JP2016100680A - Pulse power supply device - Google Patents

Pulse power supply device Download PDF

Info

Publication number
JP2016100680A
JP2016100680A JP2014234503A JP2014234503A JP2016100680A JP 2016100680 A JP2016100680 A JP 2016100680A JP 2014234503 A JP2014234503 A JP 2014234503A JP 2014234503 A JP2014234503 A JP 2014234503A JP 2016100680 A JP2016100680 A JP 2016100680A
Authority
JP
Japan
Prior art keywords
stage
circuit
current waveform
pulse
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014234503A
Other languages
Japanese (ja)
Other versions
JP6324880B2 (en
Inventor
森 均
Hitoshi Mori
均 森
智幸 大塚
Tomoyuki Otsuka
智幸 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2014234503A priority Critical patent/JP6324880B2/en
Publication of JP2016100680A publication Critical patent/JP2016100680A/en
Application granted granted Critical
Publication of JP6324880B2 publication Critical patent/JP6324880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Particle Accelerators (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pulse power supply device that can suppress variation of a current waveform with a relatively simple construction with respect to a variation phenomenon of a pulse current waveform caused by variation of a circuit constant following temperature variation, thereby optimizing a trapezoidal similar pulse current waveform.SOLUTION: A pulse power source device for supplying pulse current to a load electromagnet 10 has a charge/discharge circuit 21 at an initial stage that connects both the ends of a load electromagnet by a series circuit of a capacitor C1 and a switch S1, a charge/discharge circuit 22 at a subsequent stage that connects both the ends of the load electromagnet or the initial-stage capacitor by a series circuit of a capacitor C2, a switch S2 and a waveform adjusting coil L2, and a charger 40 that can adjust a charge voltage set value of each capacitor. Furthermore, the pulse power source device has a trigger control circuit 30 that transmits mutually independent trigger signals to close the circuit of the initial-stage switch and the subsequent-stage switch and can adjust the time difference between the respective trigger signals.SELECTED DRAWING: Figure 1

Description

本発明は、荷電粒子ビームをパルス状にして加速するための加速器などに用いられる電源であって、複数段のPFN(Pulse Forming Network:パルス形成用回路網)を備えたパルス電源装置に関する。   The present invention relates to a power supply used in an accelerator for accelerating a charged particle beam in the form of a pulse, and relates to a pulse power supply apparatus including a plurality of stages of PFN (Pulse Forming Network).

10億電子ボルトを超えるような高エネルギー荷電粒子加速器においては、荷電粒子ビームが真空容器の壁面等に衝突して生ずる放射線による、真空容器材質等の放射化の問題が深刻となる。荷電粒子ビームの軌道を正確に保持するには、電磁石電源に対して電流値の相対精度をほぼ0.01%以下の高精度に制御する必要があり、さらには可及的に精度を高めたいという要求がある。   In a high energy charged particle accelerator exceeding 1 billion electron volts, the problem of activation of the vacuum vessel material and the like due to the radiation generated when the charged particle beam collides with the wall surface of the vacuum vessel becomes serious. In order to accurately maintain the trajectory of the charged particle beam, it is necessary to control the relative accuracy of the current value with respect to the electromagnet power source with a high accuracy of approximately 0.01% or less, and further, to improve the accuracy as much as possible. There is a request.

PFNを用いた従来の電源装置における波形操作の技術として、PFNの構成要素の波形調整用コイルに近接して設けた位置操作可能な短絡導体を手動または電動で操作する手法がある(例えば特許文献1参照)。しかし、この場合は、機械的構造が複雑で、注油等の定期的な保守が煩わしいという問題がある。   As a waveform operation technique in a conventional power supply device using PFN, there is a method of manually or electrically operating a position-controllable short-circuit conductor provided close to a waveform adjustment coil of a component of PFN (for example, Patent Documents). 1). However, in this case, there is a problem that the mechanical structure is complicated and periodic maintenance such as lubrication is troublesome.

一方、アナログ的に印加電圧波形を制御する方法では、エネルギーの高い荷電粒子ビームの軌道を操作する場合に、アナログ制御回路の高電圧/大電流化のために出力回路を直列・並列化する必要がある(例えば特許文献2,3参照)。しかし、この場合は、装置が大型化・複雑化してコストが高くなるとともに、信頼性が低下するという問題がある。   On the other hand, in the method of controlling the applied voltage waveform in an analog manner, when manipulating the trajectory of a charged particle beam with high energy, it is necessary to serialize and parallel the output circuit in order to increase the voltage / current of the analog control circuit. (See, for example, Patent Documents 2 and 3). However, in this case, there is a problem that the apparatus becomes larger and complicated, resulting in higher costs and lower reliability.

図4は従来例の2段PFN回路を用いたパルス電源装置の構成を示す回路図である。60は負荷電磁石、61はインダクタンス成分、62は抵抗成分、71はゲート駆動回路、72はパルス変成器(パルストランス)、80は出力電圧可変型の充電器、R11は充電用抵抗器、C11は第1のコンデンサ、C12は第2のコンデンサ、L12は波形調整用コイル、S11はサイリスタなどのスイッチ、Scvは出力電圧可変型の充電器80に与えられる充電電圧設定指令信号である。充電器80より充電用抵抗器R11を介して第1のコンデンサC11と第2のコンデンサC12に対して充電を行った状態から、スイッチS11をターンオンする。このスイッチS11のターンオンは、ゲート駆動回路71を起動してパルス変成器72にゲートパルスを印加し、さらにスイッチS11にトリガパルスを送出することによって行う。スイッチS11がターンオンすると、第1のコンデンサC11および第2のコンデンサC12に蓄えられた電荷が負荷電磁石60の回路部に流れる。このとき、第2のコンデンサC12からは波形調整用コイルL12を介して供給される。 FIG. 4 is a circuit diagram showing a configuration of a pulse power supply device using a conventional two-stage PFN circuit. 60 is a load electromagnet, 61 is an inductance component, 62 is a resistance component, 71 is a gate drive circuit, 72 is a pulse transformer (pulse transformer), 80 is a variable output voltage charger, R11 is a charging resistor, and C11 is A first capacitor, C12 is a second capacitor, L12 is a waveform adjustment coil, S11 is a switch such as a thyristor, and Scv is a charge voltage setting command signal given to the output voltage variable charger 80. From the state where the first capacitor C11 and the second capacitor C12 are charged from the charger 80 via the charging resistor R11, the switch S11 is turned on. The switch S11 is turned on by starting the gate driving circuit 71, applying a gate pulse to the pulse transformer 72, and sending a trigger pulse to the switch S11. When the switch S11 is turned on, the charges stored in the first capacitor C11 and the second capacitor C12 flow to the circuit portion of the load electromagnet 60. At this time, the voltage is supplied from the second capacitor C12 via the waveform adjustment coil L12.

図5は従来例のパルス電源装置の各部の電圧・電流波形および負荷電磁石に流れるパルス電流波形を示す。図5(a)は第1のコンデンサC11の電圧V11と第2のコンデンサC12の電圧V12の波形を示す。図5(b)は第1のコンデンサC11からの電流i11と第2のコンデンサC12からの電流i12と負荷電磁石60の回路部に流れる電流i13(=i11+i12)の波形を示す。電流i11と電流i12を合成した電流i13は台形状に類似した波形(台形状類似波形)となる。すなわち、電流i13は、スイッチS11のターンオンタイミング(t=0ms)から、電圧V11を負荷コイルのインダクタンス成分61の値で除した値に相当する傾きをもって上昇を開始し、時間経過とともに傾きを減らしながら上昇し、やがてフラットトップ部と呼ばれる平坦部(F)となり、次いで時間経過とともに負の傾きを増やしながら降下する。 FIG. 5 shows a voltage / current waveform of each part of a conventional pulse power supply device and a pulse current waveform flowing through a load electromagnet. FIG. 5A shows waveforms of the voltage V11 of the first capacitor C11 and the voltage V12 of the second capacitor C12. FIG. 5B shows waveforms of the current i 11 from the first capacitor C 11 , the current i 12 from the second capacitor C 12, and the current i 13 (= i 11 + i 12 ) flowing through the circuit portion of the load electromagnet 60. . A current i 13 obtained by combining the current i 11 and the current i 12 has a waveform similar to a trapezoid (a trapezoidal similar waveform). That is, the current i 13 starts to rise with a slope corresponding to a value obtained by dividing the voltage V11 by the value of the inductance component 61 of the load coil from the turn-on timing (t = 0 ms) of the switch S11, and decreases with time. Then, it rises and eventually becomes a flat part (F) called a flat top part, and then descends with increasing negative slope over time.

図5(c)は図5(b)において矩形枠で囲んだフラットトップ部Fを拡大した波形を示す。図5(c)においては、時間軸はt=0.280[ms](=280[μs])からt=0.310[ms](=310[μs])の領域を、また縦軸は瞬時電流3000[A]を基準値としてこの値からの増減分を+5[A]から−20[A]の範囲で拡大表示している。負荷電磁石60における抵抗成分62の抵抗値Rmをパラメータとして3つの電流波形A,B,Cを示している。この抵抗値Rmには負荷電磁石60に給電するためのケーブルの抵抗値が含まれている。パルス大電力伝送用の給電ケーブルとしては、通常は同軸ケーブルが使用されるが、ケーブルの恒温対策として水冷導体を使用することは絶縁やコスト上の問題からむずかしい。特に荷電粒子ビームをパルス状かつ断続的に加速する加速器の用途においては、負荷電磁石やパルス電源装置自体の各部の温度変化に伴って回路定数が変化し、それによって電流波形に変動が発生する。例えば、実効電流によるジュール熱のために導体温度が数十℃上昇する場合があり、これに伴い負荷電磁石60の抵抗値Rmが10%程度増加し、負荷電磁石電流i3 のピーク値が低下していく(図5(c)A→B→C参照)。 FIG.5 (c) shows the waveform which expanded the flat top part F enclosed with the rectangular frame in FIG.5 (b). In FIG. 5C, the time axis is a region from t = 0.280 [ms] (= 280 [μs]) to t = 0.310 [ms] (= 310 [μs]), and the vertical axis is With the instantaneous current 3000 [A] as a reference value, the increase / decrease from this value is enlarged and displayed in the range of +5 [A] to −20 [A]. Three current waveforms A, B, and C are shown using the resistance value Rm of the resistance component 62 in the load electromagnet 60 as a parameter. This resistance value Rm includes the resistance value of the cable for supplying power to the load electromagnet 60. A coaxial cable is usually used as a power supply cable for pulsed high-power transmission, but it is difficult to use a water-cooled conductor as a constant temperature countermeasure for the cable due to insulation and cost problems. Particularly in the use of an accelerator that accelerates a charged particle beam in a pulsed manner intermittently, the circuit constant changes with the temperature change of each part of the load electromagnet or the pulse power supply device itself, thereby causing the current waveform to fluctuate. For example, the conductor temperature may increase by several tens of degrees Celsius due to Joule heat due to effective current, and as a result, the resistance value Rm of the load electromagnet 60 increases by about 10%, and the peak value of the load electromagnet current i 3 decreases. (See FIG. 5 (c) A → B → C).

図5(c)に示す電流波形Aは基準状態(抵抗値Rm=20.0[mΩ]、充電電圧Vc=969.00[V])の場合の負荷電磁石電流i3 の波形を表す。 A current waveform A shown in FIG. 5C represents a waveform of the load electromagnet current i 3 in the reference state (resistance value Rm = 20.0 [mΩ], charging voltage Vc = 969.00 [V]).

図5(c)に示す電流波形Bは、温度が上昇して抵抗値Rmが増大し、Rm=20.9[mΩ]となった場合の負荷電磁石電流i3 の波形を表す。この電流波形Bは図5(c)の基準状態での電流波形Aよりもピーク値3000[A]を基準として−7.5[A](ほぼ0.25%)低下している。 A current waveform B shown in FIG. 5C represents the waveform of the load electromagnet current i 3 when the temperature rises and the resistance value Rm increases and Rm = 20.9 [mΩ]. The current waveform B is -7.5 [A] (approximately 0.25%) lower than the current waveform A in the reference state of FIG.

図5(c)に示す電流波形Cは、さらに温度が上昇して抵抗値Rmが増大し、Rm=21.8[mΩ]となった場合の負荷電磁石電流i3 の波形を表す。この電流波形Cは図5(c)の基準状態での電流波形Aよりもピーク値3000[A]を基準として−15.5[A](ほぼ0.52%)低下している。 A current waveform C shown in FIG. 5C represents the waveform of the load electromagnet current i 3 when the temperature rises further and the resistance value Rm increases and Rm = 21.8 [mΩ]. This current waveform C is −15.5 [A] (approximately 0.52%) lower than the current waveform A in the reference state of FIG.

負荷電磁石電流i3 のピーク値の低下を補償するための対策として、充電器80における充電電圧を増加する手法がある。そのような対策を施した場合の動作例を図6に示す。図6(c)は図5(c)に対応するものであり、充電電圧をパラメータとして3つの電流波形A,B′,C′を描いている。図5(c)の波形の振幅(縦軸方向)のスケールを25倍に拡大して(単位目盛を小さくして)表したのが図6(c)の電流波形である。 As a measure for compensating for the decrease in the peak value of the load electromagnet current i 3 , there is a method of increasing the charging voltage in the charger 80. FIG. 6 shows an operation example when such measures are taken. FIG. 6C corresponds to FIG. 5C, and shows three current waveforms A, B ′, and C ′ using the charging voltage as a parameter. The current waveform in FIG. 6C is expressed by enlarging the amplitude (vertical axis direction) scale of the waveform in FIG. 5C by 25 times (with a smaller unit scale).

図6(c)において、B′は、電流波形Aに対応する基準状態(抵抗値Rm=20.0[mΩ]、充電電圧Vc=969.00[V])から温度上昇によって抵抗値RmがRm=20.9[mΩ]へと増大したときに、負荷電磁石電流i3 のピーク値が上記のようにほぼ0.25%低下する(図5(c)参照)のを、充電器80における充電電圧VcをVc=971.55[V]まで増加させることにより補償している。 In FIG. 6C, B ′ indicates that the resistance value Rm is increased by the temperature rise from the reference state corresponding to the current waveform A (resistance value Rm = 20.0 [mΩ], charging voltage Vc = 969.00 [V]). When the value of Rm = 20.9 [mΩ] increases, the peak value of the load electromagnet current i 3 decreases by approximately 0.25% as described above (see FIG. 5C). Compensation is performed by increasing the charging voltage Vc to Vc = 971.55 [V].

また、図6(c)において、C′は、電流波形Aに対応する基準状態(抵抗値Rm=20.0[mΩ]、充電電圧Vc=969.00[V])から温度上昇によって抵抗値RmがRm=21.8[mΩ]へと増大したときに、負荷電磁石電流i3 のピーク値が上記のようにほぼ0.52%低下する(図5(c)参照)のを、充電器80における充電電圧VcをVc=974.10[V]まで増加させることにより補償している。 In FIG. 6C, C ′ is a resistance value due to a temperature rise from the reference state (resistance value Rm = 20.0 [mΩ], charging voltage Vc = 969.00 [V]) corresponding to the current waveform A. When Rm increases to Rm = 21.8 [mΩ], the peak value of the load electromagnet current i 3 decreases by approximately 0.52% as described above (see FIG. 5C). The charging voltage Vc at 80 is compensated by increasing to Vc = 974.10 [V].

特開平8−125499号公報JP-A-8-125499 特開平9−92531号公報JP-A-9-92531 特開平11−205098号公報Japanese Patent Laid-Open No. 11-205098

上記で説明した従来例のパルス電源装置にあっては、上記のように充電器80における充電電圧Vcを調整することでピーク値を補償することが可能である。しかし、単に充電電圧Vcを調整するだけであるので、フラットトップ部Fにおける電流の平坦度の変化までは補償できない。すなわち、図6(c)をよく観察すると、温度上昇に伴って抵抗値が増大化し、電流波形がA→B′→C′と変化するにつれて、電流が立ち下がる方向での傾きが大きくなって、フラットトップ部Fにおける電流の平坦度が悪化するという問題がある。   In the conventional pulse power supply device described above, the peak value can be compensated by adjusting the charging voltage Vc in the charger 80 as described above. However, since the charging voltage Vc is simply adjusted, it is not possible to compensate for the change in the flatness of the current in the flat top portion F. That is, if you carefully observe FIG. 6C, the resistance value increases as the temperature rises, and as the current waveform changes from A → B ′ → C ′, the slope in the direction in which the current falls increases. There is a problem that the flatness of the current in the flat top portion F is deteriorated.

典型的な荷電粒子ビーム通過時間幅の例としてはほぼ10[μs]であり、図6(c)においてはt=290[μs]からt=300[μs]までの範囲における電流の平坦度が問題となる。この時間範囲内での瞬時電流値の変化幅で平坦度の悪化を評価すると、図6(c)の電流波形Aでは0.12[A](ピーク値3000[A]を基準としてほぼ0.004%)、電流波形Cでは0.26[A](ピーク値3000[A]を基準としてほぼ0.009%)となり、特に電流波形Cでは代表的な用途において要求される瞬時電流値の精度0.01%に対して余裕が少なく、充電電圧制御の誤差が0.005%であっても、電流の平坦度が悪いことにより、要求された瞬時電流値の範囲を逸脱するという問題点が生じていた。   A typical charged particle beam passage time width is approximately 10 [μs], and in FIG. 6C, the current flatness in the range from t = 290 [μs] to t = 300 [μs] is shown. It becomes a problem. When the deterioration of the flatness is evaluated by the change width of the instantaneous current value within this time range, the current waveform A in FIG. 6C is 0.12 [A] (approximately 0. 0 with respect to the peak value 3000 [A]. 004%) and 0.26 [A] for current waveform C (approximately 0.009% based on peak value 3000 [A]), and in particular for current waveform C, the accuracy of the instantaneous current value required for typical applications Even if the margin is small with respect to 0.01% and the error in charge voltage control is 0.005%, the current flatness of the current is poor, so that it deviates from the required range of instantaneous current values. It was happening.

本発明はこのような事情に鑑みて創作したものであり、パルス電源装置に関して、温度変化に伴う回路定数の変化に起因するパルス電流波形の変動現象に対して、比較的簡単な構成にて、その電流波形の変動を充分に抑制して、台形状類似のパルス電流波形を最適化することを目的としている。   The present invention was created in view of such circumstances, and with respect to the pulse power supply device, with respect to the fluctuation phenomenon of the pulse current waveform caused by the change of the circuit constant accompanying the temperature change, with a relatively simple configuration, The object is to optimize the pulse current waveform similar to the trapezoidal shape by sufficiently suppressing the fluctuation of the current waveform.

本発明は、次の手段を講じることにより上記の課題を解決する。   The present invention solves the above problems by taking the following measures.

本発明によるパルス電源装置は、
負荷電磁石の回路部に対して台形状類似波形のパルス電流を供給するパルス電源装置であって、
初段のコンデンサと初段のスイッチの直列回路からなり、前記初段のコンデンサの充電電力を前記負荷電磁石の回路部に放電可能な初段の充放電回路と、
後続段のコンデンサと後続段のスイッチと波形調整用コイルの直列回路からなり、前記後続段の前記コンデンサの充電電力を前記負荷電磁石の回路部に放電可能な後続段の充放電回路を1以上備えるとともに、
前記初段のコンデンサおよび前記後続段のコンデンサを充電するもので、その充電電圧設定値を調整可能な充電器と、
互いに独立的したトリガ信号を送出して前記初段のスイッチと前記後続段のスイッチを閉路させるもので、各トリガ信号どうし間の時間差を調整可能なトリガ制御回路とを備えた構成とされている。
The pulse power supply device according to the present invention comprises:
A pulse power supply device for supplying a pulse current having a trapezoidal waveform to a circuit portion of a load electromagnet,
A first stage charge and discharge circuit comprising a series circuit of a first stage capacitor and a first stage switch, capable of discharging the charging power of the first stage capacitor to the circuit portion of the load electromagnet,
It comprises a series circuit of a succeeding stage capacitor, a succeeding stage switch, and a waveform adjusting coil, and includes at least one following stage charging / discharging circuit capable of discharging the charging power of the succeeding stage capacitor to the circuit portion of the load electromagnet. With
Charge the first stage capacitor and the subsequent stage capacitor, a charger capable of adjusting the charging voltage setting value,
The first trigger switch and the succeeding switch are closed by sending trigger signals independent of each other, and includes a trigger control circuit capable of adjusting a time difference between the trigger signals.

本発明の特徴は、各充放電回路のコンデンサ充電電圧の調整だけでなく、各充放電回路のスイッチのトリガタイミングの時間差調整も併せて行うようにした点にある。すなわち、充電器として充電電圧可変型の充電器を用いて、負荷電磁石やパルス電源装置自体の各部の温度変化に伴う回路定数の変化に起因するパルス電流波形の変動に対して、各充放電回路のコンデンサに対する充電電圧を調整することで、負荷電磁石の回路部に流れる電流値(波高値)の変動を抑制し、併せて、トリガ制御回路において各充放電回路のスイッチに対するトリガタイミングの時間差を調整することにより、パルス電流波形のフラットトップ部での波高値および波形要部の傾きの変動を抑制する。以上の相乗により、波形の変動を充分に抑制してパルス電流波形を最適化することが可能となる。   The feature of the present invention is that not only the adjustment of the capacitor charging voltage of each charging / discharging circuit but also the time difference adjustment of the trigger timing of the switch of each charging / discharging circuit is performed together. That is, by using a charging voltage variable type charger as a charger, each charging / discharging circuit is used for fluctuations in the pulse current waveform caused by changes in circuit constants accompanying temperature changes in each part of the load electromagnet and the pulse power supply device itself. By adjusting the charging voltage for the capacitor, the fluctuation of the current value (crest value) flowing in the circuit part of the load electromagnet is suppressed, and at the same time, the time difference of trigger timing for each charge / discharge circuit switch is adjusted in the trigger control circuit By doing this, the fluctuation of the peak value at the flat top portion of the pulse current waveform and the inclination of the main portion of the waveform is suppressed. By the above synergy, it is possible to optimize the pulse current waveform while sufficiently suppressing the fluctuation of the waveform.

本発明によれば、パルス電源装置について、温度変化に伴う回路定数の変化に起因するパルス電流波形の変動現象に対して、各コンデンサの充電電圧の調整と各スイッチのトリガタイミングの調整とにより、パルス電流波形のフラットトップ部での波高値および波形要部の傾きの変化を打ち消して、生成するパルス電流の波形を最適化することができる。   According to the present invention, for the pulse power supply device, with respect to the fluctuation phenomenon of the pulse current waveform caused by the change of the circuit constant accompanying the temperature change, by adjusting the charging voltage of each capacitor and adjusting the trigger timing of each switch, It is possible to optimize the waveform of the pulse current to be generated by canceling the change in the peak value at the flat top portion of the pulse current waveform and the inclination of the waveform main portion.

本発明の第1の実施例におけるパルス電源装置の構成を示す回路図1 is a circuit diagram showing a configuration of a pulse power supply device according to a first embodiment of the present invention. 本発明の第1の実施例におけるパルス電源装置の各部の電圧・電流波形および負荷電磁石に流れるパルス電流波形を示す波形図FIG. 2 is a waveform diagram showing voltage / current waveforms of each part of the pulse power supply device and a pulse current waveform flowing in the load electromagnet in the first embodiment of the present invention; 本発明の第2の実施例におけるパルス電源装置の構成を示す回路図The circuit diagram which shows the structure of the pulse power supply device in 2nd Example of this invention 従来例におけるパルス電源装置の構成を示す回路図Circuit diagram showing configuration of pulse power supply device in conventional example 従来例のパルス電源装置の各部の電圧・電流波形および負荷電磁石に流れるパルス電流波形を示す波形図Waveform diagram showing the voltage / current waveform of each part of the conventional pulse power supply device and the pulse current waveform flowing in the load electromagnet 従来例のパルス電源装置における問題点を指摘するための波形図Waveform diagram to point out problems in the conventional pulse power supply

上記構成の本発明のパルス電源装置には、次のようないくつかの好ましい態様がある。   The pulse power supply device of the present invention having the above configuration has several preferred modes as follows.

初段の充放電回路が負荷電磁石の回路部の両端間に接続され、後続段の充放電回路が負荷電磁石の回路部の両端、初段の充放電回路における直列回路の両端または当該初段の充放電回路におけるコンデンサの両端間に接続されているという態様がある。   The first stage charge / discharge circuit is connected between both ends of the load electromagnet circuit section, and the subsequent stage charge / discharge circuit is both ends of the load electromagnet circuit section, both ends of the series circuit in the first stage charge / discharge circuit, or the first stage charge / discharge circuit. In other words, the capacitor is connected between both ends of the capacitor.

また、後続段の充放電回路が2以上の場合には、後続段の充放電回路は、さらにそれら後続段の充放電回路のうち前段の充放電回路における直列回路の両端または当該前段の充放電回路におけるコンデンサの両端間に接続されているという態様がある。   Further, when there are two or more subsequent stage charge / discharge circuits, the subsequent stage charge / discharge circuit further includes both ends of the series circuit in the previous stage charge / discharge circuit among the subsequent stage charge / discharge circuits or the previous stage charge / discharge. There is an aspect in which the capacitor is connected between both ends of the circuit.

前記トリガ制御回路の構成については、
前記負荷電磁石の回路部に流れるパルス電流の波形を測定する電流波形測定器と、
前記電流波形測定器が測定したパルス電流波形のデータを記録する電流波形記録手段と、
前記電流波形記録手段が記録したデータからパルス電流波形のフラットトップ部の波高値と波形要部の傾きとを計算し、前記波高値と目標波高値の差に応じて前記初段のコンデンサに対する第1の充電電圧補償値を計算し、さらに前記波形要部の傾きに応じて前記各後続段のコンデンサおよびスイッチに対する第2の充電電圧補償値とトリガタイミング補償値とを計算する電流波形演算手段と、
前記電流波形演算手段で計算された前記第1の充電電圧補償値および第2の充電電圧補償値により前記充電器に与える充電電圧設定値を補償する充電電圧制御回路と、
前記電流波形演算手段で計算された前記トリガタイミング補償値を用いて前記トリガタイミング調整回路に与える前記時間差を補償する時間差制御回路とを備えたものとして構成されている、という態様が好ましい。
For the configuration of the trigger control circuit,
A current waveform measuring instrument for measuring the waveform of the pulse current flowing in the circuit portion of the load electromagnet;
Current waveform recording means for recording data of a pulse current waveform measured by the current waveform measuring instrument;
From the data recorded by the current waveform recording means, the peak value of the flat top part of the pulse current waveform and the slope of the main part of the waveform are calculated, and the first capacitor with respect to the first stage capacitor is calculated according to the difference between the peak value and the target peak value. Current waveform calculation means for calculating a second charging voltage compensation value and a trigger timing compensation value for the capacitor and switch of each subsequent stage according to the inclination of the waveform main part,
A charging voltage control circuit for compensating a charging voltage setting value to be applied to the charger by the first charging voltage compensation value and the second charging voltage compensation value calculated by the current waveform calculation unit;
It is preferable that the apparatus includes a time difference control circuit that compensates for the time difference given to the trigger timing adjustment circuit using the trigger timing compensation value calculated by the current waveform calculation means.

このように構成した場合には、次のような作用が発揮される。すなわち、運転時の温度変化に伴う回路定数の変化に起因するパルス電流波形の変動現象に対して、電流波形測定器が負荷電磁石の回路部に流れるパルス電流の波形を測定し、電流波形記録手段はそのパルス電流波形のデータを記録する。そして、電流波形演算手段は、記録されたパルス電流波形のデータからパルス電流波形のフラットトップ部の波高値と波形要部の傾きとを計算した上で、前記の波高値と目標波高値の差に応じて初段のコンデンサに対する第1の充電電圧補償値を計算し、さらに前記の波形要部の傾きに応じて各後続段それぞれのコンデンサおよびスイッチに対する第2の充電電圧補償値とトリガタイミング補償値とを計算する。併せて、充電電圧制御回路は前記の第1および第2の充電電圧補償値により充電器に与える充電電圧設定値を補償する。まとめると、波高値の変化を打ち消す方向に充電電圧設定値を補償し、波形要部の傾きの変化を打ち消す方向に初段および各後続段のスイッチを各々閉路させる各々のトリガ信号の時間差を補償し、かつトリガ信号の時間差の変化に伴う波高値の変化を打ち消すように充電電圧設定値を補償するので、パルス電流波形の変動を充分に低減して自動的にパルス電流波形を最適化することが可能となる。   When configured in this way, the following effects are exhibited. That is, the current waveform measuring means measures the waveform of the pulse current flowing in the circuit portion of the load electromagnet in response to the fluctuation phenomenon of the pulse current waveform caused by the change of the circuit constant accompanying the temperature change during operation, and the current waveform recording means Records the pulse current waveform data. Then, the current waveform calculation means calculates the peak value of the flat top portion of the pulse current waveform and the slope of the main portion of the waveform from the recorded pulse current waveform data, and then calculates the difference between the peak value and the target peak value. In accordance with the first charge voltage compensation value for the capacitor of the first stage, and further, the second charge voltage compensation value and the trigger timing compensation value for the capacitor and switch of each subsequent stage according to the slope of the waveform main part. And calculate. At the same time, the charging voltage control circuit compensates the charging voltage setting value given to the charger by the first and second charging voltage compensation values. In summary, the charging voltage set value is compensated in the direction to cancel the change in the peak value, and the time difference between the trigger signals for closing the switches of the first stage and each subsequent stage is compensated in the direction to cancel the change in the slope of the waveform main part. In addition, the charging voltage setting value is compensated so as to cancel the change in the peak value due to the change in the time difference of the trigger signal, so that the fluctuation of the pulse current waveform can be sufficiently reduced to automatically optimize the pulse current waveform. It becomes possible.

また、前記電流波形測定器をパルス変流器とし、さらに、前記電流波形演算手段について、これを、電流波形記録手段で記録したパルス電流波形の瞬時値に対して、その瞬時値を時間積分した値を前記パルス変流器の時定数で除算した商の値を加算補償するように構成する、という態様がある。このように構成すれば、パルス電流波形に対する波高値をより高精度に評価することになり、さらに正しい補償演算を実施することが可能となる。   Further, the current waveform measuring device is a pulse current transformer, and the current waveform computing means is time-integrated with respect to the instantaneous value of the pulse current waveform recorded by the current waveform recording means. There is an aspect in which a quotient value obtained by dividing the value by the time constant of the pulse current transformer is added and compensated. If comprised in this way, the peak value with respect to a pulse current waveform will be evaluated more accurately, and it will become possible to implement a correct compensation calculation further.

また、前記電流波形演算手段については、電流波形記録手段が記録したデータからパルス電流波形のフラットトップ部の波高値と波形要部の傾きとを計算するに際して、最小二乗法による曲線当てはめ演算を行うように構成する、という態様もある。このように構成すれば、測定波形に重畳するノイズの影響を除去して、パルス電流波形からその波高値および波形要部の傾きをより正しく評価することが可能となる。   The current waveform calculation means performs a curve fitting calculation by the least square method when calculating the peak value of the flat top portion of the pulse current waveform and the inclination of the waveform main portion from the data recorded by the current waveform recording means. There is also an aspect of being configured as described above. If comprised in this way, it will become possible to remove the influence of the noise superimposed on a measurement waveform, and to evaluate more correctly the crest value and the inclination of the waveform principal part from a pulse current waveform.

なお、前記各充放電回路のスイッチをそれぞれサイリスタとし、前記トリガ制御回路について、各サイリスタのゲートに対してゲートパルスを印加する初段および後続段のパルス変成器と、励磁トリガ信号の入力に基づいて初段および後続段のパルス変成器にゲートパルスを出力する初段および後続段のゲート駆動回路と、初段および後続段のゲート駆動回路に対して励磁トリガ信号を出力するもので、各励磁トリガ信号どうし間の時間差を調整可能なトリガタイミング調整回路とを備えた構成とする態様も好ましい。   The switches of the charge / discharge circuits are thyristors, and the trigger control circuit is based on the first and subsequent pulse transformers for applying gate pulses to the gates of the thyristors and the input of excitation trigger signals. Outputs excitation trigger signals to the first and subsequent stage gate drive circuits that output gate pulses to the first and subsequent stage pulse transformers, and to the first and subsequent stage gate drive circuits. It is also preferable to adopt a configuration including a trigger timing adjustment circuit capable of adjusting the time difference between the two.

以下、本発明にかかわるパルス電源装置の実施例を、図面を参照して詳しく説明する。   Hereinafter, embodiments of a pulse power supply device according to the present invention will be described in detail with reference to the drawings.

〔第1の実施例〕
図1は本発明の第1の実施例におけるパルス電源装置の構成を示す回路図、図2はそのパルス電源装置の各部の電圧・電流波形および負荷電磁石に流れるパルス電流波形を示す波形図である。
[First embodiment]
FIG. 1 is a circuit diagram showing a configuration of a pulse power supply device according to a first embodiment of the present invention, and FIG. 2 is a waveform diagram showing a voltage / current waveform of each part of the pulse power supply device and a pulse current waveform flowing in a load electromagnet. .

図1において、10は荷電粒子ビーム装置における負荷電磁石、11は負荷電磁石10の回路部に含まれるインダクタンス成分、12は負荷電磁石10の回路部に含まれる抵抗成分、21は初段のコンデンサC1と初段のスイッチS1を直列接続して負荷電磁石10(インダクタンス成分11および抵抗成分12の直列回路)の両端間に接続された初段の充放電回路、22は後続段のコンデンサC2と後続段のスイッチS2と波形調整用コイルL2を直列接続して負荷電磁石10の両端間に接続された後続段の充放電回路である。本実施例の場合、後続段の充放電回路22の段数は1段となっている。スイッチS1,S2については、本実施例では電流方向の反転に伴って自動的に消弧するサイリスタが用いられているが、他の制御スイッチング素子に変えてもよい。   In FIG. 1, 10 is a load electromagnet in the charged particle beam apparatus, 11 is an inductance component included in the circuit part of the load electromagnet 10, 12 is a resistance component included in the circuit part of the load electromagnet 10, and 21 is a capacitor C1 and the first stage in the first stage. The first stage charging / discharging circuit connected between both ends of the load electromagnet 10 (series circuit of the inductance component 11 and the resistance component 12) by connecting the switches S1 in series, and a capacitor C2 in the subsequent stage and a switch S2 in the subsequent stage This is a subsequent stage charge / discharge circuit in which the waveform adjusting coil L2 is connected in series and connected between both ends of the load electromagnet 10. In the case of the present embodiment, the number of stages of the charge / discharge circuit 22 in the subsequent stage is one. As for the switches S1 and S2, a thyristor that automatically extinguishes with the reversal of the current direction is used in this embodiment, but it may be replaced with another control switching element.

30はトリガ制御回路、31はトリガタイミング調整回路、32は初段のゲート駆動回路、33は初段のスイッチS1を閉成するための初段のパルス変成器、34は後続段のゲート駆動回路、35は後続段のスイッチS2を閉成するための後続段のパルス変成器である。トリガ制御回路30におけるトリガタイミング調整回路31は、荷電粒子ビーム装置におけるタイミングシステムから励磁トリガ信号Strを受け取ると、初段のゲート駆動回路32と後続段のゲート駆動回路34に対して時間差TS2(数μ秒〜数十μ秒)をもってトリガ信号T1,T2を送出するように構成されている。 30 is a trigger control circuit, 31 is a trigger timing adjustment circuit, 32 is a first stage gate drive circuit, 33 is a first stage pulse transformer for closing the first stage switch S1, 34 is a subsequent stage gate drive circuit, and 35 is This is a subsequent stage pulse transformer for closing the subsequent stage switch S2. When the trigger timing adjustment circuit 31 in the trigger control circuit 30 receives the excitation trigger signal Str from the timing system in the charged particle beam apparatus, the time difference T S2 (several to the gate drive circuit 32 in the first stage and the gate drive circuit 34 in the subsequent stage is measured. The trigger signals T1 and T2 are transmitted in a period of [mu] seconds to several tens of [mu] seconds).

トリガタイミング調整回路31は、まず初段のゲート駆動回路32に対してトリガ信号T1を出力し、所定の時間差TS2をおいて後続段のゲート駆動回路34に対してトリガ信号T2を出力する。 The trigger timing adjustment circuit 31 first outputs a trigger signal T1 to the first stage gate drive circuit 32, and outputs a trigger signal T2 to the subsequent stage gate drive circuit 34 with a predetermined time difference T S2 .

また、図1において、40は出力電圧が調整可能な充電器、D1は保護ダイオード、R1,R2は充電用抵抗器である。保護ダイオードD1は出力電圧可変型の充電器40の両端間に接続されている。出力電圧可変型の充電器40の正極端子が初段の充電用抵抗器R1を介して初段のコンデンサC1の正極端子に接続され、そのコンデンサC1の負極端子が出力電圧可変型の充電器40の負極端子に接続されている。また、出力電圧可変型の充電器40の正極端子が後続段の充電用抵抗器R2を介して後続段のコンデンサC2の正極端子に接続され、そのコンデンサC2の負極端子が出力電圧可変型の充電器40の負極端子に接続されている。   In FIG. 1, 40 is a charger whose output voltage can be adjusted, D1 is a protective diode, and R1 and R2 are charging resistors. The protection diode D <b> 1 is connected between both ends of the output voltage variable charger 40. The positive terminal of the output voltage variable type charger 40 is connected to the positive terminal of the first stage capacitor C1 via the first stage charging resistor R1, and the negative terminal of the capacitor C1 is the negative terminal of the output voltage variable type charger 40. Connected to the terminal. Further, the positive terminal of the output voltage variable charger 40 is connected to the positive terminal of the capacitor C2 in the subsequent stage via the charging resistor R2 in the subsequent stage, and the negative terminal of the capacitor C2 is charged in the output voltage variable type. The negative terminal of the container 40 is connected.

次に、上記のように構成された本実施例のパルス電源装置の動作を説明する。   Next, the operation of the pulse power supply device of the present embodiment configured as described above will be described.

出力電圧可変型の充電器40から初段の充電用抵抗器R1を介して初段のコンデンサC1を充電するとともに、後続段の充電用抵抗器R2を介して後続段のコンデンサC2を充電する。これら両コンデンサC1,C2は同じ電圧に充電される。   The first-stage capacitor C1 is charged from the output voltage variable type charger 40 via the first-stage charging resistor R1, and the subsequent-stage capacitor C2 is charged via the subsequent-stage charging resistor R2. Both capacitors C1 and C2 are charged to the same voltage.

次いで、荷電粒子ビーム装置のタイミングシステムにおいて所定のタイミングで生成された励磁トリガ信号Strがトリガタイミング調整回路31に入力されると、トリガタイミング調整回路31は初段のゲート駆動回路32と後続段のゲート駆動回路34に対して所定の時間差TS2をもって順次にトリガ信号T1,T2を送出する。 Next, when the excitation trigger signal Str generated at a predetermined timing in the timing system of the charged particle beam apparatus is input to the trigger timing adjustment circuit 31, the trigger timing adjustment circuit 31 includes the first stage gate drive circuit 32 and the subsequent stage gate. Trigger signals T1, T2 are sequentially sent to the drive circuit 34 with a predetermined time difference T S2 .

トリガ信号T1を入力した初段のゲート駆動回路32は初段のパルス変成器33を介して初段のスイッチS1にゲートパルスを出力し、初段のスイッチS1をターンオンする。また、所定の時間差TS2の後に、トリガ信号T2を入力した後続段のゲート駆動回路34は後続段のパルス変成器35を介して後続段のスイッチS2にゲートパルスを出力し、後続段のスイッチS2をターンオンする。初段のスイッチS1のターンオンのタイミングと後続段のスイッチS2のターンオンのタイミングとは、両者間に前記の所定の時間差TS2が開けられる。 The first-stage gate drive circuit 32 to which the trigger signal T1 is input outputs a gate pulse to the first-stage switch S1 via the first-stage pulse transformer 33, and the first-stage switch S1 is turned on. Further, after the predetermined time difference T S2 , the succeeding stage gate drive circuit 34 to which the trigger signal T2 is inputted outputs a gate pulse to the succeeding stage switch S2 via the succeeding stage pulse transformer 35, and the succeeding stage switch. Turn on S2. The predetermined time difference T S2 is opened between the turn-on timing of the first-stage switch S1 and the turn-on timing of the subsequent-stage switch S2.

前記のトリガタイミング調整回路31に対する励磁トリガ信号Strの出力タイミングは次のように定められる。それは、荷電粒子ビーム装置において、磁場の印加対象である荷電粒子ビームが負荷電磁石10を通過するタイミングで負荷電磁石10に流れるパルス電流がピーク値に達するようなタイミングである。すなわち、負荷電磁石電流i3 の電流波形のフラットトップ部F(図2参照)は、荷電粒子ビームが負荷電磁石10を通過する期間に対応する。以下、フラットトップ部Fでの電流波形の変化について説明する。 The output timing of the excitation trigger signal Str for the trigger timing adjustment circuit 31 is determined as follows. In the charged particle beam apparatus, the pulse current flowing through the load electromagnet 10 reaches a peak value at the timing when the charged particle beam to which the magnetic field is applied passes through the load electromagnet 10. That is, the flat top portion F (see FIG. 2) of the current waveform of the load electromagnet current i 3 corresponds to a period during which the charged particle beam passes through the load electromagnet 10. Hereinafter, changes in the current waveform in the flat top portion F will be described.

負荷電磁石10の回路部分の抵抗成分12の抵抗値は、温度変化に伴って変動し、フラットトップ部Fでの電流波形の変化をもたらす。抵抗成分12の抵抗値には、パルス電源装置から負荷電磁石10に給電するためのケーブルの抵抗値が含まれている。給電ケーブルとしては、パルス大電力を伝送する場合に通常は同軸ケーブルが使用されるが、絶縁やコスト上の観点から水冷導体を使用できない場合が多く、温度上昇を生起する。特に、パルス状かつ断続的に荷電粒子ビームを加速する加速器用途においては、実効電流によるジュール熱のために導体温度が数十℃上昇する場合がある。そのような場合には、抵抗成分12の抵抗値が10%程度増加する。   The resistance value of the resistance component 12 in the circuit portion of the load electromagnet 10 varies with a change in temperature, resulting in a change in the current waveform in the flat top portion F. The resistance value of the resistance component 12 includes a resistance value of a cable for supplying power to the load electromagnet 10 from the pulse power supply device. As the power supply cable, a coaxial cable is normally used when transmitting a large amount of pulsed power, but a water-cooled conductor cannot be used in many cases from the viewpoint of insulation and cost, which causes a temperature rise. In particular, in an accelerator application that accelerates a charged particle beam in a pulsed manner intermittently, the conductor temperature may increase by several tens of degrees Celsius due to Joule heat due to effective current. In such a case, the resistance value of the resistance component 12 increases by about 10%.

負荷電磁石10の抵抗成分12の抵抗値の変化の影響に関しては、従来例における問題点として説明したように、出力電圧可変型の充電器40に与える充電電圧設定指令信号を増加することにより負荷電磁石電流i3 のピーク値の低下を補償するという考え方がある。しかしながら、温度上昇に伴って電流が立ち下がる方向の傾きが大きくなり、フラットトップ部Fにおける電流の平坦度が悪化するという問題がある。 Regarding the influence of the change in the resistance value of the resistance component 12 of the load electromagnet 10, as described as a problem in the conventional example, the load electromagnet is increased by increasing the charge voltage setting command signal given to the output voltage variable charger 40. There is a concept of compensating for a decrease in the peak value of the current i 3 . However, there is a problem that the inclination in the direction in which the current falls as the temperature rises increases, and the flatness of the current in the flat top portion F deteriorates.

そこで、本実施例においては、初段のスイッチS1と後続段のスイッチS2とを各々閉路させる2つのトリガ信号T1,T2に対して調整可能な時間差TS2を設けるトリガタイミング調整回路31を装備している。両トリガ信号T1,T2の時間差TS2を温度上昇に伴って大きくなるように調整することにより、フラットトップ部Fにおける電流の傾きを調整(修正)するようにしている。 Therefore, in the present embodiment, a trigger timing adjustment circuit 31 is provided that provides an adjustable time difference T S2 for the two trigger signals T1 and T2 that close the first-stage switch S1 and the subsequent-stage switch S2. Yes. The slope of the current in the flat top portion F is adjusted (corrected) by adjusting the time difference T S2 between the trigger signals T1, T2 so as to increase as the temperature rises.

パルス電源装置の各部の電圧・電流波形および負荷電磁石10に流れるパルス電流波形の変化を示す図2のように、負荷電磁石10の回路の抵抗値が20mΩから、20.9mΩ、21.8mΩへと増加するのに伴い、後続段のスイッチS2を点弧させるタイミングの時間差TS2(図2(c)では「TS2」と表記)を0μsから2μs、4μsへと徐々に増加させ、同時に出力電圧可変型の充電器40の充電電圧を969.00Vから971.56V、974.12Vへと徐々に増加させることにより、パルス電流波形の変化幅を0.1A以下に抑えることができるようになった。これは基準値3000[A]に対する割合が約0.003%に相当するもので、十分に小さい値となっている。 As shown in FIG. 2 showing the voltage / current waveform of each part of the pulse power supply device and the change of the pulse current waveform flowing in the load electromagnet 10, the resistance value of the circuit of the load electromagnet 10 is changed from 20 mΩ to 20.9 mΩ and 21.8 mΩ. As it increases, the time difference T S2 (indicated as “TS2” in FIG. 2C) for igniting the switch S2 in the subsequent stage is gradually increased from 0 μs to 2 μs and 4 μs, and at the same time, the output voltage is varied. By gradually increasing the charging voltage of the type charger 40 from 969.00 V to 971.56 V and 974.12 V, the variation width of the pulse current waveform can be suppressed to 0.1 A or less. This corresponds to a ratio of about 0.003% with respect to the reference value 3000 [A], which is a sufficiently small value.

以上のように本実施例においては、温度上昇に従って、出力電圧可変型の充電器40の充電電圧の上昇とともに時間差TS2を増加するようにしたので、温度上昇に伴う電流減少を抑制して、フラットトップ部Fにおける電流の平坦度を改善することができる。 As described above, in this embodiment, the time difference T S2 is increased as the charging voltage of the output voltage variable charger 40 increases as the temperature rises. The flatness of the current in the flat top portion F can be improved.

〔第2の実施例〕
図3は本発明の第2の実施例におけるパルス電源装置の構成を示す回路図である。図3において、第1の実施例の図1で用いたのと同一符号は同一の構成要素を指すものとし、詳しい説明は省略する。本実施例においては、トリガ制御回路30における新たな構成要素30aとして、電流波形測定器51、電流波形記録手段52、電流波形演算手段53、充電電圧制御回路54および時間差制御回路55が追加されている。
[Second Embodiment]
FIG. 3 is a circuit diagram showing the configuration of the pulse power supply device according to the second embodiment of the present invention. In FIG. 3, the same reference numerals as those used in FIG. 1 of the first embodiment denote the same components, and a detailed description thereof will be omitted. In the present embodiment, a current waveform measuring instrument 51, a current waveform recording means 52, a current waveform calculating means 53, a charging voltage control circuit 54, and a time difference control circuit 55 are added as new components 30a in the trigger control circuit 30. Yes.

電流波形測定器51は、負荷電磁石10の回路部に流れるパルス電流の波形を測定する機能を有するもので、ここでは一例としてパルス変流器(Pulse Current Transformer)が用いられている。なお、電流波形測定器51としては、パルス変流器のほか、ロゴスキーコイル、直流変流器等を使用することも可能である。   The current waveform measuring instrument 51 has a function of measuring the waveform of the pulse current flowing in the circuit portion of the load electromagnet 10, and a pulse current transformer (Pulse Current Transformer) is used here as an example. In addition to the pulse current transformer, a Rogowski coil, a direct current transformer, or the like can be used as the current waveform measuring instrument 51.

電流波形記録手段52は、電流波形測定器51が測定したパルス電流波形のデータを記録する機能を有するものであって、ここでは一例として、アナログ−デジタル変換器を用いたデジタイザによりデジタルデータとして記録するものを用いる。   The current waveform recording means 52 has a function of recording the pulse current waveform data measured by the current waveform measuring instrument 51. Here, as an example, the current waveform recording means 52 is recorded as digital data by a digitizer using an analog-digital converter. Use what you want.

電流波形演算手段53は、電流波形記録手段52が記録したデータからパルス電流波形のフラットトップ部Fの波高値Hと波形要部の傾きmとを計算し、その波高値Hと目標波高値Hoの差ΔH(Ho−H)に応じて第1の充電電圧補償値VC1を計算し、さらに波形要部の傾きmに応じて第2の充電電圧補償値VC2とトリガタイミング補償値Δtとを計算する機能を有する。より詳しくは、次のとおりである。 The current waveform calculation means 53 calculates the peak value H of the flat top portion F and the slope m of the waveform main part of the pulse current waveform from the data recorded by the current waveform recording means 52, and the peak value H and the target peak value Ho. The first charging voltage compensation value V C1 is calculated according to the difference ΔH (Ho−H) between the second charging voltage Vc2 and the trigger timing compensation value Δt according to the slope m of the waveform main part. It has a function to calculate More details are as follows.

すなわち、電流波形演算手段53は、電流波形記録手段52が記録しているパルス電流波形の瞬時値に対して、その瞬時値を時間積分した値を電流波形測定器51であるパルス変流器の時定数で除算した商の値を加算補償する機能(it →it +∫it dt/τ)を有している。この機能ゆえに、パルス変流器の特性である測定パルス波形頂部の時間的な低下(サグまたはドループ)を補償し、真のパルス電流波形に対する波高値および波形要部の傾きを評価してより正しい補償演算を実施できる。さらには、前記の時間積分(∫it dt)を行う前の、パルス電流波形のフラットトップ部Fの波高値Hおよび波形要部の傾きmの計算方法としては、ノイズ除去のために、最小二乗法による曲線あてはめ演算を利用するのが好ましい。この電流波形演算手段53は、マイクロプロセッサやDSP(デジタルシグナルプロセッサ)または論理再構成可能なFPGA(Field Programmable Gate Array)などを用いてデジタル演算システムに構成したものである。 That is, the current waveform calculation means 53 is a value obtained by integrating the instantaneous value of the instantaneous value of the pulse current waveform recorded by the current waveform recording means 52 with respect to the current waveform measuring device 51. It has a function of adding compensation values of the quotient obtained by dividing a time constant (i t → i t + ∫i t dt / τ). This function compensates for the time drop (sag or droop) at the top of the measured pulse waveform, which is a characteristic of the pulse current transformer, and evaluates the peak value and the slope of the waveform main part for the true pulse current waveform to make it more correct. Compensation calculation can be performed. Furthermore, as a calculation method of the previous, the slope m of the pulse height H and waveform main part of the flat top portion F of the pulse current waveform for performing the time integration (∫i t dt), for the noise removal, the minimum It is preferable to use a curve fitting operation by the square method. The current waveform calculation means 53 is configured in a digital calculation system using a microprocessor, a DSP (digital signal processor), a logic reconfigurable FPGA (Field Programmable Gate Array), or the like.

充電電圧制御回路54は、電流波形演算手段53で計算された第1の充電電圧補償値VC1および第2の充電電圧補償値VC2により出力電圧可変型の充電器40に与える充電電圧設定値Vcを補償する機能を有する。なお、この充電電圧制御回路54には従来例と同様に充電電圧設定指令信号Scvが入力されるようになっている。この充電電圧設定指令信号Scvが指示する充電電圧設定値Vcに対して、第1の充電電圧補償値VC1および第2の充電電圧補償値VC2を加味するようになっている。このことにより、負荷電磁石10の回路部に流れるパルス電流波形のフラットトップ部Fの波高値Hを最適化するものである。 The charging voltage control circuit 54 is a charging voltage setting value to be given to the output voltage variable charger 40 by the first charging voltage compensation value V C1 and the second charging voltage compensation value V C2 calculated by the current waveform calculation means 53. It has a function of compensating for Vc. The charging voltage control circuit 54 is supplied with a charging voltage setting command signal S cv as in the conventional example. The first charging voltage compensation value V C1 and the second charging voltage compensation value V C2 are added to the charging voltage setting value Vc indicated by the charging voltage setting command signal S cv . As a result, the peak value H of the flat top portion F of the pulse current waveform flowing in the circuit portion of the load electromagnet 10 is optimized.

時間差制御回路55は、電流波形演算手段53で計算されたトリガタイミング補償値Δtを用いてトリガタイミング調整回路31に与える前述の時間差TS2を補償するものである。 The time difference control circuit 55 compensates for the time difference T S2 given to the trigger timing adjustment circuit 31 using the trigger timing compensation value Δt calculated by the current waveform calculation means 53.

次に、上記のように構成された本実施例のパルス電源装置の動作を説明する。   Next, the operation of the pulse power supply device of the present embodiment configured as described above will be described.

充電器40、充電抵抗器R1,R2、初段のコンデンサC1および後続段のコンデンサC2、トリガタイミング調整回路31、初段のゲート駆動回路32と後続段のゲート駆動回路34、初段のパルス変成器33と後続段のパルス変成器35、初段のスイッチS1と後続段のスイッチS2の動作は前述の実施例と同様である。   Charger 40, charging resistors R1, R2, first stage capacitor C1 and subsequent stage capacitor C2, trigger timing adjustment circuit 31, first stage gate drive circuit 32 and subsequent stage gate drive circuit 34, first stage pulse transformer 33, The operations of the pulse transformer 35 at the subsequent stage, the switch S1 at the first stage, and the switch S2 at the subsequent stage are the same as those in the previous embodiment.

負荷電磁石10の回路部に流れるパルス電流の波形は電流波形測定器51によって測定され、電流波形記録手段52に記録される。さらに、電流波形演算手段53は、電流波形記録手段52に記録されているパルス電流波形のフラットトップ部Fの波高値Hおよび波形要部の傾きmを計算する。この計算においては、最小二乗法等を用いた波形フィッティングを行うものとする。電流波形測定器51によって測定された電流波形には必然的にノイズが含まれることに対応するためである。その波形フィッティングの例としては、負荷電磁石10に流れるパルス電流波形を数式(1)に示す時間関数f(t)として最小二乗法等による演算を行い、波形を良く近似する時間関数の係数a0 ,ak を求める方法が好ましい。 The waveform of the pulse current flowing through the circuit portion of the load electromagnet 10 is measured by the current waveform measuring device 51 and recorded in the current waveform recording means 52. Further, the current waveform calculation means 53 calculates the peak value H of the flat top portion F of the pulse current waveform recorded in the current waveform recording means 52 and the slope m of the waveform main portion. In this calculation, waveform fitting using the least square method or the like is performed. This is because the current waveform measured by the current waveform measuring instrument 51 inevitably includes noise. As an example of the waveform fitting, a pulse function waveform flowing through the load electromagnet 10 is calculated by a least square method or the like using a time function f (t) shown in Formula (1) as a time function f (t), and a coefficient a 0 of a time function that closely approximates the waveform. , A k is preferred.

Figure 2016100680
ノイズを除去した電流波形が数式(1)で表されるとして、時刻t0 における値a0 を電流波高値Hの近似値として採用し、次回の充電電圧を決定するためのフィードバック値として用いる方法がある。
Figure 2016100680
Assuming that the current waveform from which noise has been removed is expressed by Equation (1), the value a 0 at time t 0 is adopted as an approximate value of the current peak value H, and used as a feedback value for determining the next charging voltage. There is.

さらには、数式(1)を時刻t=t0 を中心としたフラットトップ部時間長Tに亘って積分した値Aが数式(2)で与えられる。これは、この期間の電流値の平均値のより良い近似になると考えられるので、この値を次回の充電電圧を決定するためのフィードバック値として用いる方法もある。 Further, a value A obtained by integrating the mathematical formula (1) over the flat top portion time length T around the time t = t 0 is given by the mathematical formula (2). Since this is considered to be a better approximation of the average value of the current value during this period, there is a method of using this value as a feedback value for determining the next charging voltage.

Figure 2016100680
また、電流波形フラットトップ部Fの波形要部の傾きmを計算する有力な方法として次のようにするのが好ましい。すなわち、数式(1)の関数f(t)の時刻t=t0 +T/2における値f(t0 +T/2)と時刻t=t0 −T/2における値f(t0 −T/2)との差B(=f(t0 +T/2)−f(t0 −T/2))は数式(3)のように表すことができる。この数式(3)による値B(一定時間Tでの波高値の差分)を近似的に傾きmを表す数値として採用する。
Figure 2016100680
Further, it is preferable to perform the following as an effective method for calculating the inclination m of the waveform main portion of the current waveform flat top portion F. In other words, time t = t 0 + T / 2 in the value f (t 0 + T / 2 ) and the time t = t 0 -T / 2 in the value f in Equation (1) function f (t) of (t 0 -T / The difference B from 2) (= f (t 0 + T / 2) −f (t 0 −T / 2)) can be expressed as shown in Equation (3). A value B (difference in peak value at a fixed time T) according to the mathematical formula (3) is approximately adopted as a numerical value representing the slope m.

Figure 2016100680
そして、数式(4)に示すように、前述の後続段のスイッチS2を点弧させるタイミングの時間差TS2の調整量Δtをこの傾きmである値Bを用いて計算するのが良い。数式(4)において、c1 は、時間差TS2の調整量Δtに関して、電流波形フラットトップ部Fの波形要部の傾きm(近似値B)で補償するための係数である。
Figure 2016100680
Then, as shown in Equation (4), it is preferable to calculate the adjustment amount Δt of the time difference T S2 of the timing for firing the switch S2 in the subsequent stage using the value B that is the slope m. In Equation (4), c 1 is a coefficient for compensating for the adjustment amount Δt of the time difference T S2 by the slope m (approximate value B) of the waveform main portion of the current waveform flat top portion F.

Figure 2016100680
さらに、後続段のスイッチS2を点弧させるタイミングの時間差TS2を調整することに伴って波高値Hが変化するが、この波高値Hの変化を補償するために、充電器40に対する充電電圧設定値Vcをさらに補償する必要があり、このための調整値ΔVc を数式(5)で計算するのが良
い。数式(5)においてc2 は、上記の波高値Hの変化を充電電圧により補償するための係数である。
Figure 2016100680
Furthermore, the peak value H changes as the time difference T S2 of the timing for firing the switch S2 in the subsequent stage is adjusted. In order to compensate for the change in the peak value H, the charging voltage setting for the charger 40 is set. The value Vc needs to be further compensated, and the adjustment value ΔVc for this purpose is preferably calculated by the equation (5). In Equation (5), c 2 is a coefficient for compensating the change in the peak value H by the charging voltage.

Figure 2016100680
以上のように、本実施例によれば、測定波形に重畳するノイズの影響を除去し、波高値の変化を打ち消す方向に充電電圧設定値を補償し、波形要部の傾きの変化を打ち消す方向に初段および後続段のスイッチを閉路させる各々のトリガ信号の時間差を補償し、かつトリガ信号の時間差の変化に伴う波高値の変化を打ち消すように充電電圧設定値を補償するので、パルス電流波形の変動を充分に低減して自動的にパルス電流波形を最適化することができる。
Figure 2016100680
As described above, according to the present embodiment, the influence of noise superimposed on the measurement waveform is removed, the charge voltage setting value is compensated in the direction to cancel the change in the peak value, and the change in the inclination of the waveform main part is canceled. Because the time difference of each trigger signal that closes the switch of the first stage and the subsequent stage is compensated, and the charging voltage set value is compensated so as to cancel the change of the peak value accompanying the change of the time difference of the trigger signal, the pulse current waveform The pulse current waveform can be automatically optimized by sufficiently reducing fluctuations.

上述の2例の実施例では回路構成をコンデンサ2段の波形形成回路としたが、本発明はこれのみに限定されるものではなく、後続段の充放電回路として2段以上の充放電回路を並列に接続したものであってもよい。その初段の充放電回路と2段以上の充放電回路とをそれぞれ互いに時間差をおいて活性化するように構成するとともに、それぞれの時間差を調整可能に構成する。   In the above-described two examples, the circuit configuration is a two-stage capacitor waveform forming circuit. However, the present invention is not limited to this, and a charge / discharge circuit having two or more stages is used as a subsequent stage charge / discharge circuit. It may be connected in parallel. The first stage charging / discharging circuit and the two or more stages charging / discharging circuits are configured to be activated with a time difference from each other, and each time difference can be adjusted.

また、1段または2段以上の後続段の充放電回路につき、それの接続先を初段の充放電回路におけるコンデンサの両端間としてもよい。   Further, with respect to one stage or two or more stages of subsequent stage charge / discharge circuits, the connection destination may be between both ends of the capacitor in the first stage charge / discharge circuit.

また、2段以上の後続段の充放電回路につき、それの接続先を前段の充放電回路におけるコンデンサの両端、または前段のコンデンサとスイッチの直列回路の両端としてもよい。   In addition, two or more subsequent stages of charge / discharge circuits may be connected to both ends of the capacitor in the previous stage charge / discharge circuit, or both ends of the series circuit of the capacitor and switch in the previous stage.

本発明は、荷電粒子ビームの加速器などに用いられるもので、複数段のパルス形成用回路網(PFN)を備えたパルス電源装置に関して、温度変化に伴う回路定数の変化に起因するパルス電流波形の変動現象に対して、パルス電流波形のフラットトップ部での波高値および波形要部の傾きの変化を打ち消して、生成するパルス電流の波形を最適化する技術として有用である。   The present invention is used for a charged particle beam accelerator or the like, and relates to a pulse power supply device including a plurality of stages of a pulse forming network (PFN), and a pulse current waveform caused by a change in a circuit constant accompanying a temperature change. It is useful as a technique for optimizing the waveform of the pulse current to be generated by canceling the change in the peak value of the pulse current waveform at the flat top part and the inclination of the waveform main part against the fluctuation phenomenon.

10 負荷電磁石
21 初段の充放電回路
22 後続段の充放電回路
30 トリガ制御回路
31 トリガタイミング調整回路
32 初段のゲート駆動回路
33 初段のパルス変成器
34 後続段のゲート駆動回路
35 後続段のパルス変成器
40 充電電圧設定値を調整可能な充電器
51 電流波形測定器
52 電流波形記録手段
53 電流波形演算手段
54 充電電圧制御回路
55 時間差制御回路
C1 初段のコンデンサ
C2 後続段のコンデンサ
L2 波形調整用コイル
S1 初段のスイッチ
S2 後続段のスイッチ
DESCRIPTION OF SYMBOLS 10 Load electromagnet 21 First stage charging / discharging circuit 22 Subsequent stage charging / discharging circuit 30 Trigger control circuit 31 Trigger timing adjustment circuit 32 First stage gate drive circuit 33 First stage pulse transformer 34 Subsequent stage gate drive circuit 35 Subsequent stage pulse transformation 40 Charger with adjustable charging voltage setting value 51 Current waveform measuring device 52 Current waveform recording means 53 Current waveform calculating means 54 Charging voltage control circuit 55 Time difference control circuit C1 First stage capacitor C2 Subsequent stage capacitor L2 Waveform adjustment coil S1 First stage switch S2 Subsequent stage switch

Claims (7)

負荷電磁石の回路部に対して台形状類似波形のパルス電流を供給するパルス電源装置であって、
初段のコンデンサと初段のスイッチの直列回路からなり、前記初段のコンデンサの充電電力を前記負荷電磁石の回路部に放電可能な初段の充放電回路と、
後続段のコンデンサと後続段のスイッチと波形調整用コイルの直列回路からなり、前記後続段の前記コンデンサの充電電力を前記負荷電磁石の回路部に放電可能な後続段の充放電回路を1以上備えるとともに、
前記初段のコンデンサおよび前記後続段のコンデンサを充電するもので、その充電電圧設定値を調整可能な充電器と、
互いに独立的したトリガ信号を送出して前記初段のスイッチと前記後続段のスイッチを閉路させるもので、各トリガ信号どうし間の時間差を調整可能なトリガ制御回路とを備えたパルス電源装置。
A pulse power supply device for supplying a pulse current having a trapezoidal waveform to a circuit portion of a load electromagnet,
A first stage charge and discharge circuit comprising a series circuit of a first stage capacitor and a first stage switch, capable of discharging the charging power of the first stage capacitor to the circuit portion of the load electromagnet,
It comprises a series circuit of a succeeding stage capacitor, a succeeding stage switch, and a waveform adjusting coil, and includes at least one following stage charging / discharging circuit capable of discharging the charging power of the succeeding stage capacitor to the circuit portion of the load electromagnet. With
Charge the first stage capacitor and the subsequent stage capacitor, a charger capable of adjusting the charging voltage setting value,
A pulse power supply device comprising: a trigger control circuit capable of sending trigger signals independent of each other to close the first-stage switch and the subsequent-stage switch, and capable of adjusting a time difference between the trigger signals.
前記初段の充放電回路は、前記負荷電磁石の回路部の両端間に接続され、
前記後続段の充放電回路は、前記負荷電磁石の回路部の両端、前記初段の充放電回路における直列回路の両端または当該初段の充放電回路におけるコンデンサの両端間に接続されている請求項1に記載のパルス電源装置。
The first stage charge / discharge circuit is connected between both ends of the circuit portion of the load electromagnet,
The subsequent stage charge / discharge circuit is connected between both ends of the circuit portion of the load electromagnet, both ends of a series circuit in the first stage charge / discharge circuit, or both ends of a capacitor in the first stage charge / discharge circuit. The pulse power supply device described.
前記後続段の充放電回路が2以上の場合には、前記後続段の充放電回路は、さらにそれら後続段の充放電回路のうち前段の充放電回路における直列回路の両端または当該前段の充放電回路におけるコンデンサの両端間に接続されている請求項2に記載のパルス電源装置。   In the case where the number of the subsequent stage charging / discharging circuits is two or more, the subsequent stage charging / discharging circuit further includes both ends of the series circuit in the preceding stage charging / discharging circuit among the subsequent stage charging / discharging circuits or the preceding stage charging / discharging. The pulse power supply device according to claim 2, which is connected between both ends of a capacitor in the circuit. 前記トリガ制御回路は、
前記負荷電磁石の回路部に流れるパルス電流の波形を測定する電流波形測定器と、
前記電流波形測定器が測定したパルス電流波形のデータを記録する電流波形記録手段と、
前記電流波形記録手段が記録したデータからパルス電流波形のフラットトップ部の波高値と波形要部の傾きとを計算し、前記波高値と目標波高値の差に応じて前記初段のコンデンサに対する第1の充電電圧補償値を計算し、さらに前記波形要部の傾きに応じて前記各後続段のコンデンサおよびスイッチに対する第2の充電電圧補償値とトリガタイミング補償値とを計算する電流波形演算手段と、
前記電流波形演算手段で計算された前記第1の充電電圧補償値および第2の充電電圧補償値により前記充電器に与える充電電圧設定値を補償する充電電圧制御回路と、
前記電流波形演算手段で計算された前記トリガタイミング補償値を用いて前記トリガタイミング調整回路に与える前記時間差を補償する時間差制御回路とを有する請求項1から請求項3までのいずれか1項に記載のパルス電源装置。
The trigger control circuit includes:
A current waveform measuring instrument for measuring the waveform of the pulse current flowing in the circuit portion of the load electromagnet;
Current waveform recording means for recording data of a pulse current waveform measured by the current waveform measuring instrument;
From the data recorded by the current waveform recording means, the peak value of the flat top part of the pulse current waveform and the slope of the main part of the waveform are calculated, and the first capacitor with respect to the first stage capacitor is calculated according to the difference between the peak value and the target peak value. Current waveform calculation means for calculating a second charging voltage compensation value and a trigger timing compensation value for the capacitor and switch of each subsequent stage according to the inclination of the waveform main part,
A charging voltage control circuit for compensating a charging voltage setting value to be applied to the charger by the first charging voltage compensation value and the second charging voltage compensation value calculated by the current waveform calculation unit;
The time difference control circuit which compensates for the time difference given to the trigger timing adjustment circuit using the trigger timing compensation value calculated by the current waveform calculating means. Pulse power supply.
前記電流波形測定器はパルス変流器であって、
前記電流波形演算手段は、前記電流波形記録手段で記録したパルス電流波形の瞬時値に対して、その瞬時値を時間積分した値を前記パルス変流器の時定数で除算した商の値を加算補償するように構成されている請求項4に記載のパルス電源装置。
The current waveform measuring instrument is a pulse current transformer,
The current waveform calculation means adds the quotient obtained by dividing the instantaneous value of the instantaneous value of the pulse current waveform recorded by the current waveform recording means by the time constant of the pulse current transformer. The pulse power supply device according to claim 4, which is configured to compensate.
前記電流波形演算手段は、前記電流波形記録手段が記録したデータからパルス電流波形のフラットトップ部の波高値と波形要部の傾きとを計算するに際して、最小二乗法による曲線当てはめ演算を行うように構成されている請求項4に記載のパルス電源装置。   The current waveform calculation means performs a curve fitting calculation by a least square method when calculating the peak value of the flat top portion of the pulse current waveform and the slope of the waveform main part from the data recorded by the current waveform recording means. The pulse power supply device according to claim 4 configured. 前記各充放電回路のスイッチはそれぞれサイリスタであり、
前記トリガ制御回路は、
前記各サイリスタのゲートに対してゲートパルスを印加する初段および後続段のパルス変成器と、
励磁トリガ信号の入力に基づいて前記初段および後続段のパルス変成器にゲートパルスを出力する初段および後続段のゲート駆動回路と、
前記初段および後続段のゲート駆動回路に対して励磁トリガ信号を出力するもので、各励磁トリガ信号どうし間の時間差を調整可能なトリガタイミング調整回路とを有する請求項1に記載のパルス電源装置。
Each of the switches of the charge / discharge circuit is a thyristor,
The trigger control circuit includes:
An initial stage and a subsequent stage pulse transformer for applying a gate pulse to the gate of each thyristor;
A gate drive circuit for the first stage and the subsequent stage that outputs a gate pulse to the pulse transformer for the first stage and the subsequent stage based on the input of the excitation trigger signal;
2. The pulse power supply device according to claim 1, further comprising a trigger timing adjustment circuit that outputs an excitation trigger signal to the first-stage and subsequent-stage gate drive circuits and that can adjust a time difference between the excitation trigger signals.
JP2014234503A 2014-11-19 2014-11-19 Pulse power supply Active JP6324880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014234503A JP6324880B2 (en) 2014-11-19 2014-11-19 Pulse power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014234503A JP6324880B2 (en) 2014-11-19 2014-11-19 Pulse power supply

Publications (2)

Publication Number Publication Date
JP2016100680A true JP2016100680A (en) 2016-05-30
JP6324880B2 JP6324880B2 (en) 2018-05-16

Family

ID=56078131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014234503A Active JP6324880B2 (en) 2014-11-19 2014-11-19 Pulse power supply

Country Status (1)

Country Link
JP (1) JP6324880B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018050094A (en) * 2016-09-20 2018-03-29 ニチコン株式会社 Pulse power supply apparatus
CN109286333A (en) * 2018-11-27 2019-01-29 成都致研新能电子科技有限公司 For the charging of pulse power system, recycling and control circuit and its working method
CN110401371A (en) * 2019-08-30 2019-11-01 武汉智瑞捷电气技术有限公司 A kind of solution of great power pulse power source output waveform stability
CN111175570A (en) * 2020-03-13 2020-05-19 中国工程物理研究院激光聚变研究中心 Pulse discharge current recording device with trigger enabling function and fault identification method
CN111510013A (en) * 2020-02-25 2020-08-07 苏州泰思特电子科技有限公司 Interference multi-pulse generation method
CN111642055A (en) * 2020-06-04 2020-09-08 中国科学院近代物理研究所 Current waveform control system and method of digital pulse power supply of ion synchrotron
CN113884959A (en) * 2021-09-06 2022-01-04 中国科学院合肥物质科学研究院 Flat-top-wave-like pulse high-intensity magnetic field generating device and method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518175A (en) * 1978-07-27 1980-02-08 Tokyo Keiki Co Ltd Pulse generator
JPS61191273A (en) * 1985-02-19 1986-08-25 Mitsubishi Electric Corp Power source for nuclear fusion reactor
JPH01186597A (en) * 1988-01-13 1989-07-26 Rikagaku Kenkyusho Electron temperature measuring method with asymmetrical double probe
JPH0685624A (en) * 1992-08-28 1994-03-25 Nichicon Corp Waveform generating line
JPH08125499A (en) * 1994-10-25 1996-05-17 Jiyuu Denshi Laser Kenkyusho:Kk Pulse power supply device for klystron
JPH0992531A (en) * 1995-09-21 1997-04-04 Sumitomo Heavy Ind Ltd Power supply unit for pulse type electromagnet
US5905371A (en) * 1995-06-23 1999-05-18 D.C. Transformation, Inc. Sequential discharge and its use for rectification
JPH11205098A (en) * 1998-01-13 1999-07-30 Nissin High Voltage Co Ltd Pulse generator
JP2002033310A (en) * 2000-07-18 2002-01-31 Hitachi Ltd Plasma treatment equipment
JP2002364768A (en) * 2001-06-07 2002-12-18 Denso Corp Solenoid valve driving device
JP2004242409A (en) * 2003-02-05 2004-08-26 Mitsubishi Electric Corp Pulse generation device
JP2006324039A (en) * 2005-05-17 2006-11-30 Ushio Inc Pulse generator and extreme ultraviolet light source device
JP2008091280A (en) * 2006-10-04 2008-04-17 Hitachi Ltd Detection method of pulse current, and pulse current power device
WO2014041276A1 (en) * 2012-09-14 2014-03-20 I T H P P High power pulse generator having a substantially quadrangular shape with an adjustable slope
JP2014116408A (en) * 2012-12-07 2014-06-26 Nichicon Corp Power source device for electromagnet

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518175A (en) * 1978-07-27 1980-02-08 Tokyo Keiki Co Ltd Pulse generator
JPS61191273A (en) * 1985-02-19 1986-08-25 Mitsubishi Electric Corp Power source for nuclear fusion reactor
JPH01186597A (en) * 1988-01-13 1989-07-26 Rikagaku Kenkyusho Electron temperature measuring method with asymmetrical double probe
JPH0685624A (en) * 1992-08-28 1994-03-25 Nichicon Corp Waveform generating line
JPH08125499A (en) * 1994-10-25 1996-05-17 Jiyuu Denshi Laser Kenkyusho:Kk Pulse power supply device for klystron
US5905371A (en) * 1995-06-23 1999-05-18 D.C. Transformation, Inc. Sequential discharge and its use for rectification
JPH0992531A (en) * 1995-09-21 1997-04-04 Sumitomo Heavy Ind Ltd Power supply unit for pulse type electromagnet
JPH11205098A (en) * 1998-01-13 1999-07-30 Nissin High Voltage Co Ltd Pulse generator
JP2002033310A (en) * 2000-07-18 2002-01-31 Hitachi Ltd Plasma treatment equipment
JP2002364768A (en) * 2001-06-07 2002-12-18 Denso Corp Solenoid valve driving device
JP2004242409A (en) * 2003-02-05 2004-08-26 Mitsubishi Electric Corp Pulse generation device
JP2006324039A (en) * 2005-05-17 2006-11-30 Ushio Inc Pulse generator and extreme ultraviolet light source device
JP2008091280A (en) * 2006-10-04 2008-04-17 Hitachi Ltd Detection method of pulse current, and pulse current power device
WO2014041276A1 (en) * 2012-09-14 2014-03-20 I T H P P High power pulse generator having a substantially quadrangular shape with an adjustable slope
US20150270831A1 (en) * 2012-09-14 2015-09-24 I T H P P High power pulse generator having a substantially quadrangular shape with an adjustable slope
JP2014116408A (en) * 2012-12-07 2014-06-26 Nichicon Corp Power source device for electromagnet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018050094A (en) * 2016-09-20 2018-03-29 ニチコン株式会社 Pulse power supply apparatus
CN109286333A (en) * 2018-11-27 2019-01-29 成都致研新能电子科技有限公司 For the charging of pulse power system, recycling and control circuit and its working method
CN109286333B (en) * 2018-11-27 2020-01-07 成都致研新能电子科技有限公司 Charging, recycling and control circuit for pulse power system and working method thereof
CN110401371A (en) * 2019-08-30 2019-11-01 武汉智瑞捷电气技术有限公司 A kind of solution of great power pulse power source output waveform stability
CN111510013A (en) * 2020-02-25 2020-08-07 苏州泰思特电子科技有限公司 Interference multi-pulse generation method
CN111510013B (en) * 2020-02-25 2022-05-10 苏州泰思特电子科技有限公司 Interference multi-pulse generation method
CN111175570A (en) * 2020-03-13 2020-05-19 中国工程物理研究院激光聚变研究中心 Pulse discharge current recording device with trigger enabling function and fault identification method
CN111175570B (en) * 2020-03-13 2022-03-08 中国工程物理研究院激光聚变研究中心 Pulse discharge current recording device with trigger enabling function and fault identification method
CN111642055A (en) * 2020-06-04 2020-09-08 中国科学院近代物理研究所 Current waveform control system and method of digital pulse power supply of ion synchrotron
CN113884959A (en) * 2021-09-06 2022-01-04 中国科学院合肥物质科学研究院 Flat-top-wave-like pulse high-intensity magnetic field generating device and method
CN113884959B (en) * 2021-09-06 2023-11-07 中国科学院合肥物质科学研究院 Device and method for generating quasi-flat top wave pulse strong magnetic field

Also Published As

Publication number Publication date
JP6324880B2 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
JP6324880B2 (en) Pulse power supply
KR102329910B1 (en) Matched source impedance drive system and method of operation thereof
EP1088376B1 (en) Magnetic modulator voltage and temperature timing compensation circuit
JP2021524659A (en) Spatial variable wafer bias power system
US8604809B2 (en) Current sensor capacity measuring system
JPH0767349A (en) Apparatus and method for distribution of power into plurality of inductive loads for single inverter power supply
KR101858258B1 (en) Power supply apparatus and method of controlling the same, and test apparatus using the apparatus and the method
US20190089346A1 (en) Control circuit, control method, and non-transitory storage medium
US6661214B1 (en) Droop compensation circuitry
Collier et al. Fast SiC switching limits for pulsed power applications
JP6257841B2 (en) Laser oscillator
US6677736B1 (en) Energy recovery system for droop compensation circuitry
JP2006339149A (en) Apparatus and method of high-speed charging for charging capacitor
US10243458B2 (en) Method and apparatus for hysteresis regulation of the output voltage of a DC-to-DC converter
JP2014161146A (en) Switching power supply device
US6114842A (en) Precision voltage regulator for capacitor-charging power supply
JP7299130B2 (en) high frequency power circuit
JP6185168B2 (en) Thermal flow meter
JP6734845B2 (en) Light emitting device and distance measuring device
JP3806025B2 (en) Gas laser device
JPWO2020234964A1 (en) Power supply
JP6732615B2 (en) Pulse power supply
US10700698B2 (en) Linearization circuit and method for linearizing a measurement signal
Rai et al. Design and Development of High-Voltage High-Pulse Power Supply Using FPGA for Dynamic Impedance Matching
JP2023059335A (en) Temperature measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180411

R150 Certificate of patent or registration of utility model

Ref document number: 6324880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250