JP2016100225A - Negative electrode material for lithium ion secondary battery, negative electrode, and lithium ion secondary battery - Google Patents

Negative electrode material for lithium ion secondary battery, negative electrode, and lithium ion secondary battery Download PDF

Info

Publication number
JP2016100225A
JP2016100225A JP2014237109A JP2014237109A JP2016100225A JP 2016100225 A JP2016100225 A JP 2016100225A JP 2014237109 A JP2014237109 A JP 2014237109A JP 2014237109 A JP2014237109 A JP 2014237109A JP 2016100225 A JP2016100225 A JP 2016100225A
Authority
JP
Japan
Prior art keywords
particles
lithium ion
negative electrode
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014237109A
Other languages
Japanese (ja)
Other versions
JP6503700B2 (en
Inventor
本棒 英利
Hidetoshi Honbo
英利 本棒
石井 義人
Yoshito Ishii
義人 石井
圭児 岡部
Keiji Okabe
圭児 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014237109A priority Critical patent/JP6503700B2/en
Publication of JP2016100225A publication Critical patent/JP2016100225A/en
Application granted granted Critical
Publication of JP6503700B2 publication Critical patent/JP6503700B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide negative electrode material capable of manufacturing a lithium ion secondary battery which has high capacity and is excellent in cycle characteristics, and to provide a negative electrode using the negative electrode material and the lithium ion secondary battery.SOLUTION: Negative electrode material for a lithium ion secondary battery is a composite particle including a carbonaceous particle and a silicon particle in which ratio r(t/l) between a longest diameter l and a shortest diameter t is 0.5 or less and which is adhered to the carbonaceous particle.SELECTED DRAWING: None

Description

本発明はリチウムイオン二次電池用負極材、負極およびリチウムイオン二次電池に関する。   The present invention relates to a negative electrode material for a lithium ion secondary battery, a negative electrode, and a lithium ion secondary battery.

リチウムイオン二次電池用負極材には、リチウムイオンを吸蔵放出する炭素材料が広く使用されている。炭素材料としては、黒鉛が挙げられる。黒鉛を炭素材料として用いると、充放電におけるリチウムイオンの吸蔵放出反応が可逆性に優れるため、サイクル特性が良好なリチウムイオン二次電池が得られる。しかしながら、黒鉛のリチウムイオンの吸蔵放出容量は、LiCを形成する372mAh/gが理論値であり、さらなる高容量化には限界がある。 Carbon materials that occlude and release lithium ions are widely used as negative electrode materials for lithium ion secondary batteries. An example of the carbon material is graphite. When graphite is used as a carbon material, a lithium ion secondary battery having good cycle characteristics can be obtained because the lithium ion occlusion and release reaction during charge and discharge is excellent in reversibility. However, the lithium ion storage / release capacity of graphite is 372 mAh / g forming LiC 6, which is a theoretical value, and there is a limit to further increasing the capacity.

シリコン(Si)は、リチウムと合金(金属間化合物)を形成するため、電気化学的にリチウムイオンを吸蔵放出することが可能である。リチウムイオンの吸蔵放出容量は、Li22Siを形成する4197mAh/gが理論値であり、黒鉛負極よりも高容量化することが可能である。 Since silicon (Si) forms an alloy (intermetallic compound) with lithium, it is possible to occlude and release lithium ions electrochemically. The lithium ion storage / release capacity has a theoretical value of 4197 mAh / g forming Li 22 Si 5 , and can be higher in capacity than the graphite negative electrode.

一方で、シリコンはリチウムイオンの吸蔵放出にともない3倍〜4倍の大きな体積変化を生じる。このため、充放電サイクルを行った場合、膨張収縮が繰り返されることによりシリコンが崩壊して微細化してしまい、良好なサイクル寿命が得られないという課題があった。そこで、黒鉛粒子、シリコン微粒子および非晶質炭素を含む複合粒子の表面に、黒鉛又はカーボンブラックから選ばれる少なくとも1種類以上の物質である炭素質物質が配置されるとともに、該炭素質物質が非晶質炭素によって被覆された構造を有するリチウムイオン二次電池材料が開示されている(例えば、特許文献1参照)。   On the other hand, silicon causes a large volume change of 3 to 4 times with insertion and extraction of lithium ions. For this reason, when a charge / discharge cycle is performed, there is a problem that silicon is collapsed and refined by repeated expansion and contraction, and a good cycle life cannot be obtained. Therefore, a carbonaceous material which is at least one kind of material selected from graphite or carbon black is disposed on the surface of the composite particles containing graphite particles, silicon fine particles and amorphous carbon, and the carbonaceous material is non- A lithium ion secondary battery material having a structure covered with crystalline carbon is disclosed (for example, see Patent Document 1).

特開2008−277232号公報JP 2008-277232 A

リチウムイオン二次電池の高容量化及びサイクル特性の向上に対する要求が高まっているなか、さらに高容量でサイクル特性に優れるリチウムイオン二次電池を作製可能な負極材が求められている。そこで本発明は、高容量かつサイクル特性に優れるリチウムイオン二次電池を作製可能な負極材、ならびにこれを用いた負極およびリチウムイオン二次電池を提供することを課題とする。   As demands for higher capacity and improved cycle characteristics of lithium ion secondary batteries are increasing, there is a demand for a negative electrode material capable of producing a lithium ion secondary battery having higher capacity and excellent cycle characteristics. Therefore, an object of the present invention is to provide a negative electrode material capable of producing a lithium ion secondary battery having high capacity and excellent cycle characteristics, and a negative electrode and a lithium ion secondary battery using the same.

上記課題を解決するための手段は、以下の通りである。
<1>炭素質粒子と、最長径lと最短径tとの比r(t/l)が0.5以下であり前記炭素質粒子に付着しているシリコン粒子と、を含む複合粒子である、リチウムイオン二次電池用負極材。
Means for solving the above problems are as follows.
<1> A composite particle comprising carbonaceous particles and silicon particles adhering to the carbonaceous particles having a ratio r (t / l) of the longest diameter l to the shortest diameter t of 0.5 or less. , Anode material for lithium ion secondary battery.

<2>前記炭素質粒子が粒子内部に空隙を有する、<1>に記載のリチウムイオン二次電池用負極材。 <2> The negative electrode material for a lithium ion secondary battery according to <1>, wherein the carbonaceous particles have voids inside the particles.

<3>前記炭素質粒子において、サイズが0.1μm〜1μmの範囲である空隙についての積算細孔容積が0.05×10−3 /kg〜0.4×10−3 /kgである、<2>に記載のリチウムイオン二次電池用負極材。 <3> In the above carbonaceous particles, × cumulative pore volume of 0.05 for gap ranges in size of 0.1μm~1μm 10 -3 m 3 /kg~0.4×10 -3 m 3 / The negative electrode material for lithium ion secondary batteries according to <2>, which is kg.

<4>前記炭素質粒子が黒鉛粒子である、<1>〜<3>のいずれか1項に記載のリチウムイオン二次電池用負極材。 <4> The negative electrode material for a lithium ion secondary battery according to any one of <1> to <3>, wherein the carbonaceous particles are graphite particles.

<5>前記炭素質粒子の飽和タップ密度が0.4 g/cm〜0.9 g/cmである、<1>〜<4>のいずれか1項に記載のリチウムイオン二次電池用負極材。 <5> The lithium ion secondary battery according to any one of <1> to <4>, wherein a saturation tap density of the carbonaceous particles is 0.4 g / cm 3 to 0.9 g / cm 3. Negative electrode material.

<6>前記シリコン粒子の最長径lと最短径tとの比r(t/l)が0.001以上である、<1>〜<5>のいずれか1項に記載のリチウムイオン二次電池用負極材。 <6> The lithium ion secondary according to any one of <1> to <5>, wherein a ratio r (t / l) between the longest diameter l and the shortest diameter t of the silicon particles is 0.001 or more. Negative electrode material for batteries.

<7>前記シリコン粒子の最長径lが10nm〜5000nmである、<1>〜<6>のいずれか1項に記載のリチウムイオン二次電池用負極材。 <7> The negative electrode material for a lithium ion secondary battery according to any one of <1> to <6>, wherein the longest diameter l of the silicon particles is 10 nm to 5000 nm.

<8>前記シリコン粒子の表面の一部または全部が炭素質材料で被覆されている、<1>〜<7>のいずれか1項に記載のリチウムイオン二次電池用負極材。 <8> The negative electrode material for a lithium ion secondary battery according to any one of <1> to <7>, wherein a part or all of the surface of the silicon particles is coated with a carbonaceous material.

<9>前記複合粒子の表面の一部または全部が炭素質材料で被覆されている、<1>〜<8>のいずれか1項に記載のリチウムイオン二次電池用負極材。 <9> The negative electrode material for a lithium ion secondary battery according to any one of <1> to <8>, wherein a part or all of the surface of the composite particle is coated with a carbonaceous material.

<10>前記シリコン粒子の割合が、前記複合粒子の全質量の3質量%〜50質量%である、<1>〜<9>のいずれか1項に記載のリチウムイオン二次電池用負極材。 <10> The negative electrode material for a lithium ion secondary battery according to any one of <1> to <9>, wherein the ratio of the silicon particles is 3% by mass to 50% by mass of the total mass of the composite particles. .

<11><1>〜<10>のいずれか1項に記載のリチウムイオン二次電池用負極材を含む、リチウムイオン二次電池用負極。 <11> A negative electrode for a lithium ion secondary battery, comprising the negative electrode material for a lithium ion secondary battery according to any one of <1> to <10>.

<12><11>に記載のリチウムイオン二次電池用負極と、正極と、電解質とを含むリチウムイオン二次電池。 <12> A lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery according to <11>, a positive electrode, and an electrolyte.

本発明によれば、高容量かつサイクル特性に優れるリチウムイオン二次電池を作製可能な負極材、ならびにこれを用いた負極およびリチウムイオン二次電池が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the negative electrode material which can produce the lithium ion secondary battery which is high capacity | capacitance and excellent in cycling characteristics, and the negative electrode and lithium ion secondary battery using this are provided.

炭素質粒子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a carbonaceous particle. 複合粒子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of composite particle. 複合粒子及び炭素質材料で被覆されたシリコン粒子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the silicon particle coat | covered with the composite particle and the carbonaceous material. 炭素質材料で被覆された複合粒子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the composite particle coat | covered with the carbonaceous material. 炭素質材料で被覆された複合粒子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the composite particle coat | covered with the carbonaceous material. リチウムイオン二次電池の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a lithium ion secondary battery.

発明を実施するための形態について説明する。以下は、本発明の具体例を示すものであり、本発明はこれらに限定されるものではなく、本明細書に開示される技術的思想の範囲内において、様々な変更および修正が可能である。   A mode for carrying out the invention will be described. The following are specific examples of the present invention, and the present invention is not limited to these, and various changes and modifications can be made within the scope of the technical idea disclosed in the present specification. .

本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、本用語に含まれる。また本明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。また、本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。また、本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構成に加え、一部に形成されている形状の構成も包含される。   In this specification, the term “process” is not limited to an independent process, and is included in this term if the purpose of the process is achieved even when it cannot be clearly distinguished from other processes. In the present specification, a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. In addition, in the present specification, the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means quantity. In the present specification, the particle diameter of each component in the composition is such that when there are a plurality of particles corresponding to each component in the composition, the plurality of particles present in the composition unless otherwise specified. The value for a mixture of In addition, in the present specification, the term “layer” includes a configuration of a shape formed in part in addition to a configuration of a shape formed on the entire surface when observed as a plan view.

<リチウムイオン二次電池用負極材>
本発明のリチウムイオン二次電池用負極材(以下、単に負極材とも称する)は、炭素質粒子と、前記炭素質粒子に付着しているシリコン粒子と、を含み、前記シリコン粒子の最長径lと最短径tとの比r(t/l)が0.5以下である複合粒子である。
<Anode material for lithium ion secondary battery>
A negative electrode material for a lithium ion secondary battery of the present invention (hereinafter also simply referred to as a negative electrode material) includes carbonaceous particles and silicon particles attached to the carbonaceous particles, and the longest diameter l of the silicon particles. And composite particles having a ratio r (t / l) of 0.5 to 0.5.

前記リチウムイオン二次電池用負極材を用いて作製されるリチウムイオン二次電池は高容量かつサイクル寿命に優れている。その理由について本発明者らは以下のように推測している。炭素質粒子の表面に、最長径lと最短径tとの比r(t/l)が0.5以下であるシリコン粒子が付着している負極材は、炭素質粒子とシリコン粒子との付着力が大きい。さらに、吸蔵放出の繰り返しによってシリコン粒子の割れが発生しても、主として厚み方向の割れであるため、シリコン粒子と炭素質粒子との接点が失われることを抑制できる。これにより、リチウムイオン二次電池の高容量化とサイクル寿命の向上が実現できると考えられる。   A lithium ion secondary battery produced using the negative electrode material for a lithium ion secondary battery has a high capacity and an excellent cycle life. The reason for this is estimated by the inventors as follows. The negative electrode material in which silicon particles having a ratio r (t / l) of the longest diameter l to the shortest diameter t of 0.5 or less adhere to the surface of the carbonaceous particles is the attachment of the carbonaceous particles and the silicon particles. Great wearing power. Further, even if silicon particles are cracked due to repeated occlusion and release, since the cracks are mainly in the thickness direction, it is possible to prevent the contact between the silicon particles and the carbonaceous particles from being lost. Thereby, it is thought that the increase in capacity and the improvement in cycle life of the lithium ion secondary battery can be realized.

(炭素質粒子)
炭素質粒子は、炭素質材料から構成される複数の一次粒子が集合して形成される二次粒子である。炭素質粒子のリチウムイオンの吸蔵放出容量が大きいという観点からは、炭素質材料は黒鉛であることが好ましく、黒鉛層間距離(d002)が0.335nm〜0.3370nmであることがより好ましい。
(Carbonaceous particles)
The carbonaceous particles are secondary particles formed by aggregating a plurality of primary particles made of a carbonaceous material. The carbonaceous material is preferably graphite, more preferably the graphite interlayer distance (d 002 ) is 0.335 nm to 0.3370 nm, from the viewpoint that the carbonaceous particles have a large lithium ion storage / release capacity.

図1は、炭素質粒子の一例を示す概略断面図である。炭素質粒子11は、一次粒子12が集合して二次粒子を形成したものであり、粒子内部に空隙13を有する。ここで、炭素質粒子11の内部に存在する空隙13は、シリコン粒子を炭素質粒子11に付着させる際に適度なクッションとして働くと考えられる。   FIG. 1 is a schematic cross-sectional view showing an example of carbonaceous particles. The carbonaceous particles 11 are those in which primary particles 12 are aggregated to form secondary particles, and have voids 13 inside the particles. Here, it is considered that the voids 13 existing inside the carbonaceous particles 11 function as an appropriate cushion when the silicon particles are adhered to the carbonaceous particles 11.

シリコン粒子を炭素質粒子に強固に付着させる観点からは、炭素質粒子は内部に空隙を有し、水銀ポロシメータによる測定において、空隙(細孔)のサイズが0.1μm〜1μmの範囲についての積算細孔容積(以下、単に積算細孔容積とも称する)が、0.04×10−3 /kg〜0.5×10−3 /kgであることが好ましく、0.05×10−3 /kg〜0.4×10−3 /kgであることがより好ましい。積算細孔容積は、水銀ポロシメータにより測定される値である。積算細孔容積は、水銀ポロシメータを用いて水銀圧入法により行うことができる。 From the viewpoint of firmly attaching the silicon particles to the carbonaceous particles, the carbonaceous particles have voids inside, and in the measurement with a mercury porosimeter, integration for the range of voids (pores) in the range of 0.1 μm to 1 μm. pore volume (hereinafter, simply referred to as the cumulative pore volume) is preferably from 0.04 × 10 -3 m 3 /kg~0.5×10 -3 m 3 / kg, 0.05 × 10 -3 m 3 and more preferably /kg~0.4×10 -3 m 3 / kg. The integrated pore volume is a value measured by a mercury porosimeter. The integrated pore volume can be measured by mercury porosimetry using a mercury porosimeter.

炭素質粒子の積算細孔容積を上記範囲とするためには、炭素質粒子の飽和タップ密度が0.4g/cm〜0.9g/cm以下であることが好ましい。 In order to set the cumulative pore volume of the carbonaceous particles in the above range, the saturated tap density of the carbonaceous particles is preferably 0.4 g / cm 3 to 0.9 g / cm 3 or less.

炭素質粒子の粒子径は、本発明の効果が達成される限りにおいて特に制限されない。比表面積を十分に確保し、リチウムイオン二次電池の初回充放電効率の低下を抑制するとともに、粒子同士の接触が悪化して入出力特性が低下するのを抑制する観点からは、炭素質粒子の平均粒子径が5μm以上であることが好ましい。また、電極面に凸凹が発生してリチウムイオン二次電池の短絡の原因となったり、粒子表面から内部へのLiの拡散距離が長くなるためリチウムイオン二次電池の入出力特性が低下するのを抑制する観点からは、炭素質粒子の平均粒子径が30μm以下であることが好ましく、25μm以下であることがより好ましい。   The particle diameter of the carbonaceous particles is not particularly limited as long as the effects of the present invention are achieved. From the viewpoint of ensuring a sufficient specific surface area and suppressing a decrease in the initial charge / discharge efficiency of the lithium ion secondary battery, and also from suppressing deterioration of input / output characteristics due to deterioration of contact between particles, carbonaceous particles It is preferable that the average particle diameter of these is 5 micrometers or more. In addition, unevenness on the electrode surface may cause a short circuit of the lithium ion secondary battery, or the diffusion distance of Li from the particle surface to the inside becomes long, so that the input / output characteristics of the lithium ion secondary battery deteriorate. From the viewpoint of suppressing the average particle size, the average particle size of the carbonaceous particles is preferably 30 μm or less, and more preferably 25 μm or less.

炭素質粒子の平均粒子径は、以下の方法によって求められる。
(1)界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(株式会社島津製作所製、SALD−3000J)で測定した粒度分布において小径側からの体積累積50%に対応する値(50%D)を求める。
(2)走査型電子顕微鏡(SEM)等で観察し、無作為に選択した炭素質粒子の数平均値を求める。
The average particle size of the carbonaceous particles is determined by the following method.
(1) A sample is dispersed in purified water containing a surfactant, and in the particle size distribution measured by a laser diffraction particle size distribution measuring device (manufactured by Shimadzu Corporation, SALD-3000J), the volume accumulation from the small diameter side becomes 50%. The corresponding value (50% D) is determined.
(2) Observation with a scanning electron microscope (SEM) or the like to obtain the number average value of randomly selected carbonaceous particles.

(シリコン粒子)
シリコン粒子は、炭素質粒子に付着しており、その最長径lと最短径tとの比r(t/l)が0.5以下である。
(Silicon particles)
The silicon particles are attached to the carbonaceous particles, and the ratio r (t / l) between the longest diameter l and the shortest diameter t is 0.5 or less.

シリコン粒子の最長径は、シリコン粒子を2つの平行な面で挟んだ場合に、面と面の間の距離が最大となるときの距離の値であり、シリコン粒子の最短径は、シリコン粒子を2つの平行な面で挟んだ場合に、面と面の間の距離が最短となるときの距離の値である。   The longest diameter of silicon particles is the distance value when the distance between the surfaces is maximum when the silicon particles are sandwiched between two parallel surfaces. The shortest diameter of silicon particles is When sandwiched between two parallel surfaces, this is the distance value when the distance between the surfaces is the shortest.

シリコン粒子の最長径lと最短径tとの比r(t/l)は、0.001以上であることが好ましい。   The ratio r (t / l) between the longest diameter l and the shortest diameter t of the silicon particles is preferably 0.001 or more.

シリコン粒子と炭素質粒子とを強固に付着させる観点からは、炭素質粒子と付着しているシリコン粒子の比rの数平均値が0.5以下であることが好ましい。また、シリコン粒子の比rの数平均値が0.001以上であることが好ましい。   From the viewpoint of firmly attaching the silicon particles and the carbonaceous particles, the number average value of the ratio r of the carbonaceous particles and the attached silicon particles is preferably 0.5 or less. The number average value of the ratio r of silicon particles is preferably 0.001 or more.

シリコン粒子が炭素質粒子に付着した状態を保持する観点からは、シリコン粒子の最長径(l)は10nm以上であることが好ましい。また、シリコン粒子の最長径(l)は5000nm以下であることが好ましい。   From the viewpoint of maintaining the state in which the silicon particles are attached to the carbonaceous particles, the longest diameter (l) of the silicon particles is preferably 10 nm or more. Moreover, it is preferable that the longest diameter (l) of a silicon particle is 5000 nm or less.

シリコン粒子が炭素質粒子に付着した状態を保持する観点からは、炭素質粒子に付着しているシリコン粒子の最長径(l)の数平均値が10nm〜5000nmであることが好ましい。   From the viewpoint of maintaining the state in which the silicon particles are attached to the carbonaceous particles, the number average value of the longest diameter (l) of the silicon particles attached to the carbonaceous particles is preferably 10 nm to 5000 nm.

シリコン粒子の形状は、「比rが0.5以下である」という条件を満たしていれば特に制限されず、薄片状、板状、棒状、針状等のいずれであってもよい。負極材においては、形状の異なるシリコン粒子が混在していてもよい。   The shape of the silicon particles is not particularly limited as long as the condition that the ratio r is 0.5 or less is satisfied, and may be any of a flake shape, a plate shape, a rod shape, a needle shape, and the like. In the negative electrode material, silicon particles having different shapes may be mixed.

図2は、複合粒子の一例を示す概略断面図である。複合粒子においてシリコン粒子が炭素質粒子に付着する態様は、本発明の効果が達成される限りにおいて特に制限されない。例えば、図2に示すように(1)炭素質粒子の表面にシリコン粒子14aが戴置されている態様、(2)炭素質粒子にシリコン粒子14bが一部入り込んでいる態様、(3)炭素質粒子にシリコン粒子14cが完全に入り込んでいる態様等が挙げられる。複合粒子においては、炭素質粒子との付着の態様の異なるシリコン粒子が混在していてもよい。   FIG. 2 is a schematic cross-sectional view showing an example of composite particles. The aspect in which the silicon particles adhere to the carbonaceous particles in the composite particles is not particularly limited as long as the effects of the present invention are achieved. For example, as shown in FIG. 2, (1) a mode in which silicon particles 14a are placed on the surface of carbonaceous particles, (2) a mode in which silicon particles 14b are partially contained in carbonaceous particles, and (3) carbon A mode in which the silicon particles 14c are completely contained in the particle is exemplified. In the composite particles, silicon particles having different adhesion modes with the carbonaceous particles may be mixed.

シリコン粒子を炭素質粒子に結着させる方法は特に制限されない。例えば、ボールミル、ビーズミル等の粒子複合処理装置を用いて、メカニカルなせん断力を加えてシリコン粒子を炭素質粒子に結着させる方法が挙げられる。湿式方式の粒子複合処理装置を用いる場合は、シリコン粒子を溶媒に分散し、この分散液を炭素質粒子内部の空隙に浸透させることで、炭素質粒子の内部にシリコン粒子を結着させることができる。また、炭素質粒子とシリコン粒子の混合物をプレス成型し、その後粉砕する方法も挙げられる。   The method for binding silicon particles to carbonaceous particles is not particularly limited. Examples thereof include a method of binding silicon particles to carbonaceous particles by applying a mechanical shearing force using a particle composite processing apparatus such as a ball mill or a bead mill. When using a wet type particle composite processing apparatus, silicon particles are dispersed in a solvent, and the dispersion is infiltrated into voids inside the carbonaceous particles, thereby binding the silicon particles inside the carbonaceous particles. it can. Further, there is a method in which a mixture of carbonaceous particles and silicon particles is press-molded and then pulverized.

高容量化の効果を十分に得る観点からは、炭素質粒子の表面に結着しているシリコン粒子の総量の割合は、複合粒子の全質量(炭素質粒子及びシリコン粒子の合計質量)の3質量%以上であることが好ましい。炭素質粒子をシリコン粒子に十分に結着させ、良好なサイクル寿命を得る観点からは、炭素質粒子の表面に結着しているシリコン粒子の総量の割合は、複合粒子の全質量の50質量%以下であることが好ましい。   From the viewpoint of sufficiently obtaining the effect of increasing the capacity, the ratio of the total amount of silicon particles bound to the surface of the carbonaceous particles is 3% of the total mass of the composite particles (total mass of the carbonaceous particles and silicon particles). It is preferable that it is mass% or more. From the viewpoint of sufficiently binding the carbonaceous particles to the silicon particles and obtaining a good cycle life, the ratio of the total amount of silicon particles bound to the surface of the carbonaceous particles is 50 masses of the total mass of the composite particles. % Or less is preferable.

複合粒子の粒子径は、本発明の効果が達成される限りにおいて特に制限されない。比表面積を十分に確保し、リチウムイオン二次電池の初回充放電効率の低下を抑制するとともに、粒子同士の接触が悪化して入出力特性が低下するのを抑制する観点からは、複合粒子の平均粒子径が5μm以上であることが好ましい。また、電極面に凸凹が発生してリチウムイオン二次電池の短絡の原因となったり、粒子表面から内部へのLiの拡散距離が長くなるためリチウムイオン二次電池の入出力特性が低下するのを抑制する観点からは、複合粒子の平均粒子径が30μm以下であることが好ましく、25μm以下であることがより好ましい。   The particle diameter of the composite particles is not particularly limited as long as the effects of the present invention are achieved. From the viewpoint of ensuring a sufficient specific surface area and suppressing a decrease in the initial charge / discharge efficiency of the lithium ion secondary battery, and suppressing deterioration in input / output characteristics due to deterioration of contact between particles, It is preferable that an average particle diameter is 5 micrometers or more. In addition, unevenness on the electrode surface may cause a short circuit of the lithium ion secondary battery, or the diffusion distance of Li from the particle surface to the inside becomes long, so that the input / output characteristics of the lithium ion secondary battery deteriorate. From the viewpoint of suppressing the average particle size, the average particle size of the composite particles is preferably 30 μm or less, and more preferably 25 μm or less.

炭素質粒子の平均粒子径は、以下の方法によって求められる。
(1)界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(株式会社島津製作所製、SALD−3000J)で測定した粒度分布において小径側からの体積累積50%に対応する値(50%D)を求める。
(2)走査型電子顕微鏡(SEM)等で観察し、無作為に選択した炭素質粒子の数平均値を求める。
The average particle size of the carbonaceous particles is determined by the following method.
(1) A sample is dispersed in purified water containing a surfactant, and in the particle size distribution measured by a laser diffraction particle size distribution measuring device (manufactured by Shimadzu Corporation, SALD-3000J), the volume accumulation from the small diameter side becomes 50%. The corresponding value (50% D) is determined.
(2) Observation with a scanning electron microscope (SEM) or the like to obtain the number average value of randomly selected carbonaceous particles.

炭素質粒子とシリコン粒子と間の良好な電気的導通を保持する観点から、シリコン粒子の表面の一部または全部が炭素質材料で被覆されていることが好ましい。すなわち、図3に示すように、シリコン粒子14が炭素質材料(炭素質層)15で被覆された状態の炭素被覆シリコン粒子16が炭素質粒子に付着していることが好ましい。   From the viewpoint of maintaining good electrical continuity between the carbonaceous particles and the silicon particles, it is preferable that part or all of the surface of the silicon particles is coated with a carbonaceous material. That is, as shown in FIG. 3, it is preferable that the carbon-coated silicon particles 16 in a state where the silicon particles 14 are coated with the carbonaceous material (carbonaceous layer) 15 are attached to the carbonaceous particles.

シリコンの表面の一部または全部を炭素質材料で被覆する方法は、特に限定されない。例えば、以下のような湿式混合方式、乾式混合方式、気相方式等の方法が挙げられる。   The method for coating a part or all of the surface of silicon with a carbonaceous material is not particularly limited. For example, methods such as the following wet mixing method, dry mixing method, and gas phase method are exemplified.

湿式混合方式の方法としては、炭素質材料の前駆体となる物質(有機化合物等)を溶媒に溶解または分散させた混合液に、シリコン粒子を分散して混合した後、溶媒を除去する方法が挙げられる。   As a wet mixing method, there is a method in which silicon particles are dispersed and mixed in a mixed solution in which a substance (organic compound or the like) that is a precursor of a carbonaceous material is dissolved or dispersed in a solvent, and then the solvent is removed. Can be mentioned.

乾式混合方式の方法としては、シリコン粒子と有機化合物とをそれぞれ固体の状態で混合し、得られた混合物に力学的エネルギーを加えることでシリコン粒子の表面に有機化合物を付着させ、有機化合物を付着させた状態のシリコン粒子を熱処理して有機化合物を炭素化することにより、シリコン粒子を炭素質材料で被覆することができる。   As a dry mixing method, silicon particles and an organic compound are mixed in a solid state, and mechanical energy is applied to the resulting mixture to attach the organic compound to the surface of the silicon particles. The silicon particles can be coated with a carbonaceous material by carbonizing the organic compound by heat-treating the silicon particles thus formed.

気相方式の方法としては、CVD法等の、アセチレン、プロピレン等のガス分解反応によってシリコン粒子の表面を炭素質材料で被覆する方法が挙げられる。   Examples of the vapor phase method include a method of coating the surface of silicon particles with a carbonaceous material by a gas decomposition reaction such as acetylene or propylene, such as a CVD method.

有機化合物の具体例としては、エチレンヘビーエンドピッチ、原油ピッチ、コールタールピッチ、アスファルト分解ピッチ、ポリ塩化ビニル等を熱分解して生成するピッチ、ナフタレン等を超強酸存在下で重合させて作製される合成ピッチなどが挙げられる。また、ポリ塩化ビニル、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルブチラール等の熱可塑性合成樹脂を有機化合物として用いることもできる。また、デンプン、セルロース等の天然物を有機化合物として用いることもできる。   Specific examples of organic compounds are prepared by polymerizing ethylene heavy end pitch, crude oil pitch, coal tar pitch, asphalt cracking pitch, pitch generated by pyrolyzing polyvinyl chloride, naphthalene, etc. in the presence of a super strong acid. Synthesis pitch and the like. In addition, thermoplastic synthetic resins such as polyvinyl chloride, polyvinyl alcohol, polyvinyl acetate, and polyvinyl butyral can also be used as the organic compound. Natural products such as starch and cellulose can also be used as the organic compound.

熱処理の温度は750℃〜2000℃であることが好ましく、800℃〜1800℃であることがより好ましく、850℃〜1400℃であることがさらに好ましい。熱処理時の雰囲気は、負極材が酸化し難い雰囲気であれば特に制限はなく、窒素ガス雰囲気、アルゴンガス雰囲気、自己分解ガス雰囲気等が適用できる。使用する炉の形式は特に制限はないが、電気またはガスを熱源としたバッチ炉、連続炉等が好ましい。   The temperature of the heat treatment is preferably 750 ° C to 2000 ° C, more preferably 800 ° C to 1800 ° C, and further preferably 850 ° C to 1400 ° C. The atmosphere during the heat treatment is not particularly limited as long as the negative electrode material is not easily oxidized, and a nitrogen gas atmosphere, an argon gas atmosphere, a self-decomposing gas atmosphere, or the like can be applied. The type of furnace to be used is not particularly limited, but a batch furnace, a continuous furnace or the like using electricity or gas as a heat source is preferable.

炭素質粒子とシリコン粒子と間の電気的導通をいっそう良好にする観点から、炭素質粒子にシリコン粒子が付着した状態の複合粒子の表面の一部または全部がさらに炭素質材料で被覆されていることが好ましい。すなわち、図4に示すように、炭素質粒子11にシリコン粒子14が付着した状態の複合粒子の表面の一部または全部が炭素質材料(炭素質層)17で被覆されていたり、図5に示すように、炭素質粒子11に炭素被覆シリコン粒子16が付着した状態の複合粒子の表面の一部または全部が炭素質材料(炭素質層)17で被覆されていることが好ましい。   From the viewpoint of further improving the electrical continuity between the carbonaceous particles and the silicon particles, a part or all of the surface of the composite particles in which the silicon particles are attached to the carbonaceous particles is further coated with the carbonaceous material. It is preferable. That is, as shown in FIG. 4, a part or all of the surface of the composite particle with the silicon particles 14 attached to the carbonaceous particle 11 is covered with the carbonaceous material (carbonaceous layer) 17. As shown, it is preferable that a part or all of the surface of the composite particles in a state where the carbon-coated silicon particles 16 are attached to the carbonaceous particles 11 is coated with a carbonaceous material (carbonaceous layer) 17.

複合粒子の表面の一部または全部を炭素質材料で被覆する方法は特に制限されず、シリコン粒子の表面の一部または全部を炭素質材料で被覆する方法として例示したものが挙げられる。   The method for coating part or all of the surface of the composite particle with the carbonaceous material is not particularly limited, and examples thereof include those exemplified as a method for coating part or all of the surface of the silicon particle with the carbonaceous material.

(リチウムイオン二次電池用負極)
本発明のリチウムイオン二次電池用負極(以下、単に負極とも称する)は、本発明のリチウムイオン二次電池用負極材を含む。負極は、必要に応じてその他の成分を含んでもよい、その他の成分としては、結着剤、添加剤等を挙げることができる。添加剤としては増粘剤、導電補助剤等を挙げることができる。
(Anode for lithium ion secondary battery)
The negative electrode for lithium ion secondary batteries of the present invention (hereinafter also simply referred to as negative electrode) includes the negative electrode material for lithium ion secondary batteries of the present invention. The negative electrode may contain other components as required. Examples of other components include a binder and an additive. Examples of the additive include a thickener and a conductive auxiliary agent.

結着剤としては、スチレン−ブタジエン共重合体、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル;アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸をモノマーとして得られるアクリル系重合体;ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロロヒドリン、ポリフォスファゼン、ポリアクリロニトリル等のイオン導電性の大きい高分子化合物などが挙げられる。結着剤は1種を単独で用いても、2種以上を組み合わせて用いてもよい。結着剤の量は特に制限されないが、負極材と結着剤の合計100質量部に対して1質量部〜20質量部であることが好ましい。上記(メタ)アクリレートは、アクリレート又はメタクリレートを意味し、(メタ)アクリロニトリルはアクリロニトリル又はメタクリロニトリルを意味する。   As binder, ethylenically unsaturated carboxylic acid such as styrene-butadiene copolymer, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (meth) acrylate, etc. Esters; acrylic polymers obtained using ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid and maleic acid as monomers; polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene And polymer compounds having high ionic conductivity such as polyacrylonitrile. A binder may be used individually by 1 type, or may be used in combination of 2 or more type. The amount of the binder is not particularly limited, but is preferably 1 part by mass to 20 parts by mass with respect to 100 parts by mass in total of the negative electrode material and the binder. The above (meth) acrylate means acrylate or methacrylate, and (meth) acrylonitrile means acrylonitrile or methacrylonitrile.

増粘剤としては、カルボキシメチルセルロース、カルボキシメチルセルロースのナトリウム塩、メチルセルロース、ヒドロキシエチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸、ポリアクリル酸のナトリウム塩、アルギン酸、アルギン酸のナトリウム塩、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。増粘剤は1種単独で用いても、2種以上を組み合わせて用いてもよい。   As a thickener, carboxymethylcellulose, sodium salt of carboxymethylcellulose, methylcellulose, hydroxyethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid, sodium salt of polyacrylic acid, alginic acid, sodium salt of alginic acid, oxidized starch, phosphorylated starch, Casein etc. are mentioned. A thickener may be used individually by 1 type, or may be used in combination of 2 or more type.

導電補助剤としては、天然黒鉛、人造黒鉛、カーボンブラック(アセチレンブラック、サーマルブラック、ファーネスブラック等)、導電性を示す酸化物、導電性を示す窒化物などが挙げられる。導電補助剤を含むことで、電極としての導電性をより向上させることができる。導電補助剤は1種単独で用いても、2種以上を組み合わせて用いてもよい。   Examples of the conductive aid include natural graphite, artificial graphite, carbon black (acetylene black, thermal black, furnace black, etc.), conductive oxide, conductive nitride, and the like. By including a conductive auxiliary agent, the conductivity as an electrode can be further improved. A conductive support agent may be used individually by 1 type, or may be used in combination of 2 or more type.

増粘剤、導電補助剤等の添加剤の使用量は、リチウムイオン二次電池の特性を低下させない範囲であれば特に限定されないが、負極材と添加剤の総量に対して0.1質量%以上10.0質量%未満であることが好ましい。   The amount of additives such as thickeners and conductive additives is not particularly limited as long as it does not deteriorate the characteristics of the lithium ion secondary battery, but is 0.1% by mass with respect to the total amount of the negative electrode material and the additives. The content is preferably less than 10.0% by mass.

負極の作製方法は特に制限されない。例えば、負極材と、結着剤と、必要に応じて添加される各種添加剤と、溶剤とを含むペースト状の負極材スラリーを作製し、得られた負極材スラリーを集電体の上に塗布し、乾燥し、必要に応じてロールプレス等の成形法により圧縮成形することで作製することができる。その他、ペースト状の負極材スラリーをシート状、ペレット状等に成形し、これをロールプレス等の成形法により集電体と一体化することで作製することもできる。   The method for producing the negative electrode is not particularly limited. For example, a paste-like negative electrode material slurry containing a negative electrode material, a binder, various additives added as necessary, and a solvent is prepared, and the obtained negative electrode material slurry is placed on a current collector. It can be produced by applying, drying, and compression molding by a molding method such as a roll press if necessary. In addition, the paste-like negative electrode material slurry can be formed into a sheet shape, a pellet shape, or the like, and can be produced by integrating it with a current collector by a forming method such as a roll press.

負極材スラリーは、例えば負極材スラリーを構成する成分を、撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等を用いて撹拌して混練し、さらに必要に応じて粘度を調整することで調製することができる。   The negative electrode material slurry is prepared by, for example, stirring and kneading the components constituting the negative electrode material slurry using a stirrer, a ball mill, a super sand mill, a pressure kneader, etc., and adjusting the viscosity as necessary. Can do.

負極材スラリーの調製に用いられる溶剤は、結着剤を溶解又は分散可能な溶剤であれば特に制限されない。例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、γ−ブチロラクトン等の有機溶媒を例示することができる。溶剤の使用量は、負極材スラリーをペースト等の所望の状態にできれば特に制限されない。例えば、負極材100質量部に対して60質量部以上150質量部未満とすることができる。   The solvent used for the preparation of the negative electrode material slurry is not particularly limited as long as it is a solvent capable of dissolving or dispersing the binder. Examples thereof include organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, and γ-butyrolactone. The usage-amount of a solvent will not be restrict | limited especially if a negative electrode material slurry can be made into desired states, such as a paste. For example, the amount can be 60 parts by mass or more and less than 150 parts by mass with respect to 100 parts by mass of the negative electrode material.

集電体の種類、形状等は特に制限されず、目的に応じて選択することができる。例えば、アルミニウム箔、ニッケル箔、銅箔、アルミニウムメッシュ、ニッケルメッシュ、銅メッシュ等を挙げることができる。また、ポーラスメタル(発泡メタル)、カーボンペーパー等の多孔性材料も使用可能である。   The type and shape of the current collector are not particularly limited, and can be selected according to the purpose. For example, aluminum foil, nickel foil, copper foil, aluminum mesh, nickel mesh, copper mesh, etc. can be mentioned. Also, porous materials such as porous metal (foamed metal) and carbon paper can be used.

負極材スラリーを集電体に塗布する方法は特に制限されず、公知の方法を適宜選択することができる。具体的には、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等を挙げることができる。負極材ペーストの塗布量は特に制限されず、目的に応じて選択することができる。   The method in particular of apply | coating a negative electrode material slurry to a collector is not restrict | limited, A well-known method can be selected suitably. Specific examples include a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, and a screen printing method. The coating amount of the negative electrode material paste is not particularly limited and can be selected according to the purpose.

(リチウムイオン二次電池)
本発明のリチウムイオン二次電池は、本発明のリチウムイオン二次電池用負極と、正極と、電解質とを含む。本発明のリチウムイオン二次電池は、高容量でありかつサイクル特性に優れる。
(Lithium ion secondary battery)
The lithium ion secondary battery of the present invention includes the negative electrode for a lithium ion secondary battery of the present invention, a positive electrode, and an electrolyte. The lithium ion secondary battery of the present invention has a high capacity and excellent cycle characteristics.

本発明のリチウムイオン二次電池は、例えば、本発明のリチウムイオン二次電池用負極と正極とをセパレータを介して対向して配置し、電解液を注入することにより得ることができる。   The lithium ion secondary battery of the present invention can be obtained, for example, by arranging the negative electrode for a lithium ion secondary battery and the positive electrode of the present invention facing each other via a separator and injecting an electrolytic solution.

正極は、負極と同様にして、集電体の表面上に正極活物質及び必要に応じて含まれる増粘剤、導電補助剤等の添加剤を含む正極材層を形成することで作製される。   The positive electrode is produced by forming a positive electrode material layer containing an additive such as a positive electrode active material and, if necessary, a thickener and a conductive aid, on the surface of the current collector in the same manner as the negative electrode. .

正極活物質は特に制限されず、必要に応じて適宜選択することができる。例えば、リチウムと、鉄、コバルト、ニッケル及びマンガンからなる群より選ばれる1種以上の金属と、を少なくとも含有するリチウム含有金属複合酸化物が好ましい。リチウム含有金属複合酸化物として具体的には、リチウムマンガン複合酸化物、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物等が挙げられる。   The positive electrode active material is not particularly limited, and can be appropriately selected as necessary. For example, a lithium-containing metal composite oxide containing at least lithium and at least one metal selected from the group consisting of iron, cobalt, nickel, and manganese is preferable. Specific examples of the lithium-containing metal composite oxide include lithium manganese composite oxide, lithium cobalt composite oxide, and lithium nickel composite oxide.

リチウム含有金属複合酸化物としては、さらに、Al、V、Cr、Fe、Co、Sr、Mo、W、Mn、B及びMgからなる群より選ばれる少なくとも1種の金属で、リチウムサイト、又は、マンガン、コバルト、ニッケル等のサイトを置換したリチウム含有金属複合体も使用することができる。正極活物質は1種を単独で用いても、2種以上を組み合わせて用いてもよい。   The lithium-containing metal composite oxide further includes at least one metal selected from the group consisting of Al, V, Cr, Fe, Co, Sr, Mo, W, Mn, B, and Mg, a lithium site, or A lithium-containing metal composite in which sites such as manganese, cobalt, and nickel are substituted can also be used. A positive electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.

正極は、正極活物質と、結着剤と、結着剤を溶解または分散可能な溶剤と、必要に応じて添加される添加剤とを含む正極材スラリーを集電体の少なくとも一方の面に塗布し、次いで溶剤を乾燥して除去し、必要に応じて圧延して作製することができる。   The positive electrode has a positive electrode material slurry containing a positive electrode active material, a binder, a solvent capable of dissolving or dispersing the binder, and an additive added as necessary, on at least one surface of the current collector. It can be made by applying and then drying to remove the solvent and rolling if necessary.

結着剤、溶剤、添加剤及び集電体としては、リチウムイオン二次電池用負極の項で例示したものを同様に用いることができる。   As the binder, the solvent, the additive, and the current collector, those exemplified in the section of the negative electrode for lithium ion secondary batteries can be similarly used.

本発明のリチウムイオン二次電池に用いられる電解質は特に制限されず、公知のものを用いることができる。例えば、電解質を有機溶剤に溶解させた電解液を用いることにより、非水系リチウムイオン二次電池を製造することができる。   The electrolyte used in the lithium ion secondary battery of the present invention is not particularly limited, and a known one can be used. For example, a non-aqueous lithium ion secondary battery can be manufactured by using an electrolytic solution in which an electrolyte is dissolved in an organic solvent.

電解質としては、LiPF、LiClO、LiBF、LiClF、LiAsF、LiSbF、LiAlO、LiAlCl、LiN(CFSO、LiN(CSO、LiC(CFSO、LiCl、LiI等を挙げることができる。 As the electrolyte, LiPF 6, LiClO 4, LiBF 4, LiClF 4, LiAsF 6, LiSbF 6, LiAlO 4, LiAlCl 4, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiC ( CF 3 SO 2 ) 3 , LiCl, LiI and the like can be mentioned.

有機溶剤としては、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート等のカーボネート系溶剤;γ−ブチロラクトン等のラクトン系溶剤;1,2−ジメトキシエタン、ジメチルエーテル、ジエチルエーテル等の鎖状エーテル系溶剤;テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、4−メチルジオキソラン等の環状エーテル系溶剤;スルホラン等のスルホラン系溶剤;ジメチルスルホキシド等のスルホキシド系溶剤;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル系溶剤;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド系溶剤;ジエチレングリコール等のポリオキシアルキレングリコール系溶剤などが挙げられる。有機溶剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。   Examples of the organic solvent include carbonate solvents such as propylene carbonate, ethylene carbonate, and diethyl carbonate; lactone solvents such as γ-butyrolactone; chain ether solvents such as 1,2-dimethoxyethane, dimethyl ether, and diethyl ether; tetrahydrofuran, 2 -Cyclic ether solvents such as methyltetrahydrofuran, dioxolane, 4-methyldioxolane; sulfolane solvents such as sulfolane; sulfoxide solvents such as dimethyl sulfoxide; nitrile solvents such as acetonitrile, propionitrile, benzonitrile; N, N- Examples include amide solvents such as dimethylformamide and N, N-dimethylacetamide; and polyoxyalkylene glycol solvents such as diethylene glycol. An organic solvent may be used individually by 1 type, or may be used in combination of 2 or more type.

セパレータとしては、公知の各種セパレータを用いることができる。例えば、紙製、ポリプロピレン製、ポリエチレン製、ガラス繊維製、セラミック製等のセパレータが挙げられる。   Various known separators can be used as the separator. Examples of the separator include paper, polypropylene, polyethylene, glass fiber, and ceramic.

本発明のリチウムイオン二次電池の作製方法は、本発明のリチウムイオン二次電池用負極を用いること以外は特に制限はなく、公知の正極、リチウムイオン二次電池用電解液、セパレータ等の材料を用いて、公知の方法により作製することができる。   The method for producing the lithium ion secondary battery of the present invention is not particularly limited except that the negative electrode for lithium ion secondary batteries of the present invention is used, and materials such as known positive electrodes, electrolytes for lithium ion secondary batteries, separators, etc. Can be prepared by a known method.

本発明のリチウムイオン二次電池の構造は、特に限定されない。例えば、図6に示すように、正極および負極とセパレータとを円筒形状に捲回し、電池缶に封入した円筒型リチウムイオン二次電池が挙げられる。また、扁平渦巻状に巻回して巻回式極板群とし、これらを平板状として積層して積層式極板群とし、これら極板群を外装体中に封入した、角型構造のリチウムイオン二次電池が挙げられる。図6中、21は正極、22は負極、23はセパレータ、24は正極端子タブ、25は負極端子タブ、26は電池缶、27はガスケット、28は内圧弁、29はPTC(正温度係数抵抗)素子、30は正極蓋、31は正極内蓋である。   The structure of the lithium ion secondary battery of the present invention is not particularly limited. For example, as shown in FIG. 6, a cylindrical lithium ion secondary battery in which a positive electrode, a negative electrode, and a separator are wound into a cylindrical shape and sealed in a battery can is given. Moreover, it is wound in a flat spiral shape to form a wound-type electrode plate group, and these are laminated in a flat plate shape to form a laminated electrode plate group. A secondary battery is mentioned. In FIG. 6, 21 is a positive electrode, 22 is a negative electrode, 23 is a separator, 24 is a positive electrode terminal tab, 25 is a negative electrode terminal tab, 26 is a battery can, 27 is a gasket, 28 is an internal pressure valve, 29 is a PTC (positive temperature coefficient resistance) ) Element, 30 is a positive electrode lid, and 31 is a positive electrode inner lid.

リチウムイオン二次電池の種類は特に限定されず、ぺーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池などとして使用される。
以上で説明した本発明のリチウムイオン二次電池は、従来の炭素材料を負極材として用いたリチウムイオン二次電池と比較して高容量であり、サイクル特性に優れる。
The type of the lithium ion secondary battery is not particularly limited, and is used as a paper-type battery, a button-type battery, a coin-type battery, a stacked battery, a cylindrical battery, or the like.
The lithium ion secondary battery of the present invention described above has a higher capacity and excellent cycle characteristics than a lithium ion secondary battery using a conventional carbon material as a negative electrode material.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。尚、特に断りのない限り、「部」及び「%」は質量基準である。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Unless otherwise specified, “part” and “%” are based on mass.

<実施例1>
(複合粒子の作製)
一次粒子が黒鉛(d002=0.3358nm)である炭素質粒子(平均粒径=22μm)とシリコン粒子(薄片状)を均一に混合し、ボールミルを用いてメカニカル処理を行ってシリコン粒子を炭素質粒子に付着させ、複合粒子を作製した。
複合粒子の作製に用いた炭素質粒子の積算細孔容積及び飽和タップ密度、シリコン粒子のr及びlの平均値、複合粒子におけるシリコン粒子の割合を表1に示す。
<Example 1>
(Production of composite particles)
Carbonaceous particles (average particle size = 22 μm) whose primary particles are graphite (d 002 = 0.3358 nm) and silicon particles (flakes) are uniformly mixed, and mechanical treatment is performed using a ball mill to convert the silicon particles to carbon. A composite particle was prepared by adhering to a particle.
Table 1 shows the cumulative pore volume and saturation tap density of the carbonaceous particles used to produce the composite particles, the average values of r and l of the silicon particles, and the ratio of the silicon particles in the composite particles.

(リチウム二次電池の作製)
上記で作製した負極材を用いて、図6に示す構造の円筒型リチウムイオン二次電池を前記した手順で作製した。このリチウムイオン二次電池について、初期電池容量を確認した後、サイクル試験を行った。結果を表1に示す
(Production of lithium secondary battery)
Using the negative electrode material produced above, a cylindrical lithium ion secondary battery having the structure shown in FIG. 6 was produced according to the procedure described above. About this lithium ion secondary battery, after confirming initial stage battery capacity, the cycle test was done. The results are shown in Table 1.

<実施例2>
(複合粒子の作製)
一次粒子が黒鉛(d002=0.3360nm)である炭素質粒子(平均粒径=20μm)と、炭素質層を表面に形成したシリコン粒子(薄片状)を均一に混合し、ビーズミルを用いてメカニカル処理を行ってシリコン粒子を炭素質粒子に付着させ、複合粒子を作製した。
シリコン粒子の表面への炭素質層の形成は、CVD法によって行った。
複合粒子の作製に用いた炭素質粒子の積算細孔容積及び飽和タップ密度、シリコン粒子のr及びlの平均値、複合粒子におけるシリコン粒子の割合を表1に示す。
<Example 2>
(Production of composite particles)
Carbonaceous particles (average particle size = 20 μm) whose primary particles are graphite (d 002 = 0.3360 nm) and silicon particles (flakes) with a carbonaceous layer formed on the surface are uniformly mixed, and a bead mill is used. Mechanical treatment was performed to attach silicon particles to carbonaceous particles to produce composite particles.
Formation of the carbonaceous layer on the surface of the silicon particles was performed by a CVD method.
Table 1 shows the cumulative pore volume and saturation tap density of the carbonaceous particles used to produce the composite particles, the average values of r and l of the silicon particles, and the ratio of the silicon particles in the composite particles.

(リチウム二次電池の作製)
上記で作製した負極材を用いて、図6に示す構造の円筒型リチウムイオン二次電池を前記した手順で作製した。このリチウムイオン二次電池について、初期電池容量を確認した後、サイクル試験を行った。結果を表1に示す
(Production of lithium secondary battery)
Using the negative electrode material produced above, a cylindrical lithium ion secondary battery having the structure shown in FIG. 6 was produced according to the procedure described above. About this lithium ion secondary battery, after confirming initial stage battery capacity, the cycle test was done. The results are shown in Table 1.

<実施例3>
(複合粒子の作製)
一次粒子が黒鉛(d002=0.3360nm)である炭素質粒子(平均粒径=18μm)とシリコン粒子(薄片状)を均一に混合し、ビーズミルを用いてメカニカル処理を行ってシリコン粒子を炭素質粒子に付着させ、複合粒子を作製した。さらに、得られた複合粒子にポリ酢酸ビニルを加え、ブレンダーミキサーで混合した。この混合粉を窒素雰囲気中、800℃で熱処理して、複合粒子の表面に炭素質層を形成した。
複合粒子の作製に用いた炭素質粒子の積算細孔容積及び飽和タップ密度、シリコン粒子のr及びlの平均値、複合粒子におけるシリコン粒子の割合を表1に示す。
<Example 3>
(Production of composite particles)
Carbonaceous particles (average particle size = 18 μm) whose primary particles are graphite (d 002 = 0.3360 nm) and silicon particles (flaky) are uniformly mixed, and mechanical treatment is performed using a bead mill to convert the silicon particles to carbon. A composite particle was prepared by adhering to a particle. Furthermore, polyvinyl acetate was added to the obtained composite particles and mixed with a blender mixer. This mixed powder was heat-treated at 800 ° C. in a nitrogen atmosphere to form a carbonaceous layer on the surface of the composite particles.
Table 1 shows the cumulative pore volume and saturation tap density of the carbonaceous particles used to produce the composite particles, the average values of r and l of the silicon particles, and the ratio of the silicon particles in the composite particles.

(リチウム二次電池の作製)
上記で作製した負極材を用いて、図6に示す構造の円筒型リチウムイオン二次電池を前記した手順で作製した。このリチウムイオン二次電池について、初期電池容量を確認した後、サイクル試験を行った。結果を表1に示す。
(Production of lithium secondary battery)
Using the negative electrode material produced above, a cylindrical lithium ion secondary battery having the structure shown in FIG. 6 was produced according to the procedure described above. About this lithium ion secondary battery, after confirming initial stage battery capacity, the cycle test was done. The results are shown in Table 1.

<実施例4>
(複合粒子の作製)
一次粒子が黒鉛(d002=0.3358nm)である炭素質粒子(平均粒径=22μm)と、炭素質層を表面に形成したシリコン粒子(薄片状)を均一に混合し、ボールミルを用いてメカニカル処理を行ってシリコン粒子を炭素質粒子に付着させ、複合粒子を作製した。さらに、得られた複合粒子にコールタールピッチを加えてブレンダーミキサーで混合した。この混合粉を窒素雰囲気中、800℃で熱処理して、複合粒子の表面に炭素質層を形成した。
シリコン粒子の表面への炭素質層の形成は、シリコン粒子にポリ塩化ビニルを加え、ブレンダーミキサーで十分混合し、混合粉を窒素雰囲気中、800℃で加熱処理することにより行った。
複合粒子の作製に用いた炭素質粒子の積算細孔容積及び飽和タップ密度、シリコン粒子のr及びlの平均値、複合粒子におけるシリコン粒子の割合を表1に示す。
<Example 4>
(Production of composite particles)
Carbonaceous particles (average particle size = 22 μm) whose primary particles are graphite (d 002 = 0.3358 nm) and silicon particles (flakes) having a carbonaceous layer formed on the surface are uniformly mixed, and a ball mill is used. Mechanical treatment was performed to attach silicon particles to carbonaceous particles to produce composite particles. Furthermore, coal tar pitch was added to the obtained composite particles and mixed with a blender mixer. This mixed powder was heat-treated at 800 ° C. in a nitrogen atmosphere to form a carbonaceous layer on the surface of the composite particles.
Formation of the carbonaceous layer on the surface of the silicon particles was performed by adding polyvinyl chloride to the silicon particles, mixing well with a blender mixer, and heating the mixed powder at 800 ° C. in a nitrogen atmosphere.
Table 1 shows the cumulative pore volume and saturation tap density of the carbonaceous particles used to produce the composite particles, the average values of r and l of the silicon particles, and the ratio of the silicon particles in the composite particles.

(リチウム二次電池の作製)
上記で作製した負極材を用いて、図6に示す構造の円筒型リチウムイオン二次電池を前記した手順で作製した。このリチウムイオン二次電池について、初期電池容量を確認した後、サイクル試験を行った。結果を表1に示す。
(Production of lithium secondary battery)
Using the negative electrode material produced above, a cylindrical lithium ion secondary battery having the structure shown in FIG. 6 was produced according to the procedure described above. About this lithium ion secondary battery, after confirming initial stage battery capacity, the cycle test was done. The results are shown in Table 1.

<実施例5>
(複合粒子の作製)
一次粒子が黒鉛(d002=0.3358nm)である炭素質粒子(平均粒径=22μm)と、シリコン粒子(薄片状)を均一に混合し、ボールミルを用いてメカニカル処理を行ってシリコン粒子を炭素質粒子に付着させ、複合粒子を作製した。さらに、得られた複合粒子にコールタールピッチを加えてブレンダーミキサーで混合した。この混合粉を窒素雰囲気中、800℃で熱処理して、複合粒子の表面に炭素質層を形成した。
複合粒子の作製に用いた炭素質粒子の積算細孔容積及び飽和タップ密度、シリコン粒子のr及びlの平均値、複合粒子におけるシリコン粒子の割合を表1に示す。
<Example 5>
(Production of composite particles)
Carbonaceous particles (average particle size = 22 μm) whose primary particles are graphite (d 002 = 0.3358 nm) and silicon particles (flaky) are uniformly mixed, and mechanical treatment is performed using a ball mill to obtain silicon particles. Composite particles were prepared by adhering to carbonaceous particles. Furthermore, coal tar pitch was added to the obtained composite particles and mixed with a blender mixer. This mixed powder was heat-treated at 800 ° C. in a nitrogen atmosphere to form a carbonaceous layer on the surface of the composite particles.
Table 1 shows the cumulative pore volume and saturation tap density of the carbonaceous particles used to produce the composite particles, the average values of r and l of the silicon particles, and the ratio of the silicon particles in the composite particles.

(リチウム二次電池の作製)
上記で作製した負極材を用いて、図6に示す構造の円筒型リチウムイオン二次電池を前記した手順で作製した。このリチウムイオン二次電池について、初期電池容量を確認した後、サイクル試験を行った。結果を表1に示す。
(Production of lithium secondary battery)
Using the negative electrode material produced above, a cylindrical lithium ion secondary battery having the structure shown in FIG. 6 was produced according to the procedure described above. About this lithium ion secondary battery, after confirming initial stage battery capacity, the cycle test was done. The results are shown in Table 1.

<実施例6>
(複合粒子の作製)
複合粒子中のシリコン粒子の割合を表1に示すように変更した以外は実施例5と同様にして、複合粒子を作製した。
複合粒子の作製に用いた炭素質粒子の積算細孔容積及び飽和タップ密度、シリコン粒子のr及びlの平均値、複合粒子におけるシリコン粒子の割合を表1に示す。
<Example 6>
(Production of composite particles)
Composite particles were produced in the same manner as in Example 5 except that the ratio of silicon particles in the composite particles was changed as shown in Table 1.
Table 1 shows the cumulative pore volume and saturation tap density of the carbonaceous particles used to produce the composite particles, the average values of r and l of the silicon particles, and the ratio of the silicon particles in the composite particles.

(リチウム二次電池の作製)
上記で作製した負極材を用いて、図6に示す構造の円筒型リチウムイオン二次電池を前記した手順で作製した。このリチウムイオン二次電池について、初期電池容量を確認した後、サイクル試験を行った。結果を表1に示す。
(Production of lithium secondary battery)
Using the negative electrode material produced above, a cylindrical lithium ion secondary battery having the structure shown in FIG. 6 was produced according to the procedure described above. About this lithium ion secondary battery, after confirming initial stage battery capacity, the cycle test was done. The results are shown in Table 1.

<比較例>
市販の黒鉛粉末(d002=0.3358nm、平均粒径=20μm)に、シリコン粒子(平均粒径=1μm)を混合し、シリコン粒子を炭素質粒子に付着させる工程を行わずに負極材を作製した。
黒鉛粉末の積算細孔容積及び飽和タップ密度、シリコン粒子のr及びlの平均値、及び負極材におけるシリコン粒子の割合を表1に示す。
<Comparative example>
A commercially available graphite powder (d 002 = 0.3358 nm, average particle size = 20 μm) is mixed with silicon particles (average particle size = 1 μm), and the negative electrode material is prepared without performing the step of adhering silicon particles to carbonaceous particles. Produced.
Table 1 shows the cumulative pore volume and saturation tap density of graphite powder, the average values of r and l of silicon particles, and the ratio of silicon particles in the negative electrode material.

(リチウム二次電池の作製)
上記で作製した負極材を用いて、図6に示す構造の円筒型リチウムイオン二次電池を前記した手順で作製した。このリチウムイオン二次電池について、初期電池容量を確認した後、サイクル試験を行った。結果を表1に示す。
(Production of lithium secondary battery)
Using the negative electrode material produced above, a cylindrical lithium ion secondary battery having the structure shown in FIG. 6 was produced according to the procedure described above. About this lithium ion secondary battery, after confirming initial stage battery capacity, the cycle test was done. The results are shown in Table 1.

表1に示す通り、実施例1〜実施例6のリチウムイオン二次電池は、比較例のリチウムイオン二次電池に比べて電池容量が大きく、100サイクル後の容量維持率も高く、良好なサイクル寿命が得られた。これは、炭素質粒子に対するシリコン粒子の付着力が大きく、充放電を繰り返しても良好な電気的導通が維持できたためと考察される。   As shown in Table 1, the lithium ion secondary batteries of Examples 1 to 6 have a large battery capacity compared to the lithium ion secondary battery of the comparative example, a high capacity retention rate after 100 cycles, and a good cycle. Life span was obtained. This is considered because the adhesion of silicon particles to the carbonaceous particles is large, and good electrical continuity was maintained even after repeated charge and discharge.

11 炭素質粒子
12 一次粒子
13 空隙
14、14a、14b、14c シリコン粒子
15 炭素質層
16 炭素質被覆シリコン粒子
17 炭素質層
18 炭素質層
21 正極
22 負極
23 セパレータ
24 正極端子タブ
25 負極端子タブ
26 電池缶
27 ガスケット
28 内圧弁
29 PTC(正温度係数抵抗)素子
30 正極蓋
31 正極内蓋
11 Carbonaceous particles 12 Primary particles 13 Voids 14, 14a, 14b, 14c Silicon particles 15 Carbonaceous layer 16 Carbonaceous coated silicon particles 17 Carbonaceous layer 18 Carbonaceous layer 21 Positive electrode 22 Negative electrode 23 Separator 24 Positive electrode terminal tab 25 Negative electrode terminal tab 26 Battery Can 27 Gasket 28 Internal Pressure Valve 29 PTC (Positive Temperature Coefficient Resistance) Element 30 Cathode Cover 31 Cathode Inner Cover

Claims (12)

炭素質粒子と、最長径lと最短径tとの比r(t/l)が0.5以下であり前記炭素質粒子に付着しているシリコン粒子と、を含む複合粒子である、リチウムイオン二次電池用負極材。   Lithium ions, which are composite particles comprising carbonaceous particles, and silicon particles adhering to the carbonaceous particles having a ratio r (t / l) of the longest diameter l to the shortest diameter t of 0.5 or less. Secondary battery negative electrode material. 前記炭素質粒子が粒子内部に空隙を有する、請求項1に記載のリチウムイオン二次電池用負極材。   The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the carbonaceous particles have voids inside the particles. 前記炭素質粒子において、サイズが0.1μm〜1μmの範囲である空隙についての積算細孔容積が0.05×10−3 /kg〜0.4×10−3 /kgである、請求項2に記載のリチウムイオン二次電池用負極材。 In the carbonaceous particles, size is the cumulative pore volume of the voids is in the range of 0.1μm~1μm is 0.05 × 10 -3 m 3 /kg~0.4×10 -3 m 3 / kg The negative electrode material for lithium ion secondary batteries according to claim 2. 前記炭素質粒子が黒鉛粒子である、請求項1〜請求項3のいずれか1項に記載のリチウムイオン二次電池用負極材。   The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the carbonaceous particles are graphite particles. 前記炭素質粒子の飽和タップ密度が0.4 g/cm〜0.9 g/cmである、請求項1〜請求項4のいずれか1項に記載のリチウムイオン二次電池用負極材。 5. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein a saturation tap density of the carbonaceous particles is 0.4 g / cm 3 to 0.9 g / cm 3. . 前記シリコン粒子の最長径lと最短径tとの比r(t/l)が0.001以上である、請求項1〜請求項5のいずれか1項に記載のリチウムイオン二次電池用負極材。   The negative electrode for a lithium ion secondary battery according to any one of claims 1 to 5, wherein a ratio r (t / l) between the longest diameter l and the shortest diameter t of the silicon particles is 0.001 or more. Wood. 前記シリコン粒子の最長径lが10nm〜5000nmである、請求項1〜請求項6のいずれか1項に記載のリチウムイオン二次電池用負極材。   The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 6, wherein the longest diameter l of the silicon particles is 10 nm to 5000 nm. 前記シリコン粒子の表面の一部または全部が炭素質材料で被覆されている、請求項1〜請求項7のいずれか1項に記載のリチウムイオン二次電池用負極材。   The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 7, wherein a part or all of the surface of the silicon particles is coated with a carbonaceous material. 前記複合粒子の表面の一部または全部が炭素質材料で被覆されている、請求項1〜請求項8のいずれか1項に記載のリチウムイオン二次電池用負極材。   The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 8, wherein a part or all of the surface of the composite particles is coated with a carbonaceous material. 前記シリコン粒子の割合が、前記複合粒子の全質量の3質量%〜50質量%である、請求項1〜請求項9のいずれか1項に記載のリチウムイオン二次電池用負極材。   The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 9, wherein a ratio of the silicon particles is 3% by mass to 50% by mass with respect to a total mass of the composite particles. 請求項1〜請求項10のいずれか1項に記載のリチウムイオン二次電池用負極材を含む、リチウムイオン二次電池用負極。   The negative electrode for lithium ion secondary batteries containing the negative electrode material for lithium ion secondary batteries of any one of Claims 1-10. 請求項11に記載のリチウムイオン二次電池用負極と、正極と、電解質とを含むリチウムイオン二次電池。
The lithium ion secondary battery containing the negative electrode for lithium ion secondary batteries of Claim 11, a positive electrode, and electrolyte.
JP2014237109A 2014-11-21 2014-11-21 Negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery Expired - Fee Related JP6503700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014237109A JP6503700B2 (en) 2014-11-21 2014-11-21 Negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014237109A JP6503700B2 (en) 2014-11-21 2014-11-21 Negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2016100225A true JP2016100225A (en) 2016-05-30
JP6503700B2 JP6503700B2 (en) 2019-04-24

Family

ID=56075803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014237109A Expired - Fee Related JP6503700B2 (en) 2014-11-21 2014-11-21 Negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6503700B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018110076A (en) * 2017-01-04 2018-07-12 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018113187A (en) * 2017-01-12 2018-07-19 日立化成株式会社 Negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
WO2018174300A1 (en) * 2017-03-24 2018-09-27 日産自動車株式会社 Non-aqueous electrolyte secondary battery negative electrode material, and negative electrode and non-aqueous electrolyte secondary battery using non-aqueous electrolyte secondary battery negative electrode material
JP2018534720A (en) * 2015-08-28 2018-11-22 エナジーツー・テクノロジーズ・インコーポレイテッドEnerg2 Technologies, Inc. Novel material with very durable insertion of lithium and method for its production
US10252654B2 (en) 2016-05-19 2019-04-09 Toyota Boshoku Kabushiki Kaisha Seat back frame
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
JP2022510190A (en) * 2018-12-17 2022-01-26 トカイ カーボン コリア カンパニー,リミティド Negative electrode active material, its manufacturing method, and lithium secondary battery containing it
CN114051663A (en) * 2021-03-16 2022-02-15 宁德新能源科技有限公司 Cathode material, preparation method thereof, electrochemical device and electronic device
JP2022515938A (en) * 2019-12-06 2022-02-24 リブエナジー カンパニー リミテッド Electrode active material for secondary batteries, electrodes and secondary batteries containing the same, and methods for manufacturing electrode active materials.
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11394021B2 (en) 2018-04-05 2022-07-19 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
US11495793B2 (en) 2013-03-14 2022-11-08 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
KR20230017300A (en) * 2020-08-18 2023-02-03 그룹14 테크놀로지스, 인코포레이티드 Manufacture of silicon-carbon composite materials
US11611071B2 (en) 2017-03-09 2023-03-21 Group14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
US11611073B2 (en) 2015-08-14 2023-03-21 Group14 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
US11664489B2 (en) 2017-03-24 2023-05-30 Nissan Motor Co., Ltd. Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US11661517B2 (en) 2014-03-14 2023-05-30 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US11707728B2 (en) 2013-11-05 2023-07-25 Group14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US11732079B2 (en) 2012-02-09 2023-08-22 Group14 Technologies, Inc. Preparation of polymeric resins and carbon materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181870A (en) * 2006-12-26 2008-08-07 Mitsubishi Chemicals Corp Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same composite graphite particles, negative electrode, and nonaqueous secondary battery
JP2013084601A (en) * 2011-10-05 2013-05-09 Samsung Sdi Co Ltd Negative electrode active material and lithium battery employing the same material
JP2014038846A (en) * 2012-08-14 2014-02-27 Samsung Sdi Co Ltd Composite negative electrode active material, negative electrode including the same, lithium battery, and manufacturing method of composite negative electrode active material
JP2014157817A (en) * 2013-02-15 2014-08-28 Samsung Sdi Co Ltd Negative active material, negative electrode employing the same, and lithium battery employing negative electrode
JP2014165018A (en) * 2013-02-25 2014-09-08 Mitsubishi Chemicals Corp Carbon material for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181870A (en) * 2006-12-26 2008-08-07 Mitsubishi Chemicals Corp Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same composite graphite particles, negative electrode, and nonaqueous secondary battery
JP2013084601A (en) * 2011-10-05 2013-05-09 Samsung Sdi Co Ltd Negative electrode active material and lithium battery employing the same material
JP2014038846A (en) * 2012-08-14 2014-02-27 Samsung Sdi Co Ltd Composite negative electrode active material, negative electrode including the same, lithium battery, and manufacturing method of composite negative electrode active material
JP2014157817A (en) * 2013-02-15 2014-08-28 Samsung Sdi Co Ltd Negative active material, negative electrode employing the same, and lithium battery employing negative electrode
JP2014165018A (en) * 2013-02-25 2014-09-08 Mitsubishi Chemicals Corp Carbon material for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11732079B2 (en) 2012-02-09 2023-08-22 Group14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US11495793B2 (en) 2013-03-14 2022-11-08 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US11707728B2 (en) 2013-11-05 2023-07-25 Group14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US11661517B2 (en) 2014-03-14 2023-05-30 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US11942630B2 (en) 2015-08-14 2024-03-26 Group14 Technologies, Inc. Nano-featured porous silicon materials
US11611073B2 (en) 2015-08-14 2023-03-21 Group14 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
US11437621B2 (en) 2015-08-28 2022-09-06 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
JP2018534720A (en) * 2015-08-28 2018-11-22 エナジーツー・テクノロジーズ・インコーポレイテッドEnerg2 Technologies, Inc. Novel material with very durable insertion of lithium and method for its production
US11495798B1 (en) 2015-08-28 2022-11-08 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10923722B2 (en) 2015-08-28 2021-02-16 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
JP7115976B2 (en) 2015-08-28 2022-08-09 グループ14・テクノロジーズ・インコーポレイテッド Novel materials with very durable intercalation of lithium and methods for their production
US11646419B2 (en) 2015-08-28 2023-05-09 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10252654B2 (en) 2016-05-19 2019-04-09 Toyota Boshoku Kabushiki Kaisha Seat back frame
JP2018110076A (en) * 2017-01-04 2018-07-12 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018113187A (en) * 2017-01-12 2018-07-19 日立化成株式会社 Negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
US11611071B2 (en) 2017-03-09 2023-03-21 Group14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
US11664489B2 (en) 2017-03-24 2023-05-30 Nissan Motor Co., Ltd. Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
WO2018174300A1 (en) * 2017-03-24 2018-09-27 日産自動車株式会社 Non-aqueous electrolyte secondary battery negative electrode material, and negative electrode and non-aqueous electrolyte secondary battery using non-aqueous electrolyte secondary battery negative electrode material
EP3605674A4 (en) * 2017-03-24 2020-03-25 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery negative electrode material, and negative electrode and non-aqueous electrolyte secondary battery using non-aqueous electrolyte secondary battery negative electrode material
US10903488B2 (en) 2017-03-24 2021-01-26 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery negative electrode material, and negative electrode and non-aqueous electrolyte secondary battery using the same
US11394021B2 (en) 2018-04-05 2022-07-19 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
JP2022510190A (en) * 2018-12-17 2022-01-26 トカイ カーボン コリア カンパニー,リミティド Negative electrode active material, its manufacturing method, and lithium secondary battery containing it
JP2022515938A (en) * 2019-12-06 2022-02-24 リブエナジー カンパニー リミテッド Electrode active material for secondary batteries, electrodes and secondary batteries containing the same, and methods for manufacturing electrode active materials.
US11611070B2 (en) 2020-08-18 2023-03-21 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low Z
KR20230158629A (en) * 2020-08-18 2023-11-20 그룹14 테크놀로지스, 인코포레이티드 Manufacturing of silicon-carbon composites materials
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
US11492262B2 (en) 2020-08-18 2022-11-08 Group14Technologies, Inc. Silicon carbon composites comprising ultra low Z
KR102640784B1 (en) 2020-08-18 2024-02-28 그룹14 테크놀로지스, 인코포레이티드 Manufacturing of silicon-carbon composites materials
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
KR20230017300A (en) * 2020-08-18 2023-02-03 그룹14 테크놀로지스, 인코포레이티드 Manufacture of silicon-carbon composite materials
US11498838B2 (en) 2020-08-18 2022-11-15 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low z
US11804591B2 (en) 2020-08-18 2023-10-31 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composite materials comprising ultra low Z
KR102600078B1 (en) 2020-08-18 2023-11-08 그룹14 테크놀로지스, 인코포레이티드 Manufacturing of silicon-carbon composite materials
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
WO2022193123A1 (en) * 2021-03-16 2022-09-22 宁德新能源科技有限公司 Negative electrode material and preparation method therefor, electrochemical device, and electronic device
CN114051663A (en) * 2021-03-16 2022-02-15 宁德新能源科技有限公司 Cathode material, preparation method thereof, electrochemical device and electronic device
CN114051663B (en) * 2021-03-16 2024-06-21 宁德新能源科技有限公司 Negative electrode material, preparation method thereof, electrochemical device and electronic device

Also Published As

Publication number Publication date
JP6503700B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP6503700B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP6609909B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5927788B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4974597B2 (en) Negative electrode and negative electrode active material for lithium ion secondary battery
WO2018123751A1 (en) Non-aqueous electrolyte secondary cell
JP7279757B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2008112710A (en) Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP3711726B2 (en) Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof
JP2008277231A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
US7947394B2 (en) Non-aqueous electrolyte secondary battery-use cathode material, production method therefor, non-aqueous electrolyte secondary battery-use cathode and non-aqueous electrolyte secondary battery using the cathode material
JP2011192563A (en) Nonaqueous secondary battery
JP2018110076A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2015524154A (en) Electrode formulations containing graphene
JP2003168429A (en) Nonaqueous electrolyte secondary battery
JP2015069969A (en) Positive electrode for lithium secondary battery, and lithium secondary battery
JP2009146580A (en) Negative electrode active material sheet for lithium ion secondary battery, and manufacturing method thereof
WO2015132845A1 (en) All-solid-state battery
JP6797519B2 (en) Negative electrode material for lithium secondary battery and its manufacturing method, composition for forming negative electrode active material layer, negative electrode for lithium secondary battery, lithium secondary battery, and resin composite silicon particles
JP6939880B2 (en) Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries
JP2020187988A (en) Manufacturing method of negative electrode material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2019186828A1 (en) Negative electrode material for lithium ion secondary battery, production method for negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5990872B2 (en) Lithium secondary battery negative electrode material, lithium secondary battery negative electrode and lithium secondary battery
JP2010267629A (en) Negative electrode for lithium secondary battery, and lithium secondary battery
JP2015230794A (en) Conductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R151 Written notification of patent or utility model registration

Ref document number: 6503700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees