張弁(23)は、室内熱交換器(22)の液端と室外熱交換器(24)の液端とを接続する液冷媒通路(PR1)に設けられている。具体的には、液冷媒通路(PR1)は、室内熱交換器(22)の液端と膨張弁(23)とを接続する第1通路部(PR11)と、膨張弁(23)と室外熱交換器(24)の液端とを接続する第2通路部(PR12)とによって構成されている。液冷媒通路(PR1)の第1通路部(PR11)および第2通路部(PR12)は、例えば、冷媒を流通可能な冷媒管によって構成されている。   The expansion valve (23) is provided in the liquid refrigerant passage (PR1) connecting the liquid end of the indoor heat exchanger (22) and the liquid end of the outdoor heat exchanger (24). Specifically, the liquid refrigerant passage (PR1) includes a first passage portion (PR11) connecting the liquid end of the indoor heat exchanger (22) and the expansion valve (23), the expansion valve (23), and the outdoor heat. It is comprised by the 2nd channel | path part (PR12) which connects the liquid end of an exchanger (24). The first passage part (PR11) and the second passage part (PR12) of the liquid refrigerant passage (PR1) are constituted by, for example, refrigerant pipes through which refrigerant can flow.

〔水通路〕
水通路(30)は、水を流通させる通路であり、給水管(PWa)と出水管(PWb)と第1水管(PW1)と第2水管(PW2)とを備えている。また、水通路(30)には、第1開閉弁(31)と第2開閉弁(32)と補助加熱器(33)とが設けられている。
[Water passage]
The water passage (30) is a passage through which water is circulated, and includes a water supply pipe (PWa), a water discharge pipe (PWb), a first water pipe (PW1), and a second water pipe (PW2). The water passage (30) is provided with a first on-off valve (31), a second on-off valve (32), and an auxiliary heater (33).

給水管(PWa)は、外部から水が供給される水管であり、その流入端が外部(例えば、水道栓などの給水源、図示を省略)に接続されている。出水管(PWb)は、外部へ水を供給するための水管であり、その流出端が出水ノズル(図示を省略)に接続されている。   The water supply pipe (PWa) is a water pipe to which water is supplied from the outside, and its inflow end is connected to the outside (for example, a water supply source such as a water tap, not shown). The water discharge pipe (PWb) is a water pipe for supplying water to the outside, and its outflow end is connected to a water discharge nozzle (not shown).

第1水管(PW1)および第2水管(PW2)は、給水管(PWa)の流出端と出水管(PWb)の流入端との間に並列に接続されている。第1開閉弁(31)および第2開閉弁(32)は、第1水管(PW1)および第2水管(PW2)にそれぞれ設けられる。例えば、第1開閉弁(31)および第2開閉弁(32)は、電磁弁によって構成されている。補助加熱器(33)は、出水管(PWb)に設けられ、出水管(PWb)を通過する水を加熱する。例えば、補助加熱器(33)は、燃焼バーナによって構成されている。   The first water pipe (PW1) and the second water pipe (PW2) are connected in parallel between the outflow end of the water supply pipe (PWa) and the inflow end of the water discharge pipe (PWb). The first on-off valve (31) and the second on-off valve (32) are provided in the first water pipe (PW1) and the second water pipe (PW2), respectively. For example, the first on-off valve (31) and the second on-off valve (32) are constituted by electromagnetic valves. The auxiliary heater (33) is provided in the water discharge pipe (PWb) and heats water passing through the water discharge pipe (PWb). For example, the auxiliary heater (33) is constituted by a combustion burner.

〔冷媒/水熱交換器〕
冷媒/水熱交換器(40)は、冷媒回路(20)において圧縮機(21)の吐出側に接続されるとともに水通路(30)に接続され、圧縮機(21)から吐出された冷媒と水通路(30)を流れる水とを熱交換させるように構成されている。この例では、冷媒/水熱交換器(40)は、冷媒回路(20)の圧縮機(21)の吐出端と四方切換弁(25)の第1ポートとの間の冷媒通路に組み込まれる冷媒通路部(40a)と、水通路(30)の第1水管(PW1)に組み込まれる水通路部(40b)とを有し、冷媒通路部(40a)を流れる冷媒と水通路部(40b)を流れる水とを熱交換させる。例えば、冷媒/水熱交換器(40)は、プレート式の熱交換器によって構成されている。
(Refrigerant / water heat exchanger)
The refrigerant / water heat exchanger (40) is connected to the discharge side of the compressor (21) and connected to the water passage (30) in the refrigerant circuit (20), and the refrigerant discharged from the compressor (21) The water flowing through the water passage (30) is configured to exchange heat. In this example, the refrigerant / water heat exchanger (40) is incorporated in a refrigerant passage between the discharge end of the compressor (21) of the refrigerant circuit (20) and the first port of the four-way switching valve (25). It has a passage part (40a) and a water passage part (40b) incorporated in the first water pipe (PW1) of the water passage (30), and the refrigerant flowing through the refrigerant passage part (40a) and the water passage part (40b) Heat exchange with flowing water. For example, the refrigerant / water heat exchanger (40) is configured by a plate heat exchanger.

〔気液分離器〕
気液分離器(50)は、冷媒回路(20)において室内熱交換器(22)のガス側に接続される。そして、気液分離器(50)は、暖房運転(室内熱交換器(22)が凝縮器となり室外熱交換器(24)が蒸発器となる運転)において、冷媒/水熱交換器(40)を通過した冷媒をガス冷媒と液冷媒とに分離し、ガス冷媒を室内熱交換器(22)のガス側へ供給し、液冷媒を液冷媒通路(PR1)へ供給することができるように構成されている。なお、暖房運転については、後で詳しく説明する。
[Gas-liquid separator]
The gas-liquid separator (50) is connected to the gas side of the indoor heat exchanger (22) in the refrigerant circuit (20). The gas-liquid separator (50) is a refrigerant / water heat exchanger (40) in heating operation (in which the indoor heat exchanger (22) serves as a condenser and the outdoor heat exchanger (24) serves as an evaporator). The refrigerant that has passed through is separated into gas refrigerant and liquid refrigerant, the gas refrigerant is supplied to the gas side of the indoor heat exchanger (22), and the liquid refrigerant can be supplied to the liquid refrigerant passage (PR1) Has been. The heating operation will be described in detail later.

この例では、気液分離器(50)は、両端が閉塞された円筒状に形成されて起立した状態で設置され、その胴部(または上部)に第1ガス端(50a)と第2ガス端(50b)とが設けられ、その底部に液流出端(50c)が設けられている。そして、気液分離器(50)は、第1ガス端(50a)および第2ガス端(50b)のいずれか一方から流入した冷媒(二相冷媒)を重力によりガス冷媒と液冷媒とに分離し、液冷媒を第1ガス端(50a)および第2ガス端(50b)のいずれか他方から流出するとともに、液冷媒を液流出端(50c)から流出するように構成されている。   In this example, the gas-liquid separator (50) is installed in a standing state with a cylindrical shape closed at both ends, and the first gas end (50a) and the second gas are installed in the trunk (or upper part) of the gas-liquid separator (50). An end (50b) is provided, and a liquid outflow end (50c) is provided at the bottom thereof. The gas-liquid separator (50) separates the refrigerant (two-phase refrigerant) flowing from one of the first gas end (50a) and the second gas end (50b) into a gas refrigerant and a liquid refrigerant by gravity. The liquid refrigerant flows out from either the first gas end (50a) or the second gas end (50b), and the liquid refrigerant flows out from the liquid outflow end (50c).

また、この例では、気液分離器(50)は、液冷媒を液冷媒通路(PR1)の第1通路部(PR11)に供給することができるように構成されている。すなわち、気液分離器(50)は、液冷媒通路(PR1)の第1通路部(PR11)および第2通路部(PR12)のうち暖房運転において高圧側となる通路部に液冷媒を供給することができるように構成されている。具体的には、気液分離器(50)は、その第1ガス端(50a)が四方切換弁(25)の第3ポートに接続され、その第2ガス端(50b)が室内熱交換器(22)のガス端に接続され、その液流出端(50c)が液冷媒通路(PR1)の第1通路部(PR11)に接続されている。   In this example, the gas-liquid separator (50) is configured to be able to supply the liquid refrigerant to the first passage portion (PR11) of the liquid refrigerant passage (PR1). That is, the gas-liquid separator (50) supplies the liquid refrigerant to the passage portion on the high pressure side in the heating operation of the first passage portion (PR11) and the second passage portion (PR12) of the liquid refrigerant passage (PR1). It is configured to be able to. Specifically, the gas-liquid separator (50) has its first gas end (50a) connected to the third port of the four-way switching valve (25) and its second gas end (50b) connected to the indoor heat exchanger. (22) is connected to the gas end, and the liquid outflow end (50c) is connected to the first passage portion (PR11) of the liquid refrigerant passage (PR1).

〔流量調節弁〕
流量調節弁(51)は、気液分離器(50)から液冷媒通路(PR1)へ供給される液冷媒の流量を調節可能に構成されている。例えば、流量調節弁(51)は、電動弁によって構成されている。この例では、流量調節弁(51)は、気液分離器(50)の液流出端(50c)と液冷媒通路(PR1)の第1通路部(PR11)とを接続する冷媒通路(冷媒管)に組み込まれ、気液分離器(50)から液冷媒通路(PR1)の第1通路部(PR11)へ供給される液冷媒の流量を調節可能に構成されている。
[Flow control valve]
The flow rate adjustment valve (51) is configured to be able to adjust the flow rate of the liquid refrigerant supplied from the gas-liquid separator (50) to the liquid refrigerant passage (PR1). For example, the flow rate adjustment valve (51) is constituted by an electric valve. In this example, the flow control valve (51) is a refrigerant passage (refrigerant pipe) that connects the liquid outflow end (50c) of the gas-liquid separator (50) and the first passage portion (PR11) of the liquid refrigerant passage (PR1). ) And the flow rate of the liquid refrigerant supplied from the gas-liquid separator (50) to the first passage portion (PR11) of the liquid refrigerant passage (PR1) can be adjusted.

〔各種センサ〕
冷媒吐出温度センサ(61)は、圧縮機(21)の冷媒吐出温度(すなわち、圧縮機(21)から吐出される冷媒の温度)を検知する。例えば、冷媒吐出温度センサ(61)は、圧縮機(21)の吐出端の近傍に設置され、設置場所の冷媒温度を圧縮機(21)の冷媒吐出温度として検知する。
[Various sensors]
The refrigerant discharge temperature sensor (61) detects the refrigerant discharge temperature of the compressor (21) (that is, the temperature of the refrigerant discharged from the compressor (21)). For example, the refrigerant discharge temperature sensor (61) is installed in the vicinity of the discharge end of the compressor (21), and detects the refrigerant temperature at the installation location as the refrigerant discharge temperature of the compressor (21).

室内空気温度センサ(62)は、室内熱交換器(22)の吸込空気温度(すなわち、室内熱交換器(22)に吸い込まれる室内空気の温度)を検知する。例えば、室内空気温度センサ(62)は、室内熱交換器(22)の空気の流れ方向の上流側に設置され、設置場所の空気温度を室内熱交換器(22)の吸込空気温度として検知する。   The indoor air temperature sensor (62) detects the intake air temperature of the indoor heat exchanger (22) (that is, the temperature of the indoor air sucked into the indoor heat exchanger (22)). For example, the indoor air temperature sensor (62) is installed upstream of the indoor heat exchanger (22) in the air flow direction, and detects the air temperature at the installation location as the intake air temperature of the indoor heat exchanger (22). .

液側冷媒温度センサ(63)は、室外熱交換器(24)の液側冷媒温度(すなわち、室外熱交換器(24)の液側における冷媒温度)を検知する。例えば、液側冷媒温度センサ(63)は、室外熱交換器(24)の液端の近傍に設置され、設置場所の冷媒温度を室外熱交換器(24)の液側冷媒温度として検知する。   The liquid side refrigerant temperature sensor (63) detects the liquid side refrigerant temperature of the outdoor heat exchanger (24) (that is, the refrigerant temperature on the liquid side of the outdoor heat exchanger (24)). For example, the liquid side refrigerant temperature sensor (63) is installed in the vicinity of the liquid end of the outdoor heat exchanger (24), and detects the refrigerant temperature at the installation location as the liquid side refrigerant temperature of the outdoor heat exchanger (24).

室外空気温度センサ(64)は、室外熱交換器(24)の吸込空気温度(すなわち、室外熱交換器(24)に吸い込まれる室外空気の温度)を検知する。例えば、室外空気温度センサ(64)は、室外熱交換器(24)の空気の流れ方向の上流側に設置され、設置場所の空気温度を室外熱交換器(24)の吸込空気温度として検知する。   The outdoor air temperature sensor (64) detects the intake air temperature of the outdoor heat exchanger (24) (that is, the temperature of the outdoor air sucked into the outdoor heat exchanger (24)). For example, the outdoor air temperature sensor (64) is installed upstream of the outdoor heat exchanger (24) in the air flow direction, and detects the air temperature at the installation location as the intake air temperature of the outdoor heat exchanger (24). .

〔コントローラ〕
コントローラ(60)は、給湯空調システム(10)の各部を制御して給湯空調システム(10)の運転動作を制御する。例えば、コントローラ(60)は、マイクロコンピュータや、マイクロコンピュータを動作させるためのプログラムを格納するメモリなどによって構成されている。この給湯空調システム(10)では、2種類の暖房運転(給湯暖房運転と単純暖房運転)と、2種類の冷房運転(給湯冷房運転と単純冷房運転)とが行われる。
〔controller〕
The controller (60) controls each part of the hot water supply air conditioning system (10) to control the operation of the hot water supply air conditioning system (10). For example, the controller (60) includes a microcomputer and a memory that stores a program for operating the microcomputer. In this hot water supply air conditioning system (10), two types of heating operation (hot water supply heating operation and simple heating operation) and two types of cooling operation (hot water supply cooling operation and simple cooling operation) are performed.

〔給湯暖房運転〕
給湯暖房運転では、室内の暖房と給湯(具体的には、冷媒/水熱交換器(40)において加熱された水の供給)の両方が行われる。給湯暖房運転では、コントローラ(60)は、給湯暖房制御を行う。給湯暖房制御では、コントローラ(60)は、四方切換弁(25)を第1状態に設定する。これにより、給湯暖房運転において、圧縮機(21)の吐出端が冷媒/水熱交換器(40)と気液分離器(50)とを介して室内熱交換器(22)のガス端に接続され、圧縮機(21)の吸入端が室外熱交換器(24)のガス端に接続される。
[Hot water heater operation]
In the hot water supply / heating operation, both indoor heating and hot water supply (specifically, supply of water heated in the refrigerant / water heat exchanger (40)) are performed. In the hot water supply and heating operation, the controller (60) performs hot water supply and heating control. In the hot water supply / heating control, the controller (60) sets the four-way selector valve (25) to the first state. This connects the discharge end of the compressor (21) to the gas end of the indoor heat exchanger (22) via the refrigerant / water heat exchanger (40) and the gas-liquid separator (50) in hot water heating / heating operation. The suction end of the compressor (21) is connected to the gas end of the outdoor heat exchanger (24).

また、給湯暖房制御では、コントローラ(60)は、流量調節弁(51)の開度を開状態(液冷媒のみを通過させることが可能な開度)に設定し、圧縮機(21)と室外ファン(27)と室内ファン(26)とを駆動状態に設定し、室内熱交換器(22)が凝縮器となり室外熱交換器(24)が蒸発器となるように膨張弁(23)の開度を調節する。また、コントローラ(60)は、第1開閉弁(31)を開状態に設定し、第2開閉弁(32)を閉状態に設定する。これにより、水通路(30)では、給水管(PWa)から流出した水が第1水管(PW1)を通過して出水管(PWb)に流入する。   In the hot water supply / heating control, the controller (60) sets the opening of the flow control valve (51) to the open state (opening that allows only the liquid refrigerant to pass through), and the compressor (21) and the outdoor Set the fan (27) and indoor fan (26) to the drive state, and open the expansion valve (23) so that the indoor heat exchanger (22) becomes a condenser and the outdoor heat exchanger (24) becomes an evaporator. Adjust the degree. The controller (60) sets the first on-off valve (31) to an open state and sets the second on-off valve (32) to a closed state. Thereby, in the water passage (30), water flowing out from the water supply pipe (PWa) passes through the first water pipe (PW1) and flows into the water discharge pipe (PWb).

冷媒回路(20)では、圧縮機(21)から吐出された冷媒は、冷媒/水熱交換器(40)の冷媒通路部(40a)において冷媒/水熱交換器(40)の水通路部(40b)を流れる水に放熱して凝縮する。冷媒/水熱交換器(40)の冷媒通路部(40a)を通過した冷媒は、四方切換弁(25)を通過した後に、気液分離器(50)においてガス冷媒と液冷媒とに分離される。気液分離器(50)から流出したガス冷媒(または、ガス冷媒を主に含む気液二相冷媒)は、室内熱交換器(22)において室内空気に放熱して凝縮する。これにより、室内空気が加熱され、室内が暖房される。室内熱交換器(22)を通過した冷媒は、気液分離器(50)から流出して流量調節弁(51)を通過した液冷媒と合流した後に、膨張弁(23)において減圧される。膨張弁(23)を通過した冷媒は、室外熱交換器(24)において室外空気から吸熱して蒸発する。室外熱交換器(24)を通過した冷媒は、四方切換弁(25)を通過した後に、圧縮機(21)に吸入されて圧縮される。   In the refrigerant circuit (20), the refrigerant discharged from the compressor (21) passes through the water passage portion (40a) of the refrigerant / water heat exchanger (40) in the refrigerant passage portion (40a) of the refrigerant / water heat exchanger (40). Heat is condensed into the water flowing through 40b). The refrigerant that has passed through the refrigerant passage (40a) of the refrigerant / water heat exchanger (40) is separated into gas refrigerant and liquid refrigerant in the gas-liquid separator (50) after passing through the four-way switching valve (25). The The gas refrigerant (or the gas-liquid two-phase refrigerant mainly containing the gas refrigerant) flowing out from the gas-liquid separator (50) dissipates heat to the indoor air and condenses in the indoor heat exchanger (22). Thereby, indoor air is heated and the room is heated. The refrigerant that has passed through the indoor heat exchanger (22) joins the liquid refrigerant that has flowed out of the gas-liquid separator (50) and passed through the flow rate control valve (51), and then is decompressed in the expansion valve (23). The refrigerant that has passed through the expansion valve (23) absorbs heat from the outdoor air and evaporates in the outdoor heat exchanger (24). The refrigerant that has passed through the outdoor heat exchanger (24) passes through the four-way switching valve (25), and then is sucked into the compressor (21) and compressed.

水通路(30)では、給水管(PWa)に供給された水は、第1水管(PW1)に組み込まれた冷媒/水熱交換器(40)の水通路部(40b)において冷媒/水熱交換器(40)の冷媒通路部(40a)を流れる冷媒から熱を付与される。これにより、冷媒/水熱交換器(40)の水通路部(40b)を流れる水が加熱され、温水が生成される。冷媒/水熱交換器(40)の水通路部(40b)を通過した水は、出水管(PWb)を通過して外部へ供給される。このようにして、温水が供給される。   In the water passage (30), the water supplied to the water supply pipe (PWa) is supplied to the refrigerant / water heat in the water passage section (40b) of the refrigerant / water heat exchanger (40) incorporated in the first water pipe (PW1). Heat is applied from the refrigerant flowing through the refrigerant passage portion (40a) of the exchanger (40). Thereby, the water which flows through the water passage part (40b) of the refrigerant / water heat exchanger (40) is heated, and hot water is generated. The water that has passed through the water passage portion (40b) of the refrigerant / water heat exchanger (40) passes through the water discharge pipe (PWb) and is supplied to the outside. In this way, hot water is supplied.

以上のように、給湯暖房制御により、冷媒/水熱交換器(40)において冷媒が水に放熱して水が加熱され、室内熱交換器(22)において冷媒が室内空気に放熱して室内空気が加熱されるので、室内の暖房と給湯(温水の供給)の両方を行うことができる。   As described above, the hot water supply / heating control causes the refrigerant to radiate heat to the water in the refrigerant / water heat exchanger (40) to heat the water, and in the indoor heat exchanger (22), the refrigerant to radiate heat to the indoor air. Is heated, so that both indoor heating and hot water supply (hot water supply) can be performed.

〈膨張弁の開度調節〉
なお、給湯暖房制御では、コントローラ(60)は、冷媒吐出温度センサ(61)によって検知される圧縮機(21)の冷媒吐出温度を監視し、圧縮機(21)の冷媒吐出温度が予め設定された目標吐出温度となるように膨張弁(23)の開度を調節する。
<Expansion valve opening adjustment>
In the hot water supply / heating control, the controller (60) monitors the refrigerant discharge temperature of the compressor (21) detected by the refrigerant discharge temperature sensor (61), and the refrigerant discharge temperature of the compressor (21) is preset. The opening of the expansion valve (23) is adjusted so that the target discharge temperature is reached.

例えば、圧縮機(21)の冷媒吐出温度が目標吐出温度よりも高い場合、コントローラ(60)は、膨張弁(23)の開度を増加させる。これにより、室外熱交換器(24)を通過する冷媒の流量が増加して圧縮機(21)に吸入される冷媒の過熱度が小さくなる。その結果、圧縮機(21)の吐出冷媒温度が低下して目標吐出温度に近づく。一方、圧縮機(21)の冷媒吐出温度が目標吐出温度よりも低い場合、コントローラ(60)は、膨張弁(23)の開度を減少させる。   For example, when the refrigerant discharge temperature of the compressor (21) is higher than the target discharge temperature, the controller (60) increases the opening degree of the expansion valve (23). As a result, the flow rate of the refrigerant passing through the outdoor heat exchanger (24) increases and the degree of superheat of the refrigerant sucked into the compressor (21) decreases. As a result, the discharge refrigerant temperature of the compressor (21) decreases and approaches the target discharge temperature. On the other hand, when the refrigerant discharge temperature of the compressor (21) is lower than the target discharge temperature, the controller (60) decreases the opening of the expansion valve (23).

これにより、冷媒回路(20)では、室内熱交換器(22)が凝縮器となり室外熱交換器(24)が蒸発器となる冷凍サイクルが行われる。また、圧縮機(21)の冷媒吐出温度を管理することにより、圧縮機(21)の高温異常の発生を防止することができる。   Thereby, in the refrigerant circuit (20), a refrigeration cycle is performed in which the indoor heat exchanger (22) serves as a condenser and the outdoor heat exchanger (24) serves as an evaporator. Further, by managing the refrigerant discharge temperature of the compressor (21), it is possible to prevent the occurrence of a high temperature abnormality in the compressor (21).

〈圧縮機の容量制御〉
また、給湯暖房制御では、コントローラ(60)は、室内空気温度センサ(62)によって検知される室内熱交換器(22)の吸込空気温度を監視し、室内熱交換器(22)の吸込空気温度が予め設定された目標暖房温度(例えば、ユーザによって設定された暖房設定温度)となるように圧縮機(21)の回転数を制御する。
<Compressor capacity control>
In the hot water supply / heating control, the controller (60) monitors the intake air temperature of the indoor heat exchanger (22) detected by the indoor air temperature sensor (62), and the intake air temperature of the indoor heat exchanger (22). The rotational speed of the compressor (21) is controlled so that becomes a preset target heating temperature (for example, a heating set temperature set by the user).

例えば、室内熱交換器(22)の吸込空気温度が目標暖房温度よりも低い場合、コントローラ(60)は、圧縮機(21)の回転数を増加させる。これにより、冷媒回路(20)における冷媒の循環量が増加して室内熱交換器(22)の加熱能力(冷媒の単位時間当たりの放熱量)が増加する。その結果、室内空気の温度が上昇して室内熱交換器(22)の吸込空気温度が目標暖房温度に近づく。そして、室内熱交換器(22)の吸込空気温度が目標暖房温度よりも高くなると、コントローラ(60)は、圧縮機(21)を停止させる。   For example, when the intake air temperature of the indoor heat exchanger (22) is lower than the target heating temperature, the controller (60) increases the rotational speed of the compressor (21). Thereby, the circulation amount of the refrigerant | coolant in a refrigerant circuit (20) increases, and the heating capability (heat dissipation per unit time of a refrigerant | coolant) of an indoor heat exchanger (22) increases. As a result, the temperature of the indoor air rises and the intake air temperature of the indoor heat exchanger (22) approaches the target heating temperature. Then, when the intake air temperature of the indoor heat exchanger (22) becomes higher than the target heating temperature, the controller (60) stops the compressor (21).

〔単純暖房運転〕
単純暖房運転では、室内の暖房が行われるが、給湯(具体的には、冷媒/水熱交換器(40)において加熱された水の供給)は行われない。単純暖房運転では、コントローラ(60)は、単純暖房制御を行う。単純暖房制御では、コントローラ(60)は、給湯暖房制御と同様に、四方切換弁(25)を第1状態に設定する。これにより、単純暖房運転において、圧縮機(21)の吐出端が冷媒/水熱交換器(40)と気液分離器(50)とを介して室内熱交換器(22)のガス端に接続され、圧縮機(21)の吸入端が室外熱交換器(24)のガス端に接続される。
[Simple heating operation]
In the simple heating operation, indoor heating is performed, but hot water supply (specifically, supply of water heated in the refrigerant / water heat exchanger (40)) is not performed. In the simple heating operation, the controller (60) performs simple heating control. In the simple heating control, the controller (60) sets the four-way switching valve (25) to the first state, similarly to the hot water supply / heating control. This connects the discharge end of the compressor (21) to the gas end of the indoor heat exchanger (22) via the refrigerant / water heat exchanger (40) and the gas-liquid separator (50) in simple heating operation. The suction end of the compressor (21) is connected to the gas end of the outdoor heat exchanger (24).

また、単純暖房制御では、コントローラ(60)は、流量調節弁(51)の開度を閉状態に設定し、圧縮機(21)と室外ファン(27)と室内ファン(26)とを駆動状態に設定し、室内熱交換器(22)が凝縮器となり室外熱交換器(24)が蒸発器となるように膨張弁(23)の開度を調節する。また、コントローラ(60)は、第2開閉弁(32)を開状態に設定し、第1開閉弁(31)を閉状態に設定する。これにより、水通路(30)では、給水管(PWa)から流出した水が第2水管(PW2)を通過して出水管(PWb)に流入する。すなわち、第1水管(PW1)に組み込まれた冷媒/水熱交換器(40)の水通路部(40b)には、水が流れない。   In simple heating control, the controller (60) sets the opening of the flow control valve (51) to the closed state and drives the compressor (21), the outdoor fan (27), and the indoor fan (26). And the opening degree of the expansion valve (23) is adjusted so that the indoor heat exchanger (22) becomes a condenser and the outdoor heat exchanger (24) becomes an evaporator. Further, the controller (60) sets the second on-off valve (32) to an open state and sets the first on-off valve (31) to a closed state. Thereby, in the water passage (30), water flowing out from the water supply pipe (PWa) passes through the second water pipe (PW2) and flows into the water discharge pipe (PWb). That is, water does not flow into the water passage portion (40b) of the refrigerant / water heat exchanger (40) incorporated in the first water pipe (PW1).

冷媒回路(20)では、圧縮機(21)から吐出された冷媒は、冷媒/水熱交換器(40)と四方切換弁(25)と気液分離器(50)とを順に通過した後に、室内熱交換器(22)において室内空気に放熱して凝縮する。これにより、室内空気が加熱され、室内が暖房される。室内熱交換器(22)を通過した冷媒は、膨張弁(23)において減圧される。膨張弁(23)を通過した冷媒は、室外熱交換器(24)において室外空気から吸熱して蒸発する。室外熱交換器(24)を通過した冷媒は、四方切換弁(25)を通過した後に、圧縮機(21)に吸入されて圧縮される。   In the refrigerant circuit (20), the refrigerant discharged from the compressor (21) passes through the refrigerant / water heat exchanger (40), the four-way switching valve (25), and the gas-liquid separator (50) in this order, In the indoor heat exchanger (22), heat is dissipated into the indoor air and condensed. Thereby, indoor air is heated and the room is heated. The refrigerant that has passed through the indoor heat exchanger (22) is decompressed in the expansion valve (23). The refrigerant that has passed through the expansion valve (23) absorbs heat from the outdoor air and evaporates in the outdoor heat exchanger (24). The refrigerant that has passed through the outdoor heat exchanger (24) passes through the four-way switching valve (25), and then is sucked into the compressor (21) and compressed.

以上のように、単純暖房制御により、室内熱交換器(22)において冷媒が室内空気に放熱して室内空気が加熱されるので、室内の暖房を行うことができる。   As described above, since the refrigerant radiates heat to the indoor air in the indoor heat exchanger (22) and the indoor air is heated by the simple heating control, the indoor air can be heated.

〈膨張弁の開度調節〉
なお、単純暖房制御では、コントローラ(60)は、給湯暖房制御と同様に、圧縮機(21)の冷媒吐出温度が予め設定された目標吐出温度となるように膨張弁(23)の開度を調節する。これにより、冷媒回路(20)では、室内熱交換器(22)が凝縮器となり室外熱交換器(24)が蒸発器となる冷凍サイクルが行われる。
<Expansion valve opening adjustment>
In the simple heating control, the controller (60) controls the opening of the expansion valve (23) so that the refrigerant discharge temperature of the compressor (21) becomes a preset target discharge temperature, similarly to the hot water supply heating control. Adjust. Thereby, in the refrigerant circuit (20), a refrigeration cycle is performed in which the indoor heat exchanger (22) serves as a condenser and the outdoor heat exchanger (24) serves as an evaporator.

〈圧縮機の容量制御〉
また、単純暖房制御では、コントローラ(60)は、給湯暖房制御と同様に、室内熱交換器(22)の吸込空気温度が予め設定された目標暖房温度となるように圧縮機(21)の回転数を制御する。
<Compressor capacity control>
In the simple heating control, the controller (60) rotates the compressor (21) so that the intake air temperature of the indoor heat exchanger (22) becomes a preset target heating temperature, as in the hot water heating control. Control the number.

〔給湯冷房運転〕
給湯冷房運転では、室内の冷房と給湯(具体的には、冷媒/水熱交換器(40)において加熱された水の供給)の両方が行われる。給湯冷房運転では、コントローラ(60)は、給湯冷房制御を行う。給湯冷房制御では、コントローラ(60)は、四方切換弁(25)を第2状態に設定する。これにより、給湯冷房運転において、圧縮機(21)の吐出端が室外熱交換器(24)のガス端に接続され、圧縮機(21)の吸入端が冷媒/水熱交換器(40)と気液分離器(50)とを介して室内熱交換器(22)のガス端に接続される。
[Hot water supply and cooling operation]
In the hot water supply and cooling operation, both indoor cooling and hot water supply (specifically, supply of water heated in the refrigerant / water heat exchanger (40)) are performed. In the hot water supply cooling operation, the controller (60) performs hot water supply cooling control. In the hot water supply cooling control, the controller (60) sets the four-way switching valve (25) to the second state. As a result, in hot water cooling operation, the discharge end of the compressor (21) is connected to the gas end of the outdoor heat exchanger (24), and the suction end of the compressor (21) is connected to the refrigerant / water heat exchanger (40). It connects with the gas end of an indoor heat exchanger (22) via a gas-liquid separator (50).

また、給湯冷房制御では、コントローラ(60)は、流量調節弁(51)の開度を閉状態に設定し、圧縮機(21)と室外ファン(27)と室内ファン(26)とを駆動状態に設定し、室外熱交換器(24)が凝縮器となり室内熱交換器(22)が蒸発器となるように膨張弁(23)の開度を調節する。また、コントローラ(60)は、第1開閉弁(31)を開状態に設定し、第2開閉弁(32)を閉状態に設定する。これにより、水通路(30)では、給水管(PWa)から流出した水が第1水管(PW1)を通過して出水管(PWb)に流入する。   In hot water supply and cooling control, the controller (60) sets the opening of the flow control valve (51) to the closed state, and drives the compressor (21), outdoor fan (27), and indoor fan (26). And the opening degree of the expansion valve (23) is adjusted so that the outdoor heat exchanger (24) serves as a condenser and the indoor heat exchanger (22) serves as an evaporator. The controller (60) sets the first on-off valve (31) to an open state and sets the second on-off valve (32) to a closed state. Thereby, in the water passage (30), water flowing out from the water supply pipe (PWa) passes through the first water pipe (PW1) and flows into the water discharge pipe (PWb).

冷媒回路(20)では、圧縮機(21)から吐出された冷媒は、冷媒/水熱交換器(40)の冷媒通路部(40a)において冷媒/水熱交換器(40)の水通路部(40b)を流れる水に放熱して凝縮する。冷媒/水熱交換器(40)の冷媒通路部(40a)を通過した冷媒は、四方切換弁(25)を通過した後に、室外熱交換器(24)において室外空気に放熱して凝縮する。室外熱交換器(24)を通過した冷媒は、膨張弁(23)において減圧された後に、室内熱交換器(22)において室内空気から吸熱して蒸発する。これにより、室内空気が冷却され、室内が冷房される。室内熱交換器(22)を通過した冷媒は、気液分離器(50)と四方切換弁(25)とを順に通過した後に、圧縮機(21)に吸入されて圧縮される。   In the refrigerant circuit (20), the refrigerant discharged from the compressor (21) passes through the water passage portion (40a) of the refrigerant / water heat exchanger (40) in the refrigerant passage portion (40a) of the refrigerant / water heat exchanger (40). Heat is condensed into the water flowing through 40b). The refrigerant that has passed through the refrigerant passage portion (40a) of the refrigerant / water heat exchanger (40) passes through the four-way switching valve (25), and then radiates and condenses in the outdoor air in the outdoor heat exchanger (24). The refrigerant that has passed through the outdoor heat exchanger (24) is depressurized in the expansion valve (23), and then absorbs heat from the indoor air in the indoor heat exchanger (22) to evaporate. Thereby, room air is cooled and the room is cooled. The refrigerant that has passed through the indoor heat exchanger (22) sequentially passes through the gas-liquid separator (50) and the four-way switching valve (25), and then is sucked into the compressor (21) and compressed.

水通路(30)では、給水管(PWa)に供給された水は、第1水管(PW1)に組み込まれた冷媒/水熱交換器(40)の水通路部(40b)において冷媒/水熱交換器(40)の冷媒通路部(40a)を流れる冷媒から熱を付与される。これにより、冷媒/水熱交換器(40)の水通路部(40b)を流れる水が加熱され、温水が生成される。冷媒/水熱交換器(40)の水通路部(40b)を通過した水は、出水管(PWb)を通過して外部へ供給される。このようにして、温水が供給される。   In the water passage (30), the water supplied to the water supply pipe (PWa) is supplied to the refrigerant / water heat in the water passage section (40b) of the refrigerant / water heat exchanger (40) incorporated in the first water pipe (PW1). Heat is applied from the refrigerant flowing through the refrigerant passage portion (40a) of the exchanger (40). Thereby, the water which flows through the water passage part (40b) of the refrigerant / water heat exchanger (40) is heated, and hot water is generated. The water that has passed through the water passage portion (40b) of the refrigerant / water heat exchanger (40) passes through the water discharge pipe (PWb) and is supplied to the outside. In this way, hot water is supplied.

以上のように、給湯冷房制御により、冷媒/水熱交換器(40)において冷媒が水に放熱して水が加熱され、室内熱交換器(22)において冷媒が室内空気から吸熱して室内空気が冷却されるので、室内の冷房と給湯(温水の供給)の両方を行うことができる。   As described above, the hot water supply / cooling control causes the refrigerant to dissipate heat to water in the refrigerant / water heat exchanger (40) and heat the water, and the indoor heat exchanger (22) absorbs heat from the indoor air and the indoor air. Since both are cooled, both indoor cooling and hot water supply (hot water supply) can be performed.

〈膨張弁の開度調節〉
なお、給湯冷房制御では、コントローラ(60)は、給湯暖房制御と同様に、圧縮機(21)の冷媒吐出温度が予め設定された目標吐出温度となるように膨張弁(23)の開度を調節する。これにより、冷媒回路(20)では、室外熱交換器(24)が凝縮器となり室内熱交換器(22)が蒸発器となる冷凍サイクルが行われる。
<Expansion valve opening adjustment>
In the hot water supply and cooling control, the controller (60) controls the opening of the expansion valve (23) so that the refrigerant discharge temperature of the compressor (21) becomes a preset target discharge temperature, as in the hot water supply and heating control. Adjust. Thereby, in the refrigerant circuit (20), a refrigeration cycle is performed in which the outdoor heat exchanger (24) serves as a condenser and the indoor heat exchanger (22) serves as an evaporator.

〈圧縮機の容量制御〉
また、給湯冷房制御では、コントローラ(60)は、室内空気温度センサ(62)によって検知される室内熱交換器(22)の吸込空気温度を監視し、室内熱交換器(22)の吸込空気温度が予め設定された目標冷房温度(例えば、ユーザによって設定された冷房設定温度)となるように圧縮機(21)の回転数を制御する。
<Compressor capacity control>
In the hot water supply and cooling control, the controller (60) monitors the intake air temperature of the indoor heat exchanger (22) detected by the indoor air temperature sensor (62), and the intake air temperature of the indoor heat exchanger (22). The rotational speed of the compressor (21) is controlled so that becomes a preset target cooling temperature (for example, a cooling set temperature set by the user).

例えば、室内熱交換器(22)の吸込空気温度が目標暖冷房温度よりも高い場合、コントローラ(60)は、圧縮機(21)の回転数を増加させる。これにより、冷媒回路(20)における冷媒の循環量が増加して室内熱交換器(22)の冷却能力(冷媒の単位時間当たりの吸熱量)が増加する。その結果、室内空気の温度が低下して室内熱交換器(22)の吸込空気温度が目標冷房温度に近づく。そして、室内熱交換器(22)の吸込空気温度が目標冷房温度よりも低くなると、コントローラ(60)は、圧縮機(21)を停止させる。   For example, when the intake air temperature of the indoor heat exchanger (22) is higher than the target heating / cooling temperature, the controller (60) increases the rotational speed of the compressor (21). Thereby, the circulation amount of the refrigerant | coolant in a refrigerant circuit (20) increases, and the cooling capability (heat absorption amount per unit time of a refrigerant | coolant) of an indoor heat exchanger (22) increases. As a result, the temperature of the indoor air decreases and the intake air temperature of the indoor heat exchanger (22) approaches the target cooling temperature. Then, when the intake air temperature of the indoor heat exchanger (22) becomes lower than the target cooling temperature, the controller (60) stops the compressor (21).

〔単純冷房運転〕
単純冷房運転では、室内の冷房が行われるが、給湯(具体的には、冷媒/水熱交換器(40)において加熱された水の供給)は行われない。単純冷房運転では、コントローラ(60)は、単純冷房制御を行う。単純冷房制御では、コントローラ(60)は、給湯冷房制御と同様に、四方切換弁(25)を第2状態に設定する。これにより、単純冷房運転において、圧縮機(21)の吐出端が室外熱交換器(24)のガス端に接続され、圧縮機(21)の吸入端が冷媒/水熱交換器(40)と気液分離器(50)とを介して室内熱交換器(22)のガス端に接続される。
[Simple cooling operation]
In the simple cooling operation, indoor cooling is performed, but hot water supply (specifically, supply of water heated in the refrigerant / water heat exchanger (40)) is not performed. In the simple cooling operation, the controller (60) performs simple cooling control. In the simple cooling control, the controller (60) sets the four-way switching valve (25) to the second state as in the hot water supply cooling control. Thereby, in simple cooling operation, the discharge end of the compressor (21) is connected to the gas end of the outdoor heat exchanger (24), and the suction end of the compressor (21) is connected to the refrigerant / water heat exchanger (40). It connects with the gas end of an indoor heat exchanger (22) via a gas-liquid separator (50).

また、単純冷房制御では、コントローラ(60)は、給湯冷房制御と同様に、流量調節弁(51)の開度を閉状態に設定し、圧縮機(21)と室外ファン(27)と室内ファン(26)とを駆動状態に設定し、室外熱交換器(24)が凝縮器となり室内熱交換器(22)が蒸発器となるように膨張弁(23)の開度を調節する。また、コントローラ(60)は、第2開閉弁(32)を開状態に設定し、第1開閉弁(31)を閉状態に設定する。これにより、水通路(30)では、給水管(PWa)から流出した水が第2水管(PW2)を通過して出水管(PWb)に流入する。すなわち、第1水管(PW1)に組み込まれた冷媒/水熱交換器(40)の水通路部(40b)には、水が流れない。   In the simple cooling control, similarly to the hot water cooling control, the controller (60) sets the opening of the flow rate control valve (51) to the closed state, the compressor (21), the outdoor fan (27), and the indoor fan. (26) is set to a drive state, and the opening degree of the expansion valve (23) is adjusted so that the outdoor heat exchanger (24) serves as a condenser and the indoor heat exchanger (22) serves as an evaporator. Further, the controller (60) sets the second on-off valve (32) to an open state and sets the first on-off valve (31) to a closed state. Thereby, in the water passage (30), water flowing out from the water supply pipe (PWa) passes through the second water pipe (PW2) and flows into the water discharge pipe (PWb). That is, water does not flow into the water passage portion (40b) of the refrigerant / water heat exchanger (40) incorporated in the first water pipe (PW1).

冷媒回路(20)では、給湯冷房制御と同様に、圧縮機(21)から吐出された冷媒は、冷媒/水熱交換器(40)と四方切換弁(25)とを順に通過した後に、室外熱交換器(24)において室外空気に放熱して凝縮する。室外熱交換器(24)を通過した冷媒は、膨張弁(23)において減圧された後に、室内熱交換器(22)において室内空気から吸熱して蒸発する。これにより、室内空気が冷却され、室内が冷房される。室内熱交換器(22)を通過した冷媒は、気液分離器(50)と四方切換弁(25)とを順に通過した後に、圧縮機(21)に吸入されて圧縮される。   In the refrigerant circuit (20), the refrigerant discharged from the compressor (21) passes through the refrigerant / water heat exchanger (40) and the four-way switching valve (25) in order, as in the hot water supply cooling control. The heat exchanger (24) dissipates heat to the outdoor air and condenses. The refrigerant that has passed through the outdoor heat exchanger (24) is depressurized in the expansion valve (23), and then absorbs heat from the indoor air in the indoor heat exchanger (22) to evaporate. Thereby, room air is cooled and the room is cooled. The refrigerant that has passed through the indoor heat exchanger (22) sequentially passes through the gas-liquid separator (50) and the four-way switching valve (25), and then is sucked into the compressor (21) and compressed.

以上のように、単純冷房制御により、室内熱交換器(22)において冷媒が室内空気から吸熱して室内空気が冷却されるので、室内の冷房を行うことができる。   As described above, since the refrigerant absorbs heat from the indoor air in the indoor heat exchanger (22) and the indoor air is cooled by the simple cooling control, the indoor air can be cooled.

〈膨張弁の開度調節〉
なお、単純冷房制御では、コントローラ(60)は、給湯冷房制御と同様に、圧縮機(21)の冷媒吐出温度が予め設定された目標吐出温度となるように膨張弁(23)の開度を調節する。これにより、冷媒回路(20)では、室外熱交換器(24)が凝縮器となり室内熱交換器(22)が蒸発器となる冷凍サイクルが行われる。
<Expansion valve opening adjustment>
In simple cooling control, the controller (60) controls the opening of the expansion valve (23) so that the refrigerant discharge temperature of the compressor (21) becomes a preset target discharge temperature, as in hot water supply cooling control. Adjust. Thereby, in the refrigerant circuit (20), a refrigeration cycle is performed in which the outdoor heat exchanger (24) serves as a condenser and the indoor heat exchanger (22) serves as an evaporator.

〈圧縮機の容量制御〉
また、単純冷房制御では、コントローラ(60)は、給湯冷房制御と同様に、室内熱交換器(22)の吸込空気温度が予め設定された目標冷房温度となるように圧縮機(21)の回転数を制御する。
<Compressor capacity control>
In the simple cooling control, the controller (60) rotates the compressor (21) so that the intake air temperature of the indoor heat exchanger (22) becomes a preset target cooling temperature, similarly to the hot water cooling control. Control the number.

〔給湯暖房運転における第1液排出促進動作〕
なお、給湯暖房運転では、気液分離器(50)に液冷媒が過剰に溜まり込んで気液分離器(50)から室内熱交換器(22)へ液冷媒が溢れ出す(すなわち、気液分離器(50)から室内熱交換器(22)へ向かう冷媒に含まれる液冷媒の割合が高くなる)と、室内熱交換器(22)に液冷媒が溜まり込んで(すなわち、室内熱交換器(22)における液冷媒の割合が高くなるとともにガス冷媒の割合が低くなり)室内熱交換器(22)の加熱能力が低下してしまう。
[First liquid discharge promotion operation in hot water heater operation]
In the hot water heating / heating operation, liquid refrigerant accumulates excessively in the gas-liquid separator (50) and overflows from the gas-liquid separator (50) to the indoor heat exchanger (22) (that is, gas-liquid separation). When the ratio of liquid refrigerant contained in the refrigerant heading from the heat exchanger (50) to the indoor heat exchanger (22) increases, liquid refrigerant accumulates in the indoor heat exchanger (22) (that is, the indoor heat exchanger ( The ratio of liquid refrigerant in 22) increases and the ratio of gas refrigerant decreases), and the heating capacity of the indoor heat exchanger (22) decreases.

また、気液分離器(50)に液冷媒が過剰に溜まり込むことにより、冷媒回路(20)における冷媒循環量が減少してしまう。そのため、室内熱交換器(22)の加熱能力を増加させるために圧縮機(21)の回転数を増加させて、室外熱交換器(24)における蒸発圧力を室外熱交換器(24)の吸込空気温度(すなわち、室外空気温度)に対して最適な圧力に設定したとしても、圧縮機(21)に吸入される冷媒量を確保することができない。その結果、圧縮機(21)の吸込容積と冷媒の体積流量とが釣り合うようになるまで、室外熱交換器(24)における蒸発圧力が低下することになるので、室外熱交換器(24)の液側冷媒温度が室外熱交換器(24)の吸込空気温度よりも低くなり過ぎる場合がある。   Moreover, when the liquid refrigerant is excessively accumulated in the gas-liquid separator (50), the refrigerant circulation amount in the refrigerant circuit (20) is reduced. Therefore, in order to increase the heating capacity of the indoor heat exchanger (22), the rotation speed of the compressor (21) is increased, and the evaporation pressure in the outdoor heat exchanger (24) is sucked into the outdoor heat exchanger (24). Even if the optimum pressure is set for the air temperature (that is, the outdoor air temperature), the amount of refrigerant sucked into the compressor (21) cannot be secured. As a result, the evaporation pressure in the outdoor heat exchanger (24) decreases until the suction volume of the compressor (21) and the volume flow rate of the refrigerant are balanced, so that the outdoor heat exchanger (24) The liquid-side refrigerant temperature may become too lower than the intake air temperature of the outdoor heat exchanger (24).

そこで、コントローラ(60)は、給湯暖房運転において第1液排出促進動作を行うように構成されていてもよい。第1液排出促進動作では、コントローラ(60)は、液側冷媒温度センサ(63)および室外空気温度センサ(64)によってそれぞれ検知される室内熱交換器(22)の液側冷媒温度および吸込空気温度を監視し、室外熱交換器(24)の液側冷媒温度が室外熱交換器(24)の吸込空気温度よりも低く、且つ、室外熱交換器(24)の液側冷媒温度と室外熱交換器(24)の吸込空気温度との差が予め設定された温度差閾値を大きくなっている場合に、流量調節弁(51)の開度を増加させる。なお、この温度差閾値(室外熱交換器(24)の液冷媒温度と吸込空気温度との温度差に関する閾値)は、気液分離器(50)から室内熱交換器(22)へ液冷媒が溢れ出すと推定されるときの室外熱交換器(24)の液冷媒温度と吸込空気温度との差に設定されていてもよい。   Therefore, the controller (60) may be configured to perform the first liquid discharge promoting operation in the hot water supply / heating operation. In the first liquid discharge promoting operation, the controller (60) includes the liquid side refrigerant temperature and the intake air of the indoor heat exchanger (22) detected by the liquid side refrigerant temperature sensor (63) and the outdoor air temperature sensor (64), respectively. The temperature is monitored, the liquid side refrigerant temperature of the outdoor heat exchanger (24) is lower than the intake air temperature of the outdoor heat exchanger (24), and the liquid side refrigerant temperature and outdoor heat of the outdoor heat exchanger (24) When the difference from the intake air temperature of the exchanger (24) is larger than a preset temperature difference threshold, the opening degree of the flow rate control valve (51) is increased. In addition, this temperature difference threshold value (threshold value regarding the temperature difference between the liquid refrigerant temperature of the outdoor heat exchanger (24) and the intake air temperature) is the amount of liquid refrigerant from the gas-liquid separator (50) to the indoor heat exchanger (22). It may be set to a difference between the liquid refrigerant temperature of the outdoor heat exchanger (24) and the intake air temperature when it is estimated that the liquid will overflow.

具体的には、コントローラ(60)は、室外熱交換器(24)の液側冷媒温度が室外熱交換器(24)の吸込空気温度よりも低く、且つ、室外熱交換器(24)の液側冷媒温度と室外熱交換器(24)の吸込空気温度との差が温度差閾値を大きくなっている状態となるまで、流量調節弁(51)の開度を第1開度(液冷媒のみを通過させることが可能な開度)に維持する。そして、コントローラ(60)は、室外熱交換器(24)の液側冷媒温度が室外熱交換器(24)の吸込空気温度よりも低く、且つ、室外熱交換器(24)の液側冷媒温度と室外熱交換器(24)の吸込空気温度との差が温度差閾値を大きくなっている状態となると、流量調節弁(51)の開度を第1開度から第2開度(第1開度よりも大きい開度)に変更する。その後、コントローラ(60)は、流量調節弁(51)の開度を第1開度から第2開度に変更した時点から予め設定された液排出促進時間(例えば、気液分離器(50)における過剰な液冷媒の溜まり込みを解消するために要する時間)が経過するまで、流量調節弁(51)の開度を第2開度のまま維持する。そして、コントローラ(60)は、流量調節弁(51)の開度を第1開度から第2開度に変更した時点から液排出促進時間が経過すると、流量調節弁(51)の開度を第2開度から第1開度に変更する。   Specifically, the controller (60) is configured such that the liquid-side refrigerant temperature of the outdoor heat exchanger (24) is lower than the intake air temperature of the outdoor heat exchanger (24) and the liquid of the outdoor heat exchanger (24) Until the difference between the side refrigerant temperature and the intake air temperature of the outdoor heat exchanger (24) reaches a state where the temperature difference threshold value is increased, the opening degree of the flow control valve (51) is changed to the first opening degree (liquid refrigerant only) Is maintained at an opening that can pass through. The controller (60) is configured such that the liquid side refrigerant temperature of the outdoor heat exchanger (24) is lower than the intake air temperature of the outdoor heat exchanger (24) and the liquid side refrigerant temperature of the outdoor heat exchanger (24). When the difference between the intake air temperature of the outdoor heat exchanger (24) increases the temperature difference threshold value, the opening degree of the flow rate control valve (51) is changed from the first opening to the second opening (first To an opening larger than the opening). Thereafter, the controller (60) sets a liquid discharge promotion time (for example, a gas-liquid separator (50)) that is set in advance from the time when the opening degree of the flow rate control valve (51) is changed from the first opening degree to the second opening degree. The time of the flow rate adjustment valve (51) is maintained at the second degree of opening until the time required for eliminating the excessive liquid refrigerant accumulation in () elapses. Then, the controller (60) sets the opening of the flow control valve (51) when the liquid discharge promotion time has elapsed from the time when the opening of the flow control valve (51) is changed from the first opening to the second opening. The second opening is changed to the first opening.

〔実施形態による効果〕
以上のように、気液分離器(50)を設けることにより、給湯暖房運転において室内熱交換器(22)へ向かう液冷媒の流量を低減することができる。これにより、室内熱交換器(22)における液溜まり(液冷媒の溜まり込み)の発生を抑制することができるので、暖房運転において室内熱交換器(22)の液溜まりに起因する室内熱交換器(22)の加熱能力の低下を抑制することができる。したがって、給湯暖房運転において室内の暖房を正常に行うことができる。
[Effects of the embodiment]
As described above, by providing the gas-liquid separator (50), it is possible to reduce the flow rate of the liquid refrigerant toward the indoor heat exchanger (22) in the hot water supply / heating operation. Thereby, since generation | occurrence | production of the liquid pool (liquid refrigerant accumulation) in an indoor heat exchanger (22) can be suppressed, the indoor heat exchanger resulting from the liquid pool of an indoor heat exchanger (22) in heating operation It is possible to suppress a decrease in the heating capacity of (22). Therefore, indoor heating can be normally performed in the hot water supply / heating operation.

また、液冷媒通路(PR1)の第1通路部(PR11)と気液分離器(50)との間の圧力差が、液冷媒通路(PR1)の第2通路部(PR12)と気液分離器(50)との間の圧力差よりも小さくなっているので、気液分離器(50)から液冷媒通路(PR1)へ供給される冷媒の流量の変動を抑制することができる。   Further, the pressure difference between the first passage portion (PR11) of the liquid refrigerant passage (PR1) and the gas-liquid separator (50) is separated from the second passage portion (PR12) of the liquid refrigerant passage (PR1). Since the pressure difference with respect to the vessel (50) is smaller, fluctuations in the flow rate of the refrigerant supplied from the gas-liquid separator (50) to the liquid refrigerant passage (PR1) can be suppressed.

また、流量調節弁(51)を設けることにより、気液分離器(50)に溜まり込む液冷媒の量を調節することができる。これにより、冷媒回路(20)における冷媒の循環量を調節することができるので、給湯暖房運転において室内熱交換器(22)の加熱能力を適切に調節することができる。   In addition, by providing the flow rate adjusting valve (51), the amount of liquid refrigerant accumulated in the gas-liquid separator (50) can be adjusted. Thereby, since the circulation amount of the refrigerant | coolant in a refrigerant circuit (20) can be adjusted, the heating capability of an indoor heat exchanger (22) can be adjusted appropriately in hot water supply heating operation.

また、給湯暖房運転において第1液排出促進動作を行うことにより、気液分離器(50)に液冷媒が過剰に溜まり込んでいる場合に、流量調節弁(51)の開度を増加させて気液分離器(50)から液冷媒通路(PR1)への液冷媒の排出を促進させることができる。これにより、気液分離器(50)における過剰な液溜まりを抑制することができるので、気液分離器(50)における過剰な液溜まりに起因する室内熱交換器(22)の加熱能力の低下を抑制することができる。   Further, by performing the first liquid discharge promoting operation in the hot water supply / heating operation, when the liquid refrigerant is excessively accumulated in the gas-liquid separator (50), the opening degree of the flow control valve (51) is increased. The discharge of the liquid refrigerant from the gas-liquid separator (50) to the liquid refrigerant passage (PR1) can be promoted. As a result, excessive liquid accumulation in the gas-liquid separator (50) can be suppressed, so that the heating capacity of the indoor heat exchanger (22) is reduced due to excessive liquid accumulation in the gas-liquid separator (50). Can be suppressed.

(給湯空調システムの変形例1)
図2に示すように、給湯空調システム(10)は、図1に示した構成に加えて、補助熱交換器(70)と第1冷媒温度センサ(65)と第2冷媒温度センサ(66)とを備えていてもよい。
(Variation 1 of hot water supply air conditioning system)
As shown in FIG. 2, in addition to the configuration shown in FIG. 1, the hot water supply air conditioning system (10) includes an auxiliary heat exchanger (70), a first refrigerant temperature sensor (65), and a second refrigerant temperature sensor (66). And may be provided.

〔補助熱交換器〕
補助熱交換器(70)は、冷媒回路(20)において圧縮機(21)と冷媒/水熱交換器(40)との間に接続されるとともに、冷媒回路(20)において気液分離器(50)と室内熱交換器(22)との間に接続される。そして、補助熱交換器(70)は、圧縮機(21)と冷媒/水熱交換器(40)との間を流れる冷媒と気液分離器(50)と室内熱交換器(22)との間を流れる冷媒とを熱交換させるように構成されている。この例では、補助熱交換器(70)は、冷媒回路(20)において圧縮機(21)の吐出端と冷媒/水熱交換器(40)の冷媒通路部(40a)の入口端とを接続する冷媒通路(冷媒管)に組み込まれる第1冷媒通路部(70a)と、冷媒回路(20)において気液分離器(50)の第2ガス端(50b)と室内熱交換器(22)のガス端とを接続する冷媒通路(冷媒管)に組み込まれる第2冷媒通路部(70b)とを有し、第1冷媒通路部(70a)を流れる冷媒と第2冷媒通路部(70b)を流れる冷媒とを熱交換させる。
[Auxiliary heat exchanger]
The auxiliary heat exchanger (70) is connected between the compressor (21) and the refrigerant / water heat exchanger (40) in the refrigerant circuit (20), and the gas-liquid separator ( 50) and the indoor heat exchanger (22). The auxiliary heat exchanger (70) includes a refrigerant flowing between the compressor (21) and the refrigerant / water heat exchanger (40), a gas-liquid separator (50), and an indoor heat exchanger (22). It is configured to exchange heat with the refrigerant flowing between them. In this example, the auxiliary heat exchanger (70) connects the discharge end of the compressor (21) and the inlet end of the refrigerant passage (40a) of the refrigerant / water heat exchanger (40) in the refrigerant circuit (20). The first refrigerant passage portion (70a) incorporated in the refrigerant passage (refrigerant pipe), the second gas end (50b) of the gas-liquid separator (50) and the indoor heat exchanger (22) in the refrigerant circuit (20). A second refrigerant passage portion (70b) incorporated in the refrigerant passage (refrigerant pipe) connecting the gas end, and the refrigerant flowing through the first refrigerant passage portion (70a) and the second refrigerant passage portion (70b). Heat exchange with refrigerant.

〔第1冷媒温度センサ〕
第1冷媒温度センサ(65)は、気液分離器(50)と補助熱交換器(70)との間を流れる冷媒の温度(以下、「第1冷媒温度」と表記)を検知する。例えば、第1冷媒温度センサ(65)は、補助熱交換器(70)の第2冷媒通路部(70b)の一端(すなわち、気液分離器(50)側の端部)の近傍に設置され、設置場所の冷媒温度を第1冷媒温度として検知する。
[First refrigerant temperature sensor]
The first refrigerant temperature sensor (65) detects the temperature of the refrigerant flowing between the gas-liquid separator (50) and the auxiliary heat exchanger (70) (hereinafter referred to as “first refrigerant temperature”). For example, the first refrigerant temperature sensor (65) is installed in the vicinity of one end of the second refrigerant passage (70b) of the auxiliary heat exchanger (70) (that is, the end on the gas-liquid separator (50) side). The refrigerant temperature at the installation location is detected as the first refrigerant temperature.

〔第2冷媒温度センサ〕
第2冷媒温度センサ(66)は、補助熱交換器(70)と室内熱交換器(22)との間を流れる冷媒の温度(以下、「第2冷媒温度」と表記)を検知する。例えば、第2冷媒温度センサ(66)は、補助熱交換器(70)の第2冷媒通路部(70b)の他端(すなわち、室内熱交換器(22)側の端部)の近傍に設置され、設置場所の冷媒温度を第2冷媒温度として検知する。
[Second refrigerant temperature sensor]
The second refrigerant temperature sensor (66) detects the temperature of the refrigerant flowing between the auxiliary heat exchanger (70) and the indoor heat exchanger (22) (hereinafter referred to as “second refrigerant temperature”). For example, the second refrigerant temperature sensor (66) is installed in the vicinity of the other end of the second refrigerant passage (70b) of the auxiliary heat exchanger (70) (that is, the end on the indoor heat exchanger (22) side). The refrigerant temperature at the installation location is detected as the second refrigerant temperature.

〔補助熱交換器における暖房運転時の熱交換〕
暖房運転(給湯暖房運転,単純暖房運転)では、圧縮機(21)から吐出された冷媒は、補助熱交換器(70)の第1冷媒通路部(70a)において補助熱交換器(70)の第2冷媒通路部(70b)を流れる冷媒(すなわち、気液分離器(50)から室内熱交換器(22)へと向かう冷媒)に放熱する。これにより、補助熱交換器(70)の第2冷媒通路部(70b)を流れる冷媒が加熱されるので、第2冷媒温度センサ(66)によって検知される第2冷媒温度は、第1冷媒温度センサ(65)によって検知される第1冷媒温度よりも高くなる。
[Heat exchange during heating operation in auxiliary heat exchanger]
In the heating operation (hot water supply / heating operation, simple heating operation), the refrigerant discharged from the compressor (21) passes through the auxiliary heat exchanger (70) in the first refrigerant passage (70a) of the auxiliary heat exchanger (70). The heat is radiated to the refrigerant flowing through the second refrigerant passage (70b) (that is, the refrigerant going from the gas-liquid separator (50) to the indoor heat exchanger (22)). As a result, the refrigerant flowing through the second refrigerant passage portion (70b) of the auxiliary heat exchanger (70) is heated, so that the second refrigerant temperature detected by the second refrigerant temperature sensor (66) It becomes higher than the first refrigerant temperature detected by the sensor (65).

〔給湯暖房運転における第2液排出促進動作〕
なお、給湯暖房運転では、気液分離器(50)に液冷媒が過剰に溜まり込んで気液分離器(50)から補助熱交換器(70)の第2冷媒通路部(70b)を通過して室内熱交換器(22)へ液冷媒が溢れ出すと、室内熱交換器(22)に液冷媒が溜まり込んで室内熱交換器(22)の加熱能力が低下してしまう。
[Second liquid discharge promotion operation in hot water heater operation]
In the hot water supply / heating operation, liquid refrigerant is excessively accumulated in the gas-liquid separator (50) and passes from the gas-liquid separator (50) to the second refrigerant passage portion (70b) of the auxiliary heat exchanger (70). If the liquid refrigerant overflows into the indoor heat exchanger (22), the liquid refrigerant accumulates in the indoor heat exchanger (22), and the heating capacity of the indoor heat exchanger (22) decreases.

また、気液分離器(50)に液冷媒が過剰に溜まり込んで気液分離器(50)から補助熱交換器(70)の第2冷媒通路部(70b)を通過して室内熱交換器(22)へ液冷媒が溢れ出している場合、補助熱交換器(70)の第2冷媒通路部(70b)を流れる冷媒の乾き度(ガス冷媒の割合)が低くなっている。そのため、補助熱交換器(70)の第2冷媒通路部(70b)を流れる冷媒を加熱しても冷媒の温度が上昇しにくく、第1冷媒温度と第2冷媒温度との差(すなわち、気液分離器(50)と補助熱交換器(70)との間を流れる冷媒の温度と補助熱交換器(70)と室内熱交換器(22)との間を流れる冷媒の温度との差)が小さくなりやすい傾向にある。   In addition, the liquid refrigerant is excessively accumulated in the gas-liquid separator (50) and passes from the gas-liquid separator (50) through the second refrigerant passage (70b) of the auxiliary heat exchanger (70) to the indoor heat exchanger. When the liquid refrigerant overflows to (22), the dryness (ratio of gas refrigerant) of the refrigerant flowing through the second refrigerant passage portion (70b) of the auxiliary heat exchanger (70) is low. Therefore, even if the refrigerant flowing through the second refrigerant passage portion (70b) of the auxiliary heat exchanger (70) is heated, the refrigerant temperature hardly rises, and the difference between the first refrigerant temperature and the second refrigerant temperature (that is, the air The difference between the temperature of the refrigerant flowing between the liquid separator (50) and the auxiliary heat exchanger (70) and the temperature of the refrigerant flowing between the auxiliary heat exchanger (70) and the indoor heat exchanger (22)) Tends to be small.

そこで、コントローラ(60)は、給湯暖房制御において第2液排出促進動作を行うように構成されていてもよい。第2液排出促進動作では、コントローラ(60)は、第1冷媒温度センサ(65)および第2冷媒温度センサ(66)によってそれぞれ検知される第1冷媒温度および第2冷媒温度を監視し、第1冷媒温度と第2冷媒温度との差(詳しくは、第2冷媒温度から第1冷媒温度を減算して得られる温度差)が予め設定された温度差閾値よりも小さくなっている場合に、流量調節弁(51)の開度を増加させる。なお、この温度差閾値(第1冷媒温度と第2冷媒温度との差に関する閾値)は、気液分離器(50)から室内熱交換器(22)へ液冷媒が溢れ出すと推定されるときの第1冷媒温度と第2冷媒温度との差(例えば、3℃〜5℃程度)に設定されていてもよい。   Therefore, the controller (60) may be configured to perform the second liquid discharge promoting operation in the hot water supply / heating control. In the second liquid discharge promoting operation, the controller (60) monitors the first refrigerant temperature and the second refrigerant temperature detected by the first refrigerant temperature sensor (65) and the second refrigerant temperature sensor (66), respectively. When the difference between the first refrigerant temperature and the second refrigerant temperature (specifically, the temperature difference obtained by subtracting the first refrigerant temperature from the second refrigerant temperature) is smaller than a preset temperature difference threshold, Increase the opening of the flow control valve (51). The temperature difference threshold (threshold relating to the difference between the first refrigerant temperature and the second refrigerant temperature) is estimated when liquid refrigerant overflows from the gas-liquid separator (50) to the indoor heat exchanger (22). The difference between the first refrigerant temperature and the second refrigerant temperature (for example, about 3 ° C. to 5 ° C.) may be set.

具体的には、コントローラ(60)は、第1冷媒温度と第2冷媒温度との差が温度差閾値よりも小さくなっている状態となるまで、流量調節弁(51)の開度を第1開度(液冷媒を通過させることが可能な開度)に維持する。そして、コントローラ(60)は、第1冷媒温度と第2冷媒温度との差が温度差閾値よりも小さくなっている状態となると、流量調節弁(51)の開度を第1開度から第2開度(第1開度よりも大きい開度)に変更する。その後、コントローラ(60)は、流量調節弁(51)の開度を第1開度から第2開度に変更した時点から予め設定された液排出促進時間が経過するまで、流量調節弁(51)の開度を第2開度のまま維持する。そして、コントローラ(60)は、流量調節弁(51)の開度を第1開度から第2開度に変更した時点から液排出促進時間が経過すると、流量調節弁(51)の開度を第2開度から第1開度に変更する。   Specifically, the controller (60) sets the opening degree of the flow rate adjustment valve (51) to the first level until the difference between the first refrigerant temperature and the second refrigerant temperature is smaller than the temperature difference threshold. It is maintained at the opening (opening that allows liquid refrigerant to pass through). Then, when the difference between the first refrigerant temperature and the second refrigerant temperature is smaller than the temperature difference threshold, the controller (60) changes the opening of the flow control valve (51) from the first opening to the first opening. Change to 2 opening (opening larger than 1st opening). Thereafter, the controller (60) controls the flow rate control valve (51) until a preset liquid discharge promotion time elapses after the opening degree of the flow rate control valve (51) is changed from the first opening degree to the second opening degree. ) Is maintained at the second opening. Then, the controller (60) sets the opening of the flow control valve (51) when the liquid discharge promotion time has elapsed from the time when the opening of the flow control valve (51) is changed from the first opening to the second opening. The second opening is changed to the first opening.

〔給湯空調システムの変形例1による効果〕
以上のように、給湯暖房運転において第2液排出促進動作を行うことにより、気液分離器(50)に液冷媒が過剰に溜まり込んでいる場合に、流量調節弁(51)の開度を増加させて気液分離器(50)から液冷媒通路(PR1)への液冷媒の排出を促進させることができる。これにより、気液分離器(50)における過剰な液溜まりを抑制することができ、気液分離器(50)における過剰な液溜まりに起因する室内熱交換器(22)の加熱能力の低下を抑制することができる。
[Effects of Modification 1 of Hot Water Supply Air Conditioning System]
As described above, when the liquid refrigerant is excessively accumulated in the gas-liquid separator (50) by performing the second liquid discharge promotion operation in the hot water supply / heating operation, the opening degree of the flow rate control valve (51) is reduced. The discharge of the liquid refrigerant from the gas-liquid separator (50) to the liquid refrigerant passage (PR1) can be promoted by increasing the number. As a result, excessive liquid accumulation in the gas-liquid separator (50) can be suppressed, and the heating capacity of the indoor heat exchanger (22) can be reduced due to excessive liquid accumulation in the gas-liquid separator (50). Can be suppressed.

(給湯空調システムの変形例2)
図3に示すように、給湯空調システム(10)では、気液分離器(50)は、液冷媒通路(PR1)の第2通路部(PR12)に液冷媒を供給することができるように構成されていてもよい。すなわち、気液分離器(50)は、液冷媒通路(PR1)の第1通路部(PR11)および第2通路部(PR12)のうち暖房運転において低圧側となる通路部に液冷媒を供給することができるように構成されていてもよい。この例では、気液分離器(50)は、その第1ガス端(50a)が四方切換弁(25)の第3ポートに接続され、その第2ガス端(50b)が室内熱交換器(22)のガス端に接続され、その液流出端(50c)が液冷媒通路(PR1)の第2通路部(PR12)に接続されている。また、この例では、流量調節弁(51)は、気液分離器(50)の液流出端(50c)と液冷媒通路(PR1)の第2通路部(PR12)とを接続する冷媒通路(冷媒管)に組み込まれ、気液分離器(50)から液冷媒通路(PR1)の第2通路部(PR12)へ供給される液冷媒の流量を調節可能に構成されている。その他の構成は、図1に示した構成と同様となっている。
(Variation 2 of hot water supply air conditioning system)
As shown in FIG. 3, in the hot water supply air conditioning system (10), the gas-liquid separator (50) is configured to be able to supply liquid refrigerant to the second passage portion (PR12) of the liquid refrigerant passage (PR1). May be. That is, the gas-liquid separator (50) supplies the liquid refrigerant to the passage portion on the low pressure side in the heating operation of the first passage portion (PR11) and the second passage portion (PR12) of the liquid refrigerant passage (PR1). It may be configured to be able to. In this example, the gas-liquid separator (50) has its first gas end (50a) connected to the third port of the four-way switching valve (25) and its second gas end (50b) connected to the indoor heat exchanger ( 22) is connected to the gas end, and the liquid outflow end (50c) is connected to the second passage portion (PR12) of the liquid refrigerant passage (PR1). In this example, the flow control valve (51) includes a refrigerant passage (50) connecting the liquid outflow end (50c) of the gas-liquid separator (50) and the second passage portion (PR12) of the liquid refrigerant passage (PR1). The refrigerant is incorporated in the refrigerant pipe), and the flow rate of the liquid refrigerant supplied from the gas-liquid separator (50) to the second passage portion (PR12) of the liquid refrigerant passage (PR1) can be adjusted. Other configurations are the same as those shown in FIG.

以上のように構成した場合も、気液分離器(50)を設けることにより、給湯暖房運転において室内熱交換器(22)の液溜まりに起因する室内熱交換器(22)の加熱能力の低下を抑制することができる。   Also in the case of the above configuration, by providing the gas-liquid separator (50), the heating capacity of the indoor heat exchanger (22) is reduced due to the liquid pool in the indoor heat exchanger (22) in the hot water supply / heating operation. Can be suppressed.

また、液冷媒通路(PR1)の第2通路部(PR12)と気液分離器(50)との間の圧力差が、液冷媒通路(PR1)の第1通路部(PR11)と気液分離器(50)との間の圧力差よりも大きくなっているので、気液分離器(50)から液冷媒通路(PR1)への冷媒の供給を促進させることができる。   Further, the pressure difference between the second passage portion (PR12) of the liquid refrigerant passage (PR1) and the gas-liquid separator (50) causes the gas-liquid separation from the first passage portion (PR11) of the liquid refrigerant passage (PR1). Since the pressure difference with respect to the vessel (50) is larger, the supply of refrigerant from the gas-liquid separator (50) to the liquid refrigerant passage (PR1) can be promoted.

なお、図3に示した給湯空調システム(10)は、図2に示した補助熱交換器(70)と第1冷媒温度センサ(65)と第2冷媒温度センサ(66)とを備えていてもよい。このように構成することにより、コントローラ(60)は、給湯暖房制御において第2液排出促進動作を行うことができる。   The hot water supply air conditioning system (10) shown in FIG. 3 includes the auxiliary heat exchanger (70), the first refrigerant temperature sensor (65), and the second refrigerant temperature sensor (66) shown in FIG. Also good. With this configuration, the controller (60) can perform the second liquid discharge promoting operation in the hot water supply / heating control.

(その他の実施形態)
以上の説明では、気液分離器(50)が冷媒回路(20)において四方切換弁(25)の第3ポートと室内熱交換器(22)のガス端との間に設けられている場合を例に挙げたが、気液分離器(50)は、冷媒回路(20)において冷媒/水熱交換器(40)と四方切換弁(25)の第1ポートとの間に設けられていてもよい。例えば、気液分離器(50)は、その第1ガス端(50a)が冷媒/水熱交換器(40)の冷媒通路部(40a)の出口端に接続され、その第2ガス端(50b)が四方切換弁(25)の第1ポートに接続され、その液流出端(50c)が液冷媒通路(PR1)に接続されていてもよい。このように構成した場合も、気液分離器(50)は、給湯暖房運転において、冷媒/水熱交換器(40)を通過した冷媒をガス冷媒と液冷媒とに分離し、ガス冷媒を室内熱交換器(22)のガス側へ供給し、液冷媒を液冷媒通路(PR1)へ供給することが可能である。
(Other embodiments)
In the above description, the case where the gas-liquid separator (50) is provided between the third port of the four-way switching valve (25) and the gas end of the indoor heat exchanger (22) in the refrigerant circuit (20). As an example, the gas-liquid separator (50) may be provided between the refrigerant / water heat exchanger (40) and the first port of the four-way switching valve (25) in the refrigerant circuit (20). Good. For example, the gas-liquid separator (50) has its first gas end (50a) connected to the outlet end of the refrigerant passage (40a) of the refrigerant / water heat exchanger (40) and its second gas end (50b). ) May be connected to the first port of the four-way switching valve (25), and the liquid outflow end (50c) may be connected to the liquid refrigerant passage (PR1). Even in this configuration, the gas-liquid separator (50) separates the refrigerant that has passed through the refrigerant / water heat exchanger (40) into the gas refrigerant and the liquid refrigerant in the hot water supply heating operation, and the gas refrigerant is indoors. It is possible to supply to the gas side of the heat exchanger (22) and supply the liquid refrigerant to the liquid refrigerant passage (PR1).

また、冷媒回路(20)が四方切換弁(25)を備えている場合を例に挙げたが、冷媒回路(20)は、四方切換弁(25)を備えていなくてもよい。すなわち、給湯空調システム(10)は、圧縮機(21)の吐出側および吸入側と室内熱交換器(22)のガス側および室外熱交換器(24)のガス側との接続状態を切り換えることにより暖房運転(例えば、給湯暖房運転,単純暖房運転)と冷房運転(例えば、給湯冷房運転,単純冷房運転)とを選択的に行うように構成されていてもよいし、圧縮機(21)の吐出端が冷媒/水熱交換器(40)と気液分離器(50)とを介して室内熱交換器(22)のガス端に接続され圧縮機(21)の吸入端が室外熱交換器(24)のガス端に接続されて暖房運転のみを行うように構成されていてもよい。   Moreover, although the case where the refrigerant circuit (20) was provided with the four-way switching valve (25) was cited as an example, the refrigerant circuit (20) may not include the four-way switching valve (25). That is, the hot water supply air conditioning system (10) switches the connection state between the discharge side and suction side of the compressor (21) and the gas side of the indoor heat exchanger (22) and the gas side of the outdoor heat exchanger (24). May be configured to selectively perform a heating operation (for example, a hot water supply heating operation, a simple heating operation) and a cooling operation (for example, a hot water supply cooling operation, a simple cooling operation), or the compressor (21). The discharge end is connected to the gas end of the indoor heat exchanger (22) via the refrigerant / water heat exchanger (40) and the gas-liquid separator (50), and the suction end of the compressor (21) is the outdoor heat exchanger. It may be configured to be connected to the gas end of (24) and perform only the heating operation.

また、以上の実施形態を適宜組み合わせて実施してもよい。以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   Moreover, you may implement combining the above embodiment suitably. The above embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.

以上説明したように、上述の給湯空調システムは、室内の空調と給湯とを行う給湯空調システムとして有用である。   As described above, the hot water supply air conditioning system described above is useful as a hot water supply air conditioning system that performs indoor air conditioning and hot water supply.

10 給湯空調システム
20 冷媒回路
21 圧縮機
22 室内熱交換器
23 膨張弁
24 室外熱交換器
25 四方切換弁
26 室内ファン
27 室外ファン
PR1 液冷媒通路
PR11 第1通路部
PR12 第2通路部
30 水通路
31 第1開閉弁
32 第2開閉弁
33 補助加熱器
PWa 給水管
PWb 出水管
PW1 主水管
PW2 バイパス水管
40 冷媒/水熱交換器
40a 冷媒通路部
40b 水通路部
50 気液分離器
51 流量調節弁
60 コントローラ(制御部)
61 冷媒吐出温度センサ
62 室内空気温度センサ
63 液側冷媒温度センサ
64 室外空気温度センサ
65 第1冷媒温度センサ
66 第2冷媒温度センサ
70 補助熱交換器
70a 第1冷媒通路部
70b 第2冷媒通路部
DESCRIPTION OF SYMBOLS 10 Hot water supply air-conditioning system 20 Refrigerant circuit 21 Compressor 22 Indoor heat exchanger 23 Expansion valve 24 Outdoor heat exchanger 25 Four-way switching valve 26 Indoor fan 27 Outdoor fan PR1 Liquid refrigerant path PR11 1st channel | path part PR12 2nd channel | path part 30 Water path 31 1st on-off valve 32 2nd on-off valve 33 Auxiliary heater PWa Water supply pipe PWb Outlet pipe PW1 Main water pipe PW2 Bypass water pipe 40 Refrigerant / water heat exchanger 40a Refrigerant passage part 40b Water passage part 50 Gas-liquid separator 51 Flow control valve 60 controller (control unit)
61 Refrigerant discharge temperature sensor 62 Indoor air temperature sensor 63 Liquid side refrigerant temperature sensor 64 Outdoor air temperature sensor 65 First refrigerant temperature sensor 66 Second refrigerant temperature sensor 70 Auxiliary heat exchanger 70a First refrigerant passage portion 70b Second refrigerant passage portion

Claims (6)

圧縮機(21)と、室内熱交換器(22)と、室外熱交換器(24)と、該室内熱交換器(22)の液端と該室外熱交換器(24)の液端とを接続する液冷媒通路(PR1)に設けられた膨張弁(23)とを有する冷媒回路(20)と、
上記冷媒回路(20)において上記圧縮機(21)の吐出側に接続され、該圧縮機(21)から吐出された冷媒と水とを熱交換させる冷媒/水熱交換器(40)と、
上記冷媒回路(20)において上記室内熱交換器(22)のガス側に接続される気液分離器(50)とを備え、
上記気液分離器(50)は、上記冷媒/水熱交換器(40)および上記室内熱交換器(22)が凝縮器となり上記室外熱交換器(24)が蒸発器となる給湯暖房運転において、上記冷媒/水熱交換器(40)を通過した冷媒をガス冷媒と液冷媒とに分離し、該ガス冷媒を上記室内熱交換器(22)のガス側へ供給し、該液冷媒を上記液冷媒通路(PR1)へ供給することができるように構成されている
ことを特徴とする給湯空調システム。
A compressor (21), an indoor heat exchanger (22), an outdoor heat exchanger (24), a liquid end of the indoor heat exchanger (22), and a liquid end of the outdoor heat exchanger (24). A refrigerant circuit (20) having an expansion valve (23) provided in the liquid refrigerant passage (PR1) to be connected;
A refrigerant / water heat exchanger (40) connected to the discharge side of the compressor (21) in the refrigerant circuit (20) and exchanging heat between the refrigerant discharged from the compressor (21) and water;
A gas-liquid separator (50) connected to the gas side of the indoor heat exchanger (22) in the refrigerant circuit (20),
In the gas-liquid separator (50), the refrigerant / water heat exchanger (40) and the indoor heat exchanger (22) serve as a condenser, and the outdoor heat exchanger (24) serves as an evaporator. The refrigerant that has passed through the refrigerant / water heat exchanger (40) is separated into a gas refrigerant and a liquid refrigerant, and the gas refrigerant is supplied to the gas side of the indoor heat exchanger (22). A hot water supply air conditioning system configured to be supplied to the liquid refrigerant passage (PR1).
請求項1において、
上記液冷媒通路(PR1)は、上記室内熱交換器(22)の液端と上記膨張弁(23)とを接続する第1通路部(PR11)と、該膨張弁(23)と上記室内熱交換器(22)の液端とを接続する第2通路部(PR12)とを有し、
上記気液分離器(50)は、上記液冷媒を上記液冷媒通路(PR1)の第1通路部(PR11)に供給することができるように構成されている
ことを特徴とする給湯空調システム。
In claim 1,
The liquid refrigerant passage (PR1) includes a first passage portion (PR11) connecting the liquid end of the indoor heat exchanger (22) and the expansion valve (23), the expansion valve (23) and the indoor heat. A second passage portion (PR12) connecting the liquid end of the exchanger (22),
The hot water supply air conditioning system, wherein the gas-liquid separator (50) is configured to be able to supply the liquid refrigerant to the first passage portion (PR11) of the liquid refrigerant passage (PR1).
請求項1において、
上記液冷媒通路(PR1)は、上記室内熱交換器(22)の液端と上記膨張弁(23)とを接続する第1通路部(PR11)と、該膨張弁(23)と上記室内熱交換器(22)の液端とを接続する第2通路部(PR12)とを有し、
上記気液分離器(50)は、上記液冷媒を上記液冷媒通路(PR1)の第2通路部(PR12)に供給することができるように構成されている
ことを特徴とする給湯空調システム。
In claim 1,
The liquid refrigerant passage (PR1) includes a first passage portion (PR11) connecting the liquid end of the indoor heat exchanger (22) and the expansion valve (23), the expansion valve (23) and the indoor heat. A second passage portion (PR12) connecting the liquid end of the exchanger (22),
The hot water supply air conditioning system, wherein the gas-liquid separator (50) is configured to be able to supply the liquid refrigerant to the second passage portion (PR12) of the liquid refrigerant passage (PR1).
請求項1〜3のいずれか1項において、
上記気液分離器(50)から上記液冷媒通路(PR1)へ供給される液冷媒の流量を調節可能な流量調節弁(51)をさらに備えている
ことを特徴とする給湯空調システム。
In any one of Claims 1-3,
The hot water supply air conditioning system further comprising a flow rate adjustment valve (51) capable of adjusting a flow rate of the liquid refrigerant supplied from the gas-liquid separator (50) to the liquid refrigerant passage (PR1).
請求項4において、
制御部(60)をさらに備え、
上記制御部(60)は、上記給湯暖房運転において、上記室外熱交換器(24)の液側冷媒温度が該室外熱交換器(24)の吸込空気温度よりも低く、且つ、該室外熱交換器(24)の液側冷媒温度と該室外熱交換器(24)の吸込空気温度との差が予め設定された温度差閾値を大きくなっている場合に、上記流量調節弁(51)の開度を増加させる
ことを特徴とする給湯空調システム。
In claim 4,
A control unit (60),
In the hot water supply / heating operation, the controller (60) is configured such that the liquid refrigerant temperature of the outdoor heat exchanger (24) is lower than the intake air temperature of the outdoor heat exchanger (24) and the outdoor heat exchanger When the difference between the liquid-side refrigerant temperature of the condenser (24) and the intake air temperature of the outdoor heat exchanger (24) exceeds a preset temperature difference threshold value, the flow control valve (51) is opened. Hot water supply air conditioning system characterized by increasing the degree.
請求項4において、
上記冷媒回路(20)において上記圧縮機(21)と上記冷媒/水熱交換器(40)との間に接続されるとともに、該冷媒回路(20)において上記気液分離器(50)と上記室内熱交換器(22)との間に接続され、該圧縮機(21)と該冷媒/水熱交換器(40)との間を流れる冷媒と該気液分離器(50)と該室内熱交換器(22)との間を流れる冷媒とを熱交換させる補助熱交換器(70)と、
制御部(60)とをさらに備え、
上記制御部(60)は、上記給湯暖房運転において、上記気液分離器(50)と上記補助熱交換器(70)との間を流れる冷媒の温度と該補助熱交換器(70)と上記室内熱交換器(22)との間を流れる冷媒の温度との差が予め設定された温度差閾値よりも小さくなっている場合に、上記流量調節弁(51)の開度を増加させる
ことを特徴とする給湯空調システム。
In claim 4,
The refrigerant circuit (20) is connected between the compressor (21) and the refrigerant / water heat exchanger (40). In the refrigerant circuit (20), the gas-liquid separator (50) and the A refrigerant that is connected between the indoor heat exchanger (22) and flows between the compressor (21) and the refrigerant / water heat exchanger (40), the gas-liquid separator (50), and the indoor heat. An auxiliary heat exchanger (70) for exchanging heat with the refrigerant flowing between the exchanger (22) and
A control unit (60),
The controller (60) is configured such that, in the hot water supply / heating operation, the temperature of the refrigerant flowing between the gas-liquid separator (50) and the auxiliary heat exchanger (70), the auxiliary heat exchanger (70), and the When the difference between the temperature of the refrigerant flowing between the indoor heat exchanger (22) and the temperature difference threshold value is smaller than a preset temperature difference threshold, the opening degree of the flow control valve (51) is increased. A hot water supply air-conditioning system.
JP2014240092A 2014-11-27 2014-11-27 Hot water supply air conditioning system Active JP6492580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014240092A JP6492580B2 (en) 2014-11-27 2014-11-27 Hot water supply air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014240092A JP6492580B2 (en) 2014-11-27 2014-11-27 Hot water supply air conditioning system

Publications (2)

Publication Number Publication Date
JP2016102598A true JP2016102598A (en) 2016-06-02
JP6492580B2 JP6492580B2 (en) 2019-04-03

Family

ID=56087950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014240092A Active JP6492580B2 (en) 2014-11-27 2014-11-27 Hot water supply air conditioning system

Country Status (1)

Country Link
JP (1) JP6492580B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190118320A (en) * 2018-04-10 2019-10-18 노홍조 Liquid refrigerant separating type heat pump
WO2023053746A1 (en) * 2021-09-29 2023-04-06 株式会社デンソー Refrigeration cycle apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49118855U (en) * 1973-02-09 1974-10-11
JPH04214153A (en) * 1990-05-31 1992-08-05 Mitsubishi Electric Corp Refrigerating cycle device
JPH11190561A (en) * 1997-12-26 1999-07-13 Tokyo Gas Co Ltd Refrigerating system
JP2009092251A (en) * 2007-10-03 2009-04-30 Yutaka Takahashi Heating/cooling and hot water supplying heat pump system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49118855U (en) * 1973-02-09 1974-10-11
JPH04214153A (en) * 1990-05-31 1992-08-05 Mitsubishi Electric Corp Refrigerating cycle device
JPH11190561A (en) * 1997-12-26 1999-07-13 Tokyo Gas Co Ltd Refrigerating system
JP2009092251A (en) * 2007-10-03 2009-04-30 Yutaka Takahashi Heating/cooling and hot water supplying heat pump system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190118320A (en) * 2018-04-10 2019-10-18 노홍조 Liquid refrigerant separating type heat pump
KR102152499B1 (en) * 2018-04-10 2020-09-04 노홍조 Liquid refrigerant separating type heat pump
WO2023053746A1 (en) * 2021-09-29 2023-04-06 株式会社デンソー Refrigeration cycle apparatus

Also Published As

Publication number Publication date
JP6492580B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP5265010B2 (en) Heat pump equipment
JP6091399B2 (en) Air conditioner
JP6657613B2 (en) Air conditioner
JP6337937B2 (en) Air conditioner
WO2018185841A1 (en) Refrigeration cycle device
JP2012141113A (en) Air conditioning/water heating device system
JP2013104623A (en) Refrigeration cycle device and air conditioner with the same
WO2019017351A1 (en) Freezer
KR101166385B1 (en) A air conditioning system by water source and control method thereof
JP6123289B2 (en) Air conditioning system
KR20130116360A (en) Binary refrigeration cycle device
JP5404471B2 (en) HEAT PUMP DEVICE AND HEAT PUMP DEVICE OPERATION CONTROL METHOD
JP6492580B2 (en) Hot water supply air conditioning system
JP6092731B2 (en) Air conditioner
JP2014081180A (en) Heat pump apparatus
JP2017089950A (en) Air Conditioning System
JP2014126291A (en) Air conditioning system
JP5787102B2 (en) Separable air conditioner
JP2017009269A (en) Air conditioning system
JP2017009269A5 (en)
JP2018096575A (en) Freezer
JP6458456B2 (en) Air conditioning system
JP6350577B2 (en) Air conditioner
JP2015124912A (en) Hot water supply air-conditioning system
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R151 Written notification of patent or utility model registration

Ref document number: 6492580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151