JP2010210144A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2010210144A
JP2010210144A JP2009056601A JP2009056601A JP2010210144A JP 2010210144 A JP2010210144 A JP 2010210144A JP 2009056601 A JP2009056601 A JP 2009056601A JP 2009056601 A JP2009056601 A JP 2009056601A JP 2010210144 A JP2010210144 A JP 2010210144A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
expansion valve
sensitive expansion
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009056601A
Other languages
Japanese (ja)
Inventor
Shinichi Fujinaka
伸一 藤中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009056601A priority Critical patent/JP2010210144A/en
Publication of JP2010210144A publication Critical patent/JP2010210144A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Abstract

<P>PROBLEM TO BE SOLVED: To select a temperature-sensing type expansion valve by capacity of low refrigerant circulation amount to prevent hunting, and exhibit intended cooling capacity. <P>SOLUTION: This refrigerating device includes a refrigerant circuit (10) in which a refrigerant is circulated to perform a vapor compression type refrigerating cycle. The refrigerant circuit (10) includes an inverter type compressor (31) of which operation frequency is controlled by an inverter circuit and the temperature-sensing type expansion valve (22), and the refrigerating device is used for cooling a use side. The refrigerating device further includes a solenoid valve (23) and a throttle mechanism (24) connected to the temperature-sensing type expansion valve (22) in parallel via the solenoid valve (23) and switched by the solenoid valve (23) to either of a first state where a refrigerant is made to flow or a second state where no refrigerant is made to flow. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷媒が循環して蒸気圧縮式の冷凍サイクルを行う冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus that performs a vapor compression refrigeration cycle by circulating a refrigerant.

冷凍サイクルを行う冷凍装置には、例えば店舗などに設置されて食料品などを貯蔵する冷蔵庫(或いは冷凍庫)として形成されるものがある(例えば、特許文献1参照)。   There is a refrigeration apparatus that performs a refrigeration cycle, for example, a refrigerator (or a freezer) that is installed in a store or the like and stores food or the like (see, for example, Patent Document 1).

特許文献1の冷凍装置は、圧縮機と室外熱交換器(熱源側熱交換器)とを有する室外ユニットと、冷蔵熱交換器(第1の系統の利用側熱交換器)と膨張機構とを有する冷蔵ユニット(第1の利用側ユニット)と、冷凍熱交換器(第2の系統の利用側熱交換器)と膨張機構とを有する冷凍ユニット(第2の利用側ユニット)とを有している。また、この冷凍装置はその室外ユニットに、電動機がインバータ制御されて容量が段階的又は連続的に可変できる圧縮機、すなわちインバータ回路によって運転周波数を制御されるいわゆるインバータ式圧縮機を備えている。
特開2003−004318号公報
The refrigeration apparatus of Patent Document 1 includes an outdoor unit having a compressor and an outdoor heat exchanger (heat source side heat exchanger), a refrigeration heat exchanger (a use side heat exchanger of the first system), and an expansion mechanism. A refrigeration unit (first usage side unit), a refrigeration unit (second usage side unit), a refrigeration heat exchanger (second usage side heat exchanger), and an expansion mechanism. Yes. Further, this refrigeration apparatus includes a compressor in which the electric motor is inverter-controlled and its capacity can be changed stepwise or continuously, that is, a so-called inverter-type compressor whose operation frequency is controlled by an inverter circuit, in the outdoor unit.
JP 2003-004318 A

ところで、店舗などに設置される冷蔵庫では、前記冷凍サイクルを行う冷媒回路に、膨張機構として感温式膨張弁が用いられることが多い。   By the way, in a refrigerator installed in a store or the like, a temperature-sensitive expansion valve is often used as an expansion mechanism in the refrigerant circuit that performs the refrigeration cycle.

しかしながら、一般的には、感温式膨張弁の容量の可変範囲はインバータ式圧縮機の容量の可変範囲よりも小さいので、この感温式膨張弁を前記インバータ式圧縮機と組み合わせると、以下のような問題を生ずる可能性がある。   However, in general, the variable range of the capacity of the temperature-sensitive expansion valve is smaller than the variable range of the capacity of the inverter compressor. Therefore, when this temperature-sensitive expansion valve is combined with the inverter compressor, the following Such a problem may occur.

例えば、冷却能力を最大限発揮させるために感温式膨張弁の定格容量をインバータ式圧縮機の運転周波数の最大時に合わせて決めてやると、インバータ式圧縮機を低周波数で運転する場合には、冷媒の流量に対して感温式膨張弁の容量が過大(すなわち、十分に絞り作用を発揮できない状態)になる。そして、容量が過大な状態では、過熱度が変動する現象(ハンチング)が起こりやすくなり、その結果、前記冷媒回路における低圧圧力が下がる。一般的な冷凍装置では低圧圧力がある程度以下の値(低圧カット値と呼ぶ)に下がると圧縮機が停止させられるので、ハンチングが起こると圧縮機の発停が頻繁に起こることになる。特に、利用側が冷却される冷凍装置(例えば、庫内温度が-5℃以下となる前記冷蔵庫など)では、目標の低圧値と前記低圧カット値との差が小さいので、圧縮機が頻繁に停止させられやすいと考えられる。   For example, if the rated capacity of the temperature-sensitive expansion valve is determined according to the maximum operating frequency of the inverter compressor in order to maximize the cooling capacity, when operating the inverter compressor at a low frequency, The capacity of the temperature-sensitive expansion valve becomes excessive with respect to the flow rate of the refrigerant (that is, the state where the throttle action cannot be sufficiently exerted). When the capacity is excessive, a phenomenon (hunting) in which the degree of superheat fluctuates easily occurs, and as a result, the low-pressure pressure in the refrigerant circuit decreases. In a general refrigeration system, the compressor is stopped when the low pressure decreases to a value below a certain level (referred to as a low pressure cut value). Therefore, when hunting occurs, the compressor starts and stops frequently. In particular, in a refrigeration system in which the use side is cooled (for example, the refrigerator having an internal temperature of −5 ° C. or lower), the compressor is frequently stopped because the difference between the target low pressure value and the low pressure cut value is small. It is thought that it is easy to be made.

このように圧縮機の発停が頻繁に起こっても、この状態では庫内温度が設定温度よりも高くなるので、運転周波数が上げられて、何れは庫内温度が設定温度になる。つまり、このハンチングは、設定温度に冷却できているかぎり一般的には気づきにくく、且つ庫内貯蔵物(例えば食品など)の品質不良につながることもないので、使用する上での不都合はないとも考えられる。   Thus, even if the compressor starts and stops frequently, the internal temperature becomes higher than the set temperature in this state, so the operating frequency is increased and eventually the internal temperature becomes the set temperature. In other words, this hunting is generally not noticeable as long as it can be cooled to the set temperature, and does not lead to poor quality of stored items (eg food), so there is no inconvenience in use. Conceivable.

しかしながら、このように圧縮機の発停が頻繁に起こると、圧縮機の劣化が進行する。また、圧縮機内の冷凍機油が持ち出されて起こる冷凍機油不足による圧縮機の品質不良や、頻繁に運転周波数が高くなることによる消費電力の増加を招くことになる。また、感温式膨張弁が十分に絞り作用を発揮できない場合には、液体の冷媒が圧縮機に戻る現象(液戻り)が起こり、これは潤滑油の希釈やいわゆる液圧縮につながる。この潤滑油の希釈や液圧縮は、冷凍装置を長期間使用するうちに圧縮機の故障の原因になる。そして圧縮機が故障すると、庫内温度が設定値まで下がらず、庫内貯蔵物の品質不良に至る恐れがある。   However, when the compressor starts and stops frequently, the deterioration of the compressor proceeds. Moreover, the quality of the compressor is deteriorated due to the shortage of the refrigeration oil caused by taking out the refrigeration oil in the compressor, and the power consumption is increased due to the frequent increase in the operating frequency. In addition, when the temperature-sensitive expansion valve cannot sufficiently exhibit the throttling action, a phenomenon that the liquid refrigerant returns to the compressor (liquid return) occurs, which leads to dilution of the lubricating oil or so-called liquid compression. The dilution and liquid compression of the lubricating oil cause a compressor failure while the refrigeration apparatus is used for a long time. If the compressor breaks down, the internal temperature does not drop to the set value, which may lead to poor quality of the stored items.

勿論、冷媒流量の最小値に合わせて感温式膨張弁を選定することも考えられるが、これでは一般的な感温式膨張弁では、冷媒の最大流量が該感温式膨張弁の制御可能範囲を超える可能性がある。この場合には、圧縮機の能力を落として使用することになり、所望の冷却能力を発揮できないことになる。つまり、インバータ式圧縮機に対して、ハンチングが起こらず、且つ所望の冷却能力を発揮できるように感温式膨張弁を選定するのは困難なことである。   Of course, it is conceivable to select a temperature-sensitive expansion valve in accordance with the minimum value of the refrigerant flow rate. However, with a general temperature-sensitive expansion valve, the maximum flow rate of the refrigerant can be controlled by the temperature-sensitive expansion valve. The range may be exceeded. In this case, the capacity of the compressor is reduced and the desired cooling capacity cannot be exhibited. That is, it is difficult to select a temperature-sensitive expansion valve so that hunting does not occur and a desired cooling capacity can be exhibited with respect to the inverter compressor.

本発明は前記の問題に着目してなされたものであり、ハンチングが起こらないように、低冷媒循環量での能力で感温式膨張弁を選定でき、且つ所望の冷却能力を発揮できるようにすることを目的としている。   The present invention has been made by paying attention to the above-mentioned problems, so that a temperature-sensitive expansion valve can be selected with a low refrigerant circulation capacity so that hunting does not occur, and a desired cooling capacity can be exhibited. The purpose is to do.

前記の課題を解決するため、第1の発明は、
冷媒が循環して蒸気圧縮式の冷凍サイクルを行う冷媒回路(10)を有し、インバータ回路によって運転周波数を制御されるインバータ式圧縮機(31)と感温式膨張弁(22)とを該冷媒回路(10)に含み、利用側を冷却する冷凍装置であって、
開閉弁(23)と、
前記開閉弁(23)を介して前記感温式膨張弁(22)に並列接続されて、該開閉弁(23)によって前記冷媒が流れる第1の状態と前記冷媒が流れない第2の状態との何れかに切り替わる絞り機構(24)と、
を備えていることを特徴とする。
In order to solve the above-mentioned problem, the first invention
A refrigerant circuit (10) that performs a vapor compression refrigeration cycle through circulation of the refrigerant, and includes an inverter compressor (31) that is controlled in operating frequency by an inverter circuit and a temperature-sensitive expansion valve (22) A refrigeration system for cooling the user side, including in the refrigerant circuit (10),
An on-off valve (23),
A first state in which the refrigerant flows through the on-off valve (23) and a second state in which the refrigerant does not flow are connected in parallel to the temperature-sensitive expansion valve (22) via the on-off valve (23). An aperture mechanism (24) that switches to either
It is characterized by having.

これにより、開閉弁(23)が閉じられると感温式膨張弁(22)のみによって、該感温式膨張弁(22)に流入した冷媒が膨張させられる。また、開閉弁(23)が開かれると感温式膨張弁(22)と絞り機構(24)の両者によって冷媒が膨張させられる。   Thereby, when the on-off valve (23) is closed, the refrigerant flowing into the temperature-sensitive expansion valve (22) is expanded only by the temperature-sensitive expansion valve (22). When the on-off valve (23) is opened, the refrigerant is expanded by both the temperature-sensitive expansion valve (22) and the throttle mechanism (24).

本発明では、冷媒流量の最小値が感温式膨張弁(22)の制御可能範囲に含まれるように、冷媒流量の最小値に合わせて該感温式膨張弁(22)を選定し、冷媒流量が最小の際に前記第2の状態に絞り機構(24)を切り替えれば、該感温式膨張弁(22)の開度をその最小開度以上の状態で使用できる。この状態では、感温式膨張弁(22)は十分に絞り作用を発揮することができ、いわゆるハンチングが起こることはない。また、このように十分に絞り作用を発揮できれば、前記液戻りを防止できる。   In the present invention, the temperature-sensitive expansion valve (22) is selected according to the minimum value of the refrigerant flow rate so that the minimum value of the refrigerant flow rate is included in the controllable range of the temperature-sensitive expansion valve (22). If the throttle mechanism (24) is switched to the second state when the flow rate is minimum, the opening degree of the temperature-sensitive expansion valve (22) can be used in a state where the opening degree is not less than the minimum opening degree. In this state, the temperature-sensitive expansion valve (22) can sufficiently exhibit a throttling action, and so-called hunting does not occur. Further, if the squeezing action can be sufficiently exerted in this way, the liquid return can be prevented.

また、本発明では、前記のように感温式膨張弁(22)を選定して、冷媒流量の最大値が前記制御可能範囲の上限値を上回ることとなっても、容量が不足するときに前記第1の状態に絞り機構(24)を切り替えて、感温式膨張弁(22)と絞り機構(24)の両者によって冷媒を膨張させるようにすれば、絞り機構(24)によってその不足分を補うことができる。すなわち、感温式膨張弁(22)と絞り機構(24)の両者によって十分に絞り作用を発揮することができ、所望の冷却能力を得ることができる。このように、本発明はハンチングが起こらないように、低冷媒循環量での能力で感温式膨張弁(22)を選定でき、且つ所望の冷却能力を発揮できる。   In the present invention, when the capacity is insufficient even if the temperature-sensitive expansion valve (22) is selected as described above and the maximum value of the refrigerant flow rate exceeds the upper limit value of the controllable range. If the throttle mechanism (24) is switched to the first state and the refrigerant is expanded by both the temperature-sensitive expansion valve (22) and the throttle mechanism (24), the throttle mechanism (24) can provide the shortage. Can be supplemented. That is, both the temperature-sensitive expansion valve (22) and the throttling mechanism (24) can sufficiently exert a throttling action, and a desired cooling capacity can be obtained. As described above, in the present invention, the temperature-sensitive expansion valve (22) can be selected with the capability of the low refrigerant circulation amount so that hunting does not occur, and the desired cooling capability can be exhibited.

また、第2の発明は、
第1の発明の冷凍装置において、
前記運転周波数が所定値以下に制御される場合に前記絞り機構(24)を前記第2の状態に切り替える制御装置(33)をさらに備えていることを特徴とする。
In addition, the second invention,
In the refrigeration apparatus of the first invention,
The apparatus further includes a control device (33) that switches the throttle mechanism (24) to the second state when the operating frequency is controlled to be equal to or lower than a predetermined value.

これにより、例えば熱負荷が小さいとき等に運転周波数が低く制御されると、感温式膨張弁(22)のみによって、該感温式膨張弁(22)に流入した冷媒が膨張させられる。また、熱負荷が大きいとき等に運転周波数が高く制御されると、感温式膨張弁(22)と絞り機構(24)の両者によって冷媒が膨張させられる。   Thereby, for example, when the operation frequency is controlled to be low when the heat load is small, the refrigerant flowing into the temperature-sensitive expansion valve (22) is expanded only by the temperature-sensitive expansion valve (22). Further, when the operation frequency is controlled to be high when the heat load is large, the refrigerant is expanded by both the temperature-sensitive expansion valve (22) and the throttle mechanism (24).

第1の発明によれば、ハンチングを防止することができるので、該ハンチングによるインバータ式圧縮機(31)の発停を防止できる。インバータ式圧縮機(31)の発停の回数を低減できれば、冷凍機油が持ち出されて冷凍機油不足となって該インバータ式圧縮機(31)の品質不良が起こることもないし、頻繁に運転周波数が高くなることによる消費電力の増加を招くこともない。また、前記液戻りを防止できるので、液体冷媒によって潤滑油が希釈されたり液圧縮が起こったりすることがなく、これらを原因とする圧縮機の故障が防止される。   According to the first invention, since hunting can be prevented, the start and stop of the inverter compressor (31) due to the hunting can be prevented. If the number of start and stop of the inverter compressor (31) can be reduced, the refrigeration oil will not be brought out and the refrigeration oil will be insufficient, resulting in poor quality of the inverter compressor (31), and the operating frequency will frequently There is no increase in power consumption due to the increase. Further, since the liquid return can be prevented, the lubricating oil is not diluted by the liquid refrigerant and liquid compression does not occur, and the compressor failure due to these is prevented.

また、第2の発明によれば、運転周波数が低い場合にハンチングの発生が防止される。すなわち、インバータ回路の制御による省エネルギー運転と、ハンチングの防止とを両立できる。   Further, according to the second invention, the occurrence of hunting is prevented when the operating frequency is low. That is, both energy saving operation by controlling the inverter circuit and prevention of hunting can be achieved.

以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.

図1は、本発明の実施形態に係る冷凍装置(1)における冷媒回路(10)の配管系統図である。この冷凍装置(1)は蒸気圧縮式の冷凍サイクルを行い、利用側が冷却されるようになっている。具体的には、この冷凍装置(1)は、例えば店舗などに設置されて食料品などを貯蔵する冷蔵庫(或いは冷凍庫)として実現され、その庫内温度は例えば−5℃以下に冷却される。   FIG. 1 is a piping diagram of a refrigerant circuit (10) in a refrigeration apparatus (1) according to an embodiment of the present invention. This refrigeration apparatus (1) performs a vapor compression refrigeration cycle so that the user side is cooled. Specifically, this refrigeration apparatus (1) is realized, for example, as a refrigerator (or a freezer) that is installed in a store or the like and stores food products or the like, and its internal temperature is cooled to, for example, -5 ° C or lower.

〈冷凍装置(1)の全体構成〉
冷凍装置(1)は、図1に示すように、室内に設置される室内ユニット(20)と、室外に設置される室外ユニット(30)とを備えている。この室内ユニット(20)と室外ユニット(30)とは、第1の接続配管(11)及び第2の接続配管(12)を介して互いに接続され、冷媒が循環して蒸気圧縮式の冷凍サイクルを行う冷媒回路(10)を構成している。
<Overall configuration of refrigeration system (1)>
As shown in FIG. 1, the refrigeration apparatus (1) includes an indoor unit (20) installed indoors and an outdoor unit (30) installed outdoor. The indoor unit (20) and the outdoor unit (30) are connected to each other via a first connection pipe (11) and a second connection pipe (12), and a refrigerant circulates to form a vapor compression refrigeration cycle. The refrigerant circuit (10) for performing the above is configured.

〈室外ユニット〉
室外ユニット(30)は、インバータ式圧縮機(31)、熱源側熱交換器(32)、及び制御装置(33)を備えている。
<Outdoor unit>
The outdoor unit (30) includes an inverter compressor (31), a heat source side heat exchanger (32), and a control device (33).

インバータ式圧縮機(31)は、例えば、スクロール圧縮機などの容積型圧縮機により構成されている。このインバータ式圧縮機(31)は、インバータ回路を介して電力が供給され、該インバータ回路によって運転周波数が制御されて運転容量が可変する圧縮機である。本実施形態のインバータ回路は、この運転周波数を19Hz〜109Hzの範囲で変化させるようになっている。このインバータ式圧縮機(31)の吐出ポートは、冷媒配管を介して熱源側熱交換器(32)のガス側端部に接続されている。また、インバータ式圧縮機(31)の吸入ポートは、第1の接続配管(11)を介して室内ユニット(20)と接続されている。   The inverter type compressor (31) is configured by a positive displacement compressor such as a scroll compressor, for example. This inverter type compressor (31) is a compressor in which electric power is supplied through an inverter circuit, the operation frequency is controlled by the inverter circuit, and the operation capacity is variable. The inverter circuit of this embodiment changes this operating frequency in the range of 19 Hz to 109 Hz. The discharge port of the inverter compressor (31) is connected to the gas side end of the heat source side heat exchanger (32) via a refrigerant pipe. The suction port of the inverter compressor (31) is connected to the indoor unit (20) via the first connection pipe (11).

熱源側熱交換器(32)は、クロスフィン式のフィン・アンド・チューブ型熱交換器で構成され、この熱源側熱交換器(32)において、冷媒と熱源側の空気(室外空気)との間で熱交換が行われるようになっている。熱源側熱交換器(32)の近傍には、室外ファン(図示は省略)が設けられている。熱源側熱交換器(32)へは、この室外ファンによって室外空気が送られる。この熱源側熱交換器(32)はその液側端部が第2の接続配管(12)を介して室内ユニット(20)と接続されている。   The heat source side heat exchanger (32) is a cross fin type fin-and-tube heat exchanger, and in this heat source side heat exchanger (32), the refrigerant and the heat source side air (outdoor air) Heat exchange is performed between them. An outdoor fan (not shown) is provided in the vicinity of the heat source side heat exchanger (32). Outdoor air is sent to the heat source side heat exchanger (32) by the outdoor fan. The liquid source end of the heat source side heat exchanger (32) is connected to the indoor unit (20) via the second connection pipe (12).

制御装置(33)は、本発明の制御装置に対応し、後述する電磁弁(23)の開閉を制御する。この制御装置(33)は、前記運転周波数がインバータ回路によって所定値(閾値周波数)以下に制御される場合に電磁弁(23)を閉じ、それよりも運転周波数が高い場合に電磁弁(23)を開く。なお、閾値周波数については後述する。   The control device (33) corresponds to the control device of the present invention, and controls opening and closing of a solenoid valve (23) described later. The control device (33) closes the electromagnetic valve (23) when the operating frequency is controlled to be equal to or lower than a predetermined value (threshold frequency) by the inverter circuit, and the electromagnetic valve (23) when the operating frequency is higher than that. open. The threshold frequency will be described later.

〈室内ユニット〉
室内ユニット(20)は、利用側熱交換器(21)、感温式膨張弁(22)、電磁弁(23)、及び絞り機構(24)を備え、冷蔵庫内(利用側)の空気を冷却する。
<Indoor unit>
The indoor unit (20) includes a use-side heat exchanger (21), a temperature-sensitive expansion valve (22), a solenoid valve (23), and a throttle mechanism (24), and cools the air in the refrigerator (use side) To do.

利用側熱交換器(21)は、クロスフィン式のフィン・アンド・チューブ型熱交換器で構成され、この利用側熱交換器(21)において、冷媒と利用側の空気(冷蔵庫内の空気)との間で熱交換が行われるようになっている。利用側熱交換器(21)の近傍には、室内ファン(図示は省略)が設けられている。利用側熱交換器(21)へは、この室内ファンによって利用側の空気が送られる。   The use side heat exchanger (21) is a cross-fin type fin-and-tube heat exchanger, and in this use side heat exchanger (21), the refrigerant and the use side air (air in the refrigerator) Heat exchange between the two. An indoor fan (not shown) is provided in the vicinity of the use side heat exchanger (21). The use side air is sent to the use side heat exchanger (21) by the indoor fan.

感温式膨張弁(22)は、感温筒(22a)の検出温度に応じて開度が調整されるいわゆる温度自動膨張弁である。詳しくは、感温筒(22a)の検出温度が上昇すると、該感温式膨張弁(22)は開く方向に調整され、前記検出温度が低下すると該感温式膨張弁(22)は閉じる方向に調整される。   The temperature-sensitive expansion valve (22) is a so-called automatic temperature expansion valve whose opening degree is adjusted according to the detected temperature of the temperature-sensitive cylinder (22a). Specifically, when the detected temperature of the temperature sensing cylinder (22a) rises, the temperature sensitive expansion valve (22) is adjusted to open, and when the detected temperature falls, the temperature sensitive expansion valve (22) closes. Adjusted to

一般的な感温式膨張弁は、定格容量の60%から120%の制御可能範囲を有し、従来の冷凍装置では、通常は、熱負荷が最大のときにこの制御可能範囲の上限値付近で使用されるように感温式膨張弁が選定される。本実施形態でもこのような一般的な制御可能範囲を有した感温式膨張弁を感温式膨張弁(22)として採用するが、その選定の基準が従来とは異なる。   A typical temperature-sensitive expansion valve has a controllable range of 60% to 120% of the rated capacity. In conventional refrigeration equipment, it is usually near the upper limit of this controllable range when the heat load is maximum. A temperature sensitive expansion valve is selected for use in In the present embodiment, the temperature-sensitive expansion valve having such a general controllable range is adopted as the temperature-sensitive expansion valve (22), but the selection criterion is different from the conventional one.

本実施形態では熱負荷が最小の場合に合わせて感温式膨張弁(22)を選定し、熱負荷が小さいときに感温式膨張弁(22)の容量が過大にならないようにする。より詳しくは、本実施形態の感温式膨張弁(22)は、最小運転周波数(19Hz)でインバータ式圧縮機(31)の運転が行われているときに流入する冷媒流量(最小冷媒流量)が該感温式膨張弁(22)の制御可能範囲内に含まれるように、最小冷媒流量を基準にして選定されている。このように感温式膨張弁(22)を選定する場合、原理的には前記制御可能範囲の下限値が前記最小冷媒流量となるようにすれば最小冷媒流量での運転時に絞り作用を発揮できるが、種々のばらつきを考慮してある程度のマージンのある感温式膨張弁を選定するのが好ましい。   In the present embodiment, the temperature-sensitive expansion valve (22) is selected according to the case where the heat load is minimum, and the capacity of the temperature-sensitive expansion valve (22) is prevented from becoming excessive when the heat load is small. More specifically, the temperature-sensitive expansion valve (22) of the present embodiment has a refrigerant flow rate (minimum refrigerant flow rate) that flows when the inverter compressor (31) is operated at the minimum operation frequency (19 Hz). Is selected based on the minimum refrigerant flow rate so as to be included in the controllable range of the temperature-sensitive expansion valve (22). When the temperature-sensitive expansion valve (22) is selected in this way, in principle, if the lower limit value of the controllable range is the minimum refrigerant flow rate, the throttling action can be exhibited during operation at the minimum refrigerant flow rate. However, it is preferable to select a temperature-sensitive expansion valve having a certain margin in consideration of various variations.

このように前記最小冷媒流量を基準に選択を行うと、一般的な感温式膨張弁では、最大運転周波数(109Hz)でインバータ式圧縮機(31)を運転したときに流入する冷媒流量(最大冷媒流量)が前記制御可能範囲の上限値(定格容量の120%)を上回る可能性があると考えられる。しかしながら、この冷凍装置(1)では後に詳述するように、該最大冷媒流量が該上限値を上回ってもこの最大流量でインバータ式圧縮機(31)の運転を行わせることができる。以下の説明では、最大冷媒流量が前記制御可能範囲の上限値よりも上回っているものとして説明する。   Thus, when the selection is made based on the minimum refrigerant flow rate, in a general temperature-sensitive expansion valve, the refrigerant flow rate (maximum) that flows when the inverter compressor (31) is operated at the maximum operation frequency (109 Hz). It is considered that the refrigerant flow rate may exceed the upper limit (120% of the rated capacity) of the controllable range. However, in this refrigeration apparatus (1), as will be described in detail later, even if the maximum refrigerant flow rate exceeds the upper limit value, the inverter compressor (31) can be operated at the maximum flow rate. In the following description, it is assumed that the maximum refrigerant flow rate is higher than the upper limit value of the controllable range.

このように選定された感温式膨張弁(22)は、その冷媒流入側が第2の接続配管(12)を介して、熱源側熱交換器(32)の液側端部と接続され、冷媒流出側が利用側熱交換器(21)の液側端部に接続されている。また、感温筒(22a)は、利用側熱交換器(21)の冷媒流出側であるガス側端部に配置され、キャピラリチューブで感温式膨張弁(22)と接続されている。   The temperature-sensitive expansion valve (22) thus selected has its refrigerant inflow side connected to the liquid side end of the heat source side heat exchanger (32) via the second connection pipe (12). The outflow side is connected to the liquid side end of the use side heat exchanger (21). The temperature sensing cylinder (22a) is disposed at the gas side end on the refrigerant outflow side of the use side heat exchanger (21), and is connected to the temperature sensing type expansion valve (22) by a capillary tube.

電磁弁(23)は、本発明の開閉弁に対応し、前記制御装置(33)の制御に応じて開閉が制御されるようになっている。この電磁弁(23)の冷媒流入側は、第2の接続配管(12)に接続され、冷媒流出側が絞り機構(24)の冷媒流入側に接続されている。   The electromagnetic valve (23) corresponds to the opening / closing valve of the present invention, and the opening / closing is controlled according to the control of the control device (33). The refrigerant inflow side of the electromagnetic valve (23) is connected to the second connection pipe (12), and the refrigerant outflow side is connected to the refrigerant inflow side of the throttle mechanism (24).

絞り機構(24)は、例えば銅管を材料としたキャピラリチューブにより構成されている。この絞り機構(24)は、その冷媒流入側が既述のとおり電磁弁(23)に接続され、冷媒流出側が感温式膨張弁(22)の冷媒流出側に接続されている。すなわち、絞り機構(24)は、電磁弁(23)を介して感温式膨張弁(22)に並列接続されており、この電磁弁(23)によって、冷媒が流れる第1の状態と、冷媒が流れない第2の状態との何れかに切り替わるようになっている。なお、絞り機構(24)を構成するキャピラリチューブの内径及び長さは、最大運転周波数(109Hz)での運転時に感温式膨張弁(22)の開度を最大、且つ電磁弁(23)を開状態(絞り機構(24)を第1の状態)にして、該感温式膨張弁(22)と絞り機構(24)の両者で所望の絞り作用が得られるように定めておく。   The aperture mechanism (24) is constituted by a capillary tube made of, for example, a copper tube. The throttle mechanism (24) has the refrigerant inflow side connected to the electromagnetic valve (23) as described above, and the refrigerant outflow side connected to the refrigerant outflow side of the temperature-sensitive expansion valve (22). That is, the throttle mechanism (24) is connected in parallel to the temperature-sensitive expansion valve (22) via the electromagnetic valve (23). The electromagnetic valve (23) causes the first state in which the refrigerant flows, and the refrigerant Is switched to one of the second states in which no flow occurs. The inner diameter and length of the capillary tube constituting the throttle mechanism (24) are set so that the opening degree of the temperature-sensitive expansion valve (22) is maximized during operation at the maximum operating frequency (109 Hz), and the solenoid valve (23) is It is set so that the desired throttle action can be obtained by both the temperature-sensitive expansion valve (22) and the throttle mechanism (24) in the open state (the throttle mechanism (24) in the first state).

前記第1及び第2の状態の切り替えは、既述の通り制御装置(33)により制御される。具体的には、室外ユニット(30)から流入する冷媒の流量が感温式膨張弁(22)の制御可能範囲内の場合には絞り機構(24)を第2の状態に切り替えて感温式膨張弁(22)のみに冷媒が流れるようにする。また、室外ユニット(30)から流入する冷媒の流量が増加して前記制御可能範囲の上限値に近づくと該上限値を超える前に絞り機構(24)を第1の状態に切り替えて感温式膨張弁(22)と絞り機構(24)の両者に冷媒が流れるようにする。   Switching between the first and second states is controlled by the control device (33) as described above. Specifically, when the flow rate of the refrigerant flowing from the outdoor unit (30) is within the controllable range of the temperature-sensitive expansion valve (22), the throttle mechanism (24) is switched to the second state to make the temperature-sensitive type. Let the refrigerant flow only through the expansion valve (22). Further, when the flow rate of the refrigerant flowing from the outdoor unit (30) increases and approaches the upper limit value of the controllable range, the throttle mechanism (24) is switched to the first state before the upper limit value is exceeded, and the temperature-sensitive type. Refrigerant flows through both the expansion valve (22) and the throttle mechanism (24).

例えば、運転周波数が60Hz(最大運転周波数(109Hz)の約65%)を超えた場合に冷媒流量が感温式膨張弁(22)の制御可能範囲の上限値を超えるのであれば、前記閾値周波数をこの60Hzよりも少し低い周波数に設定する。そして、運転周波数が前記閾値周波数以下に制御される場合には電磁弁(23)を閉じて第2の状態に切り替え、前記閾値周波数よりも高い運転周波数に制御される場合には電磁弁(23)を開いて第1の状態に切り替えるようにする。   For example, if the refrigerant flow rate exceeds the upper limit of the controllable range of the temperature-sensitive expansion valve (22) when the operation frequency exceeds 60 Hz (about 65% of the maximum operation frequency (109 Hz)), the threshold frequency Is set to a frequency slightly lower than 60 Hz. When the operation frequency is controlled to be equal to or lower than the threshold frequency, the solenoid valve (23) is closed and switched to the second state, and when the operation frequency is controlled to be higher than the threshold frequency, the solenoid valve (23 ) To switch to the first state.

《冷凍装置(1)の運転動作》
インバータ式圧縮機(31)が運転状態にされると、冷媒は図1の実線矢印で示す方向に冷媒回路(10)内を循環する。具体的には、インバータ式圧縮機(31)から吐出された冷媒は、熱源側熱交換器(32)に流入し、熱源側熱交換器(32)では、室外ファンによって取り込まれた室外空気に放熱して凝縮する。凝縮した冷媒は、第2の接続配管(12)を介して室内ユニット(20)に流入する。
<< Operation of refrigeration system (1) >>
When the inverter compressor (31) is put into an operating state, the refrigerant circulates in the refrigerant circuit (10) in the direction indicated by the solid line arrow in FIG. Specifically, the refrigerant discharged from the inverter compressor (31) flows into the heat source side heat exchanger (32), and the heat source side heat exchanger (32) converts the outdoor air taken in by the outdoor fan. It dissipates heat and condenses. The condensed refrigerant flows into the indoor unit (20) through the second connection pipe (12).

例えば冷蔵庫内の温度が設定温度よりも高い場合、すなわち熱負荷が大きな場合には、インバータ回路によって運転周波数が上げられて、例えば最大運転周波数(109Hz)に設定される。この設定では運転周波数が前記閾値周波数よりも高いので、制御装置(33)によって電磁弁(23)が開状態に制御される。これにより、絞り機構(24)は、電磁弁(23)を介して感温式膨張弁(22)に並列接続され、該絞り機構(24)に冷媒が流れる第1の状態に切り替わる。一方、熱負荷が大きくなると感温筒(22a)の温度が上昇し、その結果、感温式膨張弁(22)は開く方向に調整されて、例えば感温式膨張弁(22)の容量が前記制御可能範囲の上限値(定格容量の120%)になる。   For example, when the temperature in the refrigerator is higher than the set temperature, that is, when the heat load is large, the operation frequency is increased by the inverter circuit, and is set to the maximum operation frequency (109 Hz), for example. In this setting, since the operating frequency is higher than the threshold frequency, the electromagnetic valve (23) is controlled to be in the open state by the control device (33). Thereby, the throttle mechanism (24) is connected in parallel to the temperature-sensitive expansion valve (22) via the electromagnetic valve (23), and switches to the first state in which the refrigerant flows through the throttle mechanism (24). On the other hand, when the heat load increases, the temperature of the temperature sensing cylinder (22a) rises. As a result, the temperature sensing expansion valve (22) is adjusted in the opening direction, for example, the capacity of the temperature sensing expansion valve (22) The upper limit of the controllable range (120% of the rated capacity) is reached.

前記第1の状態では、熱源側熱交換器(32)から室内ユニット(20)に流入した冷媒は、感温式膨張弁(22)と絞り機構(24)の両者によって膨張させられる。つまり、制御可能範囲の上限値(定格容量の120%)が最大冷媒流量よりも小さな定格容量のものを感温式膨張弁(22)として選定していても、この絞り機構(24)によって、感温式膨張弁(22)の容量の不足分を補うことができるのである。これにより、この冷凍装置(1)では所望の冷却能力を発揮できることになる。   In the first state, the refrigerant flowing into the indoor unit (20) from the heat source side heat exchanger (32) is expanded by both the temperature-sensitive expansion valve (22) and the throttle mechanism (24). That is, even if the upper limit of the controllable range (120% of the rated capacity) is selected as the temperature-sensitive expansion valve (22) with a rated capacity smaller than the maximum refrigerant flow rate, this throttling mechanism (24) The shortage of the capacity of the temperature sensitive expansion valve (22) can be compensated. As a result, the refrigeration apparatus (1) can exhibit a desired cooling capacity.

このように感温式膨張弁(22)と絞り機構(24)の両者によって膨張させられた冷媒は、利用側熱交換器(21)に導入され、利用側熱交換器(21)において冷蔵庫内(利用側)の空気から吸熱して蒸発する。これにより、冷蔵庫内の空気は冷却される。その後、蒸発した冷媒は、第1の接続配管(11)介してインバータ式圧縮機(31)に吸入されて圧縮される。そして、圧縮された冷媒は熱源側熱交換器(32)に流入する。   The refrigerant thus expanded by both the temperature-sensitive expansion valve (22) and the throttle mechanism (24) is introduced into the usage-side heat exchanger (21), and the usage-side heat exchanger (21) It absorbs heat from the (use side) air and evaporates. Thereby, the air in a refrigerator is cooled. Thereafter, the evaporated refrigerant is sucked into the inverter compressor (31) through the first connection pipe (11) and compressed. Then, the compressed refrigerant flows into the heat source side heat exchanger (32).

このようにして冷蔵庫内の空気が冷却されて、該空気の温度が設定温度に徐々に近づくと、熱負荷が徐々に小さくなり運転周波数も徐々に低下する。そして、運転周波数が低下して前記閾値周波数になると、制御装置(33)は電磁弁(23)を閉状態に制御する。これにより、絞り機構(24)は、冷媒が流れない第2の状態に切り替わる。一方、熱負荷が小さくなって行くと感温筒(22a)の温度が下がり、その結果、感温式膨張弁(22)は閉じる方向に調整され、利用側熱交換器(21)のガス側端部における過熱度に応じた開度になる。すなわち、熱源側熱交換器(32)から室内ユニット(20)に流入した冷媒は、感温式膨張弁(22)のみによって膨張させられる。   When the air in the refrigerator is thus cooled and the temperature of the air gradually approaches the set temperature, the heat load is gradually reduced and the operation frequency is gradually lowered. When the operating frequency decreases and reaches the threshold frequency, the control device (33) controls the electromagnetic valve (23) to be closed. Thereby, a throttle mechanism (24) switches to the 2nd state in which a refrigerant does not flow. On the other hand, as the heat load decreases, the temperature of the temperature sensing cylinder (22a) decreases, and as a result, the temperature sensing expansion valve (22) is adjusted in the closing direction, and the gas side of the use side heat exchanger (21) The opening degree depends on the degree of superheat at the end. That is, the refrigerant flowing into the indoor unit (20) from the heat source side heat exchanger (32) is expanded only by the temperature-sensitive expansion valve (22).

さらに運転周波数が低下して最小運転周波数(19Hz)になると、冷媒流量が最小になる。本実施形態では、前記最小冷媒流量が感温式膨張弁(22)の制御可能範囲内に含まれるように該感温式膨張弁(22)が選定されているので、インバータ式圧縮機(31)が最小運転周波数で運転されている場合、感温式膨張弁(22)の開度は、該感温式膨張弁(22)の制御可能範囲の下限値(定格容量の20%)における開度よりも少し開いた状態になる。この状態では、感温式膨張弁(22)は十分に絞り作用を発揮することができ、いわゆるハンチングが起こることはない。すなわち、本実施形態では、ハンチングが起こらないように、低冷媒循環量での能力で感温式膨張弁(22)を選定できるのである。   Further, when the operating frequency is lowered to the minimum operating frequency (19 Hz), the refrigerant flow rate is minimized. In this embodiment, since the temperature-sensitive expansion valve (22) is selected so that the minimum refrigerant flow rate is included in the controllable range of the temperature-sensitive expansion valve (22), the inverter compressor (31 ) Is operated at the minimum operating frequency, the opening of the temperature-sensitive expansion valve (22) is opened at the lower limit value (20% of the rated capacity) of the controllable range of the temperature-sensitive expansion valve (22). A little more open than the degree. In this state, the temperature-sensitive expansion valve (22) can sufficiently exhibit a throttling action, and so-called hunting does not occur. That is, in the present embodiment, the temperature-sensitive expansion valve (22) can be selected with the capability of a low refrigerant circulation amount so that hunting does not occur.

そして、このようにハンチングが防止されると、低圧カット値に基づくインバータ式圧縮機(31)の発停の回数を低減することができる。インバータ式圧縮機(31)の発停の回数を低減できれば、該インバータ式圧縮機(31)内の冷凍機油が持ち出されて冷凍機油不足となって該インバータ式圧縮機(31)の品質不良が起こったり、頻繁に運転周波数が高くなることによる消費電力の増加を招いたりすることがない。   And if hunting is prevented in this way, the frequency | count of start / stop of the inverter type compressor (31) based on a low voltage | pressure cut value can be reduced. If the number of start and stop of the inverter compressor (31) can be reduced, the refrigeration oil in the inverter compressor (31) is taken out and the refrigeration oil becomes insufficient, resulting in poor quality of the inverter compressor (31). It does not occur or increase in power consumption due to frequent increase in operating frequency.

また、前記のように感温式膨張弁(22)が十分に絞り作用を発揮することができるので前記液戻りが起こらない。すなわち、この液戻りを原因とする、潤滑油の希釈やいわゆる液圧縮が起こることがなく、潤滑油の希釈や液圧縮を原因とするインバータ式圧縮機(31)の故障が防止される。   Further, as described above, since the temperature-sensitive expansion valve (22) can sufficiently exhibit the throttle action, the liquid return does not occur. In other words, there is no dilution of the lubricating oil or so-called liquid compression caused by this liquid return, and the failure of the inverter compressor (31) caused by the dilution or liquid compression of the lubricating oil is prevented.

なお、上記の例では運転周波数に応じて電磁弁(23)の開閉を制御したが、その他の方法で熱負荷を検知できれば、その検知結果に基づいて開閉制御を行ってもよい。   In the above example, the opening / closing of the solenoid valve (23) is controlled according to the operating frequency. However, if the thermal load can be detected by other methods, the opening / closing control may be performed based on the detection result.

また、前記の実施形態において絞り機構(24)として用いたキャピラリチューブは例示であり、その他の構造の膨張機構を採用してもよい。   Further, the capillary tube used as the throttle mechanism (24) in the above embodiment is an example, and an expansion mechanism having another structure may be adopted.

また、前記の実施形態では、制御装置(33)を室外ユニット(30)側に設けたが室内ユニット(20)側に設けてもよい。   Moreover, in the said embodiment, although the control apparatus (33) was provided in the outdoor unit (30) side, you may provide in the indoor unit (20) side.

本発明は、冷媒が循環して蒸気圧縮式の冷凍サイクルを行う冷凍装置として有用である。   The present invention is useful as a refrigeration apparatus that performs a vapor compression refrigeration cycle by circulating a refrigerant.

本発明の実施形態に係る冷凍装置(1)における冷媒回路(10)の配管系統図である。It is a piping system diagram of the refrigerant circuit (10) in the refrigeration apparatus (1) according to the embodiment of the present invention.

1 冷凍装置
10 冷媒回路
22 感温式膨張弁
23 電磁弁(開閉弁)
24 絞り機構
31 インバータ式圧縮機
33 制御装置
DESCRIPTION OF SYMBOLS 1 Refrigerating device 10 Refrigerant circuit 22 Temperature-sensitive expansion valve 23 Solenoid valve (open / close valve)
24 Aperture mechanism 31 Inverter compressor 33 Controller

Claims (2)

冷媒が循環して蒸気圧縮式の冷凍サイクルを行う冷媒回路(10)を有し、インバータ回路によって運転周波数を制御されるインバータ式圧縮機(31)と感温式膨張弁(22)とを該冷媒回路(10)に含み、利用側を冷却する冷凍装置であって、
開閉弁(23)と、
前記開閉弁(23)を介して前記感温式膨張弁(22)に並列接続されて、該開閉弁(23)によって前記冷媒が流れる第1の状態と前記冷媒が流れない第2の状態との何れかに切り替わる絞り機構(24)と、
を備えていることを特徴とする冷凍装置。
A refrigerant circuit (10) that performs a vapor compression refrigeration cycle by circulating refrigerant and having an inverter compressor (31) and a temperature-sensitive expansion valve (22) controlled in operating frequency by the inverter circuit A refrigeration system for cooling the user side, including in the refrigerant circuit (10),
An on-off valve (23),
A first state in which the refrigerant flows through the on-off valve (23) and a second state in which the refrigerant does not flow are connected in parallel to the temperature-sensitive expansion valve (22) via the on-off valve (23). An aperture mechanism (24) that switches to either
A refrigeration apparatus comprising:
請求項1の冷凍装置において、
前記運転周波数が所定値以下に制御される場合に前記絞り機構(24)を前記第2の状態に切り替える制御装置(33)をさらに備えていることを特徴とする冷凍装置。
The refrigeration apparatus of claim 1,
The refrigeration apparatus further comprising a control device (33) that switches the throttle mechanism (24) to the second state when the operating frequency is controlled to be equal to or lower than a predetermined value.
JP2009056601A 2009-03-10 2009-03-10 Refrigerating device Pending JP2010210144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009056601A JP2010210144A (en) 2009-03-10 2009-03-10 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009056601A JP2010210144A (en) 2009-03-10 2009-03-10 Refrigerating device

Publications (1)

Publication Number Publication Date
JP2010210144A true JP2010210144A (en) 2010-09-24

Family

ID=42970513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009056601A Pending JP2010210144A (en) 2009-03-10 2009-03-10 Refrigerating device

Country Status (1)

Country Link
JP (1) JP2010210144A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130111929A1 (en) * 2011-11-03 2013-05-09 Siemens Aktiengesellschaft Method for increasing the valve capacity of a refrigeration unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130111929A1 (en) * 2011-11-03 2013-05-09 Siemens Aktiengesellschaft Method for increasing the valve capacity of a refrigeration unit
US9618247B2 (en) * 2011-11-03 2017-04-11 Siemens Schweiz Ag Method for increasing the valve capacity of a refrigeration unit

Similar Documents

Publication Publication Date Title
JP5516602B2 (en) Refrigeration equipment
JP5169295B2 (en) Refrigeration equipment
JP5590980B2 (en) Refrigeration air conditioner
JP5982017B2 (en) Dual refrigeration cycle equipment
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
JP6028816B2 (en) Air conditioner
JP6028817B2 (en) Air conditioner
JP5908183B1 (en) Air conditioner
JP4270274B2 (en) Outdoor unit
JP2015064169A (en) Hot water generation device
JP2009058222A (en) Outdoor unit
JP2007010220A (en) Refrigerating unit and refrigerator comprising the same
JP2009243842A (en) Operation method of multiple-type air conditioner and outdoor unit
JP2014085078A (en) Air conditioner
JP2009243847A (en) Multiple air conditioner
JP6072559B2 (en) Refrigeration equipment
JP2007309585A (en) Refrigerating device
JP2014077560A (en) Air conditioner
JP2013204821A (en) Air conditioner
JP2015014372A (en) Air conditioner
JP2010210144A (en) Refrigerating device
JP2007298218A (en) Refrigerating device
JP6881424B2 (en) Refrigerator
JP2017036872A (en) Refrigeration device
KR20070064908A (en) Air conditioner and driving method thereof