JP2016100297A - Transparent substrate for el element, organic el illumination, organic el light source, and organic el display device - Google Patents

Transparent substrate for el element, organic el illumination, organic el light source, and organic el display device Download PDF

Info

Publication number
JP2016100297A
JP2016100297A JP2014238554A JP2014238554A JP2016100297A JP 2016100297 A JP2016100297 A JP 2016100297A JP 2014238554 A JP2014238554 A JP 2014238554A JP 2014238554 A JP2014238554 A JP 2014238554A JP 2016100297 A JP2016100297 A JP 2016100297A
Authority
JP
Japan
Prior art keywords
transparent substrate
organic
light
substrate
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014238554A
Other languages
Japanese (ja)
Inventor
愛沙子 藤井
Asako Fujii
愛沙子 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2014238554A priority Critical patent/JP2016100297A/en
Publication of JP2016100297A publication Critical patent/JP2016100297A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an organic EL element, requiring no special device such as a high-temperature sintering furnace, versatile, capable of reducing the number of manufacturing steps, having no quality problem such as crack generation, excellent in light extraction efficiency.SOLUTION: A transparent substrate 4, on which a positive electrode 3, a light-emitting layer 2, a negative electrode 1 are subsequently laminated, for an EL element, is provided by a multilayer extrusion method or a thermal lamination method on a surface or inside with a total reflection preventing surface 11a, on one surface, having a light extraction function, and on the other surface a smooth surface for forming an EL surface.SELECTED DRAWING: Figure 1

Description

本発明は、有機EL(Electro Luminescence・電界発光)素子に関し、特に有機EL素子の光取出し効率を向上させたEL素子用の透明基板に関する。   The present invention relates to an organic EL (Electro Luminescence / electroluminescence) element, and more particularly to a transparent substrate for an EL element with improved light extraction efficiency of the organic EL element.

有機EL素子は、自発光による広視野角、高速応答、薄型軽量などの利点から、携帯電話やデジタルカメラのディスプレイ、更には照明機器に応用されている。   Organic EL elements have been applied to displays for mobile phones and digital cameras, and to lighting devices because of their advantages such as wide viewing angle due to self-emission, high-speed response, and thin and light weight.

図8は、一般的な有機EL素子の構成と、有機EL素子における光取り出し状況を示しており、透明基板4上に、陽極3、正孔注入層、正孔輸送層、インターレイヤー層、発光層2、電子輸送層、電子注入層、陰極1を順次積層した構造を有しており、前記陽極3と前記陰極1に直流電圧を印加し、発光層2に電子および正孔を注入して再結合させることにより励起子を生成し、この励起子の失活する際の光の放出を利用して発光に至る。   FIG. 8 shows a configuration of a general organic EL element and a light extraction state in the organic EL element. On the transparent substrate 4, the anode 3, the hole injection layer, the hole transport layer, the interlayer layer, the light emission. It has a structure in which a layer 2, an electron transport layer, an electron injection layer, and a cathode 1 are sequentially laminated. A DC voltage is applied to the anode 3 and the cathode 1, and electrons and holes are injected into the light emitting layer 2. Excitons are generated by recombination, and light emission occurs by utilizing the emission of light when the excitons are deactivated.

一般的な有機EL素子の構成では、発光層2から射出した光線が、発光面側の透明基板から射出する際、一部の光線が観察側の透明基板4と空気との界面や、陽極3と透明基板4との界面において全反射してしまい、外部に取り出す光量が損失するという問題があった。   In the configuration of a general organic EL element, when light rays emitted from the light emitting layer 2 are emitted from the transparent substrate on the light emitting surface side, some of the light rays may be at the interface between the transparent substrate 4 on the observation side and air, or the anode 3. There is a problem that the total amount of light reflected at the interface between the transparent substrate 4 and the transparent substrate 4 is lost.

この場合、外部に取り出す光量の光取り出し効率は、一般的には20%程度と言われている。そのため、高輝度の表示や照明が必要となればなるほど投入電力を大きくする必要があった。この場合、素子に大電流が流れることから素子の負荷が増大し、輝度低下や低寿命化を招来し、素子自体の信頼性が低下する。   In this case, it is said that the light extraction efficiency of the amount of light extracted outside is generally about 20%. Therefore, it is necessary to increase the input power as the display and illumination with high brightness are required. In this case, since a large current flows through the element, the load on the element increases, resulting in a decrease in luminance and a reduction in lifetime, and the reliability of the element itself decreases.

この問題を受けて、有機EL素子の光取出し効率を上げる試みが種々実施されており、図9は、透明基板4外部に、レンズ形状を付与した光取出しフィルム5を貼付した構成を示しており、有機発光層から放出され、透明基板-空気界面で全反射する光8aを低減させ、有機発光層から放出され、全反射せずに外部に出て行く光8bを多くする試みが報告されている。   In response to this problem, various attempts have been made to increase the light extraction efficiency of the organic EL element. FIG. 9 shows a configuration in which a light extraction film 5 having a lens shape is attached to the outside of the transparent substrate 4. An attempt has been reported to reduce the light 8a emitted from the organic light emitting layer and totally reflected at the transparent substrate-air interface, and to increase the light 8b emitted from the organic light emitting layer and exiting without being totally reflected. Yes.

図10は、陽極であるITO等の透明電極と透明基板との間に光散乱層を挿入する構成を示しており、有機発光層から放出され、透明基板-陽極界面で全反射する光9aを低減させ、有機発光層から放出され、全反射防止面-陽極界面で全反射せずに外部に出て行く光9bを多くする試みが報告されている。   FIG. 10 shows a configuration in which a light scattering layer is inserted between a transparent electrode such as ITO as an anode and a transparent substrate, and light 9a emitted from the organic light emitting layer and totally reflected at the transparent substrate-anode interface is shown. There has been reported an attempt to reduce the amount of light 9b emitted from the organic light emitting layer and exiting to the outside without being totally reflected at the total reflection preventing surface-anode interface.

従来、透明基板4外部に、レンズ形状を付与した光取出しフィルム5を貼付け、光取出し効率を向上させる方法が主流であったが、陽極-透明基板間で全反射してしまう光を取り出せるようにした方が、外部への取り出し光の増加量が多いことから、近年陽極と透光性基盤間に光散乱層を挿入する手法が注目されてきている。   Conventionally, the mainstream method is to attach a light extraction film 5 having a lens shape to the outside of the transparent substrate 4 to improve the light extraction efficiency. However, it is possible to extract light that is totally reflected between the anode and the transparent substrate. However, since the amount of the extracted light to the outside increases, the method of inserting a light scattering layer between the anode and the translucent substrate has been attracting attention in recent years.

その方法としては、例えば、ガラスフリットを樹脂と共に練ってインキとしたものをガラス基板上へ塗布し、高温で焼成・加熱することにより、ガラスフリットを溶融すると共に樹脂を焼失させ、気泡をガラス媒体内に内在させる方法が報告されている(特許文献1)。   As the method, for example, a glass frit kneaded together with a resin is applied onto a glass substrate, and the glass frit is melted and the resin is burned off by baking and heating at a high temperature, and the bubbles are made into a glass medium. There is a report of a method of making it internal (Patent Document 1).

しかしながら、ガラスフリットの溶融に500℃以上での焼成が必要となる為、熱エネルギー消費量が多かったり、プラスチック材を基板として適用できず、汎用性に劣ったり
する点が問題となる。また、高温焼結炉が必要となる等の点で生産性に問題がある。
However, since firing at 500 ° C. or higher is necessary for melting the glass frit, there is a problem in that heat energy consumption is large, plastic material cannot be applied as a substrate, and versatility is poor. There is also a problem in productivity in that a high temperature sintering furnace is required.

また、酸化亜鉛を散乱粒子として含むアクリル系樹脂溶液をスピンコート塗布することにより散乱層を得る方法が報告されている(特許文献2)。   Moreover, a method for obtaining a scattering layer by spin coating an acrylic resin solution containing zinc oxide as scattering particles has been reported (Patent Document 2).

しかしながら、樹脂溶液をスピンコートにより塗布した後、溶媒沸点程度の温度で乾燥することで光散乱層を得る点は、熱エネルギー消費量が少ない為好ましいが、シートtoシート加工となる為、量産性に欠けるといった問題を抱えている。   However, the point of obtaining a light scattering layer by applying a resin solution by spin coating and then drying at a temperature around the boiling point of the solvent is preferable because the heat energy consumption is small, but because it is sheet-to-sheet processing, it is mass-productive. Have a problem of lacking.

またテトラエトキシシランの加水分解物であるゾル-ゲル溶液と粒径80nmのシリカゾル溶液の混合物をスピンコートで塗布後、300℃で加熱して光散乱層として機能する硬化皮膜を得る方法が報告されている(特許文献3)。   Also, a method of obtaining a cured film that functions as a light scattering layer by applying a mixture of a sol-gel solution that is a hydrolyzate of tetraethoxysilane and a silica sol solution having a particle size of 80 nm by spin coating and heating at 300 ° C. has been reported. (Patent Document 3).

しかしながら、塗布による容易な形成方法であり、高い耐熱性を有する膜が得られる点で好ましいが、金属アルコキシドのゾル-ゲル液から形成される硬化膜は、膜厚が厚くなると硬化時の収縮応力でクラックが発生し、クラックが発生しない有効膜厚とされる200nm以下の膜の中に可視光散乱に有効な数十nm以上の粒径を有する散乱粒子を導入するには、量が限定的となる為、光散乱層としての機能が劣る場合がある。更に、この光散乱膜は無機ガラス材質であり、可撓性が低く、フレキシブル基板材料には適さない為、汎用性に劣るという問題がある。   However, it is an easy formation method by coating, and is preferable in that a film having high heat resistance is obtained. However, a cured film formed from a sol-gel solution of a metal alkoxide has a shrinkage stress at the time of curing as the film thickness increases. In order to introduce scattering particles having a particle size of several tens of nanometers or more effective for visible light scattering into a film of 200 nm or less, which has an effective film thickness where cracks are generated and cracks do not occur, the amount is limited. Therefore, the function as a light scattering layer may be inferior. Furthermore, since this light-scattering film is an inorganic glass material and has low flexibility and is not suitable for a flexible substrate material, there is a problem that it is inferior in versatility.

これらの問題を解決する手段として、ポリシラン・金属酸化物・溶剤を含む組成物を硬化して得られる多孔質硬化物を光散乱層として応用することが提案されている(特許文献4)。   As means for solving these problems, it has been proposed to apply a porous cured product obtained by curing a composition containing polysilane, metal oxide, and solvent as a light scattering layer (Patent Document 4).

しかしながら、上記多孔質光散乱層の形成には溶剤の除去の為に400℃程度の高温で加熱しており、焼成程ではないが生産に要する熱エネルギー消費量が大きい。   However, the porous light scattering layer is formed by heating at a high temperature of about 400 ° C. in order to remove the solvent, and the heat energy consumption required for production is large although not as high as the firing.

また、いずれの場合も基材上に光散乱要素を含む液を塗工・加熱する工程を有することから、装置の小型化や工程数の低減化に限界があり、光取出し層の形状に制限が生じるという問題もある。   In both cases, there is a process to apply and heat a liquid containing light scattering elements on the substrate, so there is a limit to downsizing the device and reducing the number of processes, limiting the shape of the light extraction layer There is also a problem that occurs.

特開2011−248104号公報JP 2011-248104 A 国際公開第2009/116531号International Publication No. 2009/116531 特開2010−182449号公報JP 2010-182449 A 国際公開第2003/26357号International Publication No. 2003/26357

本発明は、上記問題点を鑑みてなされたものであり、高温焼結炉の様な特別な装置を必要とせず、汎用性があり、製造工程数の低減が可能で、クラックの発生といった品質の問題が無く、光取出し効率の良好な有機EL素子を提供することにある。   The present invention has been made in view of the above problems, does not require a special device such as a high-temperature sintering furnace, is versatile, can reduce the number of manufacturing steps, and has a quality such as generation of cracks. It is an object of the present invention to provide an organic EL element with good light extraction efficiency.

上記の課題を解決するための手段として、請求項1に記載の発明は、陽極、正孔注入層、正孔輸送層、インターレイヤー層、発光層、電子輸送層、電子注入層、陰極が順次積層されるEL素子用の透明基板であって、
多層押出し法、あるいは熱ラミ法により、表面若しくは内部に光取出し機能を有する全反
射防止面を設けたことを特徴とするEL素子用の透明基板である。
As means for solving the above-mentioned problems, the invention according to claim 1 includes an anode, a hole injection layer, a hole transport layer, an interlayer layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode sequentially. A transparent substrate for EL elements to be laminated,
A transparent substrate for an EL element, wherein a total reflection preventing surface having a light extraction function is provided on the surface or inside by a multilayer extrusion method or a thermal lamination method.

また、請求項2に記載の発明は、前記全反射防止面が、散乱粒子またはレンズ状形状からなる光散乱要素により形成されていることを特徴とする請求項1に記載のEL素子用の透明基板である。   According to a second aspect of the present invention, in the transparent EL element according to the first aspect, the total antireflection surface is formed of a light scattering element made of scattering particles or a lens-like shape. It is a substrate.

また、請求項3に記載の発明は、陽極側の面が、高さ100〜800nmであり、アスペクト比が1〜3の範囲に入る凹凸構造であることを特徴とする請求項1または請求項2に記載のEL素子用の透明基板である。   The invention according to claim 3 is an uneven structure in which the surface on the anode side has a height of 100 to 800 nm and an aspect ratio falls within a range of 1 to 3. 2. A transparent substrate for an EL device according to 2.

また、請求項4に記載の発明は、陽極側の面の、算術平均粗さRaが2.5nm以下であることを特徴とする請求項1〜3のいずれか一項に記載のEL素子用の透明基板である。   The invention according to claim 4 is characterized in that the arithmetic mean roughness Ra of the surface on the anode side is 2.5 nm or less, for EL elements according to any one of claims 1 to 3. This is a transparent substrate.

また、請求項5に記載の発明は、前記全反射防止面が、EL素子用の透明基板の前記陽極と接しない面に設けられていることを特徴とする請求項1〜4のいずれか一項に記載のEL素子用の透明基板である。   The invention according to claim 5 is characterized in that the total reflection preventing surface is provided on a surface which does not contact the anode of a transparent substrate for an EL element. It is a transparent substrate for EL elements as described in the paragraph.

また、請求項6に記載の発明は、前記全反射防止面が、EL素子用の透明基板の前記陽極と接する面に設けられていることを特徴とする請求項1〜4のいずれか一項に記載のEL素子用の透明基板である。   The invention according to claim 6 is characterized in that the total reflection preventing surface is provided on a surface in contact with the anode of a transparent substrate for an EL element. It is a transparent substrate for EL elements as described in above.

また、請求項7に記載の発明は、前記全反射防止面が、EL素子用の透明基板の両面に設けられていることを特徴とする請求項1〜4のいずれか一項に記載のEL素子用の透明基板である。   The invention according to claim 7 is characterized in that the total reflection preventing surface is provided on both surfaces of a transparent substrate for an EL element. It is a transparent substrate for elements.

また、請求項8に記載の発明は、前記光取出し機能を有する全反射防止面の、光取出し機能が基板の形状によって発現する、即ち、全反射防止面にレンズ状の形状を有していることを特徴とする請求項1〜7のいずれか一項に記載のEL素子用の透明基板である。   In the invention according to claim 8, the light extraction function of the total reflection preventing surface having the light extraction function is expressed by the shape of the substrate, that is, the total reflection preventing surface has a lens shape. It is a transparent substrate for EL elements as described in any one of Claims 1-7 characterized by the above-mentioned.

また、請求項9に記載の発明は、請求項1〜8のいずれか一項に記載のEL素子用の透明基板を用いたことを特徴とする有機EL照明である。   The invention according to claim 9 is an organic EL illumination using the transparent substrate for an EL element according to any one of claims 1 to 8.

また、請求項10に記載の発明は、請求項1〜8のいずれか一項に記載のEL素子用の透明基板を用いたことを特徴とする有機EL光源である。   The invention according to claim 10 is an organic EL light source characterized by using the transparent substrate for an EL element according to any one of claims 1 to 8.

また、請求項11に記載の発明は、請求項10に記載の有機EL光源を用いたことを特徴とする有機EL表示装置である。   The invention according to claim 11 is an organic EL display device using the organic EL light source according to claim 10.

本発明により、従来よりも汎用性があり、製造工程数を低減でき、光取出し効率も良好な有機EL素子、照明器具、光源及び表示装置の提供を提供することが可能となる。
また、更に水蒸気バリア膜の形成に適した表面粗さを有することで、有機EL素子の長寿命化を図ることも可能となる。
According to the present invention, it is possible to provide an organic EL element, a luminaire, a light source, and a display device that are more versatile than conventional ones, can reduce the number of manufacturing steps, and have good light extraction efficiency.
Further, the surface of the organic EL element can be extended by having a surface roughness suitable for forming a water vapor barrier film.

本発明に関わる全反射防止面を設けたEL素子用の透明基板を用いたEL素子の構成を示した模式断面図である。It is the schematic cross section which showed the structure of the EL element using the transparent substrate for EL elements which provided the total reflection prevention surface concerning this invention. 本発明に関わる全反射防止面を設けたEL素子用の透明基板の一構成を示した模式断面図である。It is the schematic cross section which showed one structure of the transparent substrate for EL elements which provided the total reflection prevention surface concerning this invention. 本発明に関わる全反射防止面を設けたEL素子用の透明基板の一構成を示した模式断面図である。It is the schematic cross section which showed one structure of the transparent substrate for EL elements which provided the total reflection prevention surface concerning this invention. 本発明に関わる全反射防止面を設けたEL素子用の透明基板の別構成を示した模式断面図である。It is the schematic cross section which showed another structure of the transparent substrate for EL elements which provided the total reflection prevention surface concerning this invention. 図2に関係し、透明基板の電極側面に、円錐状の全反射防止面を形成し、透明基板の照射側面にレンズ形状を付与する製造方法を説明した模式図である。FIG. 3 is a schematic diagram illustrating a manufacturing method related to FIG. 2 in which a conical total reflection preventing surface is formed on the electrode side surface of the transparent substrate and a lens shape is imparted to the irradiation side surface of the transparent substrate. 図3に関係し、透明基板の照射側面に、レンズ形状の全反射防止面を形成する製造方法を説明した模式図である。FIG. 4 is a schematic diagram illustrating a manufacturing method related to FIG. 3 and forming a lens-shaped total antireflection surface on the irradiation side surface of the transparent substrate. 図4に関係し、賦形シート上に溶融樹脂を吐出し、透明基板の内部に、レンズ形状の全反射防止面を形成する製造方法を説明した模式図である。FIG. 5 is a schematic diagram illustrating a manufacturing method related to FIG. 4, in which a molten resin is discharged onto a shaped sheet and a lens-shaped total antireflection surface is formed inside a transparent substrate. 一般的な有機EL素子の構成と、発光層から放出され、透明基板-空気界面、および透明基板-陽極界面にて全反射する光を示した断面模式図である。It is the cross-sectional schematic diagram which showed the structure of a general organic EL element, and the light emitted from a light emitting layer and totally reflected in a transparent substrate-air interface and a transparent substrate-anode interface. 透明基板4の照射側面に、光取出しフィルム19を貼り付けた場合の透明基板-空気界面における、発光層から放出される光の様子を示した断面模式図である。It is the cross-sectional schematic diagram which showed the mode of the light discharge | released from a light emitting layer in the transparent substrate-air interface at the time of sticking the light extraction film 19 on the irradiation side surface of the transparent substrate 4. FIG. 透明基板4電極側面に、光取出しフィルム20を貼り付けた場合の透明基板-陽極界面における、発光層から放出される光の様子を示した断面模式図である。It is the cross-sectional schematic diagram which showed the mode of the light discharge | released from a light emitting layer in the transparent substrate-anode interface at the time of sticking the light extraction film 20 on the transparent substrate 4 electrode side surface.

以下本発明を実施するための形態を、図面を用いて詳細に説明する。なお、形状に関しては、図を元に説明するが、同様又は類似した機能を発揮する構成要素には全ての図面を通じて同一の参照符号を付し、重複する説明は省略する。また、形状はあくまで参考例であり、図示した形状に限ったものではなく、所望の用途・性能に応じて適宜選択することが可能である。更に、各図は模式図であり、各部位の縮尺は実際とは一致しない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. Note that the shape will be described with reference to the drawings, but the same or similar functions are denoted by the same reference numerals throughout the drawings, and redundant description will be omitted. Further, the shape is merely a reference example, and is not limited to the illustrated shape, and can be appropriately selected according to a desired application / performance. Furthermore, each figure is a schematic diagram, and the scale of each part does not coincide with the actual scale.

図1は、本発明に関わる基板例1を示しており、コア材10の発光面側にマイクロレンズ状全反射防止面5、もう一方の電極側面に、円錐状の全反射防止面6を形成した構成となっており、その上に陽極3、発光層2、陰極1を積層してEL素子を形成した構成を示している。   FIG. 1 shows a substrate example 1 according to the present invention, in which a microlens-shaped total reflection preventing surface 5 is formed on the light emitting surface side of the core material 10 and a conical total reflection preventing surface 6 is formed on the other electrode side surface. A configuration in which an EL element is formed by laminating an anode 3, a light emitting layer 2, and a cathode 1 thereon is shown.

本発明に関わる発光面側に設けられる基板の素材として、PET(Polyethylene terephthalate)やポリカーボネート、PEN(Polyether nitrile)などが挙げられるが、これに限定するものではなく、任意に選択可能である。   Examples of the material of the substrate provided on the light emitting surface side according to the present invention include PET (Polyethylene terephthalate), polycarbonate, and PEN (Polyether nitrile), but are not limited thereto and can be arbitrarily selected.

図2は、本発明に関わる基板例1を取出しその構成を示している。   FIG. 2 shows the configuration of the substrate example 1 according to the present invention.

図3は、本発明に関わる基板例2を示しており、コア材10の発光面側にマイクロレンズ状全反射防止面5を形成した構成を示している。   FIG. 3 shows a substrate example 2 according to the present invention, and shows a configuration in which a microlens-shaped total reflection preventing surface 5 is formed on the light emitting surface side of the core material 10.

図4は、本発明に関わる基板例3を示しており、コア材10の電極側面に円錐状の全反射防止面6を形成した構成を示している。コア材10の電極側面は、平滑性が必要であり、光散乱粒子を練り込んだ樹脂層を、共押し出しで積層して設けることで、表面が平滑でかつ全反射防止機能を付与できる。   FIG. 4 shows a substrate example 3 according to the present invention, and shows a configuration in which a conical total reflection preventing surface 6 is formed on the electrode side surface of the core material 10. The electrode side surface of the core material 10 needs to be smooth, and by providing a resin layer in which light scattering particles are kneaded and laminated by coextrusion, the surface is smooth and a total reflection preventing function can be imparted.

マイクロレンズ状全反射防止面5、円錐状の全反射防止面6からなる光取出し機能を有する部位は、塗工や、粘着若しくは接着層を介した貼合工程を経ることなく透明基板と一体化されていることを特徴とする。   The part having the light extraction function composed of the microlens-like total antireflection surface 5 and the conical total antireflection surface 6 is integrated with the transparent substrate without undergoing a coating process or a bonding process via an adhesive or adhesive layer. It is characterized by being.

図5は、図1に関係し、透明基板の片面に、マイクロレンズ状全反射防止面5を、もう一方の面に円錐状の全反射防止面を形成する製造方法を説明した模式図であり、コア材を
形成する樹脂10bと、マイクロレンズ状の全反射防止面を形成する全反射防止面を形成する樹脂11bが加熱溶融されて、表面に円錐状を持った全反射防止面を形成する賦形シート12表面に、Tダイ14より共押し出しされ、第1挟圧ロール15と第2挟圧ロール(賦形用)16aの間を通過し、第1冷却ロール17、第2冷却ロール18により冷却され、一方の面にマイクロレンズ状全反射防止面5を、もう一方の面の内部に円錐状の全反射防止面を持つ陽極側面が平坦な本発明に関わる基板例1が形成される。
FIG. 5 is a schematic diagram illustrating a manufacturing method related to FIG. 1, in which a microlens-like total antireflection surface 5 is formed on one surface of a transparent substrate and a conical total antireflection surface is formed on the other surface. The resin 10b forming the core material and the resin 11b forming the total antireflection surface forming the microlens-like total antireflection surface are heated and melted to form a total antireflection surface having a conical shape on the surface. The surface of the shaping sheet 12 is co-extruded from the T-die 14 and passes between the first clamping roll 15 and the second clamping roll (for shaping) 16 a, and the first cooling roll 17 and the second cooling roll 18. The substrate example 1 according to the present invention in which the micro-lens-like total antireflection surface 5 is formed on one surface and the anode side surface having the conical total antireflection surface inside the other surface is flat is formed. .

図6は、図3に関係し、透明基板の片面に、マイクロレンズ状全反射防止面5を形成する製造方法を説明した模式図であり、コア材を形成する樹脂10b及び表層を形成する樹脂11bが加熱溶融され、Tダイ14より共押し出しされ、第1挟圧ロール15と第2挟圧ロール(賦形用)16aの間を通過し、第1冷却ロール17、第2冷却ロール18により冷却され、マイクロレンズ状全反射防止面5を持つ本発明に関わる基板例2が形成される。   FIG. 6 is a schematic diagram illustrating a manufacturing method for forming the microlens-like total antireflection surface 5 on one surface of the transparent substrate in relation to FIG. 3, and is a resin 10 b that forms a core material and a resin that forms a surface layer. 11 b is heated and melted, co-extruded from the T die 14, passes between the first pinching roll 15 and the second pinching roll (for shaping) 16 a, and is cooled by the first cooling roll 17 and the second cooling roll 18. The substrate example 2 according to the present invention having the microlens-like total antireflection surface 5 is formed by cooling.

図7は、図4に関係し、透明基板の片面に、円錐状の全反射防止面を形成する製造方法を説明した模式図であり、コア材を形成する樹脂10bが加熱溶融されてTダイ14より押し出しされ、第1挟圧ロール15と第2挟圧ロール(平坦ロール)16bの間を通過し、第1冷却ロール17、第2冷却ロール18により冷却され、透明基板の電極側面には円錐状の全反射防止面が形成された本発明に関わる基板例3が形成される。   FIG. 7 is a schematic diagram for explaining a manufacturing method for forming a conical total antireflection surface on one side of a transparent substrate in relation to FIG. 4, and the resin 10 b forming the core material is heated and melted to form a T die. 14, passed between the first pinching roll 15 and the second pinching roll (flat roll) 16 b, cooled by the first cooling roll 17 and the second cooling roll 18, and on the electrode side surface of the transparent substrate A substrate example 3 according to the present invention in which a conical total antireflection surface is formed is formed.

また、全反射防止面を形成する賦形シート12を剥がして用いることも可能である。   Moreover, it is also possible to peel and use the shaping sheet | seat 12 which forms a total reflection prevention surface.

マイクロレンズ状を持った全反射防止面や円錐状の全反射防止面の形状付与の方法として、前述のように第2挟圧ロール(賦形用)16aで挟圧する方法や、賦形シート12に溶融した樹脂を流し込む以外にも、平面ロールで挟圧して成形したシートの搬送中に、加熱した金型を押付けて、所望の形状を転写する方法も選択できるが、先端が細くなるような形状で転写が不完全になったり、残留歪みが発生して色ムラにつながったりする可能性が危惧されることから望ましくはない。   As a method for imparting the shape of the total antireflection surface having a microlens shape or the conical total antireflection surface, the method of pinching with the second pinching roll (for shaping) 16a as described above, or the shaping sheet 12 is used. In addition to pouring the molten resin into the sheet, it is possible to select a method of transferring a desired shape by pressing a heated die during conveyance of a sheet formed by pressing with a flat roll, but the tip becomes narrower. This is not desirable because there is a risk of incomplete transfer due to the shape or the possibility of residual distortion and color unevenness.

挟圧ロール部で両面に賦形する場合、形状サイズが両面共に数〜数十μmサイズ(最外面に設ける光取出し機能としての形状サイズ)であると厚みバラツキ等の不都合が生じる危険性もあるが、本発明に関わるEL素子用の透明基板は、後述のように少なくとも一面は1μm未満となる設計となる為、厚みムラや不完全な形状転写などが生じることなく作製可能となり、形状付与の後に冷却工程が設けられている為、残留歪みの解消も可能となる。   When forming on both sides with a pinching roll, if the shape size is several to several tens of μm on both sides (shape size as a light extraction function provided on the outermost surface), there is a risk of inconvenience such as thickness variation. However, since the transparent substrate for an EL element according to the present invention is designed to have at least one surface of less than 1 μm as described later, it can be manufactured without causing unevenness in thickness or imperfect shape transfer. Since a cooling process is provided later, residual distortion can be eliminated.

上記のように、全反射防止面を、塗工や、粘着若しくは接着層を介した貼合工程を経ることなく設けることができ、コア材10と全反射防止面を形成する樹脂11bとを一体化することで、挟圧ロールの平滑性の調整により塗布面と同等の表面平滑性を保ちつつ、塗工時のハジキ、浮き・剥離の無い、性能維持期間が長く、基材加工の工程数、加工機械の種類、人員およびコストの削減につながるEL素子用の透明基板を提供できる。   As described above, the total antireflection surface can be provided without undergoing a coating process or a bonding step via an adhesive or adhesive layer, and the core material 10 and the resin 11b forming the total antireflection surface are integrated. By adjusting the smoothness of the pinching roll, while maintaining the surface smoothness equivalent to the coated surface, there is no repellency at the time of coating, no lifting / peeling, the performance maintenance period is long, and the number of substrate processing steps It is possible to provide a transparent substrate for an EL element that leads to reduction in the type, manpower and cost of the processing machine.

更に、押出成形時の成形速度と原料樹脂の供給量を調整することで、容易に同一構成で厚みが異なる基材を得ることができ、可撓性を持たせたり、剛性を持たせたりすることが可能になる。   Furthermore, by adjusting the molding speed at the time of extrusion molding and the supply amount of the raw material resin, it is possible to easily obtain substrates having the same configuration and different thicknesses, and to give flexibility or rigidity. It becomes possible.

用途に応じた厚みに加工しやすい点でも有利であり、可撓性フィルムとして基材を成形した場合、巻取り回収が可能となる為、後工程もロールtoロールで加工を施せるようになり、大量生産対応が可能になる点でも有利である。原料となる樹脂は単品種である必要はなく、共押出により異屈折率樹脂の積層体としたり、光散乱性粒子を混合した光散乱層
を設けたりしてもよい。また、基板例1〜3はあくまで一例であり、共押出の層数は、設計によっては3層以上の構成としても構わない。
It is also advantageous in that it can be easily processed to a thickness according to the application, and when a base material is molded as a flexible film, it becomes possible to collect and recover, so that the subsequent process can be processed with roll-to-roll, It is also advantageous in that mass production is possible. The resin used as a raw material does not need to be a single product, and may be a laminate of different refractive index resins by coextrusion, or a light scattering layer in which light scattering particles are mixed may be provided. Further, the substrate examples 1 to 3 are merely examples, and the number of co-extrusion layers may be three or more depending on the design.

一方で、電極と接する面に、高さが100〜800nmであり、アスペクト比が1〜3の範囲に入る凹凸構造を付与すると、蒸着による水蒸気バリアの形成には不利となるが、該形状を反対側の電極形成時まで踏襲することで、プラズモン損失の低減を実現可能となり、光取出し効率向上につながる点で有利であることも見出している。どちらの性能を優先するかは、製品が必要とする仕様に合わせて適宜決定すればよい。   On the other hand, when a concave / convex structure having a height of 100 to 800 nm and an aspect ratio in the range of 1 to 3 is imparted to the surface in contact with the electrode, it is disadvantageous for the formation of a water vapor barrier by vapor deposition. It has also been found that by following up to the formation of the electrode on the opposite side, plasmon loss can be reduced, leading to an improvement in light extraction efficiency. Which performance is prioritized may be appropriately determined according to the specifications required by the product.

前記光散乱層を電極側の最表面に形成すると、表面粗さや表面形状の調整が困難になる為、光散乱層を設ける場合は、電極側最表面を避けることが望ましい。   When the light scattering layer is formed on the outermost surface on the electrode side, it is difficult to adjust the surface roughness and the surface shape. Therefore, when providing the light scattering layer, it is desirable to avoid the outermost surface on the electrode side.

発光面側に設けられる基板全体の全光線透過率は、80%以上であることが望ましい。これは、該基板に用いられる樹脂や光散乱性粒子での吸収や反射により、全光線透過率が80%未満になると、有機EL素子の光量が低下し、十分な明るさを維持できなくなる点で不利となる為である。全光線透過率が80%以上であると、発光層から放出された光を有効に活用できる。   The total light transmittance of the entire substrate provided on the light emitting surface side is desirably 80% or more. This is because when the total light transmittance is less than 80% due to absorption or reflection by the resin or light-scattering particles used for the substrate, the amount of light of the organic EL element decreases, and sufficient brightness cannot be maintained. This is because it is disadvantageous. When the total light transmittance is 80% or more, the light emitted from the light emitting layer can be effectively utilized.

以下実施例をもとに詳細に説明する。   Hereinafter, it demonstrates in detail based on an Example.

図6に示す製造方法により、コア基材として、フレキシブルPEN(帝人社製)を600μm厚となるように押し出し、電極側面の表面は、第1挟圧ロール(平坦用)の表面粗さRaを2.0nmと接し、光射出面はマイクロレンズの母型を持つ金型ロールにより、実施例1のEL素子用の透明基板を得た。尚表面には水蒸気バリアを持たせるため30nm厚みのSiONのスパッタ膜を設けた。   By the manufacturing method shown in FIG. 6, flexible PEN (manufactured by Teijin Ltd.) is extruded as a core substrate so as to have a thickness of 600 μm, and the surface of the electrode side surface has a surface roughness Ra of the first pinching roll (for flattening). A transparent substrate for an EL element of Example 1 was obtained by a mold roll having a microlens matrix in contact with 2.0 nm. In order to provide a water vapor barrier on the surface, a sputtered film of SiON having a thickness of 30 nm was provided.

第2挟圧ロール(平坦用)の表面粗さRaを2.5nmとした以外は、実施例1と同じ条件で実施例2のEL素子用の透明基板を得た。   A transparent substrate for an EL element of Example 2 was obtained under the same conditions as Example 1 except that the surface roughness Ra of the second pinching roll (for flattening) was 2.5 nm.

実施例2の内部に光散乱層を挿入した形態であり、図6に示す製造方法において、共押出数を3とし、表面層を形成する樹脂は両面ともフィラーを添加せずに用い、中央層には光散乱材としてφ0.8umのシリコーン粒子(モメンティブ製)を10〜25%の範囲で添加して光散乱層とした。ベース樹脂はいずれもPEN(帝人社製)であり、表層は各100〜150um厚、光散乱層は300〜400um厚に調整し、さらに、第2挟圧ロール(平坦用)の表面粗さRaを2.5nmとし実施例2と同じ条件で実施例3のEL素子用の透明基板を得た。   In this embodiment, a light scattering layer is inserted into the inside of Example 2, and in the manufacturing method shown in FIG. 6, the number of coextrusions is 3, and the resin for forming the surface layer is used without adding filler on both sides, and the central layer Was added with a silicone particle (manufactured by Momentive) having a diameter of φ0.8 um as a light scattering material in a range of 10 to 25% to form a light scattering layer. The base resin is PEN (manufactured by Teijin Ltd.), the surface layer is adjusted to a thickness of 100 to 150 μm, the light scattering layer is adjusted to a thickness of 300 to 400 μm, and the surface roughness Ra of the second pinching roll (for flattening). Was set to 2.5 nm, and a transparent substrate for an EL device of Example 3 was obtained under the same conditions as in Example 2.

実施例1にて用いたコア基材として、リジットPEN(帝人社製)を3mm厚となるように押し出した以外は、実施例1と同じ条件で実施例4のEL素子用の透明基板を得た。   A transparent substrate for the EL element of Example 4 was obtained under the same conditions as in Example 1 except that rigid PEN (manufactured by Teijin Ltd.) was extruded to a thickness of 3 mm as the core substrate used in Example 1. It was.

実施例2にて用いたコア基材として、リジットPEN(帝人社製)を3mm厚となるように押し出した以外は、実施例1と同じ条件で実施例5のEL素子用の透明基板を得た。   A transparent substrate for the EL element of Example 5 was obtained under the same conditions as in Example 1 except that rigid PEN (manufactured by Teijin Ltd.) was extruded to a thickness of 3 mm as the core substrate used in Example 2. It was.

実施例3にて用いたコア基材として、リジットPEN(帝人社製)を3mm厚となるよ
うに押し出した以外は、実施例1と同じ条件で実施例6のEL素子用の透明基板を得た。
A transparent substrate for the EL element of Example 6 was obtained under the same conditions as in Example 1 except that rigid PEN (manufactured by Teijin Ltd.) was extruded to a thickness of 3 mm as the core substrate used in Example 3. It was.

実施例6の光射出面側に用いた、マイクロレンズの母型を持つ金型ロールの代わりに、平滑ロールを用いた以外は、実施例6と同じ条件で実施例7のEL素子用の透明基板を得た。   Transparent for the EL element of Example 7 under the same conditions as in Example 6 except that a smooth roll was used instead of the mold roll having the microlens matrix used on the light exit surface side of Example 6. A substrate was obtained.

実施例3の共押出数3を2とし、金型ロールと反対側の表層樹脂を省く代わりに、図4に示すように、賦形シート12として90°プリズムシートを挿入した以外は同じ条件で実施例8のEL素子用の透明基板を得た。   In Example 3, the coextrusion number was set to 2, and instead of omitting the surface layer resin opposite to the mold roll, as shown in FIG. 4, the same conditions except that a 90 ° prism sheet was inserted as the shaping sheet 12. A transparent substrate for the EL device of Example 8 was obtained.

実施例4と同じコア基材として、リジットPEN(帝人社製)を3mm厚となるように押し出し、電極側面の表面は、円錐高さ100nm、アスペクト比1の円錐形状母型を持つ、第2挟圧ロール(賦形用)16aを用い、光射出面は、平滑ロールにより、実施例9のEL素子用の透明基板を得た。尚表面には水蒸気バリアを持たせるためのSiONのスパッタ膜は設けていない。   As the same core base material as in Example 4, rigid PEN (manufactured by Teijin Ltd.) was extruded so as to have a thickness of 3 mm, and the surface of the electrode side surface had a conical matrix with a conical height of 100 nm and an aspect ratio of 1, A transparent substrate for the EL element of Example 9 was obtained by using a pinching roll (for shaping) 16a and a light emitting surface using a smooth roll. The surface is not provided with a sputtered SiON film for providing a water vapor barrier.

実施例9の光射出面側に用いた平滑ロールを、マイクロレンズの母型を持つ金型ロールに代えた以外は、実施例9と同一条件として、実施例10のEL素子用の透明基板を得た。尚表面には水蒸気バリアを持たせるためのSiONのスパッタ膜は設けていない。   A transparent substrate for the EL element of Example 10 was used under the same conditions as Example 9 except that the smooth roll used on the light emission surface side of Example 9 was replaced with a mold roll having a microlens matrix. Obtained. The surface is not provided with a sputtered SiON film for providing a water vapor barrier.

電極側面の表面形成に、円錐高さ100nm、アスペクト比3の円錐形状母型を持つ第2挟圧ロール(賦形用)16aを用いた以外は、実施例9と同一条件として、実施例11のEL素子用の透明基板を得た。尚表面には水蒸気バリアを持たせるためのSiONのスパッタ膜は設けていない。   Example 11 was carried out under the same conditions as Example 9 except that a second pinching roll (for shaping) 16a having a cone-shaped matrix with a cone height of 100 nm and an aspect ratio of 3 was used for forming the surface of the electrode side surface. A transparent substrate for an EL element was obtained. The surface is not provided with a sputtered SiON film for providing a water vapor barrier.

電極側面の表面形成に、円錐高さ350nm、アスペクト比1の円錐形状母型を持つ第2挟圧ロール(賦形用)16aを用いた以外は、実施例9と同一条件として、実施例12のEL素子用の透明基板を得た。尚表面には水蒸気バリアを持たせるためのSiONのスパッタ膜は設けていない。   Example 12 was performed under the same conditions as Example 9 except that a second pinching roll (for shaping) 16a having a cone-shaped matrix with a cone height of 350 nm and an aspect ratio of 1 was used to form the electrode side surface. A transparent substrate for an EL element was obtained. The surface is not provided with a sputtered SiON film for providing a water vapor barrier.

電極側面の表面形成に、円錐高さ800nm、アスペクト比1の円錐形状母型を持つ第2挟圧ロール(賦形用)16aを用いた以外は、実施例9と同一条件として、実施例13のEL素子用の透明基板を得た。尚表面には水蒸気バリアを持たせるためのSiONのスパッタ膜は設けていない。   Example 13 was carried out under the same conditions as in Example 9, except that a second pinching roll (for shaping) 16a having a cone-shaped matrix with a cone height of 800 nm and an aspect ratio of 1 was used to form the electrode side surface. A transparent substrate for an EL element was obtained. The surface is not provided with a sputtered SiON film for providing a water vapor barrier.

<比較例1>
実施例1にて用いた電極側面の表面形成用第2挟圧ロール(平坦用)の表面粗さRaを、3.0nmとした以外は、実施例1と同一条件として、比較例1のEL素子用の透明基板を得た。
<Comparative Example 1>
The EL of Comparative Example 1 was performed under the same conditions as in Example 1 except that the surface roughness Ra of the second sandwiching roll for surface formation (for flattening) on the electrode side surface used in Example 1 was set to 3.0 nm. A transparent substrate for the element was obtained.

<比較例2>
水蒸気バリアを設けず、他の条件は、実施例1と同一として、比較例2のEL素子用の透明基板を得た。
<Comparative Example 2>
A water vapor barrier was not provided, and the other conditions were the same as in Example 1, and a transparent substrate for an EL element of Comparative Example 2 was obtained.

<比較例3>
水蒸気バリアを設けず、他の条件は、実施例2と同一として、比較例3のEL素子用の透明基板を得た。
<Comparative Example 3>
A water vapor barrier was not provided, and the other conditions were the same as in Example 2, and a transparent substrate for an EL element of Comparative Example 3 was obtained.

<比較例4>
実施例1にて用いた電極側面の表面形成用第2挟圧ロール(平坦用)の表面粗さRaを、3.0nmとし、水蒸気バリアを設けず、他の条件は、実施例1と同一として、比較例4のEL素子用の透明基板を得た。
<Comparative example 4>
The surface roughness Ra of the second pressure forming roll (for flattening) on the side surface of the electrode used in Example 1 is set to 3.0 nm, no water vapor barrier is provided, and other conditions are the same as in Example 1. As a result, a transparent substrate for an EL element of Comparative Example 4 was obtained.

<比較例5>
実施例4にて用いた電極側面の表面形成用第2挟圧ロール(平坦用)の表面粗さRaを、3.0nmとした以外は、実施例4と同一条件として、比較例5のEL素子用の透明基板を得た。
<Comparative Example 5>
The EL of Comparative Example 5 was carried out under the same conditions as in Example 4 except that the surface roughness Ra of the second pinching roll for surface formation (for flattening) on the electrode side surface used in Example 4 was set to 3.0 nm. A transparent substrate for the element was obtained.

<比較例6>
表面には水蒸気バリアを持たせるためのSiONのスパッタ膜は設けていない以外は、実施例4と同一条件で比較例6のEL素子用の透明基板を得た。
<Comparative Example 6>
A transparent substrate for an EL element of Comparative Example 6 was obtained under the same conditions as in Example 4 except that a SiON sputtered film for providing a water vapor barrier was not provided on the surface.

<比較例7>
表面には水蒸気バリアを持たせるためのSiONのスパッタ膜は設けていない以外は、実施例5と同一条件で比較例7のEL素子用の透明基板を得た。
<Comparative Example 7>
A transparent substrate for an EL device of Comparative Example 7 was obtained under the same conditions as in Example 5 except that a sputtered SiON film for providing a water vapor barrier on the surface was not provided.

<比較例8>
第2挟圧ロール(平坦用)の表面粗さRaを3.0nmとし、他は比較例6,7と同一条件で比較例8のEL素子用の透明基板を得た。
<Comparative Example 8>
A transparent substrate for an EL element of Comparative Example 8 was obtained under the same conditions as Comparative Examples 6 and 7, except that the surface roughness Ra of the second pinching roll (for flattening) was 3.0 nm.

<比較例9>
電極側面の表面を、円錐高さ50nm、アスペクト比1の円錐形状母型を持つ、第2挟圧ロール(賦形用)16aを用いた以外は、実施例9と同一条件で比較例8のEL素子用の透明基板を得た。
<Comparative Example 9>
The surface of the electrode side surface is the same as in Example 9 except that a second pinching roll (for shaping) 16a having a conical shape with a cone height of 50 nm and an aspect ratio of 1 is used. A transparent substrate for an EL element was obtained.

<比較例10>
電極側面の表面を、円錐高さ900nm、アスペクト比1の円錐形状母型を持つ、第2挟圧ロール(賦形用)16aを用いた以外は、実施例10と同一条件で比較例8のEL素子用の透明基板を得た。
<Comparative Example 10>
The surface of the electrode side surface is the same as in Example 10 except that a second pinching roll (for shaping) 16a having a conical shape with a cone height of 900 nm and an aspect ratio of 1 is used. A transparent substrate for an EL element was obtained.

本発明の効果を確認する為に、陰極(銀)/発光層/陽極(透明基板がリジットならITO、フレキシブルなら導電性ポリマーPEDOT/PSS(アルドリッチ社製)/透明基板構成の有機EL素子を種々作製し、効果の確認を実施した。この時、陽極=ITO、透明基板=リジットガラスとし、光射出面に光取出しフィルムとしてマイクロレンズを貼合した構成をレファレンスとした。   In order to confirm the effect of the present invention, various organic EL elements having a cathode (silver) / light emitting layer / anode (ITO if the transparent substrate is rigid, conductive polymer PEDOT / PSS (Aldrich) if the transparent substrate is flexible) / transparent substrate configuration At this time, the anode = ITO, the transparent substrate = rigid glass, and a configuration in which a microlens was bonded as a light extraction film on the light exit surface was used as a reference.

<評価>
作製した有機EL素子は、工程数と光取出し効率、寿命、基板強度の観点から評価した。
<Evaluation>
The produced organic EL device was evaluated from the viewpoint of the number of steps, light extraction efficiency, life, and substrate strength.

<工程数>
評価基準は、リファレンスよりも作製工程数が少なければ○、多ければ×とした。
<Number of steps>
The evaluation criteria were ○ if the number of manufacturing steps was less than that of the reference, and × if it was more.

<光取出し効率>
積分球での測定で全光束量がリファレンスよりも多ければ○、同等であれば△、少なければ×とした。
<Light extraction efficiency>
In the measurement using an integrating sphere, the total luminous flux was greater than that of the reference, ◯, if equal, Δ, and x if less.

<発光層寿命>
リファレンスよりもTL70又はダークスポット発生までの時間が長ければ○、同等であれば△、短ければ×とした。
<Light emitting layer lifetime>
If the time until the occurrence of TL70 or a dark spot is longer than the reference, it is indicated as ◯, if it is equal, Δ, and if it is shorter, it is indicated as x.

<基板強度>
落下試験及び80℃24時間加熱を行い、浮き・剥がれにて評価した。リファレンスよりも良好な結果であれば○、同等であれば△、悪ければ×とした。
<Board strength>
A drop test and heating at 80 ° C. for 24 hours were performed, and evaluation was performed by floating and peeling. If the result was better than that of the reference, the result was ○, if it was the same, Δ, and if it was bad, the result was ×.

結果を表1に示す。   The results are shown in Table 1.

Figure 2016100297
Figure 2016100297

実施例1、2と比較例2、3により、水蒸気バリアの有無により発光層寿命が悪くなったことがわかる。   It can be seen from Examples 1 and 2 and Comparative Examples 2 and 3 that the lifetime of the light emitting layer was deteriorated by the presence or absence of the water vapor barrier.

実施例4、5と比較例6、7の結果から、SiONのスパッタ膜の有無により、発光層寿命が改善されることが分る。   From the results of Examples 4 and 5 and Comparative Examples 6 and 7, it can be seen that the lifetime of the light emitting layer is improved by the presence or absence of the sputtered SiON film.

比較例1および比較例5より、水蒸気バリア層を設けても、電極が設けられる側の表面粗さRaが3.0nmになると寿命に悪影響があることが示される。   Comparative Example 1 and Comparative Example 5 show that even when the water vapor barrier layer is provided, the life is adversely affected when the surface roughness Ra on the side where the electrode is provided is 3.0 nm.

実施例6、8の結果より、照射側面にマイクロレンズを設けたものはガラス基材の外側にマイクロレンズシートを貼合した場合と同程度の光取出し効率が得られることが分った。   From the results of Examples 6 and 8, it was found that the light extraction efficiency equivalent to that obtained when the microlens sheet was bonded to the outside of the glass substrate was obtained when the microlens was provided on the irradiation side surface.

光射出面に設けられる基材の素材として樹脂を選択することで、ガラスを使用する場合よりも水蒸気による素子の劣化が早くなる懸念が残るが、電極が設けられる側の表面粗さRaを2.5nm以下にすることで、水蒸気バリア膜の蒸着に有利となり、基材と電極の間に水蒸気バリア膜を設けることで、表面粗さに留意せずに素子作製を実施した場合よりも長寿命化が可能になることがわかる。   By selecting resin as the material of the base material provided on the light emitting surface, there remains a concern that the deterioration of the element due to water vapor is faster than when glass is used, but the surface roughness Ra on the side where the electrode is provided is 2 By setting the thickness to 5 nm or less, it is advantageous for vapor deposition of the water vapor barrier film, and by providing the water vapor barrier film between the substrate and the electrode, the lifetime is longer than when the device is manufactured without paying attention to the surface roughness. It turns out that it becomes possible.

実施例9、12、13と比較例9、10より、アスペクト比1で、透明基板の電極側面に高さ100〜800nmの凹凸構造を賦形形状とすることで、光取出し効率が改善されることが分る。   From Examples 9, 12, and 13 and Comparative Examples 9 and 10, the light extraction efficiency is improved by forming a concavo-convex structure with an aspect ratio of 1 and a height of 100 to 800 nm on the electrode side surface of the transparent substrate. I understand that.

本発明により、陰極と、陽極と、両者に挟まれた有機EL層からなる有機EL素子において、光取出し機能を有する部位を、塗工や、粘着を用いずに設けることができ、従来と比較して製造工程数の低減が可能で、光取出し効率が良好なEL素子用の透明基板を得ることができことが分る。   According to the present invention, in an organic EL element composed of a cathode, an anode, and an organic EL layer sandwiched between them, a part having a light extraction function can be provided without using coating or adhesion. Thus, it can be seen that the number of manufacturing steps can be reduced, and a transparent substrate for an EL element with good light extraction efficiency can be obtained.

また、透明基板がリジットでもフレキシブルでも同様であり、汎用性にも富むことが確認された。   Moreover, it was confirmed that the transparent substrate was the same regardless of whether it was rigid or flexible, and it was rich in versatility.

1・・・陰極
2・・・発光層
3・・・陽極
4・・・透明基板
5・・・マイクロレンズ状全反射防止面
6・・・光散乱層
7・・・有機発光層から放出され、有機発光層-陽極間及び陽極-透明基板間で全反射しない光
8a・・・有機発光層から放出され、透明基板-空気界面で全反射する光
8b・・・有機発光層から放出され、全反射せずに外部に出て行く光
9a・・・有機発光層から放出され、透明基板-陽極界面で全反射する光
9b・・・有機発光層から放出され、全反射防止面-陽極界面で全反射せずに外部に出て行く光
10・・・コア材
10b・・・本発明に関わるコア材を形成する樹脂
11・・・全反射防止面
11b・・・全反射防止面を形成する樹脂
12・・・全反射防止面を形成する賦形シート
13a・・・本発明に関わる基板例1
13b・・・本発明に関わる基板例2
13c・・・本発明に関わる基板例3
14・・・Tダイ
15・・・第1挟圧ロール
16a・・・第2挟圧ロール(賦形用)
16b・・・第2挟圧ロール(平坦用)
17・・・第1冷却ロール
18・・・第2冷却ロール
19・・・光取り出しフィルムA
20・・・光取り出しフィルムB
DESCRIPTION OF SYMBOLS 1 ... Cathode 2 ... Light emitting layer 3 ... Anode 4 ... Transparent substrate 5 ... Microlens-like total reflection preventing surface 6 ... Light scattering layer 7 ... Emission from organic light emitting layer The light 8a not totally reflected between the organic light emitting layer-anode and the anode-transparent substrate is emitted from the organic light emitting layer, the light 8b totally reflected at the transparent substrate-air interface is emitted from the organic light emitting layer, Light 9a exiting outside without total reflection ... Light emitted from the organic light emitting layer and totally reflected at the transparent substrate-anode interface 9b ... Light emitted from the organic light emitting layer, total reflection preventing surface-anode interface Light that goes out without being totally reflected 10 ... core material 10b ... resin 11 that forms the core material according to the present invention ... total reflection preventing surface 11b ... total reflection preventing surface is formed Resin 12 ... Shaping sheet 13a forming a total antireflection surface ... Substrate example 1 relating to the present invention
13b ... Example 2 of substrate related to the present invention
13c: Example of substrate 3 according to the present invention
14 ... T die 15 ... first clamping roll 16a ... second clamping roll (for shaping)
16b ... 2nd pinching roll (for flat)
17 ... 1st cooling roll 18 ... 2nd cooling roll 19 ... Light extraction film A
20 ... Light extraction film B

Claims (11)

陽極、正孔注入層、正孔輸送層、インターレイヤー層、発光層、電子輸送層、電子注入層、陰極が順次積層されるEL素子用の透明基板であって、
多層押出し法、あるいは熱ラミ法により、表面若しくは内部に光取出し機能を有する全反射防止面を設けたことを特徴とするEL素子用の透明基板。
A transparent substrate for an EL device in which an anode, a hole injection layer, a hole transport layer, an interlayer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are sequentially laminated,
A transparent substrate for an EL element, wherein a total reflection preventing surface having a light extraction function is provided on the surface or inside by a multilayer extrusion method or a thermal lamination method.
前記全反射防止面が、散乱粒子またはレンズ状形状からなる光散乱要素により形成されていることを特徴とする請求項1に記載のEL素子用の透明基板。   The transparent substrate for an EL element according to claim 1, wherein the total antireflection surface is formed of a light scattering element made of scattering particles or a lens-like shape. 陽極側の面が、高さ100〜800nmであり、アスペクト比が1〜3の範囲に入る凹凸構造であることを特徴とする請求項1または請求項2に記載のEL素子用の透明基板。   3. The transparent substrate for an EL element according to claim 1, wherein the surface on the anode side has a concavo-convex structure having a height of 100 to 800 nm and an aspect ratio in the range of 1 to 3. 4. 陽極側の面の、算術平均粗さRaが2.5nm以下であることを特徴とする請求項1〜3のいずれか一項に記載のEL素子用の透明基板。   The transparent substrate for an EL element according to any one of claims 1 to 3, wherein the arithmetic average roughness Ra of the surface on the anode side is 2.5 nm or less. 前記全反射防止面が、EL素子用の透明基板の前記陽極と接しない面に設けられていることを特徴とする請求項1〜4のいずれか一項に記載のEL素子用の透明基板。   The transparent substrate for an EL element according to any one of claims 1 to 4, wherein the total antireflection surface is provided on a surface of the transparent substrate for an EL element that does not contact the anode. 前記全反射防止面が、EL素子用の透明基板の前記陽極と接する面に設けられていることを特徴とする請求項1〜4のいずれか一項に記載のEL素子用の透明基板。   The transparent substrate for an EL element according to claim 1, wherein the total reflection preventing surface is provided on a surface of the transparent substrate for an EL element that is in contact with the anode. 前記全反射防止面が、EL素子用の透明基板の両面に設けられていることを特徴とする請求項1〜4のいずれか一項に記載のEL素子用の透明基板。   The transparent substrate for an EL element according to any one of claims 1 to 4, wherein the total antireflection surface is provided on both surfaces of the transparent substrate for an EL element. 前記光取出し機能を有する全反射防止面の、光取出し機能が基板の形状によって発現する、即ち、全反射防止面にレンズ状の形状を有していることを特徴とする請求項1〜7のいずれか一項に記載のEL素子用の透明基板。   The light reflection function of the total reflection preventing surface having the light extraction function is expressed by the shape of the substrate, that is, the total reflection prevention surface has a lens shape. The transparent substrate for EL elements as described in any one. 請求項1〜8のいずれか一項に記載のEL素子用の透明基板を用いたことを特徴とする有機EL照明。   Organic EL illumination using the transparent substrate for EL elements as described in any one of Claims 1-8. 請求項1〜8のいずれか一項に記載のEL素子用の透明基板を用いたことを特徴とする有機EL光源。   An organic EL light source using the transparent substrate for an EL element according to any one of claims 1 to 8. 請求項10に記載の有機EL光源を用いたことを特徴とする有機EL表示装置。   An organic EL display device using the organic EL light source according to claim 10.
JP2014238554A 2014-11-26 2014-11-26 Transparent substrate for el element, organic el illumination, organic el light source, and organic el display device Pending JP2016100297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014238554A JP2016100297A (en) 2014-11-26 2014-11-26 Transparent substrate for el element, organic el illumination, organic el light source, and organic el display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014238554A JP2016100297A (en) 2014-11-26 2014-11-26 Transparent substrate for el element, organic el illumination, organic el light source, and organic el display device

Publications (1)

Publication Number Publication Date
JP2016100297A true JP2016100297A (en) 2016-05-30

Family

ID=56077427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014238554A Pending JP2016100297A (en) 2014-11-26 2014-11-26 Transparent substrate for el element, organic el illumination, organic el light source, and organic el display device

Country Status (1)

Country Link
JP (1) JP2016100297A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004174713A (en) * 2002-04-12 2004-06-24 Sumitomo Bakelite Co Ltd Optical film sheet and display element using the same
JP2005327689A (en) * 2004-05-17 2005-11-24 Nippon Zeon Co Ltd Electroluminescent element, and lighting system and display device using the element
JP2005327688A (en) * 2004-05-17 2005-11-24 Nippon Zeon Co Ltd Electroluminescent element, and lighting system and display device using the element
JP2006247894A (en) * 2005-03-08 2006-09-21 Fuji Photo Film Co Ltd Gas barrier film, organic electroluminescence element using it and image display element
JP2010080308A (en) * 2008-09-26 2010-04-08 Sumitomo Chemical Co Ltd Organic electroluminescence element
WO2011062215A1 (en) * 2009-11-19 2011-05-26 コニカミノルタホールディングス株式会社 Organic electroluminescence element, method for producing organic electroluminescence element, and illumination device using organic electroluminescence element
JP2013077410A (en) * 2011-09-30 2013-04-25 Nippon Zeon Co Ltd Organic electroluminescent light-emitting device and method for manufacturing the same
JP2013140722A (en) * 2012-01-05 2013-07-18 Toppan Printing Co Ltd Organic electroluminescent element
JP2014013668A (en) * 2012-07-03 2014-01-23 Asahi Glass Co Ltd Laminated substrate for organic led element and organic led element
JP2014072013A (en) * 2012-09-28 2014-04-21 Toppan Printing Co Ltd Organic el display device
JP2014197573A (en) * 2013-03-08 2014-10-16 株式会社日本触媒 Material for organic electroluminescent element and organic electroluminescent element using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004174713A (en) * 2002-04-12 2004-06-24 Sumitomo Bakelite Co Ltd Optical film sheet and display element using the same
JP2005327689A (en) * 2004-05-17 2005-11-24 Nippon Zeon Co Ltd Electroluminescent element, and lighting system and display device using the element
JP2005327688A (en) * 2004-05-17 2005-11-24 Nippon Zeon Co Ltd Electroluminescent element, and lighting system and display device using the element
JP2006247894A (en) * 2005-03-08 2006-09-21 Fuji Photo Film Co Ltd Gas barrier film, organic electroluminescence element using it and image display element
JP2010080308A (en) * 2008-09-26 2010-04-08 Sumitomo Chemical Co Ltd Organic electroluminescence element
WO2011062215A1 (en) * 2009-11-19 2011-05-26 コニカミノルタホールディングス株式会社 Organic electroluminescence element, method for producing organic electroluminescence element, and illumination device using organic electroluminescence element
JP2013077410A (en) * 2011-09-30 2013-04-25 Nippon Zeon Co Ltd Organic electroluminescent light-emitting device and method for manufacturing the same
JP2013140722A (en) * 2012-01-05 2013-07-18 Toppan Printing Co Ltd Organic electroluminescent element
JP2014013668A (en) * 2012-07-03 2014-01-23 Asahi Glass Co Ltd Laminated substrate for organic led element and organic led element
JP2014072013A (en) * 2012-09-28 2014-04-21 Toppan Printing Co Ltd Organic el display device
JP2014197573A (en) * 2013-03-08 2014-10-16 株式会社日本触媒 Material for organic electroluminescent element and organic electroluminescent element using the same

Similar Documents

Publication Publication Date Title
JP5930081B2 (en) Translucent substrate for organic LED element, manufacturing method thereof, organic LED element and manufacturing method thereof
KR101114352B1 (en) Substrate for organic electronic devices and method for manufacturing thereof
JP2012204103A (en) Organic electroluminescent element, display device and luminaire
CN103332031B (en) The preparation method, scattering rete and preparation method thereof of galley, display unit
CN105870361B (en) Preparation method, optics, display base plate and the display device of optical film
CN111682094B (en) LED light-emitting back plate and production method thereof
JP2017027728A (en) Organic el element, organic el lighting, organic el light source, and organic el display device
WO2017045355A1 (en) Method for preparing uneven particle layer, organic electroluminescent device, and display device
JP2011081166A (en) El panel, lighting system using the same, and display device using the same
JP2015191787A (en) Substrate for organic electroluminescent element, organic electroluminescent element, illuminating device, and display device
JP2008083148A (en) Optical film and optical transfer sheet using the same
US9425430B2 (en) Method of fabricating light extraction substrate for OLED
JPWO2010113738A1 (en) EL panel and illumination device and display device using the same
JP2016100297A (en) Transparent substrate for el element, organic el illumination, organic el light source, and organic el display device
KR100979422B1 (en) Flat Display Device and Method for Manufacturing the Same
JP2017069167A (en) Organic el element and method for manufacturing the same, organic el lighting, organic el light source, and organic el display device
US10763456B2 (en) EL device use front plate and lighting device
JP2010171349A (en) Display panel substrate, manufacturing method therefor, display panel using the same, and manufacturing method therefor
JP5955777B2 (en) MICROSTRUCTURE FOR LIGHT EMITTING ELEMENT, LIGHT EMITTING ELEMENT AND LIGHTING DEVICE USING THE MICROSTRUCTURE
JP2011082032A (en) Scattering prevention sheet, el element equipped with the same, and el light-emitting device equipped with the el element as light-emitting source
CN206076288U (en) Optics, display base plate and display device
JP2015222707A (en) Glass substrate, organic el illuminating apparatus, and method for manufacturing glass substrate
KR20110013049A (en) Organic light emitting device and method for manufacturing the same
JP6406571B2 (en) Glass
JP6331077B2 (en) Phase separation glass and composite substrate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191108

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191108

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191118

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20191119

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20191227

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200107

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200218

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200520

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200522

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20200908

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20201013

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20201013