JP2016101538A - Method for biologically treating waste water - Google Patents

Method for biologically treating waste water Download PDF

Info

Publication number
JP2016101538A
JP2016101538A JP2014239749A JP2014239749A JP2016101538A JP 2016101538 A JP2016101538 A JP 2016101538A JP 2014239749 A JP2014239749 A JP 2014239749A JP 2014239749 A JP2014239749 A JP 2014239749A JP 2016101538 A JP2016101538 A JP 2016101538A
Authority
JP
Japan
Prior art keywords
sulfur
wastewater
water
electron acceptor
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014239749A
Other languages
Japanese (ja)
Other versions
JP6344216B2 (en
Inventor
一男 末岡
Kazuo Sueoka
一男 末岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014239749A priority Critical patent/JP6344216B2/en
Publication of JP2016101538A publication Critical patent/JP2016101538A/en
Application granted granted Critical
Publication of JP6344216B2 publication Critical patent/JP6344216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for biologically treating waste water, in which when the waste water contains both of a sulfur-based COD component and a nitrogen component is treated under an oxygen-free sulfur oxidation condition, the rate of an oxygen-free sulfur oxidation reaction can be accelerated without necessitating a continuous or intermittent charge of a substance for activating metabolism of bacteria and without further necessitating membrane separation treatment.SOLUTION: The method for biologically treating waste water containing the sulfur-based COD component and the nitrogen component comprises the steps of: throwing a solid electron acceptor substance, which is functioned as an electron acceptor, in a reaction tank to proliferate denitrifying sulfur oxidation bacteria in the presence of the electron acceptor substance; and treating the proliferated denitrifying sulfur oxidation bacteria in the reaction tank under the oxygen-free sulfur oxidation condition so that the sulfur-based COD component in the waste water is oxidized and reduced and the nitrogen component is removed as a gas.SELECTED DRAWING: Figure 5

Description

本発明は、排水の生物学的処理方法に関するものである。   The present invention relates to a biological treatment method for waste water.

硫黄系COD成分、すなわち還元性硫黄成分を含む排水(例えば、S2−、HS、SO 2−、S 2−、SCNの少なくともいずれかが含まれる排水)に適用される生物学的処理方法として、硫黄酸化細菌を用いた処理方法がよく知られている。この硫黄酸化細菌を用いた排水の処理方法には、硫黄酸化の反応経路として好気的硫黄酸化と無酸素的硫黄酸化とがある。 Applied to wastewater containing sulfur-based COD components, that is, reducing sulfur components (for example, wastewater containing at least one of S 2− , HS , SO 3 2− , S 2 O 3 2− , SCN ). As a biological treatment method, a treatment method using sulfur-oxidizing bacteria is well known. In this wastewater treatment method using sulfur-oxidizing bacteria, there are aerobic sulfur oxidation and anaerobic sulfur oxidation as reaction pathways for sulfur oxidation.

好気的硫黄酸化条件下の処理方法では、硫黄系COD成分が電子供与体となり、また、分子状酸素が電子受容体となって硫黄酸化反応が起こる。例えば、シュードモナス(Pseudomonas)属(特許文献1)やパラコッカス(Paracoccus)属(非特許文献1)等に属する好気性硫黄酸化細菌がこの反応を行う。一方、無酸素的硫黄酸化条件下の処理方法では、硫黄系COD成分が電子供与体となり、また、亜硝酸イオン(NO )や硝酸イオン(NO )が電子受容体となって硫黄脱窒反応が起こり、電子受容体となったNO やNO は窒素含有ガス(NO、NO、N等の気体)となって気化し除去されるので、硫黄系COD成分と窒素成分とを同時に除去することが可能である。例えば、チオバチルス(Thiobacillus)属(特許文献2)やチオアルカリビブリオ(Thioalkalivibrio)属(非特許文献2、3)等に属する脱窒性硫黄酸化細菌がこの反応を行う。 In the treatment method under aerobic sulfur oxidation conditions, the sulfur-based COD component serves as an electron donor, and molecular oxygen serves as an electron acceptor to cause a sulfur oxidation reaction. For example, aerobic sulfur-oxidizing bacteria belonging to the genus Pseudomonas (Patent Document 1), the Paracoccus genus (Non-Patent Document 1), and the like perform this reaction. On the other hand, in the treatment method under anaerobic sulfur oxidation conditions, sulfur-based COD components serve as electron donors, and nitrite ions (NO 2 ) and nitrate ions (NO 3 ) serve as electron acceptors and sulfur. occurs denitrification, NO 2 becomes electron acceptor - and NO 3 - is a nitrogen-containing gas (NO, N 2 O, N 2 , etc. gas) so vaporized is to be removed, sulfur-COD components And the nitrogen component can be removed simultaneously. For example, denitrifying sulfur-oxidizing bacteria belonging to the genus Thiobacillus (Patent Document 2), the genus Thioalkalivibrio (Non-Patent Documents 2 and 3), and the like perform this reaction.

無酸素的硫黄酸化条件下の処理方法は、好気的硫黄酸化条件下の処理方法とは違って、硫黄系COD成分と窒素成分の同時除去ができる点が優れている。しかしながら、無酸素的硫黄酸化条件下の処理方法には、好気性硫黄酸化細菌による好気的硫黄酸化条件下の処理方法と比べて、反応速度が遅いという問題がある。従って、もし無酸素的硫黄酸化条件下の処理方法においてその反応速度を上昇させることができれば、好気的硫黄酸化条件下の処理方法では実現できない硫黄系COD成分と窒素成分とを同時に除去することができ、排水処理を効率的に行うことができるようになる。   Unlike the treatment method under the aerobic sulfur oxidation condition, the treatment method under the anaerobic sulfur oxidation condition is excellent in that the sulfur-based COD component and the nitrogen component can be removed simultaneously. However, the treatment method under the anaerobic sulfur oxidation condition has a problem that the reaction rate is slower than the treatment method under the aerobic sulfur oxidation condition by the aerobic sulfur oxidation bacteria. Therefore, if the reaction rate can be increased in the treatment method under anaerobic sulfur oxidation conditions, the sulfur-based COD component and nitrogen component that cannot be realized by the treatment method under aerobic sulfur oxidation conditions should be removed simultaneously. And wastewater treatment can be performed efficiently.

この無酸素的硫黄酸化の反応速度を上昇させる方法として、従来においては、脱窒性硫黄酸化細菌の代謝を活性化させるために、炭酸カルシウムと硫黄とが共存する粒状物又は塊状物を用いる方法(特許文献3)や、脱窒性硫黄酸化細菌を含む汚泥を吸水性樹脂内部に取り込んで包括固定化させることにより、汚泥が反応槽外に流出するのを防いで処理効率を向上させる方法(特許文献4)や、膜分離活性汚泥処理法を採用して反応槽内に脱窒性硫黄酸化細菌を高濃度に維持し、処理効率を向上させる方法(特許文献5)等が提案されている。   As a method of increasing the reaction rate of this oxygen-free sulfur oxidation, conventionally, a method using a granular material or a massive material in which calcium carbonate and sulfur coexist is used to activate the metabolism of denitrifying sulfur-oxidizing bacteria. (Patent Document 3) and a method of improving the treatment efficiency by preventing sludge from flowing out of the reaction tank by incorporating sludge containing denitrifying sulfur-oxidizing bacteria into the water-absorbent resin and fixing it comprehensively ( Patent literature 4), a method for improving the treatment efficiency by adopting a membrane separation activated sludge treatment method, maintaining a high concentration of denitrifying sulfur-oxidizing bacteria in the reaction tank, and the like (patent literature 5) are proposed. .

特許文献3の方法は、炭酸カルシウムと硫黄とが共存する粒状物又は塊状物を微生物活性能付与組成物として用いることに特徴を有する脱窒性硫黄酸化細菌を用いた排水処理方法であって、前記の粒状物又は塊状物が脱窒性硫黄酸化細菌の栄養基質となり、脱窒性硫黄酸化細菌を活性化させる。
しかしながら、この方法で微生物活性能付与組成物として用いられる粒状物又は塊状物は、脱窒性硫黄酸化細菌によって消費されるため、排水処理の際に連続的に又は断続的に添加する必要があり、この方法には処理コストが嵩むという問題がある。
The method of Patent Document 3 is a wastewater treatment method using a denitrifying sulfur-oxidizing bacterium characterized by using a granular material or a massive material in which calcium carbonate and sulfur coexist as a composition for imparting microbial activity, The above-mentioned granular substance or lump becomes a nutrient substrate for the denitrifying sulfur-oxidizing bacteria and activates the denitrifying sulfur-oxidizing bacteria.
However, since the particulates or lumps used as the composition for imparting microbial activity in this method are consumed by the denitrifying sulfur-oxidizing bacteria, it is necessary to add them continuously or intermittently during wastewater treatment. However, this method has a problem that processing costs increase.

特許文献4の方法は、脱窒性硫黄酸化細菌を含む汚泥中に下水汚泥の焼却灰と焼却灰懸濁液とを添加して混合すると共に更に吸水性樹脂を添加して混合し、汚泥を吸水性樹脂内部に取り込んで包括固定化させ、これによって、脱窒性硫黄酸化細菌を含む汚泥の反応槽外への流出を防ぎ、処理効率を向上させる技術である。
しかしながら、この方法においては、包括固定化された汚泥の表面が時間の経過に連れて剥がれていくことや、脱窒性硫黄酸化細菌以外の微生物群が包括固定化された汚泥の表面に付着して脱窒性硫黄酸化細菌のみを高濃度に集積できないことが操業上の別の問題として存在する。
In the method of Patent Document 4, the sewage sludge incineration ash and the incineration ash suspension are added to and mixed with the sludge containing denitrifying sulfur-oxidizing bacteria, and the water absorbent resin is further added to and mixed with the sludge. This is a technology that takes in the water-absorbing resin and fixes it in a fixed manner, thereby preventing the sludge containing denitrifying sulfur-oxidizing bacteria from flowing out of the reaction tank and improving the processing efficiency.
However, in this method, the surface of the sludge immobilized and immobilized is peeled off over time, and microorganisms other than denitrifying sulfur-oxidizing bacteria adhere to the surface of the sludge immobilized and immobilized. Another problem in operation is that only denitrifying sulfur-oxidizing bacteria cannot be accumulated at high concentrations.

特許文献5の方法は、脱窒性硫黄酸化細菌を用いた膜分離活性汚泥処理法であり、反応槽内に脱窒性硫黄酸化細菌を高濃度に維持できるため、処理効率を向上させることができる。
しかしながら、膜分離活性汚泥法においては、膜の目詰まりを防ぐために、定期的に次亜塩素酸等の薬剤で膜洗浄(薬剤洗浄)を行うか、又は、逆洗する必要があり、薬剤洗浄の場合には、処理を停止する必要があるほか、薬剤コストが嵩むという問題があり、また、逆洗の場合には、処理を停止する必要があるほか、逆洗のための洗浄用容器や洗浄のための場所が必要になるという問題がある。
The method of Patent Document 5 is a membrane separation activated sludge treatment method using denitrifying sulfur-oxidizing bacteria, and the denitrifying sulfur-oxidizing bacteria can be maintained at a high concentration in the reaction tank, so that the treatment efficiency can be improved. it can.
However, in the membrane separation activated sludge method, in order to prevent clogging of the membrane, it is necessary to periodically perform membrane cleaning (chemical cleaning) with chemicals such as hypochlorous acid or backwashing, and chemical cleaning In this case, there is a problem that the treatment needs to be stopped and the cost of the medicine is increased, and in the case of backwashing, the treatment needs to be stopped, and a washing container for backwashing There is a problem that a place for cleaning is required.

特開平08-323,390号報Japanese Unexamined Patent Publication No. 08-323,390 特開平11-299,481号公報JP-A-11-299,481 特開平11-285,377号公報Japanese Patent Laid-Open No. 11-285,377 特開平5-138,193号公報Japanese Unexamined Patent Publication No. 5-138,193 特開2002-316,189号公報JP 2002-316,189

Katayama, et al., Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus, Microbiobgy, 141, 1469-1477, 1995Katayama, et al., Paracoccus thiocyanatus sp. Nov., A new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. -1477, 1995 Sorokin, DY. et al., Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans ALJD, Archives of Microbiology, 175, 94-101, 2001Sorokin, DY. Et al., Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans ALJD, Archives of Microbiology, 175, 94-101, 2001 Sorokin, DY. et al., Thioalkalivibrio nitratireducens sp. Nov., a nitrate-reducing member of an autotrophic denitrifying consortium from a soda lake., International Journal of Systematic and Evolutionary Microbiology, 53, 1779-1783, 2003Sorokin, DY. Et al., Thioalkalivibrio nitratireducens sp. Nov., a nitrate-reducing member of an autotrophic denitrifying consortium from a soda lake., International Journal of Systematic and Evolutionary Microbiology, 53, 1779-1783, 2003

以上の通り、安水活性汚泥処理水等の硫黄系COD成分及び窒素成分の両方を含む排水においては、その両方を同時に処理できる無酸素的硫黄酸化条件下の生物学的処理方法が排水処理を簡素化できて有利であると考えられるところ、この方法には、反応速度が遅いという問題があり、また、この無酸素的硫黄酸化条件下の生物学的処理の際の反応速度の向上を企図する従来の方法においては、細菌の代謝を活性化させる物質の連続的又は断続的な投入の必要性、操業上の別の問題、あるいは、薬剤洗浄や逆洗の必要性等、処理コストが嵩むという問題があった。   As described above, in wastewater containing both sulfur-based COD components and nitrogen components such as water-activated activated sludge treated water, the biological treatment method under anaerobic sulfur oxidation conditions that can treat both of them simultaneously performs wastewater treatment. Although considered simple and advantageous, this method has the problem of slow reaction rates and is intended to increase reaction rates during biological treatments under this anaerobic sulfur oxidation condition. In the conventional method, the processing cost increases, such as the necessity of continuous or intermittent input of a substance that activates bacterial metabolism, another operational problem, or the necessity of chemical washing or back washing. There was a problem.

本発明は、硫黄系COD成分及び窒素成分の両方を含む排水を無酸素的硫黄酸化条件下で処理する方法において、細菌の代謝を活性化させる物質を連続的又は断続的に投入する必要が無く、膜分離処理も不要でありながら、無酸素的硫黄酸化の反応速度を速めることができる排水の生物学的処理方法を提供することを目的とする。   The present invention is a method for treating wastewater containing both a sulfur-based COD component and a nitrogen component under anoxic sulfur oxidation conditions, and it is not necessary to continuously or intermittently add a substance that activates bacterial metabolism. An object of the present invention is to provide a biological treatment method for wastewater that can increase the reaction rate of anaerobic sulfur oxidation while requiring no membrane separation treatment.

そこで、本発明者は、脱窒性硫黄酸化細菌による無酸素的硫黄酸化条件下の生物学的処理では、硫黄系COD成分(電子供与体)から取り出された電子が最終的には窒素成分の亜硝酸イオンや硝酸イオン(電子受容体)に受け渡されることに着眼し、この無酸素的硫黄酸化条件下の反応において、亜硝酸イオンや硝酸イオン以外にも電子受容体として機能する固体の物質(電子受容体物質)が存在すれば、硫黄系COD成分から取り出された電子の受渡し先となる電子受容体の全体容量が大きくなり、電子の授受が容易になって硫黄系COD成分の分解速度が速くなると考え、また、この固体の電子受容体物質が脱窒性硫黄酸化細菌等の微生物によって実質的に消費されることのない物質であれば、排水処理の際に連続的に又は断続的に添加する必要がなくなると考え、更に、これらの考えを実際に検証した結果、排水中の硫黄系COD成分を酸化させて低減させると共に窒素成分をNO、NO及びNからなる群から選ばれる1種以上の気体として効率的に除去できることを見出し、本発明を完成した。 In view of this, the present inventor believes that in biological treatment under anaerobic sulfur oxidation conditions by a denitrifying sulfur-oxidizing bacterium, electrons taken out from the sulfur-based COD component (electron donor) are ultimately nitrogen components. Focusing on being transferred to nitrite ions and nitrate ions (electron acceptors), solid substances that function as electron acceptors in addition to nitrite ions and nitrate ions in this reaction under anoxic sulfur oxidation conditions If (electron acceptor substance) is present, the total capacity of the electron acceptor, which is a delivery destination of electrons extracted from the sulfur-based COD component, is increased, and the transfer of electrons is facilitated, so that the decomposition rate of the sulfur-based COD component is increased. If the solid electron acceptor substance is a substance that is not substantially consumed by microorganisms such as denitrifying sulfur-oxidizing bacteria, it can be continuously or intermittently used during wastewater treatment. Added to Considered it unnecessary that further actually a result of the verification of these ideas are selected nitrogen components with reducing sulfur-COD components in waste water by oxidizing NO, from the group consisting of N 2 O and N 2 The present invention has been completed by finding that it can be efficiently removed as one or more gases.

すなわち、本発明の要旨は、次の(1)〜(6)に記載の通りである。
(1) 硫黄系COD成分としてS2−、HS、SO 2−、S 2−、及びSCNからなる群から選ばれる1種以上を含有し、かつ、窒素成分としてNO 及びNO を含有する排水を反応槽内で生物学的に処理する方法であって、
前記反応槽内の排水中に電子受容体として機能する固体の電子受容体物質を投入し、この電子受容体物質の存在下に脱窒性硫黄酸化細菌を増殖させ、
前記反応槽内で前記排水を無酸素的硫黄酸化条件下に処理し、排水中の硫黄系COD成分を酸化させて低減させると共に、窒素成分をNO、NO及びNからなる群から選ばれる1種以上の気体として除去することを特徴とする排水の生物学的処理方法。
(2) 前記排水中で固体の電子受容体物質の存在下に増殖される脱窒性硫黄酸化細菌は、この電子受容体物質と共に排水中に投入された活性汚泥に含まれていた細菌、及び/又は、排水中に含まれていた細菌である前記(1)に記載の排水の生物学的処理方法。
(3) 前記電子受容体物質が、磁鉄鉱、ゼオライト、及び、黄鉄鉱と黄銅鉱との混合物からなる群から選ばれる1種又は2種以上であることを特徴とする前記(1)又は(2)に記載の排水の生物学的処理方法。
(4) 前記排水が、硫黄系COD成分として少なくともSCNを含有することを特徴とする前記(1)〜(3)のいずれかに記載の排水の生物学的処理方法。
(5) 前記排水が、安水活性汚泥処理水であることを特徴とする前記(1)〜(4)のいずれかに記載の排水の生物学的処理方法。
(6) 前記排水が、高炉スラグ浸漬水に安水活性汚泥処理水が混合された排水であることを特徴とする前記(1)〜(4)のいずれかに記載の排水の生物学的処理方法。
That is, the gist of the present invention is as described in the following (1) to (6).
(1) Contains at least one selected from the group consisting of S 2− , HS , SO 3 2− , S 2 O 3 2− , and SCN as the sulfur-based COD component, and NO 2 as the nitrogen component - and NO 3 - a biologically processing method for waste water containing a reaction vessel and,
A solid electron acceptor substance that functions as an electron acceptor is put into the waste water in the reaction tank, and denitrifying sulfur-oxidizing bacteria are grown in the presence of this electron acceptor substance,
The waste water is treated under anaerobic sulfur oxidation conditions in the reaction vessel to oxidize and reduce the sulfur-based COD component in the waste water, and the nitrogen component is selected from the group consisting of NO, N 2 O and N 2 A method for biological treatment of wastewater, characterized in that it is removed as one or more gases.
(2) The denitrifying sulfur-oxidizing bacteria grown in the waste water in the presence of a solid electron acceptor substance are bacteria contained in the activated sludge put into the waste water together with the electron acceptor substance, and The biological treatment method of wastewater according to (1) above, wherein the bacteria are contained in the wastewater.
(3) Said (1) or (2), wherein said electron acceptor substance is one or more selected from the group consisting of magnetite, zeolite, and a mixture of pyrite and chalcopyrite A biological treatment method of waste water as described in 1.
(4) the drainage is at least SCN as the sulfur-based COD components - the characterized in that it contains (1) to the biological treatment method of the waste water according to any one of (3).
(5) The biological treatment method for wastewater according to any one of (1) to (4), wherein the wastewater is treated with water-activated activated sludge.
(6) The biological treatment of wastewater according to any one of (1) to (4), wherein the wastewater is wastewater obtained by mixing blast furnace slag immersion water with water-activated activated sludge treated water. Method.

本発明によれば、反応槽内に電子受容体として機能する固体の電子受容体物質を投入し、硫黄系COD成分及び窒素成分を含む排水を無酸素的硫黄酸化条件にて処理することによって、反応槽内に電子受容体物質を投入しない従来法と比べて、これら硫黄系COD成分及び窒素成分をより効率的にかつより簡便に除去することが可能となる。   According to the present invention, a solid electron acceptor substance functioning as an electron acceptor is charged into a reaction vessel, and wastewater containing a sulfur-based COD component and a nitrogen component is treated under anoxic sulfur oxidation conditions. Compared with the conventional method in which the electron acceptor substance is not charged into the reaction vessel, these sulfur-based COD components and nitrogen components can be removed more efficiently and more easily.

図1は、無酸素的硫黄酸化反応による排水の生物学的処理方法で利用される脱窒性硫黄酸化細菌の説明図である。FIG. 1 is an explanatory diagram of a denitrifying sulfur-oxidizing bacterium used in a biological treatment method of wastewater by an oxygen-free sulfur oxidation reaction. 図2は、電子受容体として機能する固体の電子受容体物質に電子が流れることを確認するための試験装置の一例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of a test apparatus for confirming that electrons flow into a solid electron acceptor substance functioning as an electron acceptor. 図3は、本発明の生物学的排水処理プロセスの一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of the biological wastewater treatment process of the present invention. 図4は、チオシアン酸を電子供与体とし、亜硝酸態窒素又は硝酸態窒素を電子受容体とする脱窒性硫黄酸化細菌の代謝反応の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of a metabolic reaction of a denitrifying sulfur-oxidizing bacterium using thiocyanic acid as an electron donor and nitrite nitrogen or nitrate nitrogen as an electron acceptor. 図5は、固体の電子受容体物質が共存する環境下における脱窒性硫黄酸化細菌及び脱窒性細菌の代謝反応の一例を示す説明図である。FIG. 5 is an explanatory diagram showing an example of the metabolic reaction of denitrifying sulfur-oxidizing bacteria and denitrifying bacteria in an environment where a solid electron acceptor substance coexists.

本発明は、硫黄系COD成分(S2−、HS、SO 2−、S 2−、及びSCNからなる群から選ばれる1種以上)と窒素成分(NO 及びNO )とを含む排水を処理するための排水の生物学的処理方法であって、反応槽内に電子受容体として機能する固体の電子受容体物質を投入し、前記排水を無酸素的硫黄酸化条件にて処理し、前記排水中の硫黄系COD成分を酸化させて低減させると共に、窒素成分をNO、NO及びNからなる群から選ばれる1種以上の気体として除去する排水の生物学的処理方法である。ここで、本発明における無酸素的硫黄酸化条件とは、排水中に溶存酸素は存在しないが、亜硝酸態窒素(NO )や硝酸態窒素(NO )が存在する状態において、溶存酸素を電子受容体として用いる硫黄酸化ではなく、亜硝酸態窒素や硝酸態窒素を電子受容体として用いる硫黄酸化が生じる条件である。 The present invention relates to a sulfur-based COD component (one or more selected from the group consisting of S 2− , HS , SO 3 2− , S 2 O 3 2− , and SCN ) and a nitrogen component (NO 2 and NO 3 -) and a biological treatment method of the waste water for treating the waste water containing in the electron acceptor substance solids which functions as an electron acceptor in the reaction vessel was charged, the drainage anaerobic sulfur The wastewater is treated under oxidizing conditions to oxidize and reduce the sulfur-based COD component in the wastewater and to remove the nitrogen component as one or more gases selected from the group consisting of NO, N 2 O and N 2 . Biological treatment method. Here, the oxygen-free sulfur oxidation condition in the present invention means that dissolved oxygen is not present in the waste water, but dissolved in a state where nitrite nitrogen (NO 2 ) and nitrate nitrogen (NO 3 ) are present. This is a condition in which not sulfur oxidation using oxygen as an electron acceptor but sulfur oxidation using nitrite nitrogen or nitrate nitrogen as an electron acceptor.

本発明の処理対象となる排水は、硫黄系COD成分(S2−、HS、SO 2−、S 2−、及びSCNからなる群から選ばれる1種以上)と窒素成分(NO 及びNO )とを含むものであれば特に制限されるものではなく、例えば、安水活性汚泥処理水、高炉スラグ浸漬水、これら高炉スラグ浸漬水に安水活性汚泥処理水を混合した排水、石油精製工業、写真工業、化学工業、皮革工業、金属精錬工業、鉱山等から発生する排水等が挙げられる。ここで、高炉スラグ浸漬水とは高炉スラグが雨水等と接触して生成した排水のことである。高炉スラグには還元性硫黄化合物(硫黄系COD)が含まれており、ヤードに野積みにされて保管されるので、雨水と接触した際に発生する高炉スラグ浸漬水には、硫黄系COD成分として還元性硫黄が含まれており、pHは12程度である。 The wastewater to be treated in the present invention is a sulfur-based COD component (one or more selected from the group consisting of S 2− , HS , SO 3 2− , S 2 O 3 2− , and SCN ) and a nitrogen component. (NO 2 - and NO 3 -) is not a subject to any particular limitation so long as it contains, for example, aqueous ammonia activated sludge treated water, blast furnace slag steep water, ammonia liquor activated sludge treated water in these blast furnace slag soaking water , Wastewater generated from petroleum refining industry, photographic industry, chemical industry, leather industry, metal refining industry, mine, and the like. Here, the blast furnace slag immersion water is drainage generated by contact of blast furnace slag with rainwater or the like. Blast furnace slag contains reducing sulfur compounds (sulfur-based COD) and is stored in the yard, so the blast furnace slag immersion water generated when it comes into contact with rainwater contains sulfur-based COD components. Reducing sulfur is included, and the pH is about 12.

前述した各排水においては、硫黄系COD成分は含まれているが、窒素成分が少量である場合や、反対に、窒素成分は含まれているが、硫黄系COD成分が少量である場合がある。そのような場合には、例えば、安水活性汚泥処理水等の窒素成分を含む排水を適宜必要な量だけ添加したり、あるいは、高炉スラグ浸漬水等の硫黄系COD成分を含む排水を適宜必要な量だけ添加し、処理対象の排水を硫黄系COD成分及び窒素成分の両方を含むようにすることによって、本発明を適用することができる。これらは排水なので、コストが嵩むことはない。なお、排水に含まれるNO 及びNO は、一方のみが含まれている場合はほとんどなく、少量でも両方が含まれている場合がほとんどである。 Each of the above-described wastewater contains a sulfur-based COD component, but the nitrogen component is small, and conversely, the nitrogen component is contained, but the sulfur-based COD component may be small. . In such a case, for example, drainage containing nitrogen components such as water-activated activated sludge treated water is added in an appropriate amount, or drainage containing sulfur-based COD components such as blast furnace slag immersion water is necessary. The present invention can be applied by adding an appropriate amount so that the wastewater to be treated contains both the sulfur-based COD component and the nitrogen component. Since these are drainage, the cost does not increase. Incidentally, NO 2 contained in the waste water - and NO 3 - are little if it contains only one, in most cases contain both even in small amounts.

また、本発明は、排水の生物学的処理方法であって、処理対象の排水中に脱窒性硫黄酸化細菌が含まれている場合には、この脱窒性硫黄酸化細菌を増殖させて排水を生物学的に処理してもよく、また、処理対象の排水中に脱窒性硫黄酸化細菌が含まれていない場合や、含まれていても少ない場合には、この脱窒性硫黄酸化細菌を含む活性汚泥を排水中に添加し、この添加された脱窒性硫黄酸化細菌を増殖させて排水を生物学的に処理してもよい。   In addition, the present invention is a biological treatment method of wastewater, and when the denitrifying sulfur-oxidizing bacteria are contained in the wastewater to be treated, the denitrifying sulfur-oxidizing bacteria are grown and drained. May be biologically treated, and if the wastewater to be treated does not contain denitrifying sulfur-oxidizing bacteria or if it is contained in a small amount, this denitrifying sulfur-oxidizing bacteria The activated sludge containing the wastewater may be added to the wastewater, and the added denitrifying sulfur-oxidizing bacteria are grown to biologically treat the wastewater.

本発明において、反応槽内に投入されてこの反応槽内で電子受容体として機能する固体の電子受容体物質としては、反応槽内で起こる脱窒性硫黄酸化細菌による無酸素的硫黄酸化反応の際に発生する電子を受け取ることができ、排水中で脱窒性硫黄酸化細菌により消費されない、又は、消費され難い固体の物質であればよく、特に制限されるものではないが、例えば、磁鉄鉱、ゼオライト、黄鉄鉱と黄銅鉱との混合物、黄鉄鉱と閃亜鉛鉱との混合物、黄鉄鉱と輝安鉱との混合物、黄銅鉱と閃亜鉛鉱との混合物、黄銅鉱と輝安鉱との混合物、閃亜鉛鉱と輝安鉱との混合物、及び、炭素繊維等からなる群から選ばれる1種又は2種以上が挙げられる。これらの物質は低溶解性のためほとんど消費されることがないので、大抵の場合は一度添加すればよく、再度添加するコストが嵩むことはない。   In the present invention, the solid electron acceptor substance that is charged into the reaction vessel and functions as an electron acceptor in the reaction vessel is an oxygen-free sulfur oxidation reaction by a denitrifying sulfur-oxidizing bacterium that occurs in the reaction vessel. Any solid substance that can receive electrons generated at the time and is not consumed by denitrifying sulfur-oxidizing bacteria in wastewater or difficult to consume, and is not particularly limited, for example, magnetite, Zeolite, mixture of pyrite and chalcopyrite, mixture of pyrite and sphalerite, mixture of pyrite and sphalerite, mixture of chalcopyrite and sphalerite, mixture of chalcopyrite and sphalerite, zinc blende 1 type or 2 or more types chosen from the group which consists of a mixture of an ore and a bright ore, carbon fiber, etc. are mentioned. Since these substances are hardly consumed due to their low solubility, in most cases they need only be added once, and the cost of adding them again does not increase.

反応槽内に投入する前記固体の電子受容体物質の投入量は、反応槽の容積100%に対して、体積比率で10%以上50%以下であるのが好ましい。10%未満であると、反応槽内において脱窒性硫黄酸化細菌を含む微生物群と固体の電子受容体物質とが十分に接触することができず、排水中の硫黄系COD成分及び窒素成分が十分に除去されない場合がある。反対に、50%以上であると、反応槽の容積に対する脱窒性硫黄酸化細菌を含む微生物群と排水との混合物が占める容積が小さくなり、水理学的滞留時間が短くなり過ぎて排水中の硫黄系COD成分及び窒素成分が十分に除去されない場合がある。但し、50%以上であっても、反応槽への排水の流入速度を落として水理学的滞留時間を十分にとることが許容されれば、排水中の硫黄系COD成分及び窒素成分を十分に除去できる。   The amount of the solid electron acceptor substance charged into the reaction vessel is preferably 10% or more and 50% or less in volume ratio with respect to the volume of the reaction vessel of 100%. If it is less than 10%, the microorganism group containing denitrifying sulfur-oxidizing bacteria and the solid electron acceptor substance cannot be sufficiently contacted in the reaction tank, and the sulfur-based COD component and nitrogen component in the wastewater It may not be removed sufficiently. On the contrary, if it is 50% or more, the volume occupied by the mixture of the microorganism group containing denitrifying sulfur-oxidizing bacteria and the wastewater with respect to the volume of the reaction tank becomes small, the hydraulic residence time becomes too short, The sulfur-based COD component and nitrogen component may not be sufficiently removed. However, even if it is 50% or more, if it is allowed to reduce the inflow rate of the wastewater into the reaction tank and take sufficient hydraulic residence time, the sulfur-based COD component and nitrogen component in the wastewater will be sufficiently removed. Can be removed.

また、固体の電子受容体物質については、その比表面積が大きい方がよい。これは、比表面積がより大きい方が電子受容体として機能する固体の電子受容体物質と脱窒性硫黄酸化細菌を含む微生物群との間における電子のやり取りがより効率的に行われるからである。この固体の電子受容体物質の粒度範囲については0.5mm以上30mm以下が好ましい。0.5mm未満であると排水中に懸濁して処理水と共に流出する場合があり、反対に、30mm超であると比表面積が小さくなり過ぎて電子のやり取りが効率的に行われ難くなる場合がある。   In addition, the solid electron acceptor substance should have a large specific surface area. This is because the exchange of electrons between the solid electron acceptor substance functioning as the electron acceptor and the microorganism group including the denitrifying sulfur-oxidizing bacteria is performed more efficiently when the specific surface area is larger. . The particle size range of the solid electron acceptor substance is preferably 0.5 mm or more and 30 mm or less. If it is less than 0.5 mm, it may be suspended in the wastewater and flow out with the treated water. Conversely, if it is more than 30 mm, the specific surface area becomes too small and it is difficult to exchange electrons efficiently. is there.

本発明は、脱窒性硫黄酸化細菌を増殖させて排水中の硫黄系COD成分と窒素成分を除去し、あるいは、低減させる生物学的処理方法であって、以下のようにして実施することができる。
脱窒性硫黄酸化細菌を含む活性汚泥を用いる場合には、反応槽内に固体の電子受容体物質と脱窒性硫黄酸化細菌を含む活性汚泥とを入れ、排水を上向流又は下向流で連続的に流入させる。反応槽内は、無酸素状態を維持するために、撹拌を行わないか、又は、空気を巻き込まないように緩やかに撹拌し、活性汚泥と排水とが効率的に接触するようにすればよい。反応槽に排水を流入させる際の温度及び反応槽内での排水の水理学的滞留時間については、活性汚泥中の微生物群が増殖できる温度で、かつ、流入してくる硫黄系COD成分及び窒素成分の負荷速度に対して、微生物群によるこれらの成分の除去速度が同等以上になる排水の滞留時間であればよく、通常は、温度が5〜40℃程度であって、水理学的滞留時間が1〜24時間程度であるのがよい。
The present invention relates to a biological treatment method for growing denitrifying sulfur-oxidizing bacteria to remove or reduce sulfur-based COD components and nitrogen components in wastewater, which can be carried out as follows. it can.
When using activated sludge containing denitrifying sulfur-oxidizing bacteria, put solid electron acceptor substance and activated sludge containing denitrifying sulfur-oxidizing bacteria in the reaction tank, and drain the wastewater upward or downward. Let it flow continuously. In order to maintain an oxygen-free state in the reaction tank, stirring is not performed, or stirring is gently performed so as not to entrain air so that the activated sludge and the waste water are efficiently in contact with each other. Regarding the temperature at which the wastewater flows into the reaction tank and the hydraulic retention time of the wastewater in the reaction tank, the temperature is such that the microorganisms in the activated sludge can grow, and the inflowing sulfur-based COD components and nitrogen What is necessary is just the residence time of the waste water in which the removal rate of these components by the microorganism group is equal to or higher than the loading rate of the components, and usually the temperature is about 5 to 40 ° C., and the hydraulic residence time Is preferably about 1 to 24 hours.

また、反応槽内に活性汚泥を入れずに排水中の脱窒性硫黄酸化細菌を増殖させる場合には、反応槽内に固体の電子受容体物質のみを入れ、排水を上向流又は下向流で連続的に流入させ、排水中に含まれる脱窒性硫黄酸化細菌を反応槽内で増殖させればよい。この場合には、一旦反応槽から抜き出された処理水の一部又は全部を再び反応槽内に戻して循環させるのが好ましく、これによって排水中に含まれる脱窒性硫黄酸化細菌を効果的に増殖させることができる。   In addition, when denitrifying sulfur-oxidizing bacteria in the wastewater are grown without putting activated sludge in the reaction tank, only the solid electron acceptor substance is put in the reaction tank, and the wastewater is flowed upward or downward. The denitrifying sulfur-oxidizing bacteria contained in the waste water may be allowed to grow in the reaction tank continuously by flowing in the flow. In this case, it is preferable that part or all of the treated water once extracted from the reaction tank is returned to the reaction tank and circulated, thereby effectively removing the denitrifying sulfur-oxidizing bacteria contained in the waste water. Can be grown.

ここで、本発明の排水の生物学的処理方法で適用可能な微生物については、それが無酸素的硫黄酸化条件で排水中の硫黄系COD成分及び窒素成分を分解して除去できるものであれば、特に制限はないが、その代表的なものを説明すると、図1に示すように、例えば概ねpH5.5〜pH8.5の範囲で生育するチオバチラス(Thiobacillus)属デニトリフイカンス(denitrificans)種等のチオバチラス (Thiobacillus)属(特許文献2)、概ねpH6.0〜pH9.5の範囲で生育するパラコッカス(Paracoccus)属(非特許文献1)、概ねpH7.5〜pH10.5の範囲で生育するチオアルカリビブリオ(Thioalkalivibrio)属デナイトリフィカンス(Denitrificans)種(分離株)等のチオアルカリビブリオ(Thioalkalivibrio)属(非特許文献2)、及び、概ねpH8.5〜pH10.5の範囲で生育する地おアルカリビブリオ(Thioalkalivibrio)属ナイトレイティリデュセンス(Nitratireducens)種(分離株)等のチオアルカリビブリオ(Thioalkalivibrio)属(非特許文献3)等を例示することができる。   Here, the microorganisms that can be applied in the wastewater biological treatment method of the present invention are those that can decompose and remove sulfur-based COD components and nitrogen components in wastewater under anoxic sulfur oxidation conditions. Although not particularly limited, a typical example thereof will be described. As shown in FIG. 1, for example, a species of the genus Thiobacillus denitrificans that grows in the pH range of approximately 5.5 to 8.5. The genus Thiobacillus (patent document 2), which generally grows in the range of pH 6.0 to pH 9.5 (Non-patent document 1), and grows in the range of approximately pH 7.5 to pH 10.5 Thioalkalivibrio genus (Niopatent literature 2), such as the genus Thioalkalivibrio genus Denitrificans (isolate), and approximately pH 8.5 to pH10 5 land Contact alkaline Vibrio to grow in the range of (Thioalkalivibrio) genus Knightly Thiry du sense (Nitratireducens) species (isolate) such as thio alkali Vibrio (Thioalkalivibrio) genus (non-patent document 3) or the like can be exemplified.

次に、電子受容体として機能する固体の電子受容体物質に電子が流れることを確かめる方法について説明する。
例えば、図2に示す試験装置を用いて確かめることができる。この試験装置は、その容器本体の中央がプロトン交換膜6で容積半々に仕切られて二つの槽に構成されており、一方の槽が負極槽3とされ、また、他方の槽が正極槽4とされている。
Next, a method for confirming that electrons flow into a solid electron acceptor substance functioning as an electron acceptor will be described.
For example, it can be confirmed using the test apparatus shown in FIG. In this test apparatus, the center of the container body is divided into half tanks by a proton exchange membrane 6 and is constituted by two tanks. One tank is a negative electrode tank 3 and the other tank is a positive electrode tank 4. It is said that.

この試験装置において、前記負極槽3と正極槽4には、安水活性汚泥処理水7と活性汚泥との混合物をそれぞれ等量ずつ入れる。ここで、負極槽3及び正極槽4に入れられる活性汚泥については事前に安水活性汚泥処理水を用いて無酸素的硫黄酸化条件下で馴致させておいたものを使用するのがよく、また、負極槽3に入れられる活性汚泥中には脱窒性硫黄酸化細菌1を生育させ、また、正極槽4に入れられる活性汚泥中には脱窒性細菌2を生育させる。ここで、脱窒性細菌2とは、脱窒性硫黄酸化細菌1以外の脱窒性を有する細菌のことであり、例えば、マリノバクター(Marinobacter)属やシュードモナス(Pseudomonas)属等を例示することができる。   In this test apparatus, the negative electrode tank 3 and the positive electrode tank 4 are each filled with an equal amount of a mixture of the water-activated activated sludge treated water 7 and the activated sludge. Here, as the activated sludge to be put into the negative electrode tank 3 and the positive electrode tank 4, it is preferable to use one that has been acclimatized under anaerobic sulfur oxidation conditions using the water-activated activated sludge treated water in advance. The denitrifying sulfur-oxidizing bacteria 1 are grown in the activated sludge put into the negative electrode tank 3, and the denitrifying bacteria 2 are grown in the activated sludge put into the positive electrode tank 4. Here, the denitrifying bacterium 2 is a denitrifying bacterium other than the denitrifying sulfur-oxidizing bacterium 1, and examples thereof include the genus Marinobacter and the genus Pseudomonas. Can do.

次に、電子受容体として機能する物質であるか否かを調べる測定対象の2つの固体の物質(ここでは、電子受容体として機能する「電子受容体物質5」として説明する。)をそれぞれ正極及び負極として互いに導線8で繋ぎ、その一方を負極槽3内に入れ、また、他方を正極槽4内に入れ、導線8には抵抗9と電圧計10を並列に接続して負極槽3と正極槽4との間の電圧を測定できるように構成する。   Next, two solid substances to be measured for examining whether or not the substance functions as an electron acceptor (herein, described as “electron acceptor substance 5” functioning as an electron acceptor) are respectively positive electrodes. The negative electrode 3 and the negative electrode 3 are connected to each other by a conductive wire 8, one of which is placed in the negative electrode vessel 3, and the other is placed in the positive electrode vessel 4. The voltage between the positive electrode tank 4 can be measured.

このように構成された試験装置の負極槽3内と正極槽4内とを無酸素状態にすると(撹拌せずに静置させるか、緩やかに撹拌するか、又は、緩やかに窒素ガスやアルゴンガス等で曝気すればよい)、負極槽3内では脱窒性硫黄酸化細菌1による無酸素的硫黄酸化反応によって、例えば、チオシアン酸(SCN)から電子が取り出され、この取り出された電子の一部が固体の電子受容体物質5に受け渡される。そして、負極槽3内で電子受容体物質5に受け渡された電子は、導線8を通じて正極槽4内の固体の電子受容体物質5に到達し、その後に脱窒性細菌2によって受け取られ、この受け取った電子を用いて脱窒性細菌2が亜硝酸態窒素(NO )や硝酸態窒素(NO )を還元して窒素ガス(N)に還元する。この時、負極槽3と正極槽4との間には電位差が生じるので、この電位差が電圧計10で測定されれば、測定対象の物質が電子受容体として機能する固体の電子受容体物質5であると確認される。 When the inside of the negative electrode tank 3 and the positive electrode tank 4 of the test apparatus configured as described above is put into an oxygen-free state (either left without stirring, gently stirred, or gently with nitrogen gas or argon gas) In the negative electrode tank 3, for example, electrons are extracted from thiocyanic acid (SCN ) by an oxygen-free sulfur oxidation reaction by the denitrifying sulfur-oxidizing bacteria 1, and one of the extracted electrons is Part is transferred to the solid electron acceptor material 5. Then, the electrons transferred to the electron acceptor material 5 in the negative electrode tank 3 reach the solid electron acceptor material 5 in the positive electrode tank 4 through the conductive wire 8, and then are received by the denitrifying bacteria 2, Using the received electrons, the denitrifying bacterium 2 reduces nitrite nitrogen (NO 2 ) and nitrate nitrogen (NO 3 ) to nitrogen gas (N 2 ). At this time, since a potential difference is generated between the negative electrode tank 3 and the positive electrode tank 4, if this potential difference is measured by the voltmeter 10, a solid electron acceptor material 5 in which the substance to be measured functions as an electron acceptor. It is confirmed that

続いて、図3に示す排水処理装置を用いた生物学的排水処理プロセスを例にし、また、排水が安水活性汚泥処理水であって活性汚泥を利用する場合を例にして、本発明の具体的な実施形態について詳しく説明する。
先ず、排水の安水活性汚泥処理水を排水タンク3に入れる。この際に、排水が高炉スラグ浸漬水に安水活性汚泥処理水を混合した排水である場合には、例えば、高炉スラグ浸漬水を排水タンク1に入れ、また、安水活性汚泥処理水を排水タンク2に入れ、両排水をそれぞれ送液ポンプ13及び送液ポンプ14で排水タンク3に送って混合し、この排水タンク3で処理のための排水を作製する。
Subsequently, the biological wastewater treatment process using the wastewater treatment apparatus shown in FIG. 3 is taken as an example, and the case where the wastewater is a safe activated sludge treated water and the activated sludge is used as an example. Specific embodiments will be described in detail.
First, the low-water activated sludge treated water is put into the drainage tank 3. In this case, when the wastewater is a wastewater obtained by mixing the blast furnace slag soaked water with the water-activated activated sludge treated water, for example, the blast furnace slag soaked water is placed in the drainage tank 1 and the water-activated activated sludge treated water is discharged. The waste water is put into the tank 2, and both waste waters are sent to the waste water tank 3 by the liquid feed pump 13 and the liquid feed pump 14, and mixed. The waste water tank 3 produces waste water for processing.

この排水タンク3内では、生物学的排水処理に利用される微生物群の生育pH領域を考慮して、排水のpHが所望の範囲になるように調整される。ここで、高炉スラグ浸漬水のpHが12程度であって、安水活性汚泥処理水のpHが8〜9程度なので、高炉スラグ浸漬水に対する安水活性汚泥処理水の混合割合次第では、作製された混合排水のpHが所望のpH値範囲(例えば、pH5.5〜10.5の範囲)を外れてより高くなってしまう場合があるが、その場合には、pH緩衝作用のある海水を追加して混合し、pHを所望のpH値範囲内まで下げるのがよい。このような際に海水を追加する方法としては、例えば、高炉スラグ浸漬水に安水活性汚泥処理水を混合した混合排水を排水タンク3で作製した後、排水タンク1又は2に海水を入れて必要量だけ排水タンク3に送り込んでpHを調整してもよく、また、排水タンク1及び2に図示外の海水タンクを併設しておき、この海水タンクから必要量の海水を排水タンク3に送り込んでpHを調整してもよい。   In the drainage tank 3, the pH of the wastewater is adjusted to a desired range in consideration of the growth pH region of the microorganism group used for biological wastewater treatment. Here, since the pH of the blast furnace slag immersion water is about 12 and the pH of the low-water activated sludge treatment water is about 8 to 9, it is produced depending on the mixing ratio of the low-water activated sludge treatment water to the blast furnace slag immersion water. In some cases, the pH of the mixed wastewater is higher than the desired pH value range (for example, pH 5.5 to 10.5). In that case, seawater with pH buffering action is added. And mixing to lower the pH to within the desired pH value range. In such a case, as a method of adding seawater, for example, after preparing a mixed wastewater in which blast furnace slag immersion water is mixed with water-activated activated sludge treated water in the drainage tank 3, the seawater is put into the drainage tank 1 or 2. The required amount may be sent to the drainage tank 3 to adjust the pH, and a seawater tank (not shown) is provided in the drainage tanks 1 and 2, and the required amount of seawater is sent from the seawater tank to the drainage tank 3. You may adjust pH by.

次に、反応槽4内には、電子受容体として機能する固体の電子受容体物質5を投入し、また、活性汚泥を投入する。活性汚泥については生活排水や安水等を処理する活性汚泥でよく、好ましくは安水活性汚泥処理水又は高炉スラグ浸漬水に安水活性汚泥処理水を混合した排水で事前に馴致させた活性汚泥であるのがよい。その後、排水タンク3の排水が送液ポンプ15で反応槽4に通水され、反応槽4内で活性汚泥と排水との混合物6となった後、反応槽4内で処理するのに必要な時間(水理学的滞留時間)だけこの活性汚泥と排水との混合物6を滞留させる。また同時に、この反応槽4内の排水のpHが5.5以上10.5以下に維持されるように、pHセンサー7でモニタリングしながら、送液ポンプ16で酸タンク8から酸溶液が、また、送液ポンプ17でアルカリタンク9からアルカリ溶液がそれぞれ必要に応じて送液され、反応槽4内に滞留する活性汚泥と排水との混合物6のpH調整が行われる。なお、この反応槽4内に滞留する活性汚泥と排水との混合物6のpH調整範囲は、具体的には利用される微生物群の生育pH領域で決まるが、一般的に知られている脱窒性硫黄酸化細菌が生育できるpH範囲は5.5以上10.5以下であり、また、活性汚泥中に含まれる脱窒性硫黄酸化細菌や排水中に含まれる脱窒性硫黄酸化細菌も同様のpH範囲で生育が可能である。但し、活性汚泥を事前に馴致させた場合には、pH調製範囲をこの馴致の際のpH調整範囲とほぼ同じ範囲にするのがよく、これによって馴致させた活性汚泥の活性がより高くなると考えられる。   Next, in the reaction tank 4, a solid electron acceptor substance 5 that functions as an electron acceptor is charged, and activated sludge is charged. The activated sludge may be activated sludge that treats domestic wastewater or safety water, etc., preferably activated sludge that has been acclimatized in advance with wastewater mixed with low-water activated sludge treated water or blast furnace slag soaked water. It is good to be. Thereafter, the wastewater from the drainage tank 3 is passed through the reaction tank 4 by the liquid feed pump 15, becomes a mixture 6 of activated sludge and wastewater in the reaction tank 4, and is necessary for processing in the reaction tank 4. The mixture 6 of activated sludge and waste water is retained for a time (hydraulic residence time). At the same time, while the pH sensor 7 is monitoring so that the pH of the wastewater in the reaction tank 4 is maintained at 5.5 or more and 10.5 or less, the acid solution is again supplied from the acid tank 8 by the liquid feed pump 16. The alkaline solution is fed from the alkaline tank 9 by the liquid feed pump 17 as necessary, and the pH of the mixture 6 of the activated sludge and the wastewater staying in the reaction tank 4 is adjusted. The pH adjustment range of the mixture 6 of the activated sludge and waste water staying in the reaction tank 4 is specifically determined by the growth pH region of the microorganism group to be used, but is generally known denitrification. The pH range in which oxidative sulfur-oxidizing bacteria can grow is 5.5 to 10.5, and the same applies to denitrifying sulfur-oxidizing bacteria contained in activated sludge and denitrifying sulfur-oxidizing bacteria contained in waste water. It can grow in the pH range. However, when the activated sludge is acclimatized in advance, the pH adjustment range should be approximately the same as the pH adjustment range at the time of acclimatization, and it is considered that the activated sludge acclimatized has a higher activity. It is done.

なお、図3に示す排水処理装置においては、上向流式の反応槽4を例にしているが、下向流式の反応槽でもよい。また、反応槽4内を無酸素状態に維持するために、撹拌を行わないか、空気を巻き込まないように緩やかに撹拌するか、又は、緩やかに窒素ガスやアルゴンガス等で曝気するのがよく、また、活性汚泥と排水とが効率的に接触するようにする。反応槽4内への排水の通水は、断続的な通水であってもよいが、活性汚泥中の微生物群を安定的に増殖させ、排水を効率的に処理するために、連続的に通水することが好ましい。活性汚泥と排水との混合物6は活性汚泥沈殿槽10にオーバーフローして処理水11と活性汚泥12に分離し、活性汚泥12は送液ポンプ18によって反応槽4内に返送される。   In the waste water treatment apparatus shown in FIG. 3, the upflow type reaction tank 4 is taken as an example, but a downflow type reaction tank may be used. Further, in order to maintain the inside of the reaction vessel 4 in an oxygen-free state, it is preferable that stirring is not performed, stirring is performed gently so as not to entrain air, or the gas is gently aerated with nitrogen gas, argon gas, or the like. Also, the activated sludge and the waste water are made to contact efficiently. The drainage of water into the reaction tank 4 may be intermittent. However, in order to stably propagate the microorganisms in the activated sludge and to efficiently treat the wastewater, It is preferable to pass water. The mixture 6 of activated sludge and waste water overflows into the activated sludge settling tank 10 and separates into treated water 11 and activated sludge 12, and the activated sludge 12 is returned into the reaction tank 4 by a liquid feed pump 18.

活性汚泥中の脱窒性硫黄酸化細菌を含む微生物群によって、排水中の硫黄系COD成分と窒素成分の硫黄脱窒反応が起こるが、この硫黄脱窒反応については、例えば、SCNとNO との反応であれば下記の式(1)のように、また、S 2−とNO との反応であれば下記の式(2)のように、それぞれ記述することができる。更に、SCNとNO との反応であれば下記の式(3)のように、また、S 2−とNO との反応であれば下記の式(4)のように、それぞれ記述することができる。 The microorganisms containing the denitrifying sulfur oxidizing bacteria in the activated sludge, Sulfur denitrification of sulfur-COD components and nitrogen components in the waste water takes place, for the sulfur denitrification reaction, for example, SCN - and NO 3 - as if the following reaction formula (1) and, also, S 2 O 3 2-and NO 3 - as long as the reaction of as follows equation (2), be written respectively it can. Furthermore, SCN - and NO 2 - if the reaction of as in the following equation (3), also, S 2 O 3 2-and NO 2 - and as if the following reaction formula (4) Can be described respectively.

式(1)
5SCN+8NO +HO → 5SO 2−+5CNO+4N+2H
式(2)
5S 2−+8NO +HO → 10SO 2−+4N+2H
式(3)
3SCN+8NO +2H → 3CNO+3SO 2−+4N+H
式(4)
3S 2−+8NO +2H→ 6SO 2−+4N+H
Formula (1)
5SCN - + 8NO 3 - + H 2 O → 5SO 4 2- + 5CNO - + 4N 2 + 2H +
Formula (2)
5S 2 O 3 2− + 8NO 3 + H 2 O → 10SO 4 2− + 4N 2 + 2H +
Formula (3)
3SCN + 8NO 2 + 2H + → 3CNO + 3SO 4 2− + 4N 2 + H 2 O
Formula (4)
3S 2 O 3 2− + 8NO 2 + 2H + → 6SO 4 2− + 4N 2 + H 2 O

ここで、式(1)と式(3)の反応についてみると、図4に示すように、脱窒性硫黄酸化細菌1自体がSCNの酸化で生成した電子をNO3-又はNO2−の還元に利用する受け渡しの反応経路となっていると理解することができる。そして、本発明では、反応槽4内に電子受容体として機能する固体の電子受容体物質5を投入することによって、図5に示すように、図4に示す反応経路に加えて、の電子受容体物質5を通してある脱窒性硫黄酸化細菌1が他の脱窒性硫黄酸化細菌1や他の脱窒性細菌2に電子を受け渡すという反応経路が新たに形成され、この反応経路が増えた分だけ硫黄脱窒反応による硫黄系COD成分と窒素成分の分解反応が促進される。従って、本発明方法は、電子供与体から電子受容体へ電子の受け渡しが行われる反応経路であれば、どのような反応経路にも適用することができ、例えば、フェノール(COH)が電子供与体であって、亜硝酸態窒素(NO )や硝酸態窒素(NO )が電子受容体となるフェノール脱窒反応に対しても適用することができる。 Here, regarding the reaction of the formula (1) and the formula (3), as shown in FIG. 4, the denitrifying sulfur-oxidizing bacterium 1 itself generates electrons generated by oxidation of SCN as NO 3− or NO 2−. It can be understood that this is a delivery reaction route used for the reduction of. In the present invention, by introducing a solid electron acceptor substance 5 that functions as an electron acceptor into the reaction vessel 4, as shown in FIG. 5, in addition to the reaction path shown in FIG. A new reaction pathway has been formed in which denitrifying sulfur-oxidizing bacteria 1 passing through body material 5 transfer electrons to other denitrifying sulfur-oxidizing bacteria 1 and other denitrifying bacteria 2, and this reaction pathway has increased. The decomposition reaction of the sulfur-based COD component and the nitrogen component by the sulfur denitrification reaction is accelerated by the amount. Therefore, the method of the present invention can be applied to any reaction route as long as the electron is transferred from the electron donor to the electron acceptor. For example, phenol (C 6 H 5 OH) Is an electron donor, and can also be applied to a phenol denitrification reaction in which nitrite nitrogen (NO 2 ) or nitrate nitrogen (NO 3 ) serves as an electron acceptor.

上記の式(1)〜式(4)の硫黄脱窒反応によって排水中の硫黄系COD成分と窒素成分とが同時に除去された後、活性汚泥と排水との混合物6は反応槽4からオーバーフローして活性汚泥沈殿槽10に送られ、系外に排出される。ここで、処理水11中に硫黄系COD成分と窒素成分が残るような場合は、この処理水11を排水タンク3に戻して循環処理を行い、環境中に放流できる程度まで硫黄系COD成分と窒素成分を除去する。   After the sulfur-based COD component and the nitrogen component in the wastewater are simultaneously removed by the sulfur denitrification reaction of the above formulas (1) to (4), the mixture 6 of activated sludge and wastewater overflows from the reaction tank 4. Is sent to the activated sludge settling tank 10 and discharged out of the system. Here, when the sulfur-based COD component and the nitrogen component remain in the treated water 11, the treated water 11 is returned to the drainage tank 3 to perform the circulation treatment, and the sulfur-based COD component can be discharged to the environment. Remove the nitrogen component.

本発明において、硫黄系COD成分及び窒素成分の定量方法については、経時的にあるいは断続的にこれらの硫黄系COD成分及び窒素成分の定量ができればよく、例えば、CODは過マンガン酸カリウムを用いた酸性高温過マンガン酸法によって(以下、CODMnと記す)、S2−、HS、SO 2−及びS 2−についてはヨウ素滴定法によって、また、SCNについては試料に硝酸を添加してpHを酸性に調整した後、硝酸第二鉄溶液を添加して発色させるチオシアン酸第二鉄吸光光度法によって、更に、NO 及びNO についてはイオンクロマトグラフ法によって、それぞれ定量することができる。 In the present invention, the sulfur-based COD component and nitrogen component may be quantified as long as the sulfur-based COD component and nitrogen component can be quantified over time or intermittently. For example, COD uses potassium permanganate. According to the acidic high temperature permanganate method (hereinafter referred to as COD Mn ), S 2− , HS , SO 3 2− and S 2 O 3 2− are analyzed by iodine titration method, and SCN is mixed with nitric acid. after adjusting the pH to acidic by adding, with nitric acid solution of ferric thiocyanate ferric spectrophotometric method in which color development was added and further, NO 2 - by ion chromatography for, - and NO 3 Each can be quantified.

以上の実施の形態で説明したように、本発明によれば、硫黄系COD成分と窒素成分とを含む排水である安水活性汚泥処理水を単独で処理することができるほか、高炉スラグ浸漬水に安水活性汚泥処理水を混合した排水も同様に処理することができる。   As explained in the above embodiments, according to the present invention, the water-activated activated sludge treated water, which is a waste water containing a sulfur-based COD component and a nitrogen component, can be treated independently, and blast furnace slag immersion water In addition, wastewater mixed with water-activated activated sludge treated water can be treated in the same manner.

以下、図3に示す排水処理装置を用いて実施した本発明の実施の一例を示すが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, although an example of implementation of this invention implemented using the waste water treatment apparatus shown in FIG. 3 is shown, this invention is not limited to these Examples.

〔実施例1〕
処理対象の排水として表1に示す硫黄系COD成分及び窒素成分を含むと共にpH8.3及びCODMn:150mg/Lの安水活性汚泥処理水を使用し、この安水活性汚泥処理水を排水タンク3に入れ、反応槽4内には、固体の電子受容体物質5として磁鉄鉱(0.5mm以上30mm以下の範囲に粒度調整したもの)を投入すると共に、上記の安水活性汚泥処理水を用いて事前に無酸素的硫黄酸化条件下で馴致させておいた活性汚泥を投入した。この際の磁鉄鉱(電子受容体物質5)の投入量は反応槽4の容積に対して20%とし、また、活性汚泥を馴致させた際のpH調整範囲は8.0〜9.0であった。
[Example 1]
Wastewater to be treated contains sulfur-based COD components and nitrogen components shown in Table 1 and pH 8.3 and COD Mn : 150 mg / L of water-activated sludge treated water is used. 3 and into the reaction vessel 4, magnetite (with a particle size adjusted in the range of 0.5 mm to 30 mm) as the solid electron acceptor material 5 is added and the above-mentioned water-activated activated sludge treated water is used. The activated sludge that had been acclimatized under anaerobic sulfur oxidation conditions was added. At this time, the input amount of magnetite (electron acceptor material 5) was 20% with respect to the volume of the reaction tank 4, and the pH adjustment range when the activated sludge was acclimatized was 8.0 to 9.0. It was.

反応槽4内での排水の水理学的滞留時間を2時間として排水タンク3の安水活性汚泥処理水を送液ポンプ15で反応槽4に流入させ、反応槽4内の排水のpHを8.0〜9.0に調整しながら排水処理を行い、この排水処理を開始してから1週間後に活性汚泥沈殿槽10内の処理水11の水質を調べた。結果は表1に示す通りであり、安水活性汚泥処理水は、CODMnが目標値の15mg/L以下にまで処理されており、また、NO 及びNO のそれぞれが目標値の10mg/L以下にまで処理されていた。 The hydraulic retention time of the wastewater in the reaction tank 4 is set to 2 hours, and the water-activated activated sludge treated water in the drainage tank 3 is caused to flow into the reaction tank 4 by the liquid feed pump 15 to adjust the pH of the wastewater in the reaction tank 4 to 8 The wastewater treatment was performed while adjusting to 0.0 to 9.0, and the quality of the treated water 11 in the activated sludge settling tank 10 was examined one week after the start of the wastewater treatment. The results are as shown in Table 1, and the low-water activated sludge treated water has been treated to COD Mn to 15 mg / L or less of the target value, and each of NO 2 and NO 3 has the target value. It was processed to 10 mg / L or less.

〔実施例2〕
反応槽4に活性汚泥を入れずに、固体の電子受容体物質5として上記磁鉄鉱のみを入れ、水理学的滞留時間2時間の流速で排水を反応槽4に連続的に流入させ、処理水11の一部(50容積%)を活性汚泥沈殿槽10から排水タンク3に戻す循環ルートを設けて循環させ、排水中に含まれる脱窒性硫黄酸化細菌を反応槽内4で20日間増殖させたこと以外は、上記実施例1と同じ条件で安水活性汚泥処理水の生物学的処理を実施したところ、排水中の脱窒性硫黄酸化細菌が増殖し、表1に示すように、上記実施例1の場合と略同等の結果が得られた。
[Example 2]
Without putting activated sludge in the reaction tank 4, only the magnetite is added as the solid electron acceptor material 5, and the waste water is continuously flowed into the reaction tank 4 at a flow rate with a hydraulic retention time of 2 hours. Part (50% by volume) of the waste water was circulated by providing a circulation route for returning the activated sludge settling tank 10 to the drainage tank 3, and denitrifying sulfur-oxidizing bacteria contained in the drainage were grown in the reaction tank 4 for 20 days. Except for this, when biological treatment of water-reduced activated sludge treated water was carried out under the same conditions as in Example 1, denitrifying sulfur-oxidizing bacteria in the wastewater proliferated and, as shown in Table 1, A result almost equivalent to that in Example 1 was obtained.

〔実施例3〕
反応槽4内に固体の電子受容体物質5としてゼオライト(0.5mm以上30mm以下に粒度調整したもの)を投入したこと以外は、上記実施例1と同じ条件で安水活性汚泥処理水の生物学的処理を実施し、得られた処理水11の水質を調べた。
結果は、表1に示すように、安水活性汚泥処理水は、CODMnが目標値の15mg/L以下にまで処理され、また、NO 及びNO のそれぞれが目標値の10mg/L以下にまで処理された。
Example 3
Except that zeolite (having a particle size adjusted to 0.5 mm or more and 30 mm or less) was charged as a solid electron acceptor material 5 in the reaction tank 4, the living water sludge treated water was treated under the same conditions as in Example 1 above. The water quality of the obtained treated water 11 was investigated.
As a result, as shown in Table 1, the low-water activated sludge treated water was treated so that COD Mn was 15 mg / L or less of the target value, and each of NO 2 and NO 3 was 10 mg / L of the target value. Processed below L.

〔実施例4〕
反応槽4内に固体の電子受容体物質5として黄鉄鉱と黄銅鉱との混合物(それぞれ0.5mm以上30mm以下に粒度調整して重量比50質量%:50質量%の割合で混合したもの)を投入したこと以外は、上記実施例1と同じ条件で安水活性汚泥処理水の生物学的処理を実施し、得られた処理水11の水質を調べた。
結果は、表1に示すように、安水活性汚泥処理水は、CODMnが目標値の15mg/L以下にまで処理され、また、NO 及びNO のそれぞれが目標値の10mg/L以下にまで処理された。
Example 4
A mixture of pyrite and chalcopyrite as a solid electron acceptor substance 5 in the reaction vessel 4 (mixed in a ratio of 50% by mass to 50% by mass with a particle size adjusted to 0.5 mm to 30 mm, respectively). Except that it was added, biological treatment of the low-water activated sludge treated water was carried out under the same conditions as in Example 1, and the water quality of the obtained treated water 11 was examined.
As a result, as shown in Table 1, the low-water activated sludge treated water was treated so that COD Mn was 15 mg / L or less of the target value, and each of NO 2 and NO 3 was 10 mg / L of the target value. Processed below L.

〔比較例1〕
実施例1、3、及び4の対照系として、反応槽4内に固体の電子受容体物質5を投入しなかったこと以外は、実施例1、3、及び4の場合と同様にして安水活性汚泥処理水の生物学的処理を実施し、得られた処理水11の水質を調べた。
結果は、表1に示すように、安水活性汚泥処理水は、CODMnが目標値の15mg/L以下にまで処理されず、また、NO 及びNO についても共に目標値の10mg/L以下にまで処理されなかった。
[Comparative Example 1]
As a control system for Examples 1, 3, and 4, low water was used in the same manner as in Examples 1, 3, and 4 except that the solid electron acceptor material 5 was not introduced into the reaction vessel 4. Biological treatment of activated sludge treated water was carried out, and the quality of the treated water 11 obtained was examined.
As a result, as shown in Table 1, the low-water activated sludge treated water was not treated until COD Mn was 15 mg / L or less of the target value, and the target value of NO 2 and NO 3 was 10 mg of the target value. Not processed below / L.

〔比較例2〕
実施例1、3、及び4の対照系として、反応槽4内に電子受容体として機能しない固体の物質として珪石(0.5mm以上30mm以下に粒度調整したもの)を投入したこと以外は、実施例1、3、及び4と同様にして安水活性汚泥処理水の生物学的処理を実施し、得られた処理水11の水質を調べた。
結果は、表1に示すように、安水活性汚泥処理水は、CODMnが目標値の15mg/L以下にまで処理されず、また、NO 及びNO についても共に目標値の10mg/L以下にまで処理されなかった。
[Comparative Example 2]
As a control system for Examples 1, 3, and 4, the reaction was carried out except that quartzite (having a particle size adjusted to 0.5 mm or more and 30 mm or less) was introduced as a solid substance that did not function as an electron acceptor in the reaction vessel 4. In the same manner as in Examples 1, 3, and 4, the biological treatment of the water-activated activated sludge treated water was carried out, and the quality of the obtained treated water 11 was examined.
As a result, as shown in Table 1, the low-water activated sludge treated water was not treated until COD Mn was 15 mg / L or less of the target value, and the target value of NO 2 and NO 3 was 10 mg of the target value. Not processed below / L.

〔実施例5〕
処理対象の排水として表1に示す硫黄系COD成分を含むと共にpH12.0及びCODMn:49mg/Lの高炉スラグ浸漬水と表1に示す硫黄系COD成分及び窒素成分を含むと共にpH8.3及びCODMn:150mg/Lの安水活性汚泥処理水とを使用し、前記高炉スラグ浸漬水を排水タンク1に入れ、また、前記安水活性汚泥処理水を排水タンク2に入れ、両排水をそれぞれ送液ポンプ13及び送液ポンプ14で排水タンク3に送って混合し、これら高炉スラグ浸漬水と安水活性汚泥処理水とが体積比1:3の混合割合で混合された混合排水を作製した。
Example 5
The wastewater to be treated contains sulfur-based COD components shown in Table 1 and has pH 12.0 and COD Mn : 49 mg / L blast furnace slag immersion water, and contains sulfur-based COD components and nitrogen components shown in Table 1, pH 8.3 and COD Mn : 150 mg / L of low-water activated sludge treated water is used, the blast furnace slag immersion water is put into the drain tank 1, and the low-water activated sludge treated water is put into the drain tank 2, The mixture was sent to the drainage tank 3 by the feed pump 13 and the feed pump 14 and mixed to prepare a mixed wastewater in which the blast furnace slag immersion water and the water-activated activated sludge treated water were mixed at a mixing ratio of 1: 3 by volume. .

処理対象の排水として上で作製した混合排水を使用し、事前に上記の混合排水を用いて無酸素的硫黄酸化条件下に活性汚泥を馴致させる際のpH調整範囲を8.5〜9.5とし、また、反応槽4内の排水のpHを8.5〜9.5に調整したこと以外は、上記実施例1と同様にして混合排水の生物学的処理を実施し、得られ処理水11の水質を調べた。
結果は、表1に示すように、混合排水は、CODMnが目標値の15mg/L以下にまで処理され、また、NO 及びNO のそれぞれが目標値の10mg/L以下にまで処理された。
Using the mixed wastewater produced above as wastewater to be treated, the pH adjustment range when acclimatizing activated sludge under anoxic sulfur oxidation conditions using the above mixed wastewater in advance is 8.5 to 9.5. In addition, except that the pH of the waste water in the reaction tank 4 was adjusted to 8.5 to 9.5, biological treatment of the mixed waste water was carried out in the same manner as in Example 1 above, and the treated water obtained Eleven water qualities were examined.
As a result, as shown in Table 1, the mixed waste water is treated so that COD Mn is 15 mg / L or less of the target value, and each of NO 2 and NO 3 is 10 mg / L or less of the target value. It has been processed.

〔実施例6〕
反応槽4内に固体の電子受容体物質5としてゼオライト(0.5mm以上30mm以下に粒度調整したもの)を投入したこと以外は、上記実施例5と同じ条件で混合排水の生物学的処理を実施し、得られた処理水11の水質を調べた。
結果は、表1に示すように、高炉スラグ浸漬水に安水活性汚泥処理水を混合した排水は、CODMnが目標値の15mg/L以下にまで処理され、また、NO 及びNO のそれぞれが目標値の10mg/L以下にまで処理された。
Example 6
Biological treatment of the mixed wastewater was carried out under the same conditions as in Example 5 above, except that zeolite (having a particle size adjusted to 0.5 mm or more and 30 mm or less) was charged as the solid electron acceptor material 5 in the reaction vessel 4. The water quality of the treated water 11 obtained was examined.
As a result, as shown in Table 1, the waste water obtained by mixing the blast furnace slag immersion water with the water-activated activated sludge treated water is treated until the COD Mn is 15 mg / L or less of the target value, and NO 2 - and NO 3 - each of which is processed to below 10 mg / L of the target value of.

〔実施例7〕
反応槽4内に固体の電子受容体物質5として黄鉄鉱と黄銅鉱との混合物(0.5mm以上30mm以下に粒度調整したもの)を投入したこと以外は、上記実施例5と同じ条件で混合排水の生物学的処理を実施し、得られた処理水11の水質を調べた。
結果は、表1に示すように、高炉スラグ浸漬水に安水活性汚泥処理水を混合した排水は、CODMnが目標値の15mg/L以下にまで処理され、また、NO 及びNO のそれぞれが目標値の10mg/L以下にまで処理された。
Example 7
Mixed waste water under the same conditions as in Example 5 above, except that a mixture of pyrite and chalcopyrite (particle size adjusted to 0.5 mm or more and 30 mm or less) as a solid electron acceptor material 5 was put into the reaction vessel 4. The biological treatment was conducted and the water quality of the obtained treated water 11 was examined.
As a result, as shown in Table 1, the waste water obtained by mixing the blast furnace slag immersion water with the water-activated activated sludge treated water is treated until the COD Mn is 15 mg / L or less of the target value, and NO 2 - and NO 3 - each of which is processed to below 10 mg / L of the target value of.

〔比較例3〕
実施例5〜7の対照系として、反応槽4内に固体の電子受容体物質5を投入しなかったこと以外は、実施例5〜7と同様にして混合排水の生物学的処理を実施し、得られた処理水11の水質を調べた。
結果は、表1に示すように、混合排水は、CODMnが目標値の15mg/L以下にまで処理されず、また、NO 及びNO についても共に目標値の10 mg/L以下にまで処理されなかった。
[Comparative Example 3]
As a control system of Examples 5 to 7, biological treatment of the mixed waste water was carried out in the same manner as in Examples 5 to 7 except that the solid electron acceptor substance 5 was not introduced into the reaction vessel 4. Then, the water quality of the obtained treated water 11 was examined.
Results are as shown in Table 1, mixed wastewater, COD Mn is not processed until the following 15 mg / L of the target value, also, NO 2 - and NO 3 - both 10 mg / L or less of the target value also It was not processed until.

〔比較例4〕
実施例5〜7の対照系として、反応槽4内に電子受容体として機能しない固体の物質として珪石(0.5mm以上30mm以下に粒度調整したもの)を投入したこと以外は、実施例5〜7と同様にして混合排水の生物学的処理を実施し、得られた処理水11の水質を調べた。
結果は、表1に示すように、混合排水は、CODMnが目標値の15mg/L以下にまで処理されず、また、NO 及びNO についても共に目標値の10mg/L以下にまで処理されなかった。
[Comparative Example 4]
As a control system of Examples 5 to 7, Example 5 was used except that silica (as the particle size was adjusted to 0.5 mm or more and 30 mm or less) as a solid substance that did not function as an electron acceptor was put in the reaction vessel 4. Biological treatment of the mixed waste water was carried out in the same manner as in No. 7, and the water quality of the obtained treated water 11 was examined.
Results are as shown in Table 1, mixed wastewater, COD Mn is not processed until the following 15 mg / L of the target value, also, NO 2 - and NO 3 - are both below 10 mg / L of the target value also Was not processed until.

Figure 2016101538
Figure 2016101538

1、2、3…排水タンク、4…反応槽、5…電子受容体として機能する固体の電子受容体物質、6…活性汚泥と排水との混合物、7…pHセンサー、8…酸タンク、9…アルカリタンク、10…活性汚泥沈殿槽、11…処理水、12…活性汚泥、13〜15,18…送液ポンプ、16…酸ポンプ、17…アルカリポンプ。   1, 2, 3, ... Drain tank, 4 ... Reaction tank, 5 ... Solid electron acceptor substance that functions as an electron acceptor, 6 ... Mixture of activated sludge and waste water, 7 ... pH sensor, 8 ... Acid tank, 9 DESCRIPTION OF SYMBOLS ... Alkali tank, 10 ... Activated sludge settling tank, 11 ... Treated water, 12 ... Activated sludge, 13-15, 18 ... Liquid feed pump, 16 ... Acid pump, 17 ... Alkaline pump.

Claims (6)

硫黄系COD成分としてS2−、HS、SO 2−、S 2−、及びSCNからなる群から選ばれる1種以上を含有し、かつ、窒素成分としてNO 及びNO を含有する排水を反応槽内で生物学的に処理する方法であって、
前記反応槽内の排水中に電子受容体として機能する固体の電子受容体物質を投入し、この電子受容体物質の存在下に脱窒性硫黄酸化細菌を増殖させ、
前記反応槽内で前記排水を無酸素的硫黄酸化条件下に処理し、排水中の硫黄系COD成分を酸化させて低減させると共に、窒素成分をNO、NO及びNからなる群から選ばれる1種以上の気体として除去することを特徴とする排水の生物学的処理方法。
It contains at least one selected from the group consisting of S 2− , HS , SO 3 2− , S 2 O 3 2− , and SCN as the sulfur-based COD component, and NO 2 and NO as the nitrogen component. 3 - a biologically processing method for waste water containing a reaction vessel and,
A solid electron acceptor substance that functions as an electron acceptor is put into the waste water in the reaction tank, and denitrifying sulfur-oxidizing bacteria are grown in the presence of this electron acceptor substance,
The waste water is treated under anaerobic sulfur oxidation conditions in the reaction vessel to oxidize and reduce the sulfur-based COD component in the waste water, and the nitrogen component is selected from the group consisting of NO, N 2 O and N 2 A method for biological treatment of wastewater, characterized in that it is removed as one or more gases.
前記排水中で固体の電子受容体物質の存在下に増殖される脱窒性硫黄酸化細菌は、この電子受容体物質と共に排水中に投入された活性汚泥に含まれていた細菌、及び/又は、排水中に含まれていた細菌である請求項1に記載の排水の生物学的処理方法。   The denitrifying sulfur-oxidizing bacteria grown in the waste water in the presence of a solid electron acceptor substance are bacteria contained in the activated sludge introduced into the waste water together with the electron acceptor substance, and / or The biological treatment method of wastewater according to claim 1, wherein the wastewater is a bacterium contained in the wastewater. 前記電子受容体物質が、磁鉄鉱、ゼオライト、及び、黄鉄鉱と黄銅鉱との混合物からなる群から選ばれる1種又は2種以上であることを特徴とする請求項1又は2に記載の排水の生物学的処理方法。   The wastewater organism according to claim 1 or 2, wherein the electron acceptor substance is one or more selected from the group consisting of magnetite, zeolite, and a mixture of pyrite and chalcopyrite. Processing method. 前記排水が、硫黄系COD成分として少なくともSCNを含有することを特徴とする請求項1〜3のいずれか1項に記載の排水の生物学的処理方法。 The drainage is at least SCN as the sulfur-based COD components - biological treatment method of the waste water according to any one of claims 1 to 3, characterized in that it contains. 前記排水が、安水活性汚泥処理水であることを特徴とする請求項1〜4のいずれか1項に記載の排水の生物学的処理方法。   The biological treatment method for wastewater according to any one of claims 1 to 4, wherein the wastewater is treated with water-activated activated sludge. 前記排水が、高炉スラグ浸漬水に安水活性汚泥処理水が混合された排水であることを特徴とする請求項1〜4のいずれか1項に記載の排水の生物学的処理方法。   The biological wastewater treatment method according to any one of claims 1 to 4, wherein the wastewater is wastewater obtained by mixing low-water activated sludge treated water with blast furnace slag immersion water.
JP2014239749A 2014-11-27 2014-11-27 Biological treatment of wastewater Active JP6344216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014239749A JP6344216B2 (en) 2014-11-27 2014-11-27 Biological treatment of wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014239749A JP6344216B2 (en) 2014-11-27 2014-11-27 Biological treatment of wastewater

Publications (2)

Publication Number Publication Date
JP2016101538A true JP2016101538A (en) 2016-06-02
JP6344216B2 JP6344216B2 (en) 2018-06-20

Family

ID=56088145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014239749A Active JP6344216B2 (en) 2014-11-27 2014-11-27 Biological treatment of wastewater

Country Status (1)

Country Link
JP (1) JP6344216B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108439613A (en) * 2018-04-23 2018-08-24 南京大学 A kind of modularization sewage denitrification and dephosphorization treatment process based on sulphur autotrophic denitrification
CN108793396A (en) * 2018-01-11 2018-11-13 北京林业大学 A kind of denitrification and dephosphorization method of denitrification dephosphorization apparatus, construction method and sewage
CN109107588A (en) * 2018-08-01 2019-01-01 河南师范大学 Heterogeneous CuFeS2Method for preparing catalyst and its application in catalysis Oxone rhodamine B degradation waste water from dyestuff
CN111847910A (en) * 2020-08-25 2020-10-30 江苏艾创环境科技有限公司 Novel nitrogen and phosphorus removal sulfur-based composite material and preparation method thereof
CN112390380A (en) * 2020-11-16 2021-02-23 合肥工业大学 Functional material for removing nitrate nitrogen in water and preparation and application methods thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115864A (en) * 1991-10-30 1993-05-14 Meidensha Corp Method and device for treatment of organic waste
JPH11299481A (en) * 1998-04-17 1999-11-02 Nippon Steel Corp Breeding of bacterium oxidizing sulfur and removal of nitrogen from waste water with the bacterium oxidizing sulfur
JP2003071493A (en) * 2001-08-31 2003-03-11 Nitchitsu Co Ltd Composition for removing nitrate nitrogen, etc., and production method therefor
JP2005224747A (en) * 2004-02-16 2005-08-25 Kankyo Gijutsu Kenkyusho:Kk Denitrification apparatus
JP2006122771A (en) * 2004-10-27 2006-05-18 Chuden Kankyo Technos Co Ltd Fluid treatment method and fluid treatment system
JP2009142787A (en) * 2007-12-17 2009-07-02 Nippon Steel Corp Method for removing nitrogen and cod component from ammoniacal liquor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115864A (en) * 1991-10-30 1993-05-14 Meidensha Corp Method and device for treatment of organic waste
JPH11299481A (en) * 1998-04-17 1999-11-02 Nippon Steel Corp Breeding of bacterium oxidizing sulfur and removal of nitrogen from waste water with the bacterium oxidizing sulfur
JP2003071493A (en) * 2001-08-31 2003-03-11 Nitchitsu Co Ltd Composition for removing nitrate nitrogen, etc., and production method therefor
JP2005224747A (en) * 2004-02-16 2005-08-25 Kankyo Gijutsu Kenkyusho:Kk Denitrification apparatus
JP2006122771A (en) * 2004-10-27 2006-05-18 Chuden Kankyo Technos Co Ltd Fluid treatment method and fluid treatment system
JP2009142787A (en) * 2007-12-17 2009-07-02 Nippon Steel Corp Method for removing nitrogen and cod component from ammoniacal liquor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108793396A (en) * 2018-01-11 2018-11-13 北京林业大学 A kind of denitrification and dephosphorization method of denitrification dephosphorization apparatus, construction method and sewage
CN108439613A (en) * 2018-04-23 2018-08-24 南京大学 A kind of modularization sewage denitrification and dephosphorization treatment process based on sulphur autotrophic denitrification
CN109107588A (en) * 2018-08-01 2019-01-01 河南师范大学 Heterogeneous CuFeS2Method for preparing catalyst and its application in catalysis Oxone rhodamine B degradation waste water from dyestuff
CN111847910A (en) * 2020-08-25 2020-10-30 江苏艾创环境科技有限公司 Novel nitrogen and phosphorus removal sulfur-based composite material and preparation method thereof
CN112390380A (en) * 2020-11-16 2021-02-23 合肥工业大学 Functional material for removing nitrate nitrogen in water and preparation and application methods thereof

Also Published As

Publication number Publication date
JP6344216B2 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
Dapena-Mora et al. Monitoring the stability of an Anammox reactor under high salinity conditions
JP6227509B2 (en) Waste water treatment apparatus and waste water treatment method
JP6344216B2 (en) Biological treatment of wastewater
US20140374344A1 (en) Method for treating wastewater containing ammonia nitrogen
US10059610B2 (en) Reduction of the amount of sulphur compounds in a sulphur compounds contaminated wastewater stream using a granular sludge treatment system
US20130112617A1 (en) Redox wastewater biological nutrient removal treatment method
JP2006055739A (en) Treating method of organic matter- and nitrogen-containing wastewater
JP6532314B2 (en) Biological nitrogen removal method and apparatus for treating nitrogen containing wastewater
JP4570069B2 (en) Method for removing ammonia nitrogen from wastewater
WO2009099208A1 (en) Method and apparatus for treating radioactive nitrate waste liquid
KR20140063454A (en) Apparatus and method for treatment wastewater
JP6164102B2 (en) Wastewater treatment method
JP4570550B2 (en) Nitrogen removal method and apparatus for high concentration organic wastewater
JP2008155085A (en) Waste water treatment method and apparatus
Ouyang et al. Biological treatment of cadmium (Cd2+)-containing wastewater with sulfate as the electron acceptor and its microbial community
JP2012011376A (en) Sewage treatment method and apparatus
JP2017018861A (en) Method for removing nitrogen and nitrogen removal device
JP4865294B2 (en) Decomposition method of organic waste
CN110759607B (en) Process for removing total nitrogen from printing and dyeing wastewater
WO2019244969A1 (en) Water treatment method and water treatment apparatus
Bai et al. Biodegradation of sulfate and elimination of heavy metals by immobilized-microbial bioaugmentation coupled with anaerobic membrane bioreactor
JP3358388B2 (en) Treatment method for selenium-containing water
JP2016052622A (en) Reducing sulfur compound-containing wastewater treatment method
JP2001212591A (en) Method for removing nitrogen from wastewater
JP2006116412A (en) Treatment method of organic waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180507

R151 Written notification of patent or utility model registration

Ref document number: 6344216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350