JP2016099095A - Control device, air conditioner and control method - Google Patents

Control device, air conditioner and control method Download PDF

Info

Publication number
JP2016099095A
JP2016099095A JP2014238638A JP2014238638A JP2016099095A JP 2016099095 A JP2016099095 A JP 2016099095A JP 2014238638 A JP2014238638 A JP 2014238638A JP 2014238638 A JP2014238638 A JP 2014238638A JP 2016099095 A JP2016099095 A JP 2016099095A
Authority
JP
Japan
Prior art keywords
temperature
compressor
heat exchanger
outside air
crankcase heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014238638A
Other languages
Japanese (ja)
Other versions
JP6492358B2 (en
Inventor
哲爾 藤野
Tetsuji Fujino
哲爾 藤野
村上 健一
Kenichi Murakami
健一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2014238638A priority Critical patent/JP6492358B2/en
Priority to EP15195064.9A priority patent/EP3026372A1/en
Publication of JP2016099095A publication Critical patent/JP2016099095A/en
Application granted granted Critical
Publication of JP6492358B2 publication Critical patent/JP6492358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/024Compressor control by controlling the electric parameters, e.g. current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/15Control issues during shut down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control device for a crank case heater for reducing electric power consumption while a compressor is stopped.SOLUTION: A control device includes: a temperature acquisition section for acquiring a temperature of a compressor, a temperature of a heat exchanger and an outside air temperature in a refrigerant circuit having the heat exchanger and the compressor connected to the heat exchanger; and an energization control section for performing on-control or off-control of a crank case heater for heating the compressor on the basis of a temperature difference between the temperature of the compressor and the temperature of the heat exchanger, when the outside air temperature acquired by the temperature acquisition section is a temperature included in one range of a plurality of preset temperature zones, while the compressor is stopped.SELECTED DRAWING: Figure 2

Description

本発明は、クランクケースヒータ―の制御装置、空調装置及び制御方法に関する。   The present invention relates to a crankcase heater control device, an air conditioner, and a control method.

空調設備で室外に設けられた圧縮機は、運転停止中に外気によって冷却される。冷媒は空調設備内のより低い温度の場所に移動する性質がある為、圧縮機の温度が低下すると、室外熱交換器など他の装置に存在していた冷媒が圧縮機に移動し、圧縮機に冷媒が溜まり込む現象が生じる。冷媒が溜まり込むと冷媒の液圧縮が生じたり、圧縮機の潤滑油が冷媒に溶け込み圧縮機の油膜が未形成な状態が生じたりして、圧縮機の起動時に圧縮機故障に至ることがある。その為、圧縮機にクランクケースヒータとよばれるヒータを設け、このクランクケースヒータを動作させて停止中の圧縮機を温めることにより、圧縮機への冷媒の溜まり込みを防いでいる。   The compressor provided outside the room with the air conditioning equipment is cooled by the outside air while the operation is stopped. Since the refrigerant has the property of moving to a lower temperature place in the air conditioning equipment, when the temperature of the compressor drops, the refrigerant present in other devices such as the outdoor heat exchanger moves to the compressor, and the compressor This causes a phenomenon in which the refrigerant accumulates. If the refrigerant accumulates, liquid compression of the refrigerant may occur, or the compressor lubricating oil may dissolve in the refrigerant and the oil film of the compressor may not be formed, resulting in a compressor failure when starting the compressor . Therefore, a heater called a crankcase heater is provided in the compressor, and the crankcase heater is operated to warm the stopped compressor, thereby preventing the refrigerant from accumulating in the compressor.

このクランクケースヒータの動作については、例えば、圧縮機の停止中に一律にクランクケースヒータを起動させるように制御したり、外気温によってクランクケースヒータをオン/オフする制御を行ったりしていた。また、例えば、特許文献1には、圧縮機の温度と、室内熱交換器の温度と、室外熱交換器の温度とを取得し、圧縮機の温度が、室内熱交換器の温度、又は、室外熱交換器の温度より所定の温度以上低い温度となると、クランクケースヒータをオンにする制御方法が記載されている。   As for the operation of the crankcase heater, for example, the crankcase heater is controlled to be uniformly started while the compressor is stopped, or the crankcase heater is turned on / off according to the outside air temperature. Further, for example, in Patent Document 1, the temperature of the compressor, the temperature of the indoor heat exchanger, and the temperature of the outdoor heat exchanger are acquired, and the temperature of the compressor is the temperature of the indoor heat exchanger, or A control method is described in which the crankcase heater is turned on when the temperature is lower than the temperature of the outdoor heat exchanger by a predetermined temperature or more.

特開2008−170052号公報JP 2008-170052 A

しかし、特許文献1の方法は、外気温に関わらず、圧縮機の温度と室内熱交換器又は室外熱交換器の温度との相対的な関係で制御を行うので、例えば、外気温が低い場合でもクランクケースヒータが動作しない可能性がある。その場合、上述の圧縮機故障の原因となる冷媒の溜まり込みが生じる可能性がある。また、クランクケースヒータを動作させる必要が無い温度帯においてもクランクケースヒータをオンにする可能性がある為、省エネの観点から課題が残るものであった。   However, since the method of Patent Document 1 controls the relative relationship between the temperature of the compressor and the temperature of the indoor heat exchanger or the outdoor heat exchanger regardless of the outside air temperature, for example, when the outside air temperature is low However, the crankcase heater may not work. In that case, there is a possibility that the accumulation of the refrigerant causing the above-described compressor failure may occur. Moreover, since there is a possibility of turning on the crankcase heater even in a temperature range where it is not necessary to operate the crankcase heater, there remains a problem from the viewpoint of energy saving.

そこでこの発明は、上述の課題を解決することのできる制御装置、空調装置及び制御方法を提供することを目的としている。   Then, this invention aims at providing the control apparatus, air conditioning apparatus, and control method which can solve the above-mentioned subject.

本発明の第1の態様は、熱交換器と、熱交換器と接続された圧縮機とを備える冷媒回路における前記圧縮機の温度と、前記熱交換器の温度と、外気温と、を取得する温度取得部と、前記圧縮機の停止中に、前記温度取得部が取得した外気温が予め定めた複数の温度帯のうちの一つの範囲に含まれる温度である場合、前記圧縮機の温度と前記熱交換器の温度の温度差に基づいて、前記圧縮機を加熱するクランクケースヒータのオン制御又はオフ制御を行う通電制御部と、を備える制御装置である。   A first aspect of the present invention acquires a temperature of the compressor, a temperature of the heat exchanger, and an outside air temperature in a refrigerant circuit including a heat exchanger and a compressor connected to the heat exchanger. And the temperature of the compressor when the outside temperature acquired by the temperature acquisition unit is a temperature included in one of a plurality of predetermined temperature zones while the compressor is stopped. And an energization control unit that performs on-control or off-control of a crankcase heater that heats the compressor based on a temperature difference between the temperatures of the heat exchanger.

本発明の第2の態様における前記通電制御部は、前記圧縮機の温度から前記熱交換器の温度を減じた温度差が第一閾値以上の場合に前記クランクケースヒータをオンにし、前記第一閾値より低い温度である第二閾値以下の場合に前記クランクケースヒータをオフにする。   The energization control unit according to the second aspect of the present invention turns on the crankcase heater when the temperature difference obtained by subtracting the temperature of the heat exchanger from the temperature of the compressor is equal to or greater than a first threshold, The crankcase heater is turned off when the temperature is lower than the second threshold value, which is lower than the threshold value.

本発明の第3の態様における前記通電制御部は、前記温度差に関わらず、前記取得した外気温が所定の時間上昇し続けると前記クランクケースヒータをオンにする。   The energization control unit according to the third aspect of the present invention turns on the crankcase heater when the acquired outside air temperature continues to rise for a predetermined time regardless of the temperature difference.

本発明の第4の態様では、前記予め定めた複数の温度帯として3つの温度帯を設定し、前記予め定めた複数の温度帯のうちの一つは、当該3つの温度帯のうち中間の温度帯であって、前記通電制御部は、前記取得した外気温が、前記3つの温度帯のうち最も温度の低い温度帯に含まれる温度である場合、クランクケースヒータをオンにし、最も温度の高い温度帯に含まれる温度である場合、クランクケースヒータをオフにする。   In the fourth aspect of the present invention, three temperature zones are set as the plurality of predetermined temperature zones, and one of the plurality of predetermined temperature zones is an intermediate of the three temperature zones. In the temperature zone, the energization control unit turns on the crankcase heater when the acquired outside air temperature is a temperature included in the temperature zone having the lowest temperature among the three temperature zones. When the temperature is within the high temperature range, the crankcase heater is turned off.

本発明の第5の態様における前記第一閾値は、1.5℃である。   The first threshold value in the fifth aspect of the present invention is 1.5 ° C.

本発明の第6の態様における前記第二閾値は、0℃である。   The second threshold value in the sixth aspect of the present invention is 0 ° C.

本発明の第7の態様の前記圧縮機温度は、前記圧縮機のドーム下の温度、又は、前記圧縮機の吐出口温度である。   The compressor temperature according to the seventh aspect of the present invention is the temperature under the dome of the compressor or the discharge port temperature of the compressor.

本発明の第8の態様は、圧縮機と、前記圧縮機に設けられたクランクケースヒータと、前記圧縮機に接続された室外熱交換器と、を備える冷媒回路を有した空調装置において、上述のうち何れか1つに記載の制御装置、を備える空調装置である。   According to an eighth aspect of the present invention, there is provided an air conditioner having a refrigerant circuit including a compressor, a crankcase heater provided in the compressor, and an outdoor heat exchanger connected to the compressor. It is an air conditioner provided with the control apparatus as described in any one of these.

本発明の第9の態様は、熱交換器と、熱交換器と接続された圧縮機とを備える冷媒回路における圧縮機を加熱するクランクケースヒータの制御方法であって、前記圧縮機の温度と、前記熱交換器の温度と、外気温と、を取得し、取得した前記外気温が予め定めた複数の温度帯のうちの一つの範囲に含まれる温度である場合、前記圧縮機の温度と前記熱交換器の温度の温度差に基づいて、前記クランクケースヒータのオン制御又はオフ制御を行う、制御方法である。   According to a ninth aspect of the present invention, there is provided a crankcase heater control method for heating a compressor in a refrigerant circuit including a heat exchanger and a compressor connected to the heat exchanger, the temperature of the compressor being When the temperature of the heat exchanger and the outside air temperature are acquired, and the acquired outside air temperature is a temperature included in one of a plurality of predetermined temperature zones, the temperature of the compressor It is a control method which performs on control or off control of the crankcase heater based on the temperature difference of the temperature of the heat exchanger.

本発明によれば、圧縮機停止中のクランクケースヒータのオン/オフ制御を最適化することにより、省エネ化が可能になる。   According to the present invention, it is possible to save energy by optimizing the on / off control of the crankcase heater while the compressor is stopped.

本発明の一実施形態における冷媒回路の一例を示す図である。It is a figure which shows an example of the refrigerant circuit in one Embodiment of this invention. 本発明の一実施形態における制御装置の概略ブロック図である。It is a schematic block diagram of the control apparatus in one Embodiment of this invention. 本発明の一実施形態におけるクランクケースヒータのオン/オフ制御に用いる外気温の温度帯を説明する図である。It is a figure explaining the temperature zone of the outside temperature used for on / off control of the crankcase heater in one embodiment of the present invention. 本発明の一実施形態における制御装置の処理フロー図であるIt is a processing flowchart of the control apparatus in one Embodiment of this invention. 本発明の一実施形態における条件B1の判定処理のフロー図である。It is a flowchart of the judgment process of condition B1 in one Embodiment of this invention. 本発明の一実施形態における条件B2の判定処理のフロー図である。It is a flowchart of the judgment process of condition B2 in one Embodiment of this invention. 本発明の一実施形態における条件B2の判定に用いるオン領域とオフ領域を説明する図である。It is a figure explaining the ON area | region and OFF area | region used for determination of condition B2 in one Embodiment of this invention. 外気温上昇時の圧縮機および室外熱交換器の温度の挙動の一例を示す図である。It is a figure which shows an example of the behavior of the temperature of the compressor at the time of external temperature rise, and an outdoor heat exchanger.

<第一実施形態>
以下、本発明の一実施形態によるクランクケースヒータの制御装置を図1〜図8を参照して説明する。
図1は、本発明の一実施形態における冷媒回路の一例を示す図である。
図1が示すとおり冷媒回路は、圧縮機1、室内熱交換器2、膨張弁3、室外熱交換器4、四方弁5、及びそれらを接続する配管6を備えて構成される。
圧縮機1は、冷媒を圧縮し、圧縮した冷媒を冷媒回路に供給する。室内熱交換器2は、冷媒と室内の空気との間で熱交換を行う。室内熱交換器2は、冷房運転時には、蒸発器として用いられ室内から吸熱し、暖房運転時には、凝縮器として用いられ室内へ放熱する。室外熱交換器4は、冷媒と室外の空気との間で熱交換を行う。膨張弁3は、凝縮器で熱交換をすることで液化した高圧の冷媒を膨張させることで低圧化する。室外熱交換器4は、冷房運転時には、凝縮器として用いられ室外へ放熱し、暖房運転時には、蒸発器として用いられ室外から吸熱する。四方弁5は、暖房運転時と冷房運転時とで冷媒の流通する方向を切り替える。冷媒は、冷房運転時には、矢印7の方向に流通し、暖房運転時には、矢印8の方向に流通する。
<First embodiment>
Hereinafter, a control device for a crankcase heater according to an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram illustrating an example of a refrigerant circuit according to an embodiment of the present invention.
As shown in FIG. 1, the refrigerant circuit includes a compressor 1, an indoor heat exchanger 2, an expansion valve 3, an outdoor heat exchanger 4, a four-way valve 5, and a pipe 6 connecting them.
The compressor 1 compresses the refrigerant and supplies the compressed refrigerant to the refrigerant circuit. The indoor heat exchanger 2 performs heat exchange between the refrigerant and indoor air. The indoor heat exchanger 2 is used as an evaporator during the cooling operation and absorbs heat from the room, and is used as a condenser during the heating operation and dissipates heat to the room. The outdoor heat exchanger 4 performs heat exchange between the refrigerant and the outdoor air. The expansion valve 3 reduces the pressure by expanding the high-pressure refrigerant liquefied by exchanging heat with the condenser. The outdoor heat exchanger 4 is used as a condenser to radiate heat to the outside during cooling operation, and is used as an evaporator to absorb heat from the outside during heating operation. The four-way valve 5 switches the direction in which the refrigerant flows between the heating operation and the cooling operation. The refrigerant flows in the direction of arrow 7 during the cooling operation, and flows in the direction of arrow 8 during the heating operation.

圧縮機1は、圧縮機1のドーム(ケーシング)下、あるいは、圧縮機1の吐出口付近のうち少なくとも一方に温度サーミスタが設けられている。符号11は、圧縮機1のドーム下に設けられた温度サーミスタを示している。符号12は、圧縮機1の吐出口に設けられた温度サーミスタを示している。また、室外には、外気温を測定するための温度サーミスタ13が設けられ、室外熱交換器4には、室外熱交換器4の温度を測定するために、温度サーミスタ14A、14Bが室外熱交換器4の異なる位置に設けられている。
また、圧縮機1には、圧縮機1を加熱するためのクランクケースヒータ9が設けられている。符号20は、クランクケースヒータ9のオン/オフを制御する制御装置である。クランクケースヒータ9は、圧縮機1に冷媒が溜まり込むことによって生じる液圧縮・油膜未形成による圧縮機1の故障を防ぐために設けられている。冷媒の圧縮機への溜まり込みは、通常、外気温が低下した場合に大きくなる。外気温が低下すると、それに伴い、圧縮機1や室外熱交換器4の温度も低下するが、室外熱交換器4の温度が先に低下し、最初は室外熱交換器4に冷媒が溜まり込む。しかし、外気温が上昇すると、圧縮機1の熱容量は大きく、圧縮機1の温度上昇が遅いため、冷媒は、室外熱交換器4から圧縮機1に移動し、圧縮機1に溜まり込むようになる。次に図8を用いて、圧縮機1の温度と室外熱交換器4の温度の変化について具体的に説明する。
The compressor 1 is provided with a temperature thermistor under the dome (casing) of the compressor 1 or at least one of the vicinity of the discharge port of the compressor 1. Reference numeral 11 denotes a temperature thermistor provided under the dome of the compressor 1. Reference numeral 12 denotes a temperature thermistor provided at the discharge port of the compressor 1. In addition, a temperature thermistor 13 for measuring the outside air temperature is provided outside, and the temperature thermistors 14A and 14B are provided in the outdoor heat exchanger 4 to measure the temperature of the outdoor heat exchanger 4. It is provided at a different position of the vessel 4.
Further, the compressor 1 is provided with a crankcase heater 9 for heating the compressor 1. Reference numeral 20 denotes a control device that controls on / off of the crankcase heater 9. The crankcase heater 9 is provided in order to prevent a failure of the compressor 1 due to liquid compression and no oil film formation caused by the accumulation of refrigerant in the compressor 1. The accumulation of refrigerant in the compressor usually increases when the outside air temperature decreases. When the outside air temperature decreases, the temperature of the compressor 1 and the outdoor heat exchanger 4 also decreases. However, the temperature of the outdoor heat exchanger 4 decreases first, and the refrigerant accumulates in the outdoor heat exchanger 4 at first. . However, when the outside air temperature rises, the heat capacity of the compressor 1 is large and the temperature rise of the compressor 1 is slow, so that the refrigerant moves from the outdoor heat exchanger 4 to the compressor 1 and accumulates in the compressor 1. Become. Next, changes in the temperature of the compressor 1 and the temperature of the outdoor heat exchanger 4 will be specifically described with reference to FIG.

図8は、外気温上昇時の圧縮機および室外熱交換器の温度の挙動の一例を示す図である。
図8の縦軸は、温度であり、横軸は時間である。図8は、夜中に低温となった圧縮機1や室外熱交換器4などの温度が、日が昇るのに伴って上昇する様子を示したものである。図8のグラフは、朝方から午前中の数時間における圧縮機1などの温度の挙動を示したものである。
符号81は、室外熱交換器4の近傍に設けられた温度サーミスタ14(14A、又は、14B)が測定した温度を示している。符号82は、温度サーミスタ13が測定した外気温の挙動を示している。符号83は、圧縮機1の吐出口に設けられた温度サーミスタ12が測定した温度である。符号84は、圧縮機1の油の温度の測定値を示している。符号85は、圧縮機1のドーム下に設けられた温度サーミスタ11が測定した温度である。
図8が示すように、外気温82の上昇に伴い、室外熱交換器4の温度81、圧縮機1の吐出口温度83、油の温度84、圧縮機1のドーム下温度85も上昇する。しかし、時間T1あたりから、温度81と温度84及びドーム下温度85との乖離が始まり、時間の経過と共にその差は大きくなる。また、時間T2あたりから、外気温82と吐出口温度83との乖離が始まり、時間の経過と共にその差は大きくなる。このように、外気温上昇時には、室外熱交換器4の温度は先に上昇し、圧縮機1の温度は、室外熱交換器4に比べ上昇が遅れる。このような状態になると、冷媒は、室外熱交換器4から圧縮機1へ移動し、圧縮機1への冷媒の溜まり込みが生じる。
FIG. 8 is a diagram illustrating an example of temperature behavior of the compressor and the outdoor heat exchanger when the outside air temperature rises.
The vertical axis in FIG. 8 is temperature, and the horizontal axis is time. FIG. 8 shows a state in which the temperatures of the compressor 1 and the outdoor heat exchanger 4 that have become low temperature during the night rise as the sun rises. The graph of FIG. 8 shows the behavior of the temperature of the compressor 1 and the like from the morning to several hours in the morning.
Reference numeral 81 indicates a temperature measured by the temperature thermistor 14 (14A or 14B) provided in the vicinity of the outdoor heat exchanger 4. Reference numeral 82 indicates the behavior of the outside air temperature measured by the temperature thermistor 13. Reference numeral 83 denotes a temperature measured by the temperature thermistor 12 provided at the discharge port of the compressor 1. Reference numeral 84 indicates a measured value of the temperature of the oil of the compressor 1. Reference numeral 85 denotes a temperature measured by the temperature thermistor 11 provided under the dome of the compressor 1.
As shown in FIG. 8, as the outside air temperature 82 rises, the temperature 81 of the outdoor heat exchanger 4, the discharge port temperature 83 of the compressor 1, the oil temperature 84, and the under-dome temperature 85 of the compressor 1 also rise. However, the divergence between the temperature 81, the temperature 84, and the temperature under the dome 85 starts around time T1, and the difference increases with the passage of time. Further, the divergence between the outside air temperature 82 and the discharge port temperature 83 starts from around time T2, and the difference increases with time. Thus, when the outside air temperature rises, the temperature of the outdoor heat exchanger 4 rises first, and the temperature of the compressor 1 rises later than that of the outdoor heat exchanger 4. In such a state, the refrigerant moves from the outdoor heat exchanger 4 to the compressor 1, and the refrigerant accumulates in the compressor 1.

本実施形態における制御装置20は、このような圧縮機1への冷媒の溜まり込みを防止するためにクランクケースヒータ9をオンにし、圧縮機1を加熱する。次に図2を用いて制御装置20について説明を行う。
図2は、本発明の一実施形態における制御装置の概略ブロック図である。
制御装置20は、クランクケースヒータ9の制御を行う例えばマイコンであって、図2が示すように、少なくとも温度取得部21、通電制御部22、記憶部23を備えている。
温度取得部21は、温度サーミスタ11や温度サーミスタ12から圧縮機1の温度を、温度サーミスタ13から室外の外気温を、温度サーミスタ14(14A、14B)から室外熱交換器4の温度を取得する。
通電制御部22は、クランクケースヒータ9のオン/オフ制御を行う。圧縮機1への冷媒の溜まり込みは、圧縮機1の故障の原因となる。その為、クランクケースヒータ9をオンにして、圧縮機1を加熱し冷媒の溜まり込みを防ぐ必要があるが、一方で、省エネ等の観点から待機電力の低減が求められている。通電制御部22は、温度取得部21が取得した各温度に基づいて、圧縮機1への冷媒の溜まり込みを防ぎつつ、なるべくオフの状態を長くできるようにクランクケースヒータ9のオン/オフ制御を行う。特に、本実施形態では、圧縮機1の停止中であって外気温が所定の範囲にある場合に、圧縮機1の温度と室外熱交換器4の温度の温度差、あるいは、外気温の上昇に基づいて、クランクケースヒータ9をオン/オフする制御を行う。
記憶部23は、温度取得部21が取得した各種温度や通電制御部22が、オン/オフ制御に用いる様々なパラメータ等を記憶している。
The control device 20 in the present embodiment turns on the crankcase heater 9 and heats the compressor 1 in order to prevent the refrigerant from accumulating in the compressor 1. Next, the control device 20 will be described with reference to FIG.
FIG. 2 is a schematic block diagram of a control device according to an embodiment of the present invention.
The control device 20 is, for example, a microcomputer that controls the crankcase heater 9, and includes at least a temperature acquisition unit 21, an energization control unit 22, and a storage unit 23, as shown in FIG.
The temperature acquisition unit 21 acquires the temperature of the compressor 1 from the temperature thermistor 11 and the temperature thermistor 12, the outdoor air temperature from the temperature thermistor 13, and the temperature of the outdoor heat exchanger 4 from the temperature thermistor 14 (14A, 14B). .
The energization control unit 22 performs on / off control of the crankcase heater 9. The accumulation of refrigerant in the compressor 1 causes a failure of the compressor 1. Therefore, it is necessary to turn on the crankcase heater 9 to heat the compressor 1 to prevent the refrigerant from being accumulated, but on the other hand, reduction of standby power is required from the viewpoint of energy saving. The energization control unit 22 controls the on / off of the crankcase heater 9 based on each temperature acquired by the temperature acquisition unit 21 so as to make the off state as long as possible while preventing the refrigerant from accumulating in the compressor 1. I do. In particular, in the present embodiment, when the compressor 1 is stopped and the outside air temperature is within a predetermined range, the temperature difference between the temperature of the compressor 1 and the temperature of the outdoor heat exchanger 4 or an increase in the outside air temperature. Based on the above, the control to turn on / off the crankcase heater 9 is performed.
The storage unit 23 stores various temperatures acquired by the temperature acquisition unit 21 and various parameters used by the energization control unit 22 for on / off control.

次に、図3〜図7を用いて、制御装置20が行うクランクケースヒータ9のオン/オフ制御について説明する。
図3は、本発明の一実施形態におけるクランクケースヒータのオン/オフ制御に用いる外気温の温度帯を説明する図である。
制御装置20は、圧縮機1の停止時にクランクケースヒータ9のオン/オフの制御方法を外気温に基づいて切り替える。具体的には、温度の低い方から順にA、B、Cの3つの温度帯を設定する。「A温度帯」とは、3つの温度帯のうち、最も温度の低い温度帯(例えば、〜−1℃)である。「B温度帯」とは、3つの温度帯のうち、中間の温度帯(例えば、−1℃〜30℃)である。「C温度帯」とは、3つの温度帯のうち、最も温度の高い温度帯(例えば、30℃〜)である。図3が示すように、「A温度帯」と「B温度帯」、「B温度帯」と「C温度帯」の切り替え温度には2℃のヒステリシス幅が設けられている。外気温が−1℃より低い温度から上昇するときには、制御装置20は、外気温が−1℃になると外気温は「B温度帯」と判定し、逆に、「B温度帯」にあった外気温が低下する場合、外気温が−3℃になると「A温度帯」にあると判定する。同様に、「B温度帯」にあった外気温が上昇する場合、制御装置20は、30℃になると「C温度帯」にあると判定し、「C温度帯」にあった外気温が低下する場合、外気温が28℃になると「B温度帯」にあると判定する。このようにヒステリシス幅を設けることで、温度サーミスタ13の測定誤差や変動を吸収し、安定した制御を行うことができる。
Next, on / off control of the crankcase heater 9 performed by the control device 20 will be described with reference to FIGS.
FIG. 3 is a view for explaining a temperature zone of the outside air temperature used for on / off control of the crankcase heater in one embodiment of the present invention.
The control device 20 switches the crankcase heater 9 on / off control method based on the outside air temperature when the compressor 1 is stopped. Specifically, three temperature zones A, B, and C are set in order from the lowest temperature. The “A temperature zone” is a temperature zone having the lowest temperature among the three temperature zones (for example, −1 ° C.). The “B temperature zone” is an intermediate temperature zone (for example, −1 ° C. to 30 ° C.) among the three temperature zones. The “C temperature zone” is a temperature zone having the highest temperature among the three temperature zones (for example, 30 ° C.). As shown in FIG. 3, a hysteresis width of 2 ° C. is provided at the switching temperature between the “A temperature zone” and the “B temperature zone” and the “B temperature zone” and the “C temperature zone”. When the outside air temperature rises from a temperature lower than −1 ° C., the control device 20 determines that the outside air temperature is “B temperature zone” when the outside air temperature becomes −1 ° C., and conversely, is in the “B temperature zone”. When outside temperature falls, when outside temperature will be -3 degreeC, it will determine with being in "A temperature range." Similarly, when the outside air temperature in the “B temperature zone” rises, the control device 20 determines that it is in the “C temperature zone” at 30 ° C., and the outside air temperature in the “C temperature zone” decreases. When the outside air temperature reaches 28 ° C., it is determined that the temperature is in the “B temperature zone”. By providing the hysteresis width in this way, measurement errors and fluctuations of the temperature thermistor 13 can be absorbed and stable control can be performed.

また、本実施形態は、圧縮機1が停止しているときのクランクケースヒータ9のオン/オフ制御を対象とするが、外気温が「A温度帯」にある場合、冷媒回路は暖房運転していることも多い。また、外気温が「C温度帯」にある場合、冷媒回路は冷房運転していることも多い。一方、「B温度帯」は、日常的な温度であり、冷暖房を行わず冷媒回路が停止している時間も多い。本実施形態では、特にこの「B温度帯」におけるクランクケースヒータ9のオン/オフ制御を最適化し、省エネ効果を向上させる。   The present embodiment is directed to on / off control of the crankcase heater 9 when the compressor 1 is stopped. However, when the outside air temperature is in the “A temperature zone”, the refrigerant circuit performs heating operation. There are many. Further, when the outside air temperature is in the “C temperature zone”, the refrigerant circuit is often in a cooling operation. On the other hand, the “B temperature zone” is a daily temperature, and there are many times when the refrigerant circuit is stopped without cooling and heating. In this embodiment, the on / off control of the crankcase heater 9 is optimized particularly in the “B temperature range”, and the energy saving effect is improved.

具体的には、制御装置20は、圧縮機1が停止していて、且つ、外気温が「A温度帯」にある場合は、クランクケースヒータ9をオンに制御する。また、制御装置20は、圧縮機1が停止していて、且つ、外気温が「C温度帯」にある場合は、クランクケースヒータ9をオフにする。また、圧縮機1が停止していて、外気温が「B温度帯」にある場合、制御装置20は、圧縮機1の温度と室外熱交換器4の温度差に基づいてクランクケースヒータ9のオン/オフ制御を行う。または、外気温が「B温度帯」にあり、外気温が所定の時間、上昇し続けた場合、制御装置20は、クランクケースヒータ9をオンにする。
なお、圧縮機1が停止していない場合であっても、デフロスト運転中であれば、クランクケースヒータ9をオンにするなど、制御装置20は、所定の条件に基づいてクランクケースヒータ9のオン/オフ制御を行うが、本実施形態とは関係しない為、説明を省略する。
Specifically, the control device 20 controls the crankcase heater 9 to be turned on when the compressor 1 is stopped and the outside air temperature is in the “A temperature zone”. Further, the control device 20 turns off the crankcase heater 9 when the compressor 1 is stopped and the outside air temperature is in the “C temperature zone”. Further, when the compressor 1 is stopped and the outside air temperature is in the “B temperature zone”, the control device 20 controls the crankcase heater 9 based on the temperature difference between the compressor 1 and the outdoor heat exchanger 4. Perform on / off control. Alternatively, when the outside air temperature is in the “B temperature zone” and the outside air temperature continues to rise for a predetermined time, the control device 20 turns on the crankcase heater 9.
Even when the compressor 1 is not stopped, the control device 20 turns on the crankcase heater 9 based on a predetermined condition such as turning on the crankcase heater 9 while the defrost operation is in progress. / Off control is performed, but the description is omitted because it is not related to the present embodiment.

図4は、本発明の一実施形態における制御装置の処理フロー図である。
図4を用いて制御装置20が圧縮機1の停止時にクランクケースヒータ9のオンオフを制御する処理の流れについて説明する。
前提として、温度取得部21は、温度サーミスタ11と温度サーミスタ12のうち少なくとも一つと、温度サーミスタ13と、温度サーミスタ14(14A、14B)から所定の時間間隔で測定温度を取得し、取得した各温度を記憶部23に記録するものとする。
まず、通電制御部22は、記憶部23から温度サーミスタ13が測定した外気温を読み出して、図3のヒステリシス図に基づいて外気温がA〜「C温度帯」の何れであるか判定する(ステップS11)。外気温が「A温度帯」にある場合、通電制御部22は、クランクケースヒータ9をオンにする(ステップS12)。外気温が十分に低い場合は、室外熱交換器4と圧縮機1の温度差によらず、冷媒の液圧縮が生じる可能性がある為、クランクケースヒータ9をオンにする。また、外気温が「C温度帯」にある場合、通電制御部22は、クランクケースヒータ9をオフにする(ステップS13)。外気温が十分に高い場合は、冷媒が液圧縮を起こすおそれがない為、クランクケースヒータ9をオフにする。また、外気温が「B温度帯」にある場合、通電制御部22は、所定時間(例えば10分弱程度)経過後、クランクケースヒータ9をオフにする(ステップS14)。ここで、待機電力を低減する為には、なるべくクランクケースヒータ9をオフにしておき、必要な場合だけオンにするように制御することが好ましい。通電制御部22は、後述する条件B1、条件B2が成立するか否かを判定(ステップS15)し、必要な場合だけクランクケースヒータ9をオンにする。条件B1、条件B2は、クランクケースヒータ9の起動が必要かどうかを判定する条件である。条件B1又は条件B2が成立する場合、通電制御部22は、クランクケースヒータ9をオンにする(ステップS17)。条件B1及び条件B2が共に不成立の場合、通電制御部22は、クランクケースヒータ9をオフにする(ステップS16)。次に外気温が「B温度帯」にあるか否かを判定し(ステップS18)。外気温が「B温度帯」である間(ステップS18;Yes)は、ステップS15〜ステップS17の処理を繰り返す。また、外気温が「B温度帯」ではない場合(ステップS18;No)ステップS11からの処理を繰り返す。
この制御により、圧縮機1の停止時に、外気温の条件などから必要なときのみクランクケースヒータ9をオンにすることができ、効率的に圧縮機1への冷媒の溜まり込みを防ぎつつ、待機電力を低減することができる。
FIG. 4 is a process flow diagram of the control device according to the embodiment of the present invention.
A flow of processing in which the control device 20 controls on / off of the crankcase heater 9 when the compressor 1 is stopped will be described with reference to FIG.
As a premise, the temperature acquisition unit 21 acquires measurement temperatures at predetermined time intervals from at least one of the temperature thermistor 11 and the temperature thermistor 12, the temperature thermistor 13, and the temperature thermistor 14 (14A, 14B). It is assumed that the temperature is recorded in the storage unit 23.
First, the energization control unit 22 reads the outside air temperature measured by the temperature thermistor 13 from the storage unit 23 and determines whether the outside air temperature is A to “C temperature zone” based on the hysteresis diagram of FIG. Step S11). When the outside air temperature is in the “A temperature zone”, the energization control unit 22 turns on the crankcase heater 9 (step S12). When the outside air temperature is sufficiently low, the crankcase heater 9 is turned on because liquid compression of the refrigerant may occur regardless of the temperature difference between the outdoor heat exchanger 4 and the compressor 1. When the outside air temperature is in the “C temperature zone”, the energization control unit 22 turns off the crankcase heater 9 (step S13). When the outside air temperature is sufficiently high, the crankcase heater 9 is turned off because there is no possibility that the refrigerant will cause liquid compression. When the outside air temperature is in the “B temperature zone”, the energization control unit 22 turns off the crankcase heater 9 after a predetermined time (for example, about 10 minutes or less) has elapsed (step S14). Here, in order to reduce standby power, it is preferable to control the crankcase heater 9 to be turned off as much as possible and to turn it on only when necessary. The energization control unit 22 determines whether or not a condition B1 and a condition B2 to be described later are satisfied (step S15), and turns on the crankcase heater 9 only when necessary. Condition B1 and condition B2 are conditions for determining whether the crankcase heater 9 needs to be activated. When the condition B1 or the condition B2 is satisfied, the energization control unit 22 turns on the crankcase heater 9 (step S17). When both the condition B1 and the condition B2 are not established, the energization control unit 22 turns off the crankcase heater 9 (step S16). Next, it is determined whether or not the outside air temperature is in the “B temperature zone” (step S18). While the outside air temperature is in the “B temperature zone” (step S18; Yes), the processing of step S15 to step S17 is repeated. When the outside air temperature is not in the “B temperature zone” (step S18; No), the processing from step S11 is repeated.
With this control, when the compressor 1 is stopped, the crankcase heater 9 can be turned on only when necessary due to the outside air temperature conditions, etc., and while waiting for efficient accumulation of refrigerant in the compressor 1, Electric power can be reduced.

次に、外気温が「B温度帯」にある場合の制御の詳細について説明する。まず、条件B1について説明する。
図5は、本発明の一実施形態における条件B1の判定処理のフロー図である。
条件B1は、図4で説明したフロー図のステップS15における判定条件のうちの一つである。条件B1は、外気温の上昇に基づいてクランクケースヒータ9をオンにする制御を行うための条件である。
まず、通電制御部22は、カウンタNに0を代入して初期化する(ステップS21)。次に、通電制御部22は、10分間、温度サーミスタ13が測定した外気温を記憶部23から読出し外気温の推移を監視する(ステップS22)。次に通電制御部22は、10分間の間に外気温が上昇したかどうかを判定する(ステップS23)。例えば、10分間にサンプリングした外気温を、取得時間に応じて、前半と後半に分類し、前半に取得した外気温の平均値と後半に取得した外気温の平均値を比較して、後半の外気温の平均値が高ければ、外気温が上昇したと判定する。
Next, details of the control when the outside air temperature is in the “B temperature zone” will be described. First, the condition B1 will be described.
FIG. 5 is a flowchart of the condition B1 determination process according to the embodiment of the present invention.
The condition B1 is one of the determination conditions in step S15 in the flowchart described in FIG. Condition B1 is a condition for performing control to turn on the crankcase heater 9 based on a rise in outside air temperature.
First, the energization control unit 22 initializes the counter N by substituting 0 (step S21). Next, the energization control unit 22 reads out the outside air temperature measured by the temperature thermistor 13 from the storage unit 23 for 10 minutes and monitors the transition of the outside air temperature (step S22). Next, the energization control unit 22 determines whether or not the outside air temperature has increased during 10 minutes (step S23). For example, the outside air temperature sampled for 10 minutes is classified into the first half and the second half according to the acquisition time, and the average value of the outside air temperature acquired in the first half is compared with the average value of the outside air temperature acquired in the second half. If the average value of the outside temperature is high, it is determined that the outside temperature has increased.

外気温が上昇したと判定した場合、通電制御部22は、カウンタNに1を加えカウントアップする(ステップS24)。外気温が上昇しなかったと判定した場合、ステップS21からの処理を繰り返す。次に、通電制御部22は、カウントアップしたNの値が10に達したかどうかを判定する(ステップS25)。Nの値が10に達していない場合、ステップS22からの処理を繰り返す。Nの値が10に達した場合、通電制御部22は、条件B1が成立したと判定する(ステップS26)。通電制御部22は、条件B1が成立したと判定すると、図4の処理フローに従って、クランクケースヒータ9をオンにする制御を行う。   If it is determined that the outside air temperature has risen, the energization control unit 22 adds 1 to the counter N and counts up (step S24). When it is determined that the outside air temperature has not risen, the processing from step S21 is repeated. Next, the energization control unit 22 determines whether the counted value of N has reached 10 (step S25). If the value of N has not reached 10, the processing from step S22 is repeated. When the value of N reaches 10, the energization control unit 22 determines that the condition B1 is satisfied (step S26). If it determines with condition B1 having been satisfied, the electricity supply control part 22 will perform control which turns on the crankcase heater 9 according to the processing flow of FIG.

ここでは説明の便宜のため、外気温が常に「B温度帯」に収まる場合を例に説明を行ったが、ステップS23の判定にて、10分間監視した外気温が「B温度帯」を外れた場合、Nの値を0にし、本処理フローの実行を中止する。また、本実施形態は、圧縮機1が停止していることが前提なので、圧縮機1が稼働を始めた場合もNの値を0にし、本処理フローの実行を中止する。   Here, for convenience of explanation, the case where the outside air temperature is always within the “B temperature zone” has been described as an example. However, in the determination of step S23, the outside air temperature monitored for 10 minutes is outside the “B temperature zone”. If this happens, the value of N is set to 0, and execution of this processing flow is stopped. Since the present embodiment is based on the premise that the compressor 1 is stopped, the value of N is set to 0 even when the compressor 1 starts operating, and the execution of this processing flow is stopped.

なお、ステップS23にて、10分間に外温は上昇せず一定であったような場合でも、カウンタNを0に初期化する処理を一時保留し、次の10分間で温度が上昇し始めたら、Nをカウントアップし、そのまま条件B1の判定処理を継続する等の変形も可能である。また、外気温の上昇の判定は、図5の方法によらず、温度サーミスタ13の測定する温度の変化率から判定しても良いし、所定の時間間隔ごとの温度差を計算し、後の時間に取得した温度が所定の値以上高い場合に外気温が上昇したと判定してもよい。   In step S23, even if the external temperature does not increase for 10 minutes and is constant, the process for initializing the counter N to 0 is temporarily suspended and the temperature starts to increase in the next 10 minutes. , N can be counted up and the determination process of the condition B1 can be continued as it is. Further, the determination of the increase in the outside air temperature may be made from the rate of change of the temperature measured by the temperature thermistor 13 without depending on the method shown in FIG. 5, or the temperature difference for each predetermined time interval is calculated. When the temperature acquired in time is higher than a predetermined value, it may be determined that the outside air temperature has increased.

次に、図6〜図7を用いて条件B2について説明する。
図6は、本発明の一実施形態における条件B2の判定処理のフロー図である。
まず、通電制御部22は、記憶部23から温度サーミスタ14A、温度サーミスタ14Bが測定した室外熱交換器4の温度と圧縮機1のドーム下温度を読み出す。圧縮機1のドーム下に温度サーミスタ11が設けられていない冷媒回路においては、温度サーミスタ12が測定した圧縮機1の吐出口温度を読み出す。次に、通電制御部22は、温度サーミスタ14Aが測定した温度と温度サーミスタ14Bが測定した温度のうち低い温度を選択し、選択した温度からドーム下温度(又は吐出口温度)を減じた温度差ΔTを計算する。そして、通電制御部22は、計算した温度差ΔTが、後述する「オン領域」にあるか否かを判定する(ステップS31)。温度差が「オン領域」にある場合、通電制御部22は、条件B2が成立すると判定する(ステップS32)。温度差が、後述する「オフ領域」にある場合、通電制御部22は、条件B2は不成立と判定する(ステップS33)。
通電制御部22は、条件B2が成立したと判定すると、図4の処理フローに従って、クランクケースヒータ9をオンにする制御を行う。
なお、図6の処理フローは、圧縮機1の停止後、所定時間(例えば、10時間)が経過するまでの制御であって、通電制御部22は、温度差ΔTの大きさによらず、圧縮機1の停止からその所定時間が経過すると、クランクケースヒータ9をオンにする制御を行うよう制御してもよい。
Next, the condition B2 will be described with reference to FIGS.
FIG. 6 is a flowchart of the condition B2 determination process according to the embodiment of the present invention.
First, the energization control unit 22 reads the temperature of the outdoor heat exchanger 4 and the temperature under the dome of the compressor 1 measured by the temperature thermistor 14 </ b> A and the temperature thermistor 14 </ b> B from the storage unit 23. In the refrigerant circuit where the temperature thermistor 11 is not provided under the dome of the compressor 1, the outlet temperature of the compressor 1 measured by the temperature thermistor 12 is read. Next, the energization control unit 22 selects a lower temperature from the temperature measured by the temperature thermistor 14A and the temperature measured by the temperature thermistor 14B, and the temperature difference obtained by subtracting the under-dome temperature (or the discharge port temperature) from the selected temperature. ΔT is calculated. And the electricity supply control part 22 determines whether the calculated temperature difference (DELTA) T exists in the "on area | region" mentioned later (step S31). When the temperature difference is in the “on region”, the energization control unit 22 determines that the condition B2 is satisfied (step S32). When the temperature difference is in an “off region” described later, the energization control unit 22 determines that the condition B2 is not satisfied (step S33).
If it determines with condition B2 being materialized, the electricity supply control part 22 will perform the control which turns on the crankcase heater 9 according to the processing flow of FIG.
The processing flow of FIG. 6 is control until a predetermined time (for example, 10 hours) elapses after the compressor 1 is stopped, and the energization control unit 22 does not depend on the magnitude of the temperature difference ΔT. When the predetermined time elapses after the compressor 1 is stopped, the crankcase heater 9 may be controlled to be turned on.

図7は、本発明の一実施形態における条件B2の判定に用いるオン領域とオフ領域を説明する図である。
図7は、温度サーミスタ14A、温度サーミスタ14Bが測定した室外熱交換器4の温度のうち低い方の温度から圧縮機1のドーム下温度(または、圧縮機1の吐出口温度)を減じた温度差ΔTに基づいて、温度差ΔTがクランクケースヒータ9をオンにする必要がある温度差かどうかの判定に用いるグラフを示している。図7において「オン領域」とは、クランクケースヒータ9をオンにする必要がある温度差の領域のことである。「オフ領域」とは、クランクケースヒータ9をオフにできる温度差の領域のことである。例えば、温度差ΔTが1.5℃であれば、ΔTは「オン領域」であり、温度差ΔTが0℃であれば、ΔTは「オフ領域」である。具体的には、室外熱交換器4の温度が圧縮機1のドーム下温度よりも1.5℃以上高くなると、通電制御部22は、クランクケースヒータ9をオンにし、室外熱交換器4の温度が圧縮機1のドーム下温度以下となると、通電制御部22は、クランクケースヒータ9をオフにする。このような制御とすることで、図8で例示したような外気温上昇時においても、室外熱交換器4の温度と圧縮機1のドーム下温度(または、吐出口温度)との乖離を検出し、圧縮機1への冷媒の移動が生じないように圧縮機1を温めることができる。
FIG. 7 is a diagram illustrating an on region and an off region used for determination of the condition B2 in one embodiment of the present invention.
FIG. 7 shows a temperature obtained by subtracting the temperature under the dome of the compressor 1 (or the outlet temperature of the compressor 1) from the lower temperature of the temperatures of the outdoor heat exchanger 4 measured by the temperature thermistor 14A and the temperature thermistor 14B. A graph used for determining whether the temperature difference ΔT is a temperature difference that requires the crankcase heater 9 to be turned on based on the difference ΔT is shown. In FIG. 7, the “on region” is a region of temperature difference where the crankcase heater 9 needs to be turned on. The “off region” is a region of temperature difference where the crankcase heater 9 can be turned off. For example, if the temperature difference ΔT is 1.5 ° C., ΔT is “on region”, and if the temperature difference ΔT is 0 ° C., ΔT is “off region”. Specifically, when the temperature of the outdoor heat exchanger 4 becomes higher by 1.5 ° C. or more than the temperature under the dome of the compressor 1, the energization control unit 22 turns on the crankcase heater 9 and turns on the outdoor heat exchanger 4. When the temperature is equal to or lower than the temperature below the dome of the compressor 1, the energization control unit 22 turns off the crankcase heater 9. By adopting such control, even when the outside air temperature rises as illustrated in FIG. 8, the difference between the temperature of the outdoor heat exchanger 4 and the temperature under the dome (or the discharge port temperature) of the compressor 1 is detected. Then, the compressor 1 can be warmed so that the refrigerant does not move to the compressor 1.

また、図7が示すように「オン領域」、「オフ領域」の判定においてもヒステリシス幅が設けられている。図8で例示した外気温の上昇時において、室外熱交換器4の温度と圧縮機1のドーム下温度にあまり乖離が無い状態から、徐々に温度差ΔTが大きくなっていくような状況では、通電制御部22は、温度差ΔTが1.5℃以上となると、温度差ΔTは「オン領域」にあると判定する。逆に温度差ΔTが小さくなっていく局面では、温度差ΔTが0℃となると、通電制御部22は、温度差ΔTは「オフ領域」にあると判定する。ヒステリシス幅を設けることで、温度サーミスタ11、14等の検出誤差などによる温度差ΔTの変動によって、温度差ΔTが、「オン領域」にあるか「オフ領域」にあるかの判定が何度も切り替わり、制御が不安定になるのを防ぐことができる。
なお、外気温が「B温度帯」に含まれ、1回目に温度差ΔTを判定する場合、温度差ΔTがヒステリシス幅にあれば、温度差ΔTは「オン領域」にあると判定してもよい。
In addition, as shown in FIG. 7, a hysteresis width is also provided in the determination of “on region” and “off region”. In the situation where the temperature difference ΔT gradually increases from a state where there is not much difference between the temperature of the outdoor heat exchanger 4 and the temperature under the dome of the compressor 1 when the outside air temperature exemplified in FIG. When the temperature difference ΔT is 1.5 ° C. or more, the energization control unit 22 determines that the temperature difference ΔT is in the “on region”. On the other hand, in a situation where the temperature difference ΔT becomes smaller, when the temperature difference ΔT becomes 0 ° C., the energization control unit 22 determines that the temperature difference ΔT is in the “off region”. By providing the hysteresis width, it is repeatedly determined whether the temperature difference ΔT is in the “on region” or the “off region” due to fluctuations in the temperature difference ΔT due to detection errors of the temperature thermistors 11, 14, etc. It is possible to prevent switching and unstable control.
When the outside air temperature is included in the “B temperature zone” and the temperature difference ΔT is determined for the first time, if the temperature difference ΔT is within the hysteresis width, it is determined that the temperature difference ΔT is in the “on region”. Good.

なお、条件B1、B2を共に判定する意味としては、次のようなことが挙げられる。条件B2によって圧縮機1の温度と室外熱交換器4の温度の関係を常に判定できれば好ましいが、例えば据え付け場所の影響により、室外熱交換器4の温度上昇が始まっていても温度サーミスタ14が測定する温度が上昇しにくい状況や、温度サーミスタの故障などにより、圧縮機1や室外熱交換器4の温度が適切にとらえられない状況が生じる可能性がある。そのような状況では、取得した温度の情報からは、条件B2が成立しなかったとしても、外気温の上昇により、実際には図8で説明したような圧縮機1と室外熱交換器4の温度差が生じ、冷媒が圧縮機1へ移動している恐れがある。条件B1は、そのような状況に備えた判定条件であり、条件B2に加え、条件B1の判定を行うことにより、図8で説明したような温度上昇による圧縮機1への冷媒の溜まり込みを確実に防止することができる。   In addition, the following is mentioned as a meaning which determines conditions B1 and B2 together. Although it is preferable that the relationship between the temperature of the compressor 1 and the temperature of the outdoor heat exchanger 4 can always be determined according to the condition B2, the temperature thermistor 14 measures even if the temperature of the outdoor heat exchanger 4 starts to increase due to the influence of the installation location, for example. There is a possibility that the temperature of the compressor 1 or the outdoor heat exchanger 4 cannot be properly captured due to a situation where the temperature of the compressor 1 or the outdoor heat exchanger 4 is not easily raised due to a failure of the temperature thermistor. In such a situation, from the acquired temperature information, even if the condition B2 is not satisfied, the actual temperature of the compressor 1 and the outdoor heat exchanger 4 as illustrated in FIG. There is a possibility that a temperature difference occurs and the refrigerant moves to the compressor 1. Condition B1 is a determination condition prepared for such a situation. By performing the determination of condition B1 in addition to condition B2, the accumulation of refrigerant in the compressor 1 due to the temperature rise as illustrated in FIG. 8 is performed. It can be surely prevented.

本実施形態によれば、圧縮機1が停止した状態でのクランクケースヒータ9のオン/オフ制御方法を外気温の温度帯によって切り替えることができる。さらに外気温が所定の範囲(「B温度帯」)にある場合(例えば、−1℃〜30℃)、室外熱交換器4の温度が圧縮機1の温度より所定の値だけ高い場合のみクランクケースヒータ9をオンにし、室外熱交換器4の温度が圧縮機1の温度より低い場合は、クランクケースヒータ9をオフにすることができるので、効率的に圧縮機への冷媒の溜まり込みを防止し、省エネ化を図ることができる。また、温度サーミスタ11、14の異常等によって、室外熱交換器4や圧縮機1の正確な温度を測定できない場合であっても、外気温を監視し外気温の上昇を検出するとクランクケースヒータ9をオンにするので、圧縮機1への冷媒の溜まり込みを防止することができる。また、外気温が所定の範囲(「B温度帯」)にある場合、圧縮機1の温度と室外熱交換器4の温度の温度差によっては、クランクケースヒータ9をオフにすることができるので、特に外気温が低下していくときや外気温に変化が無いときなどにオフ制御することで省エネ化を図ることができる。   According to this embodiment, the on / off control method of the crankcase heater 9 in a state where the compressor 1 is stopped can be switched according to the temperature zone of the outside air temperature. Further, when the outside air temperature is in a predetermined range (“B temperature zone”) (for example, −1 ° C. to 30 ° C.), only when the temperature of the outdoor heat exchanger 4 is higher than the temperature of the compressor 1 by a predetermined value When the case heater 9 is turned on and the temperature of the outdoor heat exchanger 4 is lower than the temperature of the compressor 1, the crankcase heater 9 can be turned off, so that the refrigerant can efficiently accumulate in the compressor. It can prevent and save energy. Even if the temperature of the outdoor heat exchanger 4 or the compressor 1 cannot be measured due to an abnormality in the temperature thermistors 11 and 14 or the like, if the outside air temperature is monitored and a rise in the outside air temperature is detected, the crankcase heater 9 Since the refrigerant is turned on, the refrigerant can be prevented from accumulating in the compressor 1. Further, when the outside air temperature is in a predetermined range (“B temperature zone”), the crankcase heater 9 can be turned off depending on the temperature difference between the temperature of the compressor 1 and the temperature of the outdoor heat exchanger 4. In particular, when the outside air temperature decreases or when the outside air temperature does not change, energy saving can be achieved by performing the off control.

その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。また、この発明の技術範囲は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。なお、上述の図7で説明した「オン領域」と判定するための温度差1.5℃は、第一閾値の一例であり、「オフ領域」と判定するための温度差0℃は、第二閾値の一例である。   In addition, it is possible to appropriately replace the components in the above-described embodiments with known components without departing from the spirit of the present invention. The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. The temperature difference 1.5 ° C. for determining the “on region” described in FIG. 7 is an example of the first threshold value, and the temperature difference 0 ° C. for determining the “off region” It is an example of a two threshold value.

1・・・圧縮機
2・・・室内熱交換器
3・・・膨張弁
4・・・室外熱交換器
5・・・四方弁
6・・・配管
11、12、13、14・・・温度サーミスタ
20・・・制御装置
21・・・温度取得部
22・・・通電制御部
23・・・記憶部
DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Indoor heat exchanger 3 ... Expansion valve 4 ... Outdoor heat exchanger 5 ... Four-way valve 6 ... Piping 11, 12, 13, 14 ... Temperature Thermistor 20 ... Control device 21 ... Temperature acquisition unit 22 ... Energization control unit 23 ... Storage unit

Claims (9)

熱交換器と、熱交換器と接続された圧縮機とを備える冷媒回路における前記圧縮機の温度と、前記熱交換器の温度と、外気温と、を取得する温度取得部と、
前記圧縮機の停止中に、前記温度取得部が取得した外気温が予め定めた複数の温度帯のうちの一つの範囲に含まれる温度である場合、前記圧縮機の温度と前記熱交換器の温度の温度差に基づいて、前記圧縮機を加熱するクランクケースヒータのオン制御又はオフ制御を行う通電制御部と、
を備える制御装置。
A temperature acquisition unit for acquiring the temperature of the compressor, the temperature of the heat exchanger, and the outside air temperature in a refrigerant circuit including a heat exchanger and a compressor connected to the heat exchanger;
When the outside air temperature acquired by the temperature acquisition unit is a temperature included in one of a plurality of predetermined temperature zones while the compressor is stopped, the temperature of the compressor and the heat exchanger An energization control unit that performs on-control or off-control of a crankcase heater that heats the compressor based on a temperature difference;
A control device comprising:
前記通電制御部は、前記圧縮機の温度から前記熱交換器の温度を減じた温度差が第一閾値以上の場合に前記クランクケースヒータをオンにし、前記第一閾値より低い温度である第二閾値以下の場合に前記クランクケースヒータをオフにする、
請求項1に記載の制御装置。
The energization control unit turns on the crankcase heater when a temperature difference obtained by subtracting the temperature of the heat exchanger from the temperature of the compressor is equal to or greater than a first threshold, and is a temperature lower than the first threshold. Turning the crankcase heater off when below a threshold,
The control device according to claim 1.
前記通電制御部は、前記温度差に関わらず、前記取得した外気温が所定の時間上昇し続けると前記クランクケースヒータをオンにする
請求項1または請求項2に記載の制御装置。
The control device according to claim 1, wherein the energization control unit turns on the crankcase heater when the acquired outside air temperature continues to rise for a predetermined time regardless of the temperature difference.
前記予め定めた複数の温度帯として3つの温度帯を設定し、前記予め定めた複数の温度帯のうちの一つは、当該3つの温度帯のうち中間の温度帯であって、
前記通電制御部は、前記取得した外気温が、前記3つの温度帯のうち最も温度の低い温度帯に含まれる温度である場合、クランクケースヒータをオンにし、最も温度の高い温度帯に含まれる温度である場合、クランクケースヒータをオフにする
請求項1から請求項3の何れか1項に記載の制御装置。
Three temperature zones are set as the plurality of predetermined temperature zones, and one of the plurality of predetermined temperature zones is an intermediate temperature zone of the three temperature zones,
The energization control unit turns on the crankcase heater and is included in the highest temperature zone when the acquired outside air temperature is a temperature included in the lowest temperature zone of the three temperature zones. The control device according to any one of claims 1 to 3, wherein the crankcase heater is turned off when the temperature is reached.
前記第一閾値は、1.5℃である。
請求項2に記載の制御装置。
The first threshold is 1.5 ° C.
The control device according to claim 2.
前記第二閾値は、0℃である。
請求項2に記載の制御装置。
The second threshold is 0 ° C.
The control device according to claim 2.
前記圧縮機の温度は、前記圧縮機のドーム下の温度、又は、前記圧縮機の吐出口温度である
請求項1から請求項6の何れか1項に記載の制御装置。
The control device according to any one of claims 1 to 6, wherein the temperature of the compressor is a temperature under a dome of the compressor or a discharge port temperature of the compressor.
圧縮機と、前記圧縮機に設けられたクランクケースヒータと、前記圧縮機に接続された室外熱交換器と、を備える冷媒回路を有した空調装置において、
請求項1から請求項7の何れか1項に記載の制御装置、
を備える空調装置。
In an air conditioner having a refrigerant circuit comprising a compressor, a crankcase heater provided in the compressor, and an outdoor heat exchanger connected to the compressor,
The control device according to any one of claims 1 to 7,
An air conditioner.
熱交換器と、熱交換器と接続された圧縮機とを備える冷媒回路における圧縮機を加熱するクランクケースヒータの制御方法であって、
前記圧縮機の温度と、前記熱交換器の温度と、外気温と、を取得し、
取得した前記外気温が予め定めた複数の温度帯のうちの一つの範囲に含まれる温度である場合、前記圧縮機の温度と前記熱交換器の温度の温度差に基づいて、前記クランクケースヒータのオン制御又はオフ制御を行う、
制御方法。
A control method of a crankcase heater for heating a compressor in a refrigerant circuit comprising a heat exchanger and a compressor connected to the heat exchanger,
Obtaining the temperature of the compressor, the temperature of the heat exchanger, and the outside air temperature;
When the acquired outside air temperature is a temperature included in one of a plurality of predetermined temperature zones, the crankcase heater is based on a temperature difference between the compressor temperature and the heat exchanger temperature. ON / OFF control of
Control method.
JP2014238638A 2014-11-26 2014-11-26 Control device, air conditioner and control method Active JP6492358B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014238638A JP6492358B2 (en) 2014-11-26 2014-11-26 Control device, air conditioner and control method
EP15195064.9A EP3026372A1 (en) 2014-11-26 2015-11-18 Control device, air-conditioning device, and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014238638A JP6492358B2 (en) 2014-11-26 2014-11-26 Control device, air conditioner and control method

Publications (2)

Publication Number Publication Date
JP2016099095A true JP2016099095A (en) 2016-05-30
JP6492358B2 JP6492358B2 (en) 2019-04-03

Family

ID=54601650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014238638A Active JP6492358B2 (en) 2014-11-26 2014-11-26 Control device, air conditioner and control method

Country Status (2)

Country Link
EP (1) EP3026372A1 (en)
JP (1) JP6492358B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019533792A (en) * 2016-04-07 2019-11-21 エリー クフーリー アスワド,エミリー Cooling system control and protection devices
JPWO2019058456A1 (en) * 2017-09-20 2020-03-26 三菱電機株式会社 Outdoor unit of air conditioner
JP2020085316A (en) * 2018-11-22 2020-06-04 三菱重工サーマルシステムズ株式会社 Control device for air conditioner, air conditioner, control method for air conditioner, and control program for air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107763798B (en) * 2017-10-26 2020-07-07 珠海亚丁科技有限公司 Air conditioner compressor control method, computer device and computer readable storage medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288657A (en) * 1993-04-06 1994-10-18 Hitachi Ltd Air conditioner
JPH1030563A (en) * 1996-07-17 1998-02-03 N T T Facilities:Kk Heater controller for compressor
JP2000193325A (en) * 1998-12-25 2000-07-14 Matsushita Electric Ind Co Ltd Air conditioner equipment
JP2002106981A (en) * 2000-10-02 2002-04-10 Sanyo Electric Co Ltd Air conditioner
JP2002267280A (en) * 2001-03-13 2002-09-18 Matsushita Refrig Co Ltd Controller and controlling method of air conditioner, and recording medium recorded with control program of the air conditioner
JP2002277078A (en) * 2001-03-16 2002-09-25 Mitsubishi Electric Corp Refrigerating cycle
JP2008170052A (en) * 2007-01-11 2008-07-24 Matsushita Electric Ind Co Ltd Air conditioner
JP2013113476A (en) * 2011-11-28 2013-06-10 Mitsubishi Electric Corp Air conditioner
JP2014126309A (en) * 2012-12-27 2014-07-07 Hitachi Appliances Inc Air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5404110B2 (en) * 2009-03-12 2014-01-29 三菱電機株式会社 Air conditioner
EP2636971B1 (en) * 2010-11-04 2019-10-02 Mitsubishi Electric Corporation Air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288657A (en) * 1993-04-06 1994-10-18 Hitachi Ltd Air conditioner
JPH1030563A (en) * 1996-07-17 1998-02-03 N T T Facilities:Kk Heater controller for compressor
JP2000193325A (en) * 1998-12-25 2000-07-14 Matsushita Electric Ind Co Ltd Air conditioner equipment
JP2002106981A (en) * 2000-10-02 2002-04-10 Sanyo Electric Co Ltd Air conditioner
JP2002267280A (en) * 2001-03-13 2002-09-18 Matsushita Refrig Co Ltd Controller and controlling method of air conditioner, and recording medium recorded with control program of the air conditioner
JP2002277078A (en) * 2001-03-16 2002-09-25 Mitsubishi Electric Corp Refrigerating cycle
JP2008170052A (en) * 2007-01-11 2008-07-24 Matsushita Electric Ind Co Ltd Air conditioner
JP2013113476A (en) * 2011-11-28 2013-06-10 Mitsubishi Electric Corp Air conditioner
JP2014126309A (en) * 2012-12-27 2014-07-07 Hitachi Appliances Inc Air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019533792A (en) * 2016-04-07 2019-11-21 エリー クフーリー アスワド,エミリー Cooling system control and protection devices
JPWO2019058456A1 (en) * 2017-09-20 2020-03-26 三菱電機株式会社 Outdoor unit of air conditioner
JP2020085316A (en) * 2018-11-22 2020-06-04 三菱重工サーマルシステムズ株式会社 Control device for air conditioner, air conditioner, control method for air conditioner, and control program for air conditioner
JP7254488B2 (en) 2018-11-22 2023-04-10 三菱重工サーマルシステムズ株式会社 Air conditioner control device, air conditioner, air conditioner control method, and air conditioner control program

Also Published As

Publication number Publication date
EP3026372A1 (en) 2016-06-01
JP6492358B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
US9562710B2 (en) Diagnostics for variable-capacity compressor control systems and methods
JP4111246B2 (en) Refrigeration equipment
EP2410257B1 (en) Air conditioning device
RU2672995C1 (en) System and method of autonomous and uninterrupted defrosting
KR101044128B1 (en) Refrigeration device
JP5511761B2 (en) Air conditioner
JP6492358B2 (en) Control device, air conditioner and control method
JP5831355B2 (en) Air conditioner
JP6618609B2 (en) Refrigeration equipment
US20120006040A1 (en) Air conditioning apparatus
CN107429950B (en) Heat pump
JP2016194389A (en) Refrigerating apparatus and refrigerator unit
KR20140108576A (en) Heat source system, device for controlling same, and method for controlling same
US10156396B2 (en) System for operating an HVAC system having tandem compressors
JP5820998B2 (en) Heating system control method and heating system
JP2014126309A (en) Air conditioner
JP2014055753A (en) Binary refrigeration device
JP2010025374A (en) Refrigerating device
KR102243654B1 (en) Air conditioner
US20130086931A1 (en) Air conditioning apparatus and control method thereof
US11047610B2 (en) Defrost cycle control assembly in a heat pump
JP6052066B2 (en) Refrigeration equipment
JP6367642B2 (en) Air conditioner
JP6057512B2 (en) Air conditioner with crankcase heater
JP2010210144A (en) Refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171013

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190214

R150 Certificate of patent or registration of utility model

Ref document number: 6492358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150