JP2016102188A - Photocurable resin composition and high refractivity resin hardened body - Google Patents

Photocurable resin composition and high refractivity resin hardened body Download PDF

Info

Publication number
JP2016102188A
JP2016102188A JP2014242615A JP2014242615A JP2016102188A JP 2016102188 A JP2016102188 A JP 2016102188A JP 2014242615 A JP2014242615 A JP 2014242615A JP 2014242615 A JP2014242615 A JP 2014242615A JP 2016102188 A JP2016102188 A JP 2016102188A
Authority
JP
Japan
Prior art keywords
component
resin composition
photocurable resin
compound
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014242615A
Other languages
Japanese (ja)
Other versions
JP6448083B2 (en
Inventor
智史 青野
Tomohito Aono
智史 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoritsu Chemical and Co Ltd
Original Assignee
Kyoritsu Chemical and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoritsu Chemical and Co Ltd filed Critical Kyoritsu Chemical and Co Ltd
Priority to JP2014242615A priority Critical patent/JP6448083B2/en
Publication of JP2016102188A publication Critical patent/JP2016102188A/en
Application granted granted Critical
Publication of JP6448083B2 publication Critical patent/JP6448083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a photocurable resin composition that can produce a resin hardened body having a higher refractive index than the conventional photocurable resin composition, and to provide a high refractivity resin hardened body obtained by molding and hardening the same.SOLUTION: There is provided a photocurable resin composition containing a compound represented by the formula (1), and a mono-functional epoxy compound having a phenyl phenol skeleton. (R is each independently a C1 to 3 methylene group or an alkylene group; n is each independently an integer of 0 or more.)SELECTED DRAWING: None

Description

本発明は、光硬化性樹脂組成物及び高屈折性樹脂硬化体に関する。   The present invention relates to a photocurable resin composition and a highly refractive resin cured body.

高屈折率プラスチックは、成形の容易性、軽量等の特徴により、光学関連材料に幅広く用いられている。
高屈折率化を達成する手段としては、例えば、光硬化性樹脂組成物に速硬性と高屈折性に優れるフルオレン骨格を有する二官能エポキシ化合物を配合する方法が挙げられる(例えば、特許文献1)。
High refractive index plastics are widely used for optical materials because of their ease of molding and light weight.
As a means for achieving a high refractive index, for example, a method of blending a bifunctional epoxy compound having a fluorene skeleton excellent in fast curing and high refractive properties into a photocurable resin composition can be mentioned (for example, Patent Document 1). .

特開2005−314692号公報Japanese Patent Laid-Open No. 2005-314692

しかし、フルオレン骨格を有する二官能エポキシ化合物を配合した従来の光硬化性樹脂組成物(以下、従来の光硬化性樹脂組成物という)は、近年のレンズやディスプレイの薄型化など、デバイスの高機能小型化によるさらなる高屈折率化の要請に対して、屈折率のもう一段の向上が求められている。   However, conventional photocurable resin compositions containing a bifunctional epoxy compound having a fluorene skeleton (hereinafter referred to as conventional photocurable resin compositions) are highly functional devices such as thin lenses and displays in recent years. In response to the demand for higher refractive index due to miniaturization, further improvement in refractive index is required.

本発明は、従来の光硬化性樹脂組成物よりも高屈折率の樹脂硬化体を製造することができる光硬化性樹脂組成物と、これを成形及び硬化してなる高屈折性の樹脂硬化体を提供することを課題とする。   The present invention relates to a photocurable resin composition capable of producing a resin cured product having a higher refractive index than that of a conventional photocurable resin composition, and a highly refractive resin cured product obtained by molding and curing the composition. It is an issue to provide.

本発明は、
〔1〕下記式(1):
The present invention
[1] The following formula (1):

(式中、Rは炭素原子数1〜3のメチレン基又はアルキレン基であり、互いに同一でも異なってもよく、nは0以上の数であり、互いに同一でも異なってもよい)で表されるフルオレン骨格を有する二官能エポキシ化合物(成分A)、及び、下記式(2): (Wherein, R is a methylene group or alkylene group having 1 to 3 carbon atoms, and may be the same or different, and n is a number of 0 or more, and may be the same or different). Bifunctional epoxy compound (component A) having a fluorene skeleton, and the following formula (2):

(式中、mは1〜3の数である)で表されるフェニルフェノール骨格を有する単官能エポキシ化合物(成分B)を含む光硬化性樹脂組成物、及び、
〔2〕前項1記載の光硬化性樹脂組成物を成形及び硬化してなる高屈折性樹脂硬化体、である。
(Wherein m is a number from 1 to 3), a photocurable resin composition containing a monofunctional epoxy compound (component B) having a phenylphenol skeleton, and
[2] A highly refractive resin cured product obtained by molding and curing the photocurable resin composition according to item 1 above.

本発明によれば、従来の光硬化性樹脂組成物よりも高屈折率の樹脂硬化体を製造することができる光硬化性樹脂組成物と、これを成形及び硬化してなる高屈折性の樹脂硬化体を提供することができる。   According to the present invention, a photocurable resin composition capable of producing a cured resin having a higher refractive index than a conventional photocurable resin composition, and a highly refractive resin obtained by molding and curing the composition. A cured body can be provided.

(1)成分A
本発明の光硬化性樹脂組成物(以下、光硬化性樹脂組成物ともいう)は、下記式(1):
(1) Component A
The photocurable resin composition of the present invention (hereinafter also referred to as a photocurable resin composition) has the following formula (1):

(式中、Rは炭素原子数1〜3のメチレン基又はアルキレン基であり、互いに同一でも異なってもよく、nは0以上の数であり、互いに同一でも異なってもよい)で表されるフルオレン骨格を有する二官能エポキシ化合物硬化性化合物(成分A)を含む。 (Wherein, R is a methylene group or alkylene group having 1 to 3 carbon atoms, and may be the same or different, and n is a number of 0 or more, and may be the same or different). A bifunctional epoxy compound-curable compound (component A) having a fluorene skeleton is included.

式(1)中のRは、炭素原子数1〜3のメチレン基又はアルキレン基である。
アルキレン基としては、エチレン基、プロピレン基などが挙げられ、高屈折率付与の観点から、メチレン基及び/又はエチレン基が好ましく、メチレン基がより好ましい。
Rは互いに同一でも異なってもよいが、成分Aの生産性の観点から、同一であることが好ましい。
R in Formula (1) is a methylene group or alkylene group having 1 to 3 carbon atoms.
Examples of the alkylene group include an ethylene group and a propylene group. From the viewpoint of imparting a high refractive index, a methylene group and / or an ethylene group is preferable, and a methylene group is more preferable.
R may be the same as or different from each other, but are preferably the same from the viewpoint of the productivity of Component A.

式(1)中のnは、高屈折率付与の観点から0以上の数であるが、成形性の観点から、成分Aを、好ましくは50〜200℃、より好ましくは50〜150℃、更に好ましくは50〜100℃で加熱したときに、成分Aが、成形するのに十分な流動性を有するようなnを選択することが好ましく、0〜2の数であることがより好ましい。
nは互いに同一でも異なってもよいが、成分Aの生産性の観点から、同一であることが好ましい。
N in the formula (1) is a number of 0 or more from the viewpoint of imparting a high refractive index, but from the viewpoint of moldability, the component A is preferably 50 to 200 ° C, more preferably 50 to 150 ° C, and further Preferably, n is selected such that the component A has sufficient fluidity to be molded when heated at 50 to 100 ° C., more preferably 0 to 2.
n may be the same as or different from each other, but are preferably the same from the viewpoint of the productivity of Component A.

成分Aとしては、具体的には、9,9−ビス(グリシジルオキシC2−3アルコキシフェニル)フルオレンが挙げられる。 Specific examples of component A include 9,9-bis (glycidyloxy C 2-3 alkoxyphenyl) fluorene.

成分Aは、対応する9,9−ビス(ヒドロキシフェニル)フルオレン類のアルキレンオキシド付加体と、エピクロルヒドリンとを反応させることにより得ることができる。   Component A can be obtained by reacting the corresponding alkylene oxide adduct of 9,9-bis (hydroxyphenyl) fluorenes with epichlorohydrin.

なお、9,9−ビス(モノヒドロキシフェニル)フルオレン類のアルキレンオキシド付加体の製造方法は、例えば、9,9−ビス(ヒドロキシフェニル)フルオレン類と、対応するアルキレンオキサイド(C2−3アルキレンオキシド)を、必要に応じて触媒(塩基触媒など)の存在下で反応させて製造できる。 In addition, the manufacturing method of the alkylene oxide adduct of 9,9-bis (monohydroxyphenyl) fluorene is, for example, 9,9-bis (hydroxyphenyl) fluorene and the corresponding alkylene oxide ( C2-3 alkylene oxide). ) In the presence of a catalyst (such as a base catalyst) as necessary.

成分Aとして、市販品である大阪ガスケミカル社製オグソールEG−200を使用することができる。   As component A, commercially available product Ogsol EG-200 manufactured by Osaka Gas Chemical Co., Ltd. can be used.

(2)成分B
光硬化性樹脂組成物は、下記式(2):
(式中、mは1〜3の数である)で表されるフェニルフェノール骨格を有する単官能エポキシ化合物(成分B)を含む。
(2) Component B
The photocurable resin composition has the following formula (2):
(Wherein m is a number from 1 to 3), and a monofunctional epoxy compound (component B) having a phenylphenol skeleton.

式(2)中のmは光硬化性樹脂組成物の、硬化後の高屈折性の観点から1〜3の数であり、1であること、即ち、成分Bが2−ビフェニリルグリシジルエーテルであることが好ましい。   M in Formula (2) is a number from 1 to 3 from the viewpoint of high refractive index after curing of the photocurable resin composition, and is 1, that is, Component B is 2-biphenylylglycidyl ether. Preferably there is.

成分Bとして、市販品である三光社製OPP−Gを使用することができる。   As Component B, commercially available OPP-G manufactured by Sanko Co., Ltd. can be used.

成分A及び成分Bが配合された光硬化性樹脂組成物の樹脂硬化体は、従来の光硬化性樹脂組成物の樹脂硬化体よりも高い屈折率を与える(例えば、後述する実施例1)。
なお、以下のようにして測定された光硬化性樹脂組成物の樹脂硬化体の屈折率を「光硬化性樹脂組成物の屈折率」という。
〔光硬化性樹脂組成物の屈折率の測定方法〕
透明なPETフィルムの上に、幅1cm、長さ3cm、深さ0.5cmの開口を有するシリコーン製型枠を置き、シリコーン製型枠の開口(幅1cm、長さ3cm)から液状の光硬化性樹脂組成物を充填して、開口を別の透明なPETフィルムで被覆して光照射用サンプルを作製する。
光照射用サンプルに、メタルハライドランプ(例えば、アイグラフィックス社製ECS−301)にて波長365nmの光を6000mJ/cm照射し、充填された光硬化性樹脂組成物を硬化させた後、PETフィルム及びシリコーン製型枠を外し、硬化した光硬化性樹脂組成物にさらに熱風乾燥器内で120℃、30分の加熱処理を行って樹脂硬化体を成形する。
この樹脂硬化体の屈折率(25℃)をアッベ屈折率計(例えば、2T:アタゴ社製)で測定する。
The resin cured body of the photocurable resin composition in which Component A and Component B are blended gives a higher refractive index than the conventional resin cured body of the photocurable resin composition (for example, Example 1 described later).
In addition, the refractive index of the resin cured body of the photocurable resin composition measured as follows is referred to as “refractive index of the photocurable resin composition”.
[Measurement method of refractive index of photocurable resin composition]
A silicone mold having an opening with a width of 1 cm, a length of 3 cm, and a depth of 0.5 cm is placed on a transparent PET film, and liquid photocuring is performed from the opening of the silicone mold (width 1 cm, length 3 cm). The resin composition is filled, and the opening is covered with another transparent PET film to produce a sample for light irradiation.
The sample for light irradiation was irradiated with 6000 mJ / cm 2 of light having a wavelength of 365 nm with a metal halide lamp (for example, ECS-301 manufactured by Eye Graphics) to cure the filled photocurable resin composition, and then PET. The film and the silicone mold are removed, and the cured photocurable resin composition is further subjected to a heat treatment at 120 ° C. for 30 minutes in a hot air dryer to form a cured resin body.
The refractive index (25 ° C.) of the cured resin is measured with an Abbe refractometer (for example, 2T: manufactured by Atago Co., Ltd.).

成分Aであるフルオレン骨格を有する二官能エポキシ化合物は高粘度であるため、従来の光硬化性樹脂組成物は、成形性を阻害しない程度の粘度にするために低粘性の光硬化性化合物を配合していた。
しかし、成分Bを配合していない従来の光硬化性樹脂組成物は、低粘性の光硬化性化合物を配合してもより低い粘度への調整が困難であった(例えば、後述する比較例2及び3)。
Since the bifunctional epoxy compound having a fluorene skeleton as component A has a high viscosity, the conventional photocurable resin composition is blended with a low-viscosity photocurable compound in order to obtain a viscosity that does not hinder moldability. Was.
However, the conventional photocurable resin composition not containing component B was difficult to adjust to a lower viscosity even when a low viscosity photocurable compound was added (for example, Comparative Example 2 described later). And 3).

成分A及び成分Bが配合された光硬化性樹脂組成物では、成分A及び成分Bの組成比を調整することで粘度を低減することができ、さらに、低粘性の光硬化性化合物(好ましくは、後述する成分C)を配合してより低い粘度への調整を容易に行うことができる(例えば、後述する実施例2〜6)。   In the photocurable resin composition in which the component A and the component B are blended, the viscosity can be reduced by adjusting the composition ratio of the component A and the component B. Furthermore, a low-viscosity photocurable compound (preferably The component C) described later can be blended to easily adjust to a lower viscosity (for example, Examples 2 to 6 described later).

また、成分A及び成分Bが配合された光硬化性樹脂組成物では、従来の光硬化性樹脂組成物又はアクリレートなどによるラジカル硬化系光硬化性樹脂組成物に比べて、樹脂硬化体の収縮率を抑制できカールの発生を低減できるため、樹脂硬化体の成型精度が改善される。   Moreover, in the photocurable resin composition with which component A and component B were mix | blended, compared with the radical photocurable resin composition by the conventional photocurable resin composition or acrylate, etc., the shrinkage | contraction rate of a resin cured body And curling can be reduced, so that the molding accuracy of the cured resin is improved.

(3)成分C
光硬化性樹脂組成物は、成分A及び成分Bに加えて、さらに、光硬化性樹脂組成物の粘度を調整するための成分として、フェニル基を有するオキセタン化合物及び/又はフェニル基を有するエポキシ化合物(但し、成分A及び成分Bを除く)であって、粘度が、2000mPa・s以下、好ましくは1000mPa・s以下、より好ましくは100mPa・s以下である化合物(成分C)を含むことが好ましい。
(3) Component C
In addition to Component A and Component B, the photocurable resin composition further includes an oxetane compound having a phenyl group and / or an epoxy compound having a phenyl group as a component for adjusting the viscosity of the photocurable resin composition. It is preferable to include a compound (component C) having a viscosity of 2000 mPa · s or less, preferably 1000 mPa · s or less, more preferably 100 mPa · s or less.

高屈折性樹脂硬化体に一定以上の硬さを与える観点から、成分Aと成分Bの合計量における成分Aの割合を一定以上に維持する場合、成分Cを配合して、光硬化性樹脂組成物の粘度を調整することが好ましい。   From the viewpoint of imparting a certain level of hardness to the highly refractive resin cured body, when the ratio of component A in the total amount of component A and component B is maintained at a certain level or more, the component C is blended to form a photocurable resin composition. It is preferable to adjust the viscosity of the product.

成分Cとしては、光硬化性樹脂組成物の粘性をより低減できるという観点から、フェニル基を有するエポキシ樹脂(但し、成分A及び成分Bを除く)であって、粘度が、2000mPa・s以下、好ましくは1000mPa・s以下、より好ましくは100mPa・s以下である化合物であることがより好ましい。   Component C is an epoxy resin having a phenyl group (excluding Component A and Component B) from the viewpoint that the viscosity of the photocurable resin composition can be further reduced, and the viscosity is 2000 mPa · s or less, Preferably, the compound is 1000 mPa · s or less, more preferably 100 mPa · s or less.

フェニル基を有するオキセタン樹脂としては、
3−エチル−3−(フェノキシメチル)オキセタン(例えば、東亞合成製OXT−211(POX))及び/又は1,4−ビス{〔(3−エチルオキセタン−3−イオキセタニル)メトキシ〕メチル}ベンゼン(例えば、東亞合成製OXT−121(XDO))が好ましく、
3−エチル−3−(フェノキシメチル)オキセタンがより好ましい。
As an oxetane resin having a phenyl group,
3-ethyl-3- (phenoxymethyl) oxetane (for example, OXT-211 (POX) manufactured by Toagosei Co., Ltd.) and / or 1,4-bis {[(3-ethyloxetane-3-ioxetanyl) methoxy] methyl} benzene (For example, Toagosei Co., Ltd. OXT-121 (XDO)) is preferable,
3-ethyl-3- (phenoxymethyl) oxetane is more preferred.

フェニル基を有するエポキシ樹脂としては、
フェニルグリシジルエーテル(例えば、ナガセケムテックス製EX−141)及び/又はフェノ−ル(EO)5グリシジルエ−テルが好ましく、
フェニルグリシジルエーテルがより好ましい。
As an epoxy resin having a phenyl group,
Phenyl glycidyl ether (for example, EX-141 manufactured by Nagase ChemteX) and / or phenol (EO) 5 glycidyl ether is preferred,
More preferred is phenyl glycidyl ether.

(4)成分D (4) Component D

成分A及び成分Bが配合された光硬化性樹脂組成物はカチオン重合性であるため、成分Bは、光酸発生剤として作用する光重合開始剤(成分D)を含むことが好ましい。
成分Dは、常態強度及び耐久強度に加えて硬化性の観点から、好ましくはエネルギー線の照射によりトリアルキルボラン、トリハロゲンボラン、トリアルキルアルミニウム、トリアルキルアルミニウムイオンなどのルイス酸又はヘキサフルオロリン酸、ヘキサフルオロアンチモン酸(好ましくはヘキサフルオロリン酸)などのブレンステッド酸を発生する化合物であり、スルホニウム塩及び/又はヨードニウム塩が好ましく、ヘキサフルオロリン酸、ヘキサフルオロアンチモン酸(好ましくはヘキサフルオロリン酸)などのブレンステッド酸を発生する化合物のスルホニウム塩が更に好ましい。
Since the photocurable resin composition containing Component A and Component B is cationically polymerizable, Component B preferably contains a photopolymerization initiator (Component D) that acts as a photoacid generator.
Component D is preferably a Lewis acid such as trialkylborane, trihalogenborane, trialkylaluminum, trialkylaluminum ion or hexafluorophosphoric acid from the viewpoint of curability in addition to normal strength and endurance strength. , A compound that generates Bronsted acid such as hexafluoroantimonic acid (preferably hexafluorophosphoric acid), preferably sulfonium salt and / or iodonium salt, hexafluorophosphoric acid, hexafluoroantimonic acid (preferably hexafluorophosphoric acid) More preferred are sulfonium salts of compounds that generate Bronsted acids such as (acid).

スルホニウム塩として、常態強度及び耐久強度に加えて硬化性の観点から、
トリフェニルスルホニウム ヘキサフルオロホスフェート、
トリフェニルスルホニウム ヘキサフルオロアンチモネート、
トリフェニルスルホニウム テトラキス(ペンタフルオロフェニル)ボレート、
4,4’−ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート、
4,4’−ビス〔ジ(β−ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロアンチモネート、
4,4’−ビス〔ジ(β−ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート、
7−〔ジ(p−トルイル)スルホニオ〕−2−イソプロピルチオキサントンヘキサフルオロアンチモネート、
7−〔ジ(p−トルイル)スルホニオ〕−2−イソプロピルチオキサントンテトラキス(ペンタフルオロフェニル)ボレート、
4−フェニルカルボニル−4’−ジフェニルスルホニオ−ジフェニルスルフィドヘキサフルオロホスフェート、
4−(p−tert−ブチルフェニルカルボニル)−4’−ジフェニルスルホニオ−ジフェニルスルフィドヘキサフルオロアンチモネート、
4−(p−tert−ブチルフェニルカルボニル)−4’−ジ(p−トルイル)スルホニオ−ジフェニルスルフィドテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。
As a sulfonium salt, in addition to normal strength and durability strength, from the viewpoint of curability,
Triphenylsulfonium hexafluorophosphate,
Triphenylsulfonium hexafluoroantimonate,
Triphenylsulfonium tetrakis (pentafluorophenyl) borate,
4,4′-bis [diphenylsulfonio] diphenyl sulfide bishexafluorophosphate,
4,4′-bis [di (β-hydroxyethoxy) phenylsulfonio] diphenyl sulfide bishexafluoroantimonate,
4,4′-bis [di (β-hydroxyethoxy) phenylsulfonio] diphenyl sulfide bishexafluorophosphate,
7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexafluoroantimonate,
7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone tetrakis (pentafluorophenyl) borate,
4-phenylcarbonyl-4′-diphenylsulfonio-diphenyl sulfide hexafluorophosphate,
4- (p-tert-butylphenylcarbonyl) -4'-diphenylsulfonio-diphenyl sulfide hexafluoroantimonate,
4- (p-tert-butylphenylcarbonyl) -4′-di (p-toluyl) sulfonio-diphenyl sulfide tetrakis (pentafluorophenyl) borate and the like are preferable.

市販されているスルホニウム塩系カチオン重合開始剤としては、旭電化社製SP−170、SP−172、SP−150、SP−152、サンアプロ社製CPI−110P、CPI−210Sなどが好ましく、サンアプロ社製CPI−110P、旭電化社製SP−170、SP−172がより好ましく、サンアプロ社製CPI−110Pが更に好ましい。
これらの塩は、それぞれ単独で使用しても、又は二種以上を組み合わせて使用してもよい。
As the commercially available sulfonium salt cationic polymerization initiator, SP-170, SP-172, SP-150, SP-152 manufactured by Asahi Denka Co., Ltd., CPI-110P, CPI-210S manufactured by San Apro, and the like are preferable. CPI-110P manufactured by Asahi Denka Co., Ltd., SP-170 and SP-172 manufactured by Asahi Denka are more preferable, and CPI-110P manufactured by San Apro is more preferable.
These salts may be used alone or in combination of two or more.

ヨードニウム塩として、常態強度及び耐久強度に加えて硬化性の観点から、
ジフェニルヨードニウム テトラキス(ペンタフルオロフェニル)ボレート、
ジフェニルヨードニウム ヘキサフルオロホスフェート、
ジフェニルヨードニウム ヘキサフルオロアンチモネート、
ジ(4−ノニルフェニル)ヨードニウム ヘキサフルオロホスフェート等が好ましい。
市販されているヨードニウム塩系カチオン重合開始剤としては、ローディア社製PI2074が好ましい。
これらの塩は、それぞれ単独で使用しても、又は二種以上を組み合わせて使用してもよい。
As an iodonium salt, in addition to normal strength and durability strength, from the viewpoint of curability,
Diphenyliodonium tetrakis (pentafluorophenyl) borate,
Diphenyliodonium hexafluorophosphate,
Diphenyliodonium hexafluoroantimonate,
Di (4-nonylphenyl) iodonium hexafluorophosphate and the like are preferable.
As a commercially available iodonium salt-based cationic polymerization initiator, PI2074 manufactured by Rhodia is preferable.
These salts may be used alone or in combination of two or more.

(5)その他の添加剤
〔可塑剤〕
下記式(3):
(5) Other additives [plasticizer]
Following formula (3):

(式中、R4aおよびR4bは水素原子又は(メタ)アクリロイル基、
1aおよびR1bは非ラジカル重合性置換基、
2aおよびR2bはアルキレン基、
3aおよびR3bは非ラジカル重合性置換基、
k1およびk2は、それぞれ0〜4の整数、
m1およびm2はそれぞれ0以上の整数、
n1およびn2はそれぞれ1〜4の整数、
p1およびp2はそれぞれ0〜4の整数を示し、
n1+p1≦5、n2+p2≦5である)で表される化合物の量の調整により、可塑的効果も相まって耐スクラッチ性をより有利又は有効に向上できる場合がある。
(Wherein R 4a and R 4b are a hydrogen atom or a (meth) acryloyl group,
R 1a and R 1b are non-radically polymerizable substituents,
R 2a and R 2b are alkylene groups,
R 3a and R 3b are non-radically polymerizable substituents,
k1 and k2 are each an integer of 0 to 4,
m1 and m2 are each an integer of 0 or more,
n1 and n2 are each an integer of 1 to 4,
p1 and p2 each represent an integer of 0 to 4,
By adjusting the amount of the compound represented by n1 + p1 ≦ 5 and n2 + p2 ≦ 5, the scratch resistance may be improved more advantageously or effectively in combination with the plastic effect.

式(3)において、n1+n2個のR4aおよびR4bのうち、(メタ)アクリロイル基の数は、1以上でn1+n2個よりも小さい数であればよい。例えば、(i)n1=n2=1のとき、(メタ)アクリロイル基の数は0〜2であり、(ii)n1=n2=2のとき、(メタ)アクリロイル基の数は0〜4であり、(iii)n1=n2=3のとき、(メタ)アクリロイル基の数は0〜6である。
なお、式(3)において、n1+n2が3以上であるとき、(メタ)アクリロイル基の数は、前記多官能性(メタ)アクリレートと同様に、式(2)で表される化合物全体の平均値として表される。
In the formula (3), the number of (meth) acryloyl groups among n1 + n2 R 4a and R 4b may be 1 or more and smaller than n1 + n2. For example, when (i) n1 = n2 = 1, the number of (meth) acryloyl groups is 0-2, and (ii) when n1 = n2 = 2, the number of (meth) acryloyl groups is 0-4. Yes, (iii) When n1 = n2 = 3, the number of (meth) acryloyl groups is 0-6.
In the formula (3), when n1 + n2 is 3 or more, the number of (meth) acryloyl groups is the average value of the whole compound represented by the formula (2) as in the case of the polyfunctional (meth) acrylate. Represented as:

〔溶剤〕
光硬化性樹脂組成物は、液晶表示素子等の接着対象となる基板の表面に塗布して使用する観点から、溶剤を含む溶液、スラリー又はペースト状等の液状体であることができる。
〔solvent〕
The photocurable resin composition can be a liquid, such as a solution containing a solvent, a slurry, or a paste, from the viewpoint of being applied to the surface of a substrate to be bonded such as a liquid crystal display element.

有機溶剤として、アルコール類、グリコールエーテル類、エステル類、ケトン類等が挙げられる。   Examples of the organic solvent include alcohols, glycol ethers, esters, and ketones.

アルコール類としては、ペンタノール、ヘキサノール、シクロヘキサノール、エチレングリコール、プロピレングリコールなどが挙げられる。
グリコールエーテル類としては、エトキシ酢酸エチル、3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、2−メトキシプロピオン酸メチル、2−メトキシプロピオン酸エチル、2−メトキシプロピオン酸プロピル、2−エトキシプロピオン酸メチル、2−エトキシプロピオン酸エチル、2−メトキシ−2−メチルプロピオン酸メチル、2−エトキシ−2−メチルプロピオン酸エチル、3−メトキシブチルアセテート、3−メチル−3−メトキシブチルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテートなどが挙げられる。
エステル類としては、乳酸メチル、乳酸エチル、乳酸ブチル、2−ヒドロキシイソブタン酸メチル、酢酸イソペンチル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、シクロヘキサノールアセテート、γ−ブチロラクトンなどが挙げられる。
ケトン類としては、4−ヒドロキシ−4−メチル−2−ペンタノン、2−ヘプタノン、3−ヘプタノン、4−ヘプタノン、シクロペンタノン、シクロヘキサノン、イソホロンなどが挙げられる。
Examples of alcohols include pentanol, hexanol, cyclohexanol, ethylene glycol, and propylene glycol.
Examples of glycol ethers include ethyl ethoxy acetate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl 2-methoxypropionate, 2-methoxypropionic acid. Ethyl, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, methyl 2-methoxy-2-methylpropionate, ethyl 2-ethoxy-2-methylpropionate, 3-methoxybutyl acetate , 3-methyl-3-methoxybutyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, ethylene glycol Monomethyl ether acetate, ethylene glycol monoethyl ether acetate, and the like diethylene glycol monoethyl ether acetate.
Esters include methyl lactate, ethyl lactate, butyl lactate, methyl 2-hydroxyisobutanoate, isopentyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl pyruvate, ethyl pyruvate, propyl pyruvate, aceto Examples include methyl acetate, ethyl acetoacetate, cyclohexanol acetate, and γ-butyrolactone.
Examples of ketones include 4-hydroxy-4-methyl-2-pentanone, 2-heptanone, 3-heptanone, 4-heptanone, cyclopentanone, cyclohexanone, and isophorone.

光硬化性樹脂組成物は、目的に応じて、例えば、酸化防止剤、紫外線吸収剤、光安定剤、シランカップリング剤、重合禁止剤、レベリング剤、界面活性剤、着色剤、保存安定剤、可塑剤、滑剤、フィラー、老化防止剤、濡れ性改良剤、離型剤等を添加することができる。   Depending on the purpose, the photocurable resin composition may be, for example, an antioxidant, an ultraviolet absorber, a light stabilizer, a silane coupling agent, a polymerization inhibitor, a leveling agent, a surfactant, a colorant, a storage stabilizer, Plasticizers, lubricants, fillers, anti-aging agents, wettability improvers, mold release agents, and the like can be added.

(6)光硬化樹脂組成物
成分A及び成分B、又は、成分A、成分B及び成分Cのそれぞれの成分は液状又は固体であるが、これらを、好ましくは50〜200℃、より好ましくは50〜150℃、更に好ましくは50〜100℃で加熱して混合して得られる光硬化性樹脂組成物は、溶液、スラリー又はペースト状等の液状体として使用でき、必要に応じてその他の添加剤を加えて溶液、スラリー又はペースト状等の液状体として使用できる。
(6) Photocurable resin composition Although each component of component A and component B or component A, component B and component C is liquid or solid, these are preferably 50-200 degreeC, More preferably, it is 50. The photo-curable resin composition obtained by heating and mixing at ˜150 ° C., more preferably at 50˜100 ° C. can be used as a liquid such as a solution, slurry or paste, and other additives as necessary Can be used as a liquid such as a solution, slurry, or paste.

光硬化性樹脂組成物の好適な組成を説明する。   The suitable composition of a photocurable resin composition is demonstrated.

高屈折性と粘度低減の観点から、成分A及び成分Bの質量比(成分A/成分B)は、1/99〜99/1であることが好ましく、10/90〜90/10であることがより好ましく、20/80〜80/20であることが更に好ましく、30/70〜70/30であることが更に好ましい。   From the viewpoint of high refraction and viscosity reduction, the mass ratio of component A and component B (component A / component B) is preferably 1/99 to 99/1, and preferably 10/90 to 90/10. Is more preferable, 20/80 to 80/20 is still more preferable, and 30/70 to 70/30 is still more preferable.

高屈折性と粘度低減の観点から、成分Cは、成分A及び成分Bの合計100質量部に対して、
1〜200質量部であることが好ましく、
5〜100質量部であることがより好ましく、
成分Cがフェニル基を有するエポキシ樹脂(但し、成分A及び成分Bを除く)であって、粘度が、好ましくは2000mPa・s以下、より好ましくは1000mPa・s以下、更に好ましくは100mPa・s以下である化合物である場合は、成分A及び成分Bの合計100質量部に対して、1〜100質量部であることが好ましく、1〜50質量部であることがより好ましく、5〜30質量部であることが更に好ましく、5〜15質量部であることが更に好ましい。
From the viewpoint of high refraction and viscosity reduction, Component C is a total of 100 parts by mass of Component A and Component B.
It is preferably 1 to 200 parts by mass,
More preferably 5 to 100 parts by weight,
Component C is an epoxy resin having a phenyl group (excluding component A and component B), and the viscosity is preferably 2000 mPa · s or less, more preferably 1000 mPa · s or less, and still more preferably 100 mPa · s or less. When it is a certain compound, it is preferable that it is 1-100 mass parts with respect to a total of 100 mass parts of component A and component B, It is more preferable that it is 1-50 mass parts, 5-30 mass parts More preferably, it is 5 to 15 parts by mass.

高屈折性と粘度低減の観点と光硬化性樹脂組成物の実用性能を調整するための他の成分を配合する余地を確保する観点から、光硬化性樹脂組成物の固形分中の成分A及び成分Bの合計量の割合は、10〜100質量%であることが好ましく、20〜90質量%であることがより好ましく、40〜80質量%であることが更に好ましい。   From the viewpoint of ensuring the room for blending other components for adjusting the practical performance of the photocurable resin composition and the viewpoint of high refraction and viscosity reduction, the component A in the solid content of the photocurable resin composition and The ratio of the total amount of component B is preferably 10 to 100% by mass, more preferably 20 to 90% by mass, and still more preferably 40 to 80% by mass.

常態強度、耐久強度及び硬化性の観点から、成分A100質量部に対して、成分Dは0.1〜10質量部であることが好ましく、0.5〜7質量部であることがより好ましく、1〜5質量部であることが更に好ましい。   From the viewpoint of normal strength, durability strength and curability, component D is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 7 parts by mass, relative to 100 parts by mass of component A, More preferably, it is 1-5 mass parts.

光硬化性樹脂組成物の粘度は、成分A及び成分Bの質量比を調整する、又は、成分A及び成分Bに成分C等の粘度調整できる光硬化性化合物を加えて調整することによって、
100〜20000mPa・sに調整されていることが好ましく、
200〜10000mPa・sに調整されていることがより好ましく、
500〜7000mPa・sに調整されていることが更に好ましく、
500〜5000mPa・sに調整されていることが更に好ましく、
500〜3000mPa・sに調整されていることが更に好ましい。
The viscosity of the photocurable resin composition is adjusted by adjusting the mass ratio of component A and component B, or by adding a photocurable compound capable of adjusting the viscosity such as component C to component A and component B,
It is preferably adjusted to 100 to 20000 mPa · s,
More preferably, it is adjusted to 200 to 10,000 mPa · s,
More preferably, it is adjusted to 500 to 7000 mPa · s,
More preferably, it is adjusted to 500 to 5000 mPa · s,
More preferably, it is adjusted to 500 to 3000 mPa · s.

上述した好適な組成を有する光硬化性樹脂組成物は屈折率1.6以上の高屈折率に調整できるため、これを成形して硬化させると、屈折率1.6以上の高屈折率を有する高屈折性樹脂硬化体を製造することができる。   Since the photocurable resin composition having the above-mentioned preferred composition can be adjusted to a high refractive index of 1.6 or higher, when it is molded and cured, it has a high refractive index of 1.6 or higher. A highly refractive resin cured body can be produced.

(6)高屈折性樹脂硬化体 (6) High refractive resin cured body

高屈折性樹脂硬化体は、光硬化性樹脂組成物を目的に応じた形状に成形して、その成形体に光を照射して硬化反応により硬化させて製造できる。   The highly refractive resin cured body can be produced by forming a photocurable resin composition into a shape suitable for the purpose, irradiating the molded body with light, and curing it by a curing reaction.

高屈折性樹脂硬化体は、例えば、三次元的硬化体、硬化膜、硬化パターンなどの一次元又は二次元的硬化体、点又はドット状硬化体などであってもよい。   The highly refractive resin cured body may be, for example, a one-dimensional or two-dimensional cured body such as a three-dimensional cured body, a cured film, or a cured pattern, or a dot or dot-shaped cured body.

光硬化性樹脂組成物の成形は、例えば、基材上で光硬化性樹脂組成物の膜状体を形成させたり、用途に応じた型枠に充填して立体成形させたりしてよい。   The photocurable resin composition may be molded, for example, by forming a film-like body of the photocurable resin composition on a base material, or filling it into a mold according to the application and three-dimensionally molding it.

基材上で光硬化性樹脂組成物の膜状体を形成させる方法としては、例えば、フローコーティング法、スピンコーティング法、スプレーコーティング法、スクリーン印刷法、キャスト法、バーコーティング法、カーテンコーティング法、ロールコーティング法、グラビアコーティング法、ディッピング法、スリット法などを挙げることができる。   As a method of forming a film-like body of a photocurable resin composition on a substrate, for example, a flow coating method, a spin coating method, a spray coating method, a screen printing method, a casting method, a bar coating method, a curtain coating method, Examples thereof include a roll coating method, a gravure coating method, a dipping method, and a slit method.

高屈折性樹脂硬化体が膜状又はシート状の場合、高屈折性樹脂硬化体の厚みは、硬化物の用途に応じて、0.01μm〜10mm程度であることが好ましく、例えば、
フォトレジストの場合、0.05〜10μmであることが好ましく、0.1〜5μmであることがより好ましく、
プリント配線基板の場合、10μm〜5mmであることが好ましく、100μm〜1m mであることがより好ましく、
光学薄膜の場合、0.1〜100μmであることが好ましく、0.3〜50μmであることがより好ましい。
When the highly refractive resin cured body is in the form of a film or a sheet, the thickness of the highly refractive resin cured body is preferably about 0.01 μm to 10 mm, depending on the use of the cured product.
In the case of a photoresist, it is preferably 0.05 to 10 μm, more preferably 0.1 to 5 μm,
In the case of a printed wiring board, it is preferably 10 μm to 5 mm, more preferably 100 μm to 1 mm,
In the case of an optical thin film, it is preferably 0.1 to 100 μm, and more preferably 0.3 to 50 μm.

レンズ用途の高屈折性樹脂硬化体の場合、高屈折性樹脂硬化体は、両面が凸型の傾斜となる形状もしくは片面が凸型の傾斜でもう片面がガラスなどの基材と密着してなる形態であることが好ましい。   In the case of a high-refractive resin cured body for lens use, the high-refractive resin cured body has a convex slope on both sides or a convex slope on one side and the other side is in close contact with a substrate such as glass. The form is preferred.

照射又は露光する光は、光重合開始剤によって、例えば、紫外線、可視光線などであってよいが、高屈折性樹脂硬化体の色味を抑制し透明性を向上する、好ましくは無色透明性を向上する観点から、紫外線がより好ましい。   The light to be irradiated or exposed may be, for example, ultraviolet light or visible light, depending on the photopolymerization initiator, but suppresses the color of the highly refractive resin cured body and improves transparency, preferably colorless transparency. From the viewpoint of improvement, ultraviolet rays are more preferable.

速硬性及び高屈折性樹脂硬化体の色味を抑制し透明性を向上する、好ましくは無色透明性を向上する観点から、光の波長は、150〜450nmであることが好ましく、200〜400nmであることが更に好ましく、300〜400nmであることが更に好ましい。   The wavelength of light is preferably 150 to 450 nm, preferably 200 to 400 nm from the viewpoint of improving transparency by suppressing the color of the fast-curing and highly refractive resin cured body, and preferably improving colorless transparency. More preferably, it is more preferably 300 to 400 nm.

硬化反応を十分に進行させる観点から、照射光量は、塗膜の厚みにより異なるが、1500〜10000mJ/cmであることが好ましく、2000〜9000mJ/cmであることがより好ましく、3000〜9000mJ/cmであることが更に好ましく、4000〜7000mJ/cmであることが更に好ましい。 From the viewpoint of sufficiently proceed the curing reaction, irradiation light amount varies depending on the thickness of the coating film is preferably 1500~10000mJ / cm 2, more preferably 2000~9000mJ / cm 2, 3000~9000mJ / Cm 2 is more preferable, and 4000 to 7000 mJ / cm 2 is more preferable.

光源としては、露光する光線の種類に応じて選択でき、例えば、紫外線の場合は、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、重水素ランプ、ハロゲンランプ、レーザー光(ヘリウム−カドミウムレーザー、エキシマレーザーなど)などを用いることができる。   The light source can be selected according to the type of light to be exposed. For example, in the case of ultraviolet rays, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a deuterium lamp, a halogen lamp, a laser beam (helium-cadmium laser, Excimer laser etc.) can be used.

成形された光硬化性樹脂組成物は、必要に応じて、光照射後、又は光照射とともに加熱が行われるが、光照射後に行われる場合が多い。
加熱温度は、60〜250℃であることが好ましく、100〜200℃であることがより好ましく、
加熱時間は、1分〜2時間であることが好ましく、10分〜1時間であることがより好ましく、20分〜1時間であることが更に好ましく、30分〜1時間であることが更に好ましい。
The molded photocurable resin composition is heated after light irradiation or with light irradiation as necessary, but is often performed after light irradiation.
The heating temperature is preferably 60 to 250 ° C, more preferably 100 to 200 ° C,
The heating time is preferably 1 minute to 2 hours, more preferably 10 minutes to 1 hour, further preferably 20 minutes to 1 hour, and further preferably 30 minutes to 1 hour. .

パターンや画像を形成する場合(例えば、プリント配線基板などを製造する場合)、基材上に形成した塗膜をパターン露光してもよく、このパターン露光は、レーザー光の走査により行ってもよく、フォトマスクを介して光照射することにより行ってもよい。   When a pattern or an image is formed (for example, when a printed wiring board is manufactured), the coating film formed on the substrate may be subjected to pattern exposure, and this pattern exposure may be performed by scanning with a laser beam. Alternatively, light irradiation may be performed through a photomask.

パターン露光により生成した非照射領域(未露光部)を現像剤で現像(又は溶解)することによりパターン又は画像を形成できる。
露光後に被膜を加熱する場合、現像工程は、加熱工程の前に行ってもよく、加熱工程の後で行ってもよい。
A pattern or an image can be formed by developing (or dissolving) a non-irradiated region (unexposed portion) generated by pattern exposure with a developer.
When the coating is heated after the exposure, the development step may be performed before the heating step or after the heating step.

これらの方法は、小さな露光量でも、基材上に、精細で高精度のパターンを形成できるため、精密なパターンを必要とする用途、例えば、電子機器のプリント配線基板などの製造に適している。   Since these methods can form a fine and high-precision pattern on a base material even with a small exposure amount, they are suitable for applications that require a precise pattern, for example, printed wiring boards for electronic devices. .

光学薄膜を形成する場合には、光硬化性樹脂組成物を、基材上に複数層形成してもよい。
また、基材上に他の機能層などを形成した後、その機能層の上に、光硬化性樹脂組成物で形成された層を形成してもよい。
When forming an optical thin film, you may form multiple layers of photocurable resin compositions on a base material.
Moreover, after forming another functional layer etc. on a base material, you may form the layer formed with the photocurable resin composition on the functional layer.

基材の材質は、用途に応じて選択され、例えば、プリント配線基板や光学薄膜の場合には、シリコン、ガリウム砒素、窒化ガリウム、炭化シリコンなどの半導体、アルミニウム、銅などの金属、酸化ジルコニウム、酸化チタン、P Z T などのセラミック、透明無機材料(ガラス、石英、フッ化マグネシウム、フッ化カルシウムなど)、透明樹脂(ポリメチルメタクリレート、ポリメチルアクリレート、ポリスチレンなど) などが用いられる。   The material of the base material is selected according to the application. For example, in the case of a printed wiring board or an optical thin film, a semiconductor such as silicon, gallium arsenide, gallium nitride, or silicon carbide, a metal such as aluminum or copper, zirconium oxide, Ceramics such as titanium oxide and PZT, transparent inorganic materials (glass, quartz, magnesium fluoride, calcium fluoride, etc.), transparent resins (polymethyl methacrylate, polymethyl acrylate, polystyrene, etc.), etc. are used.

高屈折性樹脂硬化体は、屈折率1.6以上の高屈折率を有しうるため、フレネルレンズ、レンチキュラーレンズ、プリズムレンズ、マイクロレンズ等の各種レンズ、液晶ディスプレイなどの反射防止膜の高屈折率層、反射板などの光学薄膜、光ファイバーのコア材、クラッド材、光導波路、ホログラム等の各種光学材料等の光学用途に使用することが好ましく、フレネルレンズ、レンチキュラーレンズ、プリズムレンズ、マイクロレンズ等の各種レンズに使用することがより好ましい。   Since the high refractive resin cured body can have a high refractive index of 1.6 or higher, various lenses such as Fresnel lenses, lenticular lenses, prism lenses, and micro lenses, and high refractive index of antireflection films such as liquid crystal displays. It is preferably used for optical applications such as optical layers such as index layers, reflectors, optical fiber core materials, clad materials, optical waveguides, holograms, Fresnel lenses, lenticular lenses, prism lenses, micro lenses, etc. It is more preferable to use it for various lenses.

〔化合物〕
(1)成分A
(化合物a)フルオレン骨格を有する二官能エポキシ化合物(大阪ガスケミカル社製オグソールEG−200、常温で高粘性の液状体)
〔Compound〕
(1) Component A
(Compound a) Bifunctional epoxy compound having a fluorene skeleton (Ogsol EG-200, manufactured by Osaka Gas Chemical Co., Ltd., highly viscous liquid at normal temperature)

(2)成分B
(化合物b)フェニルフェノール骨格を有する単官能エポキシ化合物(三光社製OPP−G、常温で固体)
(2) Component B
(Compound b) Monofunctional epoxy compound having a phenylphenol skeleton (manufactured by Sanko Co., Ltd., OPP-G, solid at room temperature)

(3)成分C
(化合物c1)フェニルオキセタンモノマー(東亞合成製OXT−211(POX)、粘度14mPa・s)
(化合物c2)キシレンビスオキセタンモノマー(東亞合成製OXT−121(XDO)、粘度160mPa・s)
(化合物c3)フェニルエポキシモノマー(ナガセケムテックス製EX−141、粘度8mPa・s)
(3) Component C
(Compound c1) Phenyl oxetane monomer (OXT-211 (POX) manufactured by Toagosei Co., Ltd., viscosity 14 mPa · s)
(Compound c2) Xylene bisoxetane monomer (OXT-121 (XDO) manufactured by Toagosei Co., Ltd., viscosity 160 mPa · s)
(Compound c3) Phenyl epoxy monomer (EX-141 manufactured by Nagase ChemteX, viscosity: 8 mPa · s)

(4)成分D
(化合物d)ヘキサフルオロリン系光酸発生剤(サンアプロ社製CPI−110P)
(4) Component D
(Compound d) Hexafluorophosphonic photoacid generator (CPI-110P manufactured by Sun Apro)

(5)その他の化合物
(化合物e1)ビスフェノール型2官能エポキシモノマー(DIC社製830S、粘度3000〜4500mPa・s)
(化合物e2)1,2−エポキシ−4−ビニルシクロヘキサンモノマー(ダイセル製セロキサイド2000、粘度1.7mPa・s)
(化合物e3)ビスフェノール型2官能エポキシモノマー(DIC社製830LVP、粘度1200〜1800mPa・s)
(化合物e4)3−エチル−3{[(3−エチルオキセタン−3 −イル)メトキシ]メチル}オキセタンモノマー(東亞合成製OXT−221(DOX)、粘度13mPa・s)
(5) Other compounds (Compound e1) Bisphenol type bifunctional epoxy monomer (830S manufactured by DIC, viscosity 3000 to 4500 mPa · s)
(Compound e2) 1,2-epoxy-4-vinylcyclohexane monomer (Delcel Celoxide 2000, viscosity 1.7 mPa · s)
(Compound e3) Bisphenol type bifunctional epoxy monomer (830 LVP manufactured by DIC, viscosity 1200 to 1800 mPa · s)
(Compound e4) 3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane monomer (OXT-221 (DOX) manufactured by Toagosei Co., Ltd., viscosity 13 mPa · s)

〔光硬化性樹脂組成物〕
表1に記載の配合比に従い、成分A〜Dおよびその他の成分をかくはん機付きフラスコで均一になるまで、80℃で30分〜1時間攪拌混合して、比較例1〜3及び実施例1〜6の液状の光硬化性樹脂組成物を得た。
[Photocurable resin composition]
According to the blending ratio shown in Table 1, components A to D and other components were stirred and mixed at 80 ° C. for 30 minutes to 1 hour until uniform in a flask equipped with a stirrer. -6 liquid photocurable resin compositions were obtained.

〔試験方法〕
(1)屈折率
光照射用サンプルに、メタルハライドランプ(アイグラフィックス社製ECS−301)にて波長365nmの光を6000mJ/cm照射し、充填された光硬化性樹脂組成物を硬化させた後、PETフィルム及びシリコーン製型枠を外し、硬化した光硬化性樹脂組成物にさらに熱風乾燥器内で120℃、30分の加熱処理を行って樹脂硬化体を成形した。
この樹脂硬化体の屈折率(25℃)をアッベ屈折率計(2T:アタゴ社製)で測定した。
〔Test method〕
(1) Refractive index The sample for light irradiation was irradiated with 6000 mJ / cm 2 of light having a wavelength of 365 nm with a metal halide lamp (ECS-301 manufactured by Eye Graphics Co., Ltd.) to cure the filled photocurable resin composition. Thereafter, the PET film and the silicone mold were removed, and the cured photocurable resin composition was further subjected to a heat treatment at 120 ° C. for 30 minutes in a hot air dryer to form a cured resin.
The refractive index (25 ° C.) of this cured resin was measured with an Abbe refractometer (2T: manufactured by Atago Co., Ltd.).

(2)粘度
比較例1〜3及び実施例1〜6の光硬化性樹脂組成物について、E型粘度計(東機産業社製RE−105U)を用いて25℃で測定した。
(2) Viscosity About the photocurable resin composition of Comparative Examples 1-3 and Examples 1-6, it measured at 25 degreeC using the E-type viscosity meter (Toki Sangyo Co., Ltd. RE-105U).

〔結果〕 〔result〕

成分Aを含む従来の光硬化性樹脂組成物(比較例2)は、成分Aを含まない光硬化性樹脂組成物(比較例1)に対して、樹脂硬化体の屈折率が大きいが、粘度も増大する。成分Aの配合比率を増大させても、粘度を維持するための配合調整をすると、樹脂硬化体の屈折率が低下するため、樹脂硬化体の屈折率を増加させることが困難であった。   The conventional photocurable resin composition containing Component A (Comparative Example 2) has a higher refractive index than the photocurable resin composition containing no Component A (Comparative Example 1), but has a viscosity. Will also increase. Even if the blending ratio of component A is increased, if the blending adjustment is performed to maintain the viscosity, the refractive index of the cured resin body is lowered, so it is difficult to increase the refractive index of the cured resin body.

成分Aに成分Bを組み合わせると、成分Aの配合比率が小さくても樹脂硬化体の屈折率は増大し、屈折率1.6以上となる高屈折性樹脂硬化体を製造することができる(実施例1)。   When component B is combined with component A, the refractive index of the cured resin increases even if the blending ratio of component A is small, and a highly refractive cured resin having a refractive index of 1.6 or more can be produced (implementation). Example 1).

成分Aと成分Bの合計量における成分Bの割合を増大させると、1.6以上の屈折率を維持しつつ粘度を大幅に低減することができる。   Increasing the proportion of component B in the total amount of component A and component B can greatly reduce the viscosity while maintaining a refractive index of 1.6 or higher.

成分A及び成分Bを含む光硬化性樹脂組成物(実施例1)に成分Cを加えることでも、高屈折性樹脂硬化体の屈折率を1.6以上に維持しながら光硬化性樹脂組成物の粘度を容易に低減することができ(実施例4及び5)、中でもフェニル基を有するエポキシ樹脂を含む場合(実施例6)の粘性低減効果が大きいことがわかる。   The photocurable resin composition can be obtained while maintaining the refractive index of the highly refractive resin cured product at 1.6 or more by adding the component C to the photocurable resin composition containing the component A and the component B (Example 1). It can be seen that the viscosity-reducing effect can be easily reduced (Examples 4 and 5), and the viscosity-reducing effect is particularly great when an epoxy resin having a phenyl group is included (Example 6).

また、成分A及び成分Bの合計量における成分Aの割合を一定にして、成分Cを加えると、高屈折性樹脂硬化体の硬さを維持しつつ、光硬化性樹脂組成物の粘度を低減することができる(実施例1、4及び6)。
Moreover, when the ratio of the component A in the total amount of the component A and the component B is made constant and the component C is added, the viscosity of the photocurable resin composition is reduced while maintaining the hardness of the highly refractive resin cured body. (Examples 1, 4 and 6).

Claims (5)

下記式(1):
(式中、Rは炭素原子数1〜3のメチレン基又はアルキレン基であり、互いに同一でも異なってもよく、nは0以上の数であり、互いに同一でも異なってもよい)で表されるフルオレン骨格を有する二官能エポキシ化合物(成分A)、及び、下記式(2):
(式中、mは1〜3の数である)で表されるフェニルフェノール骨格を有する単官能エポキシ化合物(成分B)を含む光硬化性樹脂組成物。
Following formula (1):
(Wherein, R is a methylene group or alkylene group having 1 to 3 carbon atoms, and may be the same or different, and n is a number of 0 or more, and may be the same or different). Bifunctional epoxy compound (component A) having a fluorene skeleton, and the following formula (2):
A photocurable resin composition comprising a monofunctional epoxy compound (component B) having a phenylphenol skeleton represented by (wherein m is a number of 1 to 3).
さらに、フェニル基を有するオキセタン化合物及び/又はフェニル基を有するエポキシ化合物(但し、前記成分A及び前記成分Bを除く)であって、粘度が2000mPa・s以下である化合物(成分C)を含む請求項1記載の光硬化性樹脂組成物。   Furthermore, it is an oxetane compound having a phenyl group and / or an epoxy compound having a phenyl group (excluding the component A and the component B), and a compound having a viscosity of 2000 mPa · s or less (component C). Item 2. The photocurable resin composition according to Item 1. 屈折率が1.6以上である請求項1又は2記載の光硬化性樹脂組成物。   The photocurable resin composition according to claim 1 or 2, wherein the refractive index is 1.6 or more. 請求項1〜3のいずれか1項記載の光硬化性樹脂組成物を成形及び硬化してなる高屈折性樹脂硬化体。   A highly refractive resin cured body obtained by molding and curing the photocurable resin composition according to claim 1. 前記高屈折性樹脂硬化体がレンズである請求項4記載の高屈折性樹脂硬化体。


The high refractive resin cured body according to claim 4, wherein the high refractive resin cured body is a lens.


JP2014242615A 2014-11-28 2014-11-28 Photocurable resin composition and high refractive resin cured body Active JP6448083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014242615A JP6448083B2 (en) 2014-11-28 2014-11-28 Photocurable resin composition and high refractive resin cured body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014242615A JP6448083B2 (en) 2014-11-28 2014-11-28 Photocurable resin composition and high refractive resin cured body

Publications (2)

Publication Number Publication Date
JP2016102188A true JP2016102188A (en) 2016-06-02
JP6448083B2 JP6448083B2 (en) 2019-01-09

Family

ID=56088461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014242615A Active JP6448083B2 (en) 2014-11-28 2014-11-28 Photocurable resin composition and high refractive resin cured body

Country Status (1)

Country Link
JP (1) JP6448083B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179325A (en) * 2016-03-24 2017-10-05 大阪ガスケミカル株式会社 Epoxy resin composition and its cured product
WO2017221935A1 (en) * 2016-06-21 2017-12-28 株式会社Adeka Curable composition, method for producing cured product, and cured product of same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314692A (en) * 2004-04-02 2005-11-10 Osaka Gas Co Ltd Photo-polymerizable resin composition and its cured product
JP2010163566A (en) * 2009-01-16 2010-07-29 Three M Innovative Properties Co Epoxy resin composition
JP2010265360A (en) * 2009-05-13 2010-11-25 Nitto Denko Corp Resin composition for optical part and optical part using the same
JP2012017368A (en) * 2010-07-06 2012-01-26 Sekisui Chem Co Ltd Sealing agent for optical device
JP2012190612A (en) * 2011-03-09 2012-10-04 Sekisui Chem Co Ltd Manufacturing method of organic optical device
WO2014185180A1 (en) * 2013-05-17 2014-11-20 日東電工株式会社 Photo-curable resin composition for optical components, optical component using same, and optical component production method
JP2015194546A (en) * 2014-03-31 2015-11-05 日東電工株式会社 Optical component resin composition and optical components produced using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314692A (en) * 2004-04-02 2005-11-10 Osaka Gas Co Ltd Photo-polymerizable resin composition and its cured product
JP2010163566A (en) * 2009-01-16 2010-07-29 Three M Innovative Properties Co Epoxy resin composition
JP2010265360A (en) * 2009-05-13 2010-11-25 Nitto Denko Corp Resin composition for optical part and optical part using the same
JP2012017368A (en) * 2010-07-06 2012-01-26 Sekisui Chem Co Ltd Sealing agent for optical device
JP2012190612A (en) * 2011-03-09 2012-10-04 Sekisui Chem Co Ltd Manufacturing method of organic optical device
WO2014185180A1 (en) * 2013-05-17 2014-11-20 日東電工株式会社 Photo-curable resin composition for optical components, optical component using same, and optical component production method
JP2015194546A (en) * 2014-03-31 2015-11-05 日東電工株式会社 Optical component resin composition and optical components produced using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179325A (en) * 2016-03-24 2017-10-05 大阪ガスケミカル株式会社 Epoxy resin composition and its cured product
WO2017221935A1 (en) * 2016-06-21 2017-12-28 株式会社Adeka Curable composition, method for producing cured product, and cured product of same
JPWO2017221935A1 (en) * 2016-06-21 2019-04-11 株式会社Adeka Curable composition, method for producing cured product, and cured product thereof
TWI732891B (en) * 2016-06-21 2021-07-11 日商Adeka股份有限公司 Curable composition, method of manufacturing hardened material, and hardened material
JP7071262B2 (en) 2016-06-21 2022-05-18 株式会社Adeka Curable composition, method for producing cured product, and cured product thereof
KR20220104839A (en) * 2016-06-21 2022-07-26 가부시키가이샤 아데카 Curable composition, method for producing cured product, and cured product of same
KR102631774B1 (en) 2016-06-21 2024-01-30 가부시키가이샤 아데카 Curable composition, method for producing cured product, and cured product of same

Also Published As

Publication number Publication date
JP6448083B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
KR101821573B1 (en) Long-chain alkylene-containing curable epoxy resin composition
JP5329299B2 (en) Optical lens
WO2014185180A1 (en) Photo-curable resin composition for optical components, optical component using same, and optical component production method
JP2009098187A (en) Adhesive for optical components
EP2657270B1 (en) Optical waveguide forming epoxy resin composition, optical waveguide forming curable film, light transmission flexible printed board, and production method for the flexible printed board
JP3985821B2 (en) Curable fluorine-containing resin composition and optical member obtained by curing the same
JP2008214555A (en) Resin composition and resin cured product
JP2003149476A (en) Resin composition for optical waveguide and its hardened product
JP6448083B2 (en) Photocurable resin composition and high refractive resin cured body
JP5070131B2 (en) Resin composition for optical parts and optical part using the same
JP2004155954A (en) Photocurable composition and method for producing the same and cured product
US11377550B2 (en) Photosensitive epoxy resin composition for formation of optical waveguide, photosensitive film for formation of optical waveguide, optical waveguide produced by using the epoxy resin composition or the photosensitive film, and hybrid flexible printed wiring board for optical/electrical transmission
TWI653505B (en) Photocurable resin composition for optical waveguide, photocurable thin film for forming optical waveguide core layer, optical waveguide using the same, and hybrid flexible printed wiring board for photoelectric transmission
KR20120006460A (en) Photocurable resin composition and optical component using the same
JP5820266B2 (en) Optical waveguide forming resin composition and optical waveguide using the same
EP3561560A1 (en) Photosensitive epoxy resin composition for forming optical waveguide, curable film for forming optical waveguide, optical waveguide using same, and hybrid flexible printed wiring board for optical/electrical transmission
US9696491B2 (en) Photosensitive resin composition for optical waveguide and photocurable film for formation of optical waveguide core layer, as well as optical waveguide using same and mixed-mounting flexible printed wiring board for optical and electrical transmission
US9857504B2 (en) Optical waveguide photosensitive resin composition, photocurable film for forming optical waveguide core layer, optical waveguide using same, and mixed flexible printed circuit board for optical/electrical transmission
US20210277173A1 (en) Photosensitive epoxy resin composition for formation of optical waveguide, photosensitive film for formation of optical waveguide, optical waveguide produced by using the photosensitive epoxy resin composition or the photosensitive film, and hybrid flexible printed wiring board for optical and electrical transmission
JP2016050230A (en) Photosensitive resin composition for optical use and optical material using the same
JP2006008740A (en) Ultraviolet curable resin composition
JP2003177260A (en) Composition for optical waveguide resin
US20070189671A1 (en) Method for manufacturing optical waveguide chip
KR20140064640A (en) Resin composition for forming optical waveguide, optical waveguide using the resin composition, light transmission flexible printed board, and method for producing the optical waveguide
KR20120006456A (en) Photocurable resin composition and optical component using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181130

R150 Certificate of patent or registration of utility model

Ref document number: 6448083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250