JP2009092251A - Heating/cooling and hot water supplying heat pump system - Google Patents

Heating/cooling and hot water supplying heat pump system Download PDF

Info

Publication number
JP2009092251A
JP2009092251A JP2007260204A JP2007260204A JP2009092251A JP 2009092251 A JP2009092251 A JP 2009092251A JP 2007260204 A JP2007260204 A JP 2007260204A JP 2007260204 A JP2007260204 A JP 2007260204A JP 2009092251 A JP2009092251 A JP 2009092251A
Authority
JP
Japan
Prior art keywords
hot water
heat
heat exchanger
circulation pipe
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007260204A
Other languages
Japanese (ja)
Other versions
JP4918450B2 (en
Inventor
Yutaka Takahashi
豊 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007260204A priority Critical patent/JP4918450B2/en
Publication of JP2009092251A publication Critical patent/JP2009092251A/en
Application granted granted Critical
Publication of JP4918450B2 publication Critical patent/JP4918450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating/cooling and hot water supplying heat pump system capable of properly performing a heating operation by an indoor heat exchanger of a heat pump and rising a temperature of supplied hot water/water to a proper temperature. <P>SOLUTION: The heating/cooling heat pump is composed of a compressor 11, a four-way valve 13, the indoor heat exchanger 15, an outdoor heat exchanger 19, an expansion valve 21 and the like. A hot water supply circuit is constituted of a hot water supply tank 22, a water circulation pipe 23, a circulation pump 24 and the like. A first hot water supply heat exchanger 25 is disposed in a branch heat medium pipe 14a and the water circulation pipe 23, and a second hot water supply heat exchanger 26 is disposed in a discharge pipe 12 and the water circulation pipe 23. In a heating operation state, the supplied hot water/water in the water circulation pipe 23 is primarily heated to, for example, 50°C by utilizing latent heat of a heat medium gas passing through the branch heat medium pipe 14a by the first hot water supply heat exchanger, and secondarily heated to, for example, 80°C by sensible heat of the heat medium gas passing in the discharge pipe 12 by the second hot water supply heat exchanger 26. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷暖房を行うことができるとともに、例えば蛇口や浴槽等に温水を供給することができる冷暖房・給湯ヒートポンプシステムに関する。   The present invention relates to an air-conditioning / hot-water supply heat pump system that can perform air-conditioning and can supply hot water to, for example, a faucet and a bathtub.

従来、ヒートポンプとして、給湯を専用に行う給湯ヒートポンプ、冷暖房を行う冷暖房ヒートポンプ、及び冷暖房と給湯を行う冷暖房・給湯ヒートポンプが実用化されている。それらのヒートポンプは空気、水あるいは地中等から熱を取り込むことにより投入エネルギーの何倍もの熱量を得られるように構成されている。   Conventionally, as a heat pump, a hot water supply heat pump dedicated to hot water supply, an air conditioning heat pump performing air conditioning, and an air conditioning / hot water heat pump performing air conditioning and hot water supply have been put into practical use. These heat pumps are configured so as to obtain a heat quantity many times as much as the input energy by taking in heat from air, water, or underground.

専用の給湯ヒートポンプには、CO(二酸化炭素)を熱媒として用いて例えば70℃〜80℃の高温の給湯水を作ることが可能であり、熱媒としてR−410を用いて,高圧化することによりCO熱媒に近い高温度の温水を作ることが可能となっている。しかし、この専用の給湯ヒートポンプは、冷暖房を行うことができないので、別に専用の冷暖房ヒートポンプを設けなければならないという問題があった。 For a dedicated hot water supply heat pump, CO 2 (carbon dioxide) can be used as a heating medium to produce hot hot water of, for example, 70 ° C. to 80 ° C., and R-410 can be used as the heating medium to increase the pressure. By doing so, it is possible to make hot water having a high temperature close to that of the CO 2 heating medium. However, since this dedicated hot water supply heat pump cannot perform cooling and heating, there is a problem that a dedicated cooling and heating heat pump must be provided separately.

一方、前述した冷暖房・給湯ヒートポンプは、次のように構成されている。即ち、このヒートポンプは、圧縮機に接続された熱媒循環配管に対し、給湯用凝縮器、膨張機構、及び蒸発器を順次接続して冷凍サイクルを構成している。又、給湯タンクに接続された水循環配管を前記給湯用凝縮器に接続し、該給湯用凝縮器内の熱媒の熱を前記水循環配管内の給湯水に熱交換して給湯水を加熱するようになっている。(特許文献1には給湯用凝縮器を用いたヒートポンプ式冷暖房給湯機が開示されている。第4図参照)
特開昭61−101770号公報
On the other hand, the air conditioning / hot water supply heat pump described above is configured as follows. That is, this heat pump forms a refrigeration cycle by sequentially connecting a hot water supply condenser, an expansion mechanism, and an evaporator to a heat medium circulation pipe connected to a compressor. Further, a water circulation pipe connected to the hot water supply tank is connected to the hot water supply condenser, and heat of the heat medium in the hot water supply condenser is exchanged with hot water in the water circulation pipe to heat the hot water supply water. It has become. (Patent Document 1 discloses a heat pump air-conditioning / heating water heater using a hot water condenser. See FIG. 4).
JP 61-101770 A

ところが、従来の冷暖房・給湯ヒートポンプは、冷暖房に必要な凝縮熱温度を利用するために、給湯水の温度が冷暖房時の高温側の凝縮温度である40〜50℃程度にしか上昇しないので、給湯水の利用範囲が限定されるという問題があった。なお、40〜50℃程度の給湯水の場合、貯湯用としては温度が低く、短時間でも熱損失により給湯としての利用温度を下回る可能性がある他、レジオネラ菌等の雑菌の増殖を防ぐことが不可能であり貯湯には適さない。   However, since the conventional air conditioning / hot water heat pump uses the condensation heat temperature necessary for air conditioning, the temperature of the hot water supply rises only to about 40 to 50 ° C., which is the high temperature side condensation temperature during air conditioning. There was a problem that the range of use of water was limited. In addition, in the case of hot water of about 40 to 50 ° C., the temperature is low for hot water storage, and there is a possibility that it may be lower than the use temperature for hot water due to heat loss even for a short time, and prevent the proliferation of miscellaneous bacteria such as Legionella bacteria. Is impossible and not suitable for hot water storage.

一方、給湯専用のヒートポンプの場合には、圧縮機の運転条件を制御して凝縮器に発生する凝縮温度を例えば70℃に高めているので、例えば70℃の高温の給湯水が得られるが、この条件を従来のヒートポンプ式冷暖房給湯機に適用した場合には、次のような問題がある。即ち、70℃の給湯水を生成する場合には、熱媒ガスの凝縮温度を40〜50℃から70℃にするために圧縮機を高速運転する必要がある。この結果、次のような問題があった。これを図3のモリエル線図を参照しながら説明する。   On the other hand, in the case of a heat pump dedicated to hot water supply, the operating temperature of the compressor is controlled to increase the condensation temperature generated in the condenser, for example, to 70 ° C. When this condition is applied to a conventional heat pump air-conditioning / heating water heater, there are the following problems. That is, when producing hot water at 70 ° C., it is necessary to operate the compressor at a high speed in order to change the condensation temperature of the heat medium gas from 40 ° C. to 70 ° C. As a result, there were the following problems. This will be described with reference to the Mollier diagram of FIG.

図3の横軸は比エンタルピーh/kj・kgを表し、縦軸は圧力(MPa)を表わす。又、(イ)〜(ホ)で表された四角枠線はヒートポンプの熱媒の冷凍サイクルを示している。この線図において、実線で示すサイクルは、圧縮機が通常運転の状態であり、二点鎖線で示す冷凍サイクル(イ’)〜(ホ’)は、圧縮機が高速運転された状態を示す。圧縮機の吐出温度は、通常70℃程度、圧縮機の吐出熱媒ガスの比エンタルピーは462(h/kj・kg)であるが、圧縮機の高速運転では、その熱媒ガスの吐出温度が100℃(例えば105℃)以上、比エンタルピーは480(h/kj・kg)となる。従って、給湯水の温度が適正化されても冷暖房には必要のない圧縮機の高速運転が強いられることになり、ヒートポンプの冷暖房の効率が低下し、成績係数(COP)が低下するという問題が生じる。   The horizontal axis in FIG. 3 represents the specific enthalpy h / kj · kg, and the vertical axis represents the pressure (MPa). The square frame lines represented by (A) to (E) indicate the refrigeration cycle of the heat medium of the heat pump. In this diagram, a cycle indicated by a solid line indicates that the compressor is in a normal operation state, and refrigeration cycles (A ') to (E') indicated by a two-dot chain line indicate a state where the compressor is operated at a high speed. The discharge temperature of the compressor is usually about 70 ° C., and the specific enthalpy of the discharge heat medium gas of the compressor is 462 (h / kj · kg). In high-speed operation of the compressor, the discharge temperature of the heat medium gas is Above 100 ° C. (for example, 105 ° C.), the specific enthalpy is 480 (h / kj · kg). Therefore, even if the temperature of the hot water supply is optimized, high-speed operation of the compressor, which is not necessary for air conditioning, is forced, and the efficiency of the heat pump is reduced, resulting in a decrease in coefficient of performance (COP). Arise.

ヒートポンプが冬季の暖房運転状態において、給湯回路の水循環配管内の例えば0℃〜15℃の低温の給湯水が給湯用凝縮器に進入すると、熱媒循環配管内の高温・高圧の熱媒ガスと給湯水との熱交換により熱媒ガスの温度が低下し過ぎて室内の暖房温度が不足することになる。これを解消するために、前述した圧縮機の高速運転が強いられる。   When the heat pump is in the heating operation state in winter, when low-temperature hot water of, for example, 0 to 15 ° C. in the water circulation pipe of the hot water supply circuit enters the condenser for hot water supply, the high-temperature and high-pressure heat medium gas in the heat medium circulation pipe Due to the heat exchange with the hot water, the temperature of the heat transfer gas is excessively lowered and the indoor heating temperature becomes insufficient. In order to solve this problem, the compressor described above is forced to operate at high speed.

本発明の第1の目的は、上記従来の技術に存する問題点を解消して、ヒートポンプの室内熱交換器による暖房運転と、給湯水の加熱を適正に行うことができるとともに、成績係数(COP)を向上することができる冷暖房・給湯ヒートポンプシステムを提供することにある。   The first object of the present invention is to solve the above-mentioned problems in the prior art and to appropriately perform heating operation by the heat exchanger indoor heat exchanger and heating of hot water, and coefficient of performance (COP). Is to provide a cooling / heating / hot water supply heat pump system.

本発明の第2の目的は、上記第1の目的に加えて、冷房運転状態においても、給湯水の加熱を適正に行うことができる冷暖房・給湯ヒートポンプシステムを提供することにある。   In addition to the first object, a second object of the present invention is to provide a cooling / heating / hot water heat pump system capable of appropriately heating hot water even in a cooling operation state.

上記問題点を解決するために、請求項1に記載の発明は、圧縮機に吐出配管及び吸入配管を介して四方弁を接続し、該四方弁に熱媒循環配管を接続し、該熱媒循環配管に空調用の室内熱交換器、膨張弁及び室外熱交換器を直列に接続して冷凍サイクルを構成し、一方、給湯タンクに接続された水循環配管の途中に循環ポンプを接続し、前記水循環配管と、前記熱媒循環配管に対し前記室内熱交換器と並列に接続された分岐熱媒配管とに対し、該分岐熱媒配管を流れる熱媒ガスの潜熱により水循環配管を流れる給湯水を一次加熱するための第1給湯熱交換器を設け、前記水循環配管と前記吐出配管とに対し、該吐出配管を流れる熱媒ガスの顕熱により水循環配管を流れる給湯水を二次加熱するための第2給湯熱交換器を設け、前記分岐熱媒配管に開閉弁を設け、冷房運転状態においては、前記開閉弁が制御装置からの信号により閉じられるように構成されていることを要旨とする。   In order to solve the above-mentioned problems, the invention according to claim 1 is characterized in that a four-way valve is connected to a compressor via a discharge pipe and a suction pipe, a heat medium circulation pipe is connected to the four-way valve, and the heat medium An indoor heat exchanger for air conditioning, an expansion valve and an outdoor heat exchanger are connected in series to the circulation pipe to constitute a refrigeration cycle, while a circulation pump is connected in the middle of the water circulation pipe connected to the hot water tank, With respect to the water circulation pipe and the branch heat medium pipe connected in parallel to the indoor heat exchanger with respect to the heat medium circulation pipe, hot water flowing through the water circulation pipe by the latent heat of the heat medium gas flowing through the branch heat medium pipe A first hot water supply heat exchanger for primary heating is provided, and the hot water supply water flowing through the water circulation pipe is subjected to secondary heating by the sensible heat of the heat transfer medium gas flowing through the discharge pipe with respect to the water circulation pipe and the discharge pipe. A second hot water supply heat exchanger is provided, and the branch heat medium pipe Off valve provided in the cooling operation state, and summarized in that the on-off valve is configured to be closed by a signal from the controller.

請求項2に記載の発明は、圧縮機に吐出配管及び吸入配管を介して四方弁を接続し、該四方弁に熱媒循環配管を接続し、該熱媒循環配管に空調用の室内熱交換器、膨張弁及び室外熱交換器を直列に接続して冷凍サイクルを構成し、一方、給湯タンクに接続された水循環配管の途中に循環ポンプを接続し、前記水循環配管と、前記室内熱交換器及び膨張弁の間の前記熱媒循環配管とに対し、該熱媒循環配管を流れる熱媒ガスの潜熱により水循環配管を流れる給湯水を一次加熱するための第1給湯熱交換器を設け、前記水循環配管と前記吐出配管とに対し、該吐出配管を流れる熱媒ガスの顕熱により水循環配管を流れる給湯水を二次加熱するための第2給湯熱交換器を設けたことを要旨とする。   According to the second aspect of the present invention, a four-way valve is connected to the compressor via a discharge pipe and a suction pipe, a heat medium circulation pipe is connected to the four-way valve, and an indoor heat exchange for air conditioning is connected to the heat medium circulation pipe. A refrigerating cycle is configured by connecting a heat exchanger, an expansion valve and an outdoor heat exchanger in series, while a circulation pump is connected in the middle of a water circulation pipe connected to a hot water tank, and the water circulation pipe and the indoor heat exchanger And a first hot water supply heat exchanger for primarily heating hot water flowing through the water circulation pipe by the latent heat of the heat medium gas flowing through the heat medium circulation pipe with respect to the heat medium circulation pipe between the expansion valve and the expansion valve, The gist is that a second hot water supply heat exchanger for secondary heating of hot water flowing through the water circulation pipe by sensible heat of the heat transfer medium gas flowing through the discharge pipe is provided for the water circulation pipe and the discharge pipe.

請求項3に記載の発明は、請求項1又は2において、前記水循環配管には分岐水循環配管が切換弁を介して前記第1給湯熱交換器と並列に接続され、該分岐水循環配管と前記膨張弁と室外熱交換器との間の前記熱媒循環配管とに対し第3給湯熱交換器が接続され、冷房運転時に前記切換弁が切り換え動作されて前記第1給湯熱交換器に代えて、第3給湯熱交換器が使用されるように構成されていることを要旨とする。   According to a third aspect of the present invention, in the first or second aspect, a branch water circulation pipe is connected to the water circulation pipe in parallel with the first hot water supply heat exchanger via a switching valve, the branch water circulation pipe and the expansion A third hot water supply heat exchanger is connected to the heating medium circulation pipe between the valve and the outdoor heat exchanger, and the switching valve is switched during cooling operation to replace the first hot water supply heat exchanger, The gist is that the third hot water supply heat exchanger is configured to be used.

請求項4に記載の発明は、請求項1又は3において、前記室内熱交換器は前記分岐熱媒配管とは別に並列接続された複数の分岐熱媒配管にそれぞれ直列に接続され、前記各分岐熱媒配管には前記各室内熱交換器を選択して使用するための開閉弁が設けられていることを要旨とする。   According to a fourth aspect of the present invention, in the first or third aspect, the indoor heat exchanger is connected in series to a plurality of branch heat medium pipes connected in parallel separately from the branch heat medium pipes, The gist of the invention is that the heat medium pipe is provided with an on-off valve for selecting and using each of the indoor heat exchangers.

請求項5に記載の発明は、請求項2において、前記熱媒循環配管の途中には、複数の分岐熱媒配管が並列に接続され、前記各分岐熱媒配管には前記室内熱交換器がそれぞれ接続され、前記各分岐熱媒配管には各室内熱交換器を選択して使用するための開閉弁が設けられていることを要旨とする。   According to a fifth aspect of the present invention, in the second aspect, a plurality of branch heat medium pipes are connected in parallel in the middle of the heat medium circulation pipe, and the indoor heat exchanger is connected to each branch heat medium pipe. The gist of the invention is that each branch heat medium pipe is provided with an on-off valve for selecting and using each indoor heat exchanger.

(作用)
請求項1に記載の発明は、ヒートポンプが冬季において暖房運転状態にあるときには、水循環配管内を流れる例えば0℃〜15℃の給湯水が第1給湯熱交換器により分岐熱媒配管を流れる熱媒ガスの潜熱により例えば40℃〜50℃に一次加熱される。その後、給湯水が第2給湯熱交換器に流入して、吐出配管内の熱媒ガスの顕熱により例えば70℃〜90℃に二次加熱される。このため、第2給湯熱交換器において熱媒配管内の熱媒ガスの温度が適正に保たれ、室内熱交換器による室内の暖房温度が適正に保たれる。又、圧縮機を高速運転する必要がないので、ヒートポンプの成績係数を向上することができる。
(Function)
According to the first aspect of the present invention, when the heat pump is in a heating operation state in winter, for example, hot water flowing in the water circulation pipe, for example, 0 ° C. to 15 ° C. hot water flows through the branch heat medium pipe by the first hot water supply heat exchanger. For example, primary heating is performed to 40 ° C. to 50 ° C. by the latent heat of the gas. Thereafter, hot water flows into the second hot water supply heat exchanger and is secondarily heated to, for example, 70 ° C. to 90 ° C. by the sensible heat of the heat transfer medium gas in the discharge pipe. For this reason, in the second hot water supply heat exchanger, the temperature of the heat medium gas in the heat medium pipe is properly maintained, and the indoor heating temperature by the indoor heat exchanger is appropriately maintained. Moreover, since it is not necessary to operate the compressor at high speed, the coefficient of performance of the heat pump can be improved.

一方、ヒートポンプが夏季において冷房運転状態にあるときには、水循環配管内の給湯水の温度は、例えば20℃〜30℃と比較的高いので、分岐熱媒配管に設けた開閉弁を作動させて該分岐熱媒配管を閉路しておくことにより、第2給湯熱交換器に入る給湯水の温度を20℃〜30℃に保持することができる。このため、第2給湯熱交換器において高温・高圧の熱媒ガスの温度が給湯水との熱交換により低下し過ぎることはなく、室内熱交換器による室内の冷房温度が適正に保たれる。   On the other hand, when the heat pump is in a cooling operation state in summer, the temperature of hot water in the water circulation pipe is relatively high, for example, 20 ° C. to 30 ° C., so that the on / off valve provided in the branch heat medium pipe is operated to By closing the heat medium piping, the temperature of the hot water entering the second hot water supply heat exchanger can be maintained at 20 ° C to 30 ° C. For this reason, in the second hot water supply heat exchanger, the temperature of the high-temperature and high-pressure heat transfer medium gas does not decrease excessively due to heat exchange with the hot water supply water, and the indoor cooling temperature by the indoor heat exchanger is appropriately maintained.

請求項2に記載の発明は、室内熱交換器から膨張弁を通り、室外熱交換器によって廃熱される熱を利用して第1給湯熱交換器により水循環配管内の給湯水を一次加熱することができるので、廃熱を無駄なく利用し、ヒートポンプの成績係数をさらに向上することができる。   According to the second aspect of the present invention, the hot water in the water circulation pipe is primarily heated by the first hot water supply heat exchanger using heat exhausted from the indoor heat exchanger through the expansion valve and exhausted by the outdoor heat exchanger. Therefore, waste heat can be used without waste and the coefficient of performance of the heat pump can be further improved.

請求項3に記載の発明は、ヒートポンプの冷房運転状態において、第1給湯熱交換器に代えて、第3給湯熱交換器により給湯水が一次加熱されるので、第2給湯熱交換器により吐出配管内の熱媒ガスの温度が低下し過ぎるのが防止され、室内熱交換器による冷房運転が適正に行われる。   According to the third aspect of the present invention, since the hot water is primarily heated by the third hot water supply heat exchanger instead of the first hot water supply heat exchanger in the cooling operation state of the heat pump, it is discharged by the second hot water supply heat exchanger. The temperature of the heat transfer medium gas in the pipe is prevented from excessively decreasing, and the cooling operation by the indoor heat exchanger is appropriately performed.

請求項1〜5のいずれか一項に記載の発明は、ヒートポンプの室内熱交換器による暖房運転と、給湯水の加熱を適正に行うことができるとともに、成績係数(COP)を向上することができる。   The invention according to any one of claims 1 to 5 can appropriately perform the heating operation by the indoor heat exchanger of the heat pump and the heating of the hot water supply, and can improve the coefficient of performance (COP). it can.

請求項2に記載の発明は、室外熱交換器により外部に放出される廃熱を有効に利用してヒートポンプの成績係数(COP)をさらに向上することができる。
請求項3に記載の発明は、請求項1又は2記載の発明の効果に加えて、ヒートポンプの冷房運転状態において、給湯水の加熱及び冷房運転を適正に行うことができる。
The invention according to claim 2 can further improve the coefficient of performance (COP) of the heat pump by effectively utilizing the waste heat released to the outside by the outdoor heat exchanger.
In addition to the effect of the invention described in claim 1 or 2, the invention described in claim 3 can appropriately perform heating and cooling operation of hot water supply in the cooling operation state of the heat pump.

以下、本発明を具体化した冷暖房・給湯ヒートポンプシステムの一実施形態を図1〜図3に従って説明する。
最初に、図1に基づいて冷暖房ヒートポンプについて説明する。低温・低圧の熱媒ガスを吸入して圧縮し、高温・高圧の熱媒ガスを吐出する圧縮機11の出入口に接続された吐出配管12及び吸入配管18には四方弁13が接続され、該四方弁13には、熱媒循環配管14が接続されている。この熱媒循環配管14の途中には複数本(この実施形態では6本)の分岐熱媒配管14a〜14fが並列に接続されている。各分岐熱媒配管14a〜14fのうち一本の分岐熱媒配管14aを残して室内熱交換器15がそれぞれ接続されている。前記四方弁13と前記室内熱交換器15との間の前記熱媒循環配管14には、室外熱交換器19及び膨張弁21が接続され、暖房運転又は冷房運転を行う冷凍サイクルが構成されている。この実施形態では、前記熱媒として例えばダイキン化成品販売(株)製の商品:R−410A或いはR−407C等が用いられている。
Hereinafter, an embodiment of an air-conditioning / hot-water supply heat pump system embodying the present invention will be described with reference to FIGS.
First, an air conditioning heat pump will be described with reference to FIG. A four-way valve 13 is connected to the discharge pipe 12 and the suction pipe 18 connected to the inlet / outlet of the compressor 11 that sucks and compresses the low-temperature / low-pressure heat medium gas and discharges the high-temperature / high-pressure heat medium gas. A heat medium circulation pipe 14 is connected to the four-way valve 13. A plurality (six in this embodiment) of branched heat medium pipes 14 a to 14 f are connected in parallel in the middle of the heat medium circulation pipe 14. The indoor heat exchanger 15 is connected to each of the branch heat medium pipes 14a to 14f, leaving one branch heat medium pipe 14a. An outdoor heat exchanger 19 and an expansion valve 21 are connected to the heat medium circulation pipe 14 between the four-way valve 13 and the indoor heat exchanger 15, and a refrigeration cycle for performing a heating operation or a cooling operation is configured. Yes. In this embodiment, for example, R-410A or R-407C manufactured by Daikin Chemicals Sales Co., Ltd. is used as the heat medium.

次に、上記のように構成された前記冷暖房ヒートポンプに組み込まれた給湯回路について説明する。
給湯タンク22の出入口には、水循環配管23が接続され、該水循環配管23の途中には循環ポンプ24が接続されている。前記水循環配管23の途中には前記分岐熱媒配管14aと対応するように室内に配設された第1給湯熱交換器25が接続されている。この第1給湯熱交換器25は、ヒートポンプが暖房運転状態において、前記分岐熱媒配管14aの内部を通過する熱媒ガスの潜熱を前記水循環配管23内を循環する給湯水に伝達して熱交換し給湯水の温度を例えば0℃〜15℃から40℃〜50℃に一次加熱することができるようにしている。
Next, a hot water supply circuit incorporated in the air conditioning heat pump configured as described above will be described.
A water circulation pipe 23 is connected to the inlet / outlet of the hot water supply tank 22, and a circulation pump 24 is connected to the water circulation pipe 23. A first hot water supply heat exchanger 25 disposed in the room is connected to the water circulation pipe 23 so as to correspond to the branch heat medium pipe 14a. The first hot water supply heat exchanger 25 exchanges heat by transferring the latent heat of the heat transfer gas passing through the branch heat transfer medium pipe 14a to the hot water supply circulating in the water circulation pipe 23 when the heat pump is in a heating operation state. The temperature of the hot water supply water can be primarily heated, for example, from 0 ° C. to 15 ° C. to 40 ° C. to 50 ° C.

前記水循環配管23及び前記吐出配管12の途中には、該水循環配管23に関して第1給湯熱交換器25の下流側に位置するように第2給湯熱交換器26が接続されている。この第2給湯熱交換器26は、ヒートポンプが暖房運転状態において、前記第1給湯熱交換器25により40℃〜50℃に一次加熱された水循環配管23内の給湯水に前記吐出配管12内の高温・高圧の熱媒ガスの顕熱を伝達して熱交換し、前記給湯水の温度を70℃〜90℃に二次加熱するようにしている。   A second hot water supply heat exchanger 26 is connected midway between the water circulation pipe 23 and the discharge pipe 12 so as to be positioned downstream of the first hot water supply heat exchanger 25 with respect to the water circulation pipe 23. The second hot water supply heat exchanger 26 is connected to the hot water in the water circulation pipe 23 that is primarily heated to 40 ° C. to 50 ° C. by the first hot water supply heat exchanger 25 when the heat pump is in a heating operation state. The sensible heat of the high-temperature and high-pressure heat transfer medium gas is transmitted and heat exchange is performed, and the temperature of the hot water supply water is secondarily heated to 70 to 90 ° C.

なお、前記給湯タンク22には、給湯水を補給する補給配管27、給湯タンク22内の給湯水を採り出す蛇口28、給湯タンク22内の圧力が設定値以上に上昇した場合に圧力を外部に排出する排出管29及び安全弁30が設けられている。   The hot water supply tank 22 is supplied with a supply pipe 27 for supplying hot water, a faucet 28 for extracting hot water in the hot water supply tank 22, and the pressure when the pressure in the hot water supply tank 22 rises to a set value or more. A discharge pipe 29 for discharging and a safety valve 30 are provided.

前記各分岐熱媒配管14a〜14fには、電磁開閉弁31がそれぞれ接続され、図示しないヒートポンプの制御装置からの開閉信号により必要に応じて選択的に開閉されるようになっている。   Each of the branch heat medium pipes 14a to 14f is connected to an electromagnetic on-off valve 31, and is selectively opened and closed as required by an open / close signal from a heat pump control device (not shown).

次に、前記のように構成した冷暖房・給湯ヒートポンプシステムの動作について説明する。
図1は冷暖房ヒートポンプの四方弁13が暖房運転状態に切り換えられるとともに、各電磁開閉弁31が開路され、矢印Gは、冷暖房ヒートポンプの熱媒ガスの流れを示し、矢印Wは給湯回路の給湯水の流れを示す。圧縮機11から吐出された高温・高圧の熱媒ガスは、吐出配管12から第2給湯熱交換器26内を流れ、各分岐熱媒配管14a〜14fへ分流され、各室内熱交換器15により熱交換されて各室内の暖房に供される。その後、各分岐熱媒配管14a〜14f内の熱媒ガスは熱媒循環配管14に合流され、膨張弁21を経由して貯液タンク(図示略)に導かれ、室外熱交換器19に供給される。この室外熱交換器19において、熱媒ガスが空気の熱により加熱され、四方弁13及び吸入配管18を通って圧縮機11に戻される。
Next, the operation of the air conditioning / hot water supply heat pump system configured as described above will be described.
In FIG. 1, the four-way valve 13 of the air conditioning / heating heat pump is switched to the heating operation state, the electromagnetic on / off valves 31 are opened, the arrow G indicates the flow of the heat transfer medium gas of the air conditioning / heating heat pump, and the arrow W indicates hot water in the hot water supply circuit. Shows the flow. The high-temperature and high-pressure heat medium gas discharged from the compressor 11 flows from the discharge pipe 12 through the second hot water supply heat exchanger 26 and is divided into the branched heat medium pipes 14a to 14f. Heat is exchanged for heating in each room. Thereafter, the heat medium gas in each of the branch heat medium pipes 14 a to 14 f is joined to the heat medium circulation pipe 14, led to the liquid storage tank (not shown) via the expansion valve 21, and supplied to the outdoor heat exchanger 19. Is done. In the outdoor heat exchanger 19, the heat medium gas is heated by the heat of the air and is returned to the compressor 11 through the four-way valve 13 and the suction pipe 18.

一方、給湯回路の循環ポンプ24の運転により給湯タンク22内の給湯水が水循環配管23を通して、最初に第1給湯熱交換器25内に導かれ、この第1給湯熱交換器25によって熱交換が行われる。そして、前記分岐熱媒配管14aを流れる熱媒ガスの潜熱により水循環配管23内を流れる給湯水が例えば0℃〜15℃から40℃〜50℃に一次加熱される。この第1給湯熱交換器25によって室内の空気と熱交換され、室内の暖房が行われるとともに、前述した前記各室内熱交換器15による各室内の暖房が行われる。その後、第1給湯熱交換器25によって一次加熱された水循環配管23内の給湯水は、第2給湯熱交換器26内に流れて、ここでさらに熱交換が行われる。そして、前記吐出配管12内を流れる熱媒ガスの顕熱により一次加熱された給湯水が70℃〜90℃に二次加熱される。二次加熱された給湯水は前記給湯タンク22内に還流される。   On the other hand, by the operation of the circulation pump 24 of the hot water supply circuit, hot water in the hot water supply tank 22 is first led into the first hot water supply heat exchanger 25 through the water circulation pipe 23, and heat exchange is performed by the first hot water supply heat exchanger 25. Done. Then, the hot water flowing in the water circulation pipe 23 is primarily heated from 0 ° C. to 15 ° C. to 40 ° C. to 50 ° C. by the latent heat of the heat medium gas flowing through the branch heat medium pipe 14a. Heat is exchanged with the indoor air by the first hot water supply heat exchanger 25 to heat the room, and the indoor heat exchanger 15 described above heats the room. Thereafter, the hot water in the water circulation pipe 23 primarily heated by the first hot water supply heat exchanger 25 flows into the second hot water supply heat exchanger 26, where further heat exchange is performed. And the hot-water supply water primarily heated by the sensible heat of the heat transfer medium gas flowing in the discharge pipe 12 is secondarily heated to 70 ° C. to 90 ° C. Secondary heated hot water is returned to the hot water tank 22.

上記のヒートポンプの暖房運転動作及び給湯回路の給湯水の循環加熱動作が継続して所定時間行われると、給湯タンク22内の給湯水の温度が例えば70℃〜90℃に加熱され、この加熱された給湯水は適当に温度調節された後、例えば浴槽や流し台の蛇口28に導かれて利用される。   When the heating operation of the heat pump and the circulating heating operation of the hot water supply circuit are continuously performed for a predetermined time, the temperature of the hot water in the hot water tank 22 is heated to, for example, 70 ° C. to 90 ° C. and heated. After the temperature of the hot water is appropriately adjusted, it is guided to the faucet 28 of a bathtub or a sink for use.

一方、冷暖房ヒートポンプが夏季の冷房運転状態においては、図2に示すように熱媒ガスの流路方向は四方弁13によって矢印Gで示すように切り換えられるが、給湯回路の矢印Wで示す給湯水の流路方向は図1の矢印Wと同様である。   On the other hand, when the cooling / heating heat pump is in a cooling operation state in summer, the flow direction of the heat transfer medium gas is switched by the four-way valve 13 as shown by an arrow G as shown in FIG. The flow path direction is the same as the arrow W in FIG.

冷暖房ヒートポンプの冷房運転状態においては、ヒートポンプの図示しない制御装置からの制御信号により分岐熱媒配管14aに設けられた電磁開閉弁31が閉路される。この状態において、圧縮機11から吐出された高温・高圧の熱媒ガスは吐出配管12を通して第2給湯熱交換器26内に供給され、室外熱交換器19により空気の熱と熱交換された後、貯液タンク(図示略)によって凝縮され、その後、膨張弁21によって減圧・膨張され、各分岐熱媒配管14b〜14fに分流された後、各室内熱交換器15によって空気の熱と熱交換される。この熱交換によって、分岐熱媒配管14b〜14f内の減圧・膨張されて冷却された熱媒ガスにより室内が冷房される。その後、各分岐熱媒配管14b〜14f内の冷房に供された熱媒ガスは合流されて、四方弁13から吸入配管18に導かれ圧縮機11内に戻される。   In the cooling operation state of the cooling / heating heat pump, the electromagnetic on-off valve 31 provided in the branch heat medium pipe 14a is closed by a control signal from a control device (not shown) of the heat pump. In this state, the high-temperature and high-pressure heat medium gas discharged from the compressor 11 is supplied into the second hot water supply heat exchanger 26 through the discharge pipe 12 and is exchanged with the heat of the air by the outdoor heat exchanger 19. After being condensed by a liquid storage tank (not shown), then depressurized / expanded by the expansion valve 21 and divided into the respective branch heat medium pipes 14b to 14f, heat exchange with the heat of the air is performed by each indoor heat exchanger 15. Is done. By this heat exchange, the interior of the branched heat medium pipes 14b to 14f is cooled by the heat medium gas that has been decompressed and expanded and cooled. Thereafter, the heat medium gases provided for cooling in each of the branched heat medium pipes 14 b to 14 f are merged, led from the four-way valve 13 to the suction pipe 18, and returned to the compressor 11.

ところで、ヒートポンプが夏季において冷房運転状態にあるときには、水循環配管23内の給湯水の温度は、例えば20℃〜30℃と比較的高いので、前述したように第1給湯熱交換器25の機能を無効化し、第2給湯熱交換器26に入る給湯水の温度を上記の20℃〜30℃に保持することができる。このため、第2給湯熱交換器26による給湯水の二次加熱を暖房運転状態の場合に比較するとある程度低いが適正に行うことができるとともに、吐出配管12の冷媒ガスの温度が低下し過ぎることはないので、室内熱交換器15による室内の冷房温度が適正に保たれる。   By the way, when the heat pump is in a cooling operation state in the summer, the temperature of the hot water in the water circulation pipe 23 is relatively high, for example, 20 ° C. to 30 ° C. Therefore, as described above, the function of the first hot water supply heat exchanger 25 is achieved. The temperature of the hot water entering the second hot water supply heat exchanger 26 can be maintained at the above-described 20 ° C. to 30 ° C. For this reason, the secondary heating of the hot water by the second hot water supply heat exchanger 26 can be properly performed although it is somewhat lower than that in the heating operation state, and the temperature of the refrigerant gas in the discharge pipe 12 is too low. Therefore, the indoor cooling temperature by the indoor heat exchanger 15 is properly maintained.

上記実施形態の冷暖房・給湯ヒートポンプシステムによれば、以下のような効果を得ることができる。
(1)上記実施形態では、前記分岐熱媒配管14aと水循環配管23に第1給湯熱交換器25を設け、吐出配管12と水循環配管23に第2給湯熱交換器26を設けた。そして、冷暖房ヒートポンプの暖房運転状態において、水循環配管23内の給湯水を第1給湯熱交換器25によって分岐熱媒配管14a内を流れる熱媒ガスの潜熱により給湯水の温度を例えば0℃〜15℃から40〜50℃に一次加熱し、その後に、前記第2給湯熱交換器26によって前記吐出配管12内を流れる熱媒ガスの顕熱により一次加熱された給湯水を例えば70℃〜90℃に二次加熱するようにした。このように、前記第1給湯熱交換器25によって一次加熱された比較的高い温度の給湯水を第2給湯熱交換器26によって二次加熱するため、第2給湯熱交換器26によって熱交換する顕熱の熱量は少なくて済み、吐出配管12内の熱媒ガスの凝縮は起きず、同時に室内熱交換器15が稼働していてもヒートポンプとしての能力低下が生じることがない。従って、給湯水の加熱と室内熱交換器15による室内の暖房運転をともに適正に行うことができるとともに、圧縮機11の運転を給湯水の加熱のために高速運転する必要がないので、ヒートポンプとしての成績係数(COP)を向上することができる。
According to the air conditioning / hot water supply heat pump system of the above embodiment, the following effects can be obtained.
(1) In the said embodiment, the 1st hot water supply heat exchanger 25 was provided in the said branch heat-medium piping 14a and the water circulation piping 23, and the 2nd hot water supply heat exchanger 26 was provided in the discharge piping 12 and the water circulation piping 23. And in the heating operation state of the cooling / heating heat pump, the temperature of the hot water supply is set to, for example, 0 ° C. to 15 ° C. by the latent heat of the heat transfer gas flowing in the branch heat transfer medium pipe 14a by the first hot water supply heat exchanger 25. After the primary heating from 40 ° C. to 40 to 50 ° C., the hot water heated primarily by the sensible heat of the heat transfer medium gas flowing in the discharge pipe 12 by the second hot water supply heat exchanger 26 is, for example, 70 ° C. to 90 ° C. Secondary heating was performed. As described above, since the hot water having a relatively high temperature primarily heated by the first hot water supply heat exchanger 25 is secondarily heated by the second hot water supply heat exchanger 26, heat is exchanged by the second hot water supply heat exchanger 26. The amount of sensible heat is small, the heat medium gas in the discharge pipe 12 does not condense, and at the same time, even if the indoor heat exchanger 15 is operating, the capacity of the heat pump does not deteriorate. Therefore, both the heating of the hot water and the indoor heating operation by the indoor heat exchanger 15 can be properly performed, and the compressor 11 does not need to be operated at high speed for heating of the hot water. The coefficient of performance (COP) can be improved.

(2)上記実施形態では、冷暖房ヒートポンプの暖房運転時又は冷房運転時に5台の室内熱交換器15が全て運転されて全体の負荷が増加すると、制御装置のインバーターにより圧縮機11の回転数が上昇し、前記第2給湯熱交換器26を通過する高温・高圧の熱媒ガスの循環量を増加することができる。このため、熱交換可能な顕熱量が増加することになり、給湯回路の給湯水の温度の上昇を促進することができる。すなわち、圧縮機11に対し消費電力(仕事量)の増大する無理な高速運転をさせることなく、暖房負荷の高い寒い条件下又は冷房負荷の高い条件下ほど高温の給湯水が得られるという顕著な効果がある。   (2) In the above embodiment, when all the five indoor heat exchangers 15 are operated during the heating operation or cooling operation of the air conditioning heat pump and the overall load increases, the rotation speed of the compressor 11 is increased by the inverter of the control device. The circulation amount of the high-temperature and high-pressure heat transfer medium gas that rises and passes through the second hot water supply heat exchanger 26 can be increased. For this reason, the amount of sensible heat that can be heat-exchanged increases, and the rise in the temperature of hot water in the hot water supply circuit can be promoted. That is, it is remarkable that hot water supply water can be obtained under a cold condition with a high heating load or a high cooling load condition without causing the compressor 11 to perform an excessively high speed operation that increases power consumption (work amount). effective.

ここで、冷暖房・給湯ヒートポンプシステムの具体的な運転状態について、図3のモリエル線図及び冷凍サイクルを参照しながら説明する。前記第1給湯熱交換器25による給湯水の加熱には、冷凍サイクルの(ハ)〜(ニ)の熱媒ガスの50℃前後の潜熱(凝縮熱)が利用され、第2給湯熱交換器26による給湯水の加熱には、同じく冷凍サイクルの(ロ)〜(ハ)の熱媒ガスの70℃の顕熱(スーパヒート)が利用される。給湯に利用される熱量は、図3の(ロ)と(ニ)の間の比エンタルピーが237(h/kj・kg)であり、これに対する(ロ)と(ハ)の顕熱(スーパヒート)の比エンタルピー37(h/kj・kg)の割合(%)は、15.6%となる。従って、本実施形態のヒートポンプは、従来の潜熱利用のヒートポンプと比較して、15.6%の能力アップとなり、給湯水の高温化にも寄与することが判った。   Here, a specific operation state of the air conditioning / hot water supply heat pump system will be described with reference to the Mollier diagram and the refrigeration cycle of FIG. For heating the hot water by the first hot water supply heat exchanger 25, latent heat (condensation heat) of about 50 ° C. of the heat transfer medium gas (c) to (d) of the refrigeration cycle is used, and the second hot water supply heat exchanger Similarly, the heating water of the hot water supplied by No. 26 uses the sensible heat (superheat) at 70 ° C. of the heating medium gas (b) to (c) of the refrigeration cycle. The specific enthalpy between (b) and (d) in FIG. 3 is 237 (h / kj · kg), and the amount of heat used for hot water supply is (b) and (c) sensible heat (superheat). The ratio (%) of the specific enthalpy 37 (h / kj · kg) is 15.6%. Therefore, it was found that the heat pump according to the present embodiment has a 15.6% increase in capacity as compared with a conventional heat pump using latent heat, and contributes to a higher temperature of hot water.

ヒートポンプの暖房運転状態において、50℃の凝縮温度を利用したヒートポンプを想定した場合、熱媒ガス(R−410A)の50℃において給湯水の温度15℃まで過冷却利用しようとすると、利用できる比エンタルピーは図3の(ハ)における数値と(ニ)における数値を減算して、425−225=200(h/kj・kg)となる。この熱媒ガスを膨張弁21により絞り膨張させて0℃にして、蒸発乾燥させた熱媒ガスを圧縮機11で凝縮温度が50℃になるまで上昇しようとすると、熱媒ガスは高温・高圧化し比エンタルピーは462(h/kj・kg)、圧縮機11の吐出温度は70℃に上昇する。この吐出熱媒ガスの凝縮温度との差分462−425=37(h/kj・kg)の比エンタルピーを利用して給湯水の二次加熱に利用する。   In a heating operation state of the heat pump, assuming a heat pump using a condensation temperature of 50 ° C., a ratio that can be used when supercooling to a hot water temperature of 15 ° C. at 50 ° C. of the heating medium gas (R-410A) The enthalpy is 425−225 = 200 (h / kj · kg) by subtracting the numerical value in (c) of FIG. 3 and the numerical value in (d). When this heating medium gas is squeezed and expanded by an expansion valve 21 to 0 ° C. and the evaporation medium is heated up to a condensation temperature of 50 ° C. by the compressor 11, the heating medium gas is heated to a high temperature and a high pressure. The specific enthalpy is 462 (h / kj · kg), and the discharge temperature of the compressor 11 rises to 70 ° C. Utilizing the specific enthalpy of the difference 462-425 = 37 (h / kj · kg) with respect to the condensation temperature of the discharged heat transfer medium gas, it is used for secondary heating of hot water.

従来方式では圧縮機11が高速運転されると、背景技術で述べたように図3に二点鎖線で示す冷凍サイクルの(イ’)〜(ロ’)のように熱媒ガスが圧縮されて、比エンタルピーが480(h/kj・kg)必要となる。一方、本実施形態のヒートポンプにおいては、上述のように比エンタルピーは462(h/kj・kg)となるので、圧縮機11の仕事量として、480−462=28(h/kj・kg)の減少となり、成績係数(COP)が向上する。   In the conventional method, when the compressor 11 is operated at a high speed, the heat transfer gas is compressed as shown in (b ') to (b') of the refrigeration cycle shown by the two-dot chain line in FIG. 3 as described in the background art. Specific enthalpy is required to be 480 (h / kj · kg). On the other hand, in the heat pump of this embodiment, since the specific enthalpy is 462 (h / kj · kg) as described above, the work amount of the compressor 11 is 480−462 = 28 (h / kj · kg). The coefficient of performance (COP) is improved.

次に、この発明の別の実施形態を図4に基づいて説明する。
この実施形態においては、前記水循環配管23に対し電磁切換弁32を介して、分岐水循環配管33を、前記第1給湯熱交換器25と並列に接続している。又、この分岐水循環配管33と前記室外熱交換器19と膨張弁21との間の熱媒循環配管14とに対し、第3給湯熱交換器34を接続している。
Next, another embodiment of the present invention will be described with reference to FIG.
In this embodiment, a branch water circulation pipe 33 is connected to the water circulation pipe 23 in parallel with the first hot water supply heat exchanger 25 via an electromagnetic switching valve 32. A third hot water supply heat exchanger 34 is connected to the branch water circulation pipe 33 and the heat medium circulation pipe 14 between the outdoor heat exchanger 19 and the expansion valve 21.

この実施形態においては、冷房運転状態において、前記切換弁32が前記第1給湯熱交換器25を迂回する分岐水循環配管33及び第3給湯熱交換器34に切り替えられ、前記室外熱交換器19によって凝縮された熱媒ガスの潜熱により、分岐水循環配管33内を通過する給湯水が例えば0℃〜15℃から40〜50℃に一次加熱される。その後、前記第2給湯熱交換器26により給湯水が例えば70℃〜90℃に二次加熱されるので、ヒートポンプの冷房運転状態において、給湯水を適正に加熱することができる。   In this embodiment, in the cooling operation state, the switching valve 32 is switched to the branch water circulation pipe 33 and the third hot water supply heat exchanger 34 that bypass the first hot water supply heat exchanger 25, and the outdoor heat exchanger 19 The hot water passing through the branch water circulation pipe 33 is primarily heated from 0 ° C. to 15 ° C. to 40 ° C. to 50 ° C., for example, due to the latent heat of the condensed heat medium gas. Then, since the hot water is secondarily heated to, for example, 70 ° C. to 90 ° C. by the second hot water supply heat exchanger 26, the hot water can be appropriately heated in the cooling operation state of the heat pump.

次に、この発明の別の実施形態を図5に基づいて説明する。
この実施形態においては、前記電磁開閉弁31と前記膨張弁21との間の前記熱媒循環配管14と前記水循環配管23に対し、前記第1給湯熱交換器25を接続している。
Next, another embodiment of the present invention will be described with reference to FIG.
In this embodiment, the first hot water supply heat exchanger 25 is connected to the heat medium circulation pipe 14 and the water circulation pipe 23 between the electromagnetic on-off valve 31 and the expansion valve 21.

この実施形態においては、ヒートポンプの暖房運転状態において、前記室内熱交換器15から室外熱交換器19によって、空気に廃熱される熱を、水循環配管23の給湯水の一次加熱に利用することができるので、ヒートポンプの効率を向上し、さらに成績係数(COP)を向上することができる。   In this embodiment, in the heating operation state of the heat pump, the heat exhausted to the air by the indoor heat exchanger 15 to the outdoor heat exchanger 19 can be used for primary heating of hot water in the water circulation pipe 23. Therefore, the efficiency of the heat pump can be improved and the coefficient of performance (COP) can be further improved.

次に、この発明の別の実施形態を図6に基づいて説明する。
この実施形態においては、図5に示す実施形態において、図4に示す実施形態の前記切換弁32、分岐水循環配管33及び第3給湯熱交換器34を配設して図6に示すシステムを構成している。従って、この実施形態においては、冷房運転状態において、給湯水を中温に適正に加熱して、第2給湯熱交換器26による二次加熱を適正に行い、冷房運転を適正に行うことができるとともに、給湯水の加熱を適正に行うことができる。
Next, another embodiment of the present invention will be described with reference to FIG.
In this embodiment, in the embodiment shown in FIG. 5, the switching valve 32, the branch water circulation pipe 33, and the third hot water supply heat exchanger 34 of the embodiment shown in FIG. 4 are arranged to constitute the system shown in FIG. is doing. Therefore, in this embodiment, in the cooling operation state, the hot water is appropriately heated to an intermediate temperature, the secondary heating by the second hot water supply heat exchanger 26 is appropriately performed, and the cooling operation can be appropriately performed. The hot water can be properly heated.

以上の説明で明らかなように、この発明の冷暖房・給湯ヒートポンプシステムは、暖房運転状態において前記室内熱交換器15に供給される熱媒ガスの温度が第2給湯熱交換器26によって低下するのを防ぐようにしたものであり、これを達成するために前記四方弁13と膨張弁21との間の分岐熱媒配管14a又は熱媒循環配管14に第1給湯熱交換器25を設け、水循環配管23を流れる水の一次加熱により水を中温(40〜50℃)に加熱するようにしている。   As apparent from the above description, in the air conditioning / hot water supply heat pump system of the present invention, the temperature of the heat transfer medium gas supplied to the indoor heat exchanger 15 in the heating operation state is lowered by the second hot water supply heat exchanger 26. In order to achieve this, a first hot water supply heat exchanger 25 is provided in the branched heat medium pipe 14a or the heat medium circulation pipe 14 between the four-way valve 13 and the expansion valve 21, and water circulation is achieved. Water is heated to an intermediate temperature (40 to 50 ° C.) by primary heating of water flowing through the pipe 23.

なお、上記実施形態は以下のように変更してもよい。
・前記実施形態では室内熱交換器15を5台使用したが、これを1台、2台、3台、4台、6台、あるいはそれ以上の台数としてもよい。
In addition, you may change the said embodiment as follows.
In the above embodiment, five indoor heat exchangers 15 are used, but this may be one, two, three, four, six, or more.

・前記実施形態では空気の熱を利用した室外熱交換器19を用いたが、これに代えて水の熱を利用した室外熱交換器を用いたり、地中熱を利用した室外熱交換器を用いたりしてもよい。   In the above embodiment, the outdoor heat exchanger 19 using the heat of air is used, but instead of this, an outdoor heat exchanger using the heat of water is used, or an outdoor heat exchanger using the underground heat is used. It may be used.

この発明の冷暖房・給湯ヒートポンプシステムを具体化した一実施形態を示す暖房運転状態の回路図。The circuit diagram of the heating operation state which shows one Embodiment which actualized the air-conditioning and hot-water supply heat pump system of this invention. 同じくヒートポンプシステムの冷房運転状態の回路図。The circuit diagram of the cooling operation state of a heat pump system similarly. 横軸に比エンタルピー、縦軸に圧力を表したモリエル線図。Mollier diagram with specific enthalpy on the horizontal axis and pressure on the vertical axis. この発明の冷暖房・給湯ヒートポンプシステムを具体化した別の実施形態を示す暖房運転状態の回路図。The circuit diagram of the heating operation state which shows another embodiment which actualized the air-conditioning and hot water supply heat pump system of this invention. この発明の冷暖房・給湯ヒートポンプシステムを具体化した別の実施形態を示す暖房運転状態の回路図。The circuit diagram of the heating operation state which shows another embodiment which actualized the air-conditioning and hot water supply heat pump system of this invention. この発明の冷暖房・給湯ヒートポンプシステムを具体化した別の実施形態を示す暖房運転状態の回路図。The circuit diagram of the heating operation state which shows another embodiment which actualized the air-conditioning and hot water supply heat pump system of this invention.

符号の説明Explanation of symbols

11…圧縮機、12…吐出配管、13…四方弁、14…熱媒循環配管、14a〜14f…分岐熱媒配管、15…室内熱交換器、18…吸入配管、19…室外熱交換器、21…膨張弁、22…給湯タンク、23…水循環配管、24…循環ポンプ、25…第1給湯熱交換器、26…第2給湯熱交換器、32…切換弁、33…分岐水循環配管、34…第3給湯熱交換器。   DESCRIPTION OF SYMBOLS 11 ... Compressor, 12 ... Discharge piping, 13 ... Four-way valve, 14 ... Heat-medium circulation piping, 14a-14f ... Branch heat-medium piping, 15 ... Indoor heat exchanger, 18 ... Intake piping, 19 ... Outdoor heat exchanger, DESCRIPTION OF SYMBOLS 21 ... Expansion valve, 22 ... Hot water supply tank, 23 ... Water circulation piping, 24 ... Circulation pump, 25 ... 1st hot water supply heat exchanger, 26 ... 2nd hot water supply heat exchanger, 32 ... Switching valve, 33 ... Branch water circulation piping, 34 ... 3rd hot water supply heat exchanger.

Claims (5)

圧縮機に吐出配管及び吸入配管を介して四方弁を接続し、該四方弁に熱媒循環配管を接続し、該熱媒循環配管に空調用の室内熱交換器、膨張弁及び室外熱交換器を直列に接続して冷凍サイクルを構成し、一方、給湯タンクに接続された水循環配管の途中に循環ポンプを接続し、前記水循環配管と、前記熱媒循環配管に対し前記室内熱交換器と並列に接続された分岐熱媒配管とに対し、該分岐熱媒配管を流れる熱媒ガスの潜熱により水循環配管を流れる給湯水を一次加熱するための第1給湯熱交換器を設け、前記水循環配管と前記吐出配管とに対し、該吐出配管を流れる熱媒ガスの顕熱により水循環配管を流れる給湯水を二次加熱するための第2給湯熱交換器を設け、前記分岐熱媒配管に開閉弁を設け、冷房運転状態においては、前記開閉弁が制御装置からの信号により閉じられるように構成されていることを特徴とする冷暖房・給湯ヒートポンプシステム。 A four-way valve is connected to the compressor via a discharge pipe and a suction pipe, a heat medium circulation pipe is connected to the four-way valve, and an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger for air conditioning are connected to the heat medium circulation pipe. Are connected in series to form a refrigeration cycle, and on the other hand, a circulation pump is connected in the middle of a water circulation pipe connected to a hot water tank, and the indoor heat exchanger is parallel to the water circulation pipe and the heat medium circulation pipe. A first hot water supply heat exchanger for primarily heating hot water flowing through the water circulation pipe by latent heat of the heat transfer medium gas flowing through the branch heat medium pipe, and the water circulation pipe A second hot water supply heat exchanger for secondary heating of hot water flowing through the water circulation pipe by sensible heat of the heat transfer medium gas flowing through the discharge pipe is provided to the discharge pipe, and an on-off valve is provided in the branch heat medium pipe. In the cooling operation state, the on-off valve Air-hot water heat pump system, characterized by being configured to be closed by a signal from the control device. 圧縮機に吐出配管及び吸入配管を介して四方弁を接続し、該四方弁に熱媒循環配管を接続し、該熱媒循環配管に空調用の室内熱交換器、膨張弁及び室外熱交換器を直列に接続して冷凍サイクルを構成し、一方、給湯タンクに接続された水循環配管の途中に循環ポンプを接続し、前記水循環配管と、前記室内熱交換器及び膨張弁の間の前記熱媒循環配管とに対し、該熱媒循環配管を流れる熱媒ガスの潜熱により水循環配管を流れる給湯水を一次加熱するための第1給湯熱交換器を設け、前記水循環配管と前記吐出配管とに対し、該吐出配管を流れる熱媒ガスの顕熱により水循環配管を流れる給湯水を二次加熱するための第2給湯熱交換器を設けたことを特徴とする冷暖房・給湯ヒートポンプシステム。 A four-way valve is connected to the compressor via a discharge pipe and a suction pipe, a heat medium circulation pipe is connected to the four-way valve, and an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger for air conditioning are connected to the heat medium circulation pipe. Are connected in series to form a refrigeration cycle, and on the other hand, a circulation pump is connected in the middle of a water circulation pipe connected to the hot water tank, and the heat medium between the water circulation pipe, the indoor heat exchanger and the expansion valve is connected. A first hot water supply heat exchanger is provided for primary heating of hot water flowing through the water circulation pipe by the latent heat of the heat transfer medium gas flowing through the heat medium circulation pipe, and the circulation pipe is connected to the water circulation pipe and the discharge pipe. An air conditioning / hot water heat pump system comprising a second hot water supply heat exchanger for secondary heating of hot water flowing through the water circulation pipe by sensible heat of the heat transfer medium gas flowing through the discharge pipe. 請求項1又は2において、前記水循環配管には分岐水循環配管が切換弁を介して前記第1給湯熱交換器と並列に接続され、該分岐水循環配管と前記膨張弁と室外熱交換器との間の前記熱媒循環配管とに対し第3給湯熱交換器が接続され、冷房運転時に前記切換弁が切り換え動作されて前記第1給湯熱交換器に代えて、第3給湯熱交換器が使用されるように構成されていることを特徴とする冷暖房・給湯ヒートポンプシステム。 3. The water circulation pipe according to claim 1 or 2, wherein a branch water circulation pipe is connected in parallel to the first hot water supply heat exchanger via a switching valve between the branch water circulation pipe, the expansion valve, and the outdoor heat exchanger. A third hot water supply heat exchanger is connected to the heat medium circulation pipe, and the switching valve is switched during cooling operation to use the third hot water supply heat exchanger instead of the first hot water supply heat exchanger. An air-conditioning / hot-water supply heat pump system characterized by being configured as described above. 請求項1又は3において、前記室内熱交換器は前記分岐熱媒配管とは別に並列接続された複数の分岐熱媒配管にそれぞれ直列に接続され、前記各分岐熱媒配管には前記各室内熱交換器を選択して使用するための開閉弁が設けられていることを特徴とする冷暖房・給湯ヒートポンプシステム。 4. The indoor heat exchanger according to claim 1, wherein the indoor heat exchanger is connected in series to a plurality of branch heat medium pipes connected in parallel separately from the branch heat medium pipes, and each of the indoor heat exchangers is connected to each branch heat medium pipe. An on-off valve for selecting and using an exchanger is provided for an air conditioning / hot water supply heat pump system. 請求項2において、前記熱媒循環配管の途中には、複数の分岐熱媒配管が並列に接続され、前記各分岐熱媒配管には前記室内熱交換器がそれぞれ接続され、前記各分岐熱媒配管には各室内熱交換器を選択して使用するための開閉弁が設けられていることを特徴とする冷暖房・給湯ヒートポンプシステム。 3. The branch heat medium pipe according to claim 2, wherein a plurality of branch heat medium pipes are connected in parallel in the middle of the heat medium circulation pipe, and the indoor heat exchanger is connected to each of the branch heat medium pipes. An air-conditioning / hot-water heat pump system characterized in that the piping is provided with an on-off valve for selecting and using each indoor heat exchanger.
JP2007260204A 2007-10-03 2007-10-03 Air conditioning / hot water heat pump system Active JP4918450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007260204A JP4918450B2 (en) 2007-10-03 2007-10-03 Air conditioning / hot water heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007260204A JP4918450B2 (en) 2007-10-03 2007-10-03 Air conditioning / hot water heat pump system

Publications (2)

Publication Number Publication Date
JP2009092251A true JP2009092251A (en) 2009-04-30
JP4918450B2 JP4918450B2 (en) 2012-04-18

Family

ID=40664412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007260204A Active JP4918450B2 (en) 2007-10-03 2007-10-03 Air conditioning / hot water heat pump system

Country Status (1)

Country Link
JP (1) JP4918450B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065659A (en) * 2014-09-24 2016-04-28 東芝キヤリア株式会社 Heat pump device
JP2016090180A (en) * 2014-11-07 2016-05-23 ダイキン工業株式会社 Coolant/water heat exchange unit and air-conditioning system
JP2016102598A (en) * 2014-11-27 2016-06-02 ダイキン工業株式会社 Hot water supply air-conditioning system
JP6144396B1 (en) * 2016-09-14 2017-06-07 伸和コントロールズ株式会社 Liquid temperature control device and temperature control system
WO2018043454A1 (en) * 2016-08-31 2018-03-08 日立ジョンソンコントロールズ空調株式会社 Air conditioning and hot water supplying system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167561A (en) * 1987-12-21 1989-07-03 Sanyo Electric Co Ltd Multi-room type air-conditioning equipment
JPH05312409A (en) * 1992-05-14 1993-11-22 Matsushita Electric Ind Co Ltd Heat pump type hot water feeding machine
JP2001255002A (en) * 2000-03-09 2001-09-21 Tokyo Gas Co Ltd Water heater
JP2003343915A (en) * 2002-05-23 2003-12-03 Denso Corp Heat exchanger
JP2005164104A (en) * 2003-12-01 2005-06-23 Matsushita Electric Ind Co Ltd Heat pump device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167561A (en) * 1987-12-21 1989-07-03 Sanyo Electric Co Ltd Multi-room type air-conditioning equipment
JPH05312409A (en) * 1992-05-14 1993-11-22 Matsushita Electric Ind Co Ltd Heat pump type hot water feeding machine
JP2001255002A (en) * 2000-03-09 2001-09-21 Tokyo Gas Co Ltd Water heater
JP2003343915A (en) * 2002-05-23 2003-12-03 Denso Corp Heat exchanger
JP2005164104A (en) * 2003-12-01 2005-06-23 Matsushita Electric Ind Co Ltd Heat pump device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065659A (en) * 2014-09-24 2016-04-28 東芝キヤリア株式会社 Heat pump device
JP2016090180A (en) * 2014-11-07 2016-05-23 ダイキン工業株式会社 Coolant/water heat exchange unit and air-conditioning system
JP2016102598A (en) * 2014-11-27 2016-06-02 ダイキン工業株式会社 Hot water supply air-conditioning system
WO2018043454A1 (en) * 2016-08-31 2018-03-08 日立ジョンソンコントロールズ空調株式会社 Air conditioning and hot water supplying system
JP6144396B1 (en) * 2016-09-14 2017-06-07 伸和コントロールズ株式会社 Liquid temperature control device and temperature control system
WO2018051745A1 (en) * 2016-09-14 2018-03-22 伸和コントロールズ株式会社 Liquid temperature adjustment apparatus and temperature control system
CN108076653A (en) * 2016-09-14 2018-05-25 伸和控制工业股份有限公司 Liquid register and temperature control system
KR20190046587A (en) * 2016-09-14 2019-05-07 신와 콘트롤즈 가부시키가이샤 Liquid temperature controllers and temperature control systems
CN108076653B (en) * 2016-09-14 2020-08-04 伸和控制工业股份有限公司 Liquid temperature adjusting device and temperature control system
KR102184235B1 (en) 2016-09-14 2020-11-30 신와 콘트롤즈 가부시키가이샤 Liquid thermostat and temperature control system

Also Published As

Publication number Publication date
JP4918450B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
US7805961B2 (en) Supercooling apparatus of simultaneous cooling and heating type multiple air conditioner
KR101071409B1 (en) Hot water generating system using 2 step heat pump cycles
WO2011048695A1 (en) Air conditioning device
JP2006258343A (en) Air conditioning system
JP2004257586A (en) Refrigerator using carbon dioxide as refrigerant
KR101176571B1 (en) Hot water generating system using 2 step heat pump cycles
JP2011080634A (en) Refrigerating cycle device and hot-water heating device
JP4918450B2 (en) Air conditioning / hot water heat pump system
WO2018078810A1 (en) Air conditioner
KR101142914B1 (en) Hot water and cool water product system using 2-steps heat pump cycles
JP3126239U (en) Air conditioner
JP2007321995A (en) Refrigerating cycle device
CN104848590B (en) Trilogy supply water source heat pump units
KR101212683B1 (en) Hot water supply device associated with heat pump
KR20180072368A (en) Integrating type air conditioning and heat pump system
JP2008275249A (en) Refrigerating cycle
JP2019060544A (en) Air conditioner
CN102753908B (en) Air conditioning device
KR101653567B1 (en) A Duality Cold Cycle Heatpump System Recovering Heat
JP5150300B2 (en) Heat pump type water heater
KR101753086B1 (en) Hybrid type air conditioning and heat pump system
JP5447968B2 (en) Heat pump equipment
KR100849613B1 (en) High effectiveness heat pump system that available water heating and floor heating
CN100535553C (en) Air source cold-hot energy machine set
JP2010190537A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4918450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250