JP2016089212A - Water hardening device and water hardening method - Google Patents

Water hardening device and water hardening method Download PDF

Info

Publication number
JP2016089212A
JP2016089212A JP2014223971A JP2014223971A JP2016089212A JP 2016089212 A JP2016089212 A JP 2016089212A JP 2014223971 A JP2014223971 A JP 2014223971A JP 2014223971 A JP2014223971 A JP 2014223971A JP 2016089212 A JP2016089212 A JP 2016089212A
Authority
JP
Japan
Prior art keywords
water
cooling
quenched
chamber
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014223971A
Other languages
Japanese (ja)
Other versions
JP6465281B2 (en
Inventor
黒田 秀治
Hideji Kuroda
秀治 黒田
照美 中村
Terumi Nakamura
照美 中村
和之 櫻谷
Kazuyuki Sakuratani
和之 櫻谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2014223971A priority Critical patent/JP6465281B2/en
Publication of JP2016089212A publication Critical patent/JP2016089212A/en
Application granted granted Critical
Publication of JP6465281B2 publication Critical patent/JP6465281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water hardening device and a water hardening method dissolving the facts that, though hardening treatment mainly copes with gas cooling and oil cooling in a vacuum heat treatment furnace, hardening effect is hard to be obtained to the central part of a material inferior in hardenability and a plate material or a bulk material, further, even in the case water cooling is performed, only by immersing the material to be hardened, high cooling velocity cannot be obtained, and sufficient hardness cannot be obtained to the central part of the material to be hardened.SOLUTION: Provided is a water hardening device where the material to be hardened is heated and held to a high temperature in a vacuum or in an inert gas atmosphere in a heating chamber, the same is dropped within 1 sec to a cooling chamber, thereafter, cooling water is forcedly stirred by high pressure water radiation with a pressurized water jet and a bubble jet (registered trademark) by inert gas jetting, cooling water is forcedly stirred, thus cooling can be performed in a nucleus boiling state, and a water hardening method capable of hardening to the central part of the material to be hardened.SELECTED DRAWING: Figure 2

Description

本発明は、2室で構成される水焼入れ装置で真空あるいは不活性ガス雰囲気にて高温に加熱、保持した被焼入れ物を冷却室に落下せしめ、冷却室内で加圧水ジェットの高圧放水と不活性ガス噴射によるバブルジェット(登録商標)での冷却水の強攪拌を行うことにより、被焼入れ物表面を核沸騰状態に保持し、急速冷却を可能とする水焼入れ装置及び水焼入れ方法に関する。   The present invention is a water quenching apparatus composed of two chambers, in which a to-be-quenched object heated and held at a high temperature in a vacuum or an inert gas atmosphere is dropped into a cooling chamber, and high-pressure water discharge of a pressurized water jet and an inert gas in the cooling chamber The present invention relates to a water quenching apparatus and a water quenching method that enable rapid cooling by maintaining the surface of an object to be quenched in a nucleate boiling state by vigorously stirring cooling water with a bubble jet (registered trademark) by jetting.

水焼入れは、高温に加熱された炭素鋼などを水冷により急冷し、高硬度のマルテンサイト組織を得ることにより、耐摩耗性や引張強度又は疲労強度を向上させる一般的な熱処理である。また、所定の高温状態から水冷によって急冷するオーステナイト系ステンレス鋼の溶体化などの熱処理も含まれる。 Water quenching is a general heat treatment that improves wear resistance, tensile strength, or fatigue strength by quenching carbon steel or the like heated to a high temperature by water cooling to obtain a high hardness martensite structure. Further, heat treatment such as solution forming of austenitic stainless steel that is rapidly cooled by water cooling from a predetermined high temperature state is also included.

大気中の熱処理では、高温状態を保持するため表面酸化の問題が避けられないが、真空あるいは不活性ガス雰囲気は無酸化熱処理としては最も優れた対策である。そのため金型を始め多くの部品や製品に対して、表面の清浄性、光輝性などを確保するため多くの熱処理に採用されている。   In the heat treatment in the atmosphere, the problem of surface oxidation is unavoidable because it maintains a high temperature state, but a vacuum or an inert gas atmosphere is the most excellent countermeasure as a non-oxidation heat treatment. For this reason, it is used in many heat treatments to ensure surface cleanliness, radiance, etc. for many parts and products, including molds.

真空炉を使用した熱処理では、現在のところ焼入れ性の良いダイス鋼(SKD系)、高速度鋼(SKH系)の鋼種では主にガス冷却や油冷却によって焼入れ処理が行われている。また、焼入れ性が劣る炭素工具鋼(SK材)、合金工具鋼(SKS材)などは現状においては、主に真空油焼入れ炉を用いて処理されている。 In the heat treatment using a vacuum furnace, at present, quenching treatment is mainly performed by gas cooling or oil cooling for die steels (SKD type) and high-speed steels (SKH type) having good hardenability. In addition, carbon tool steel (SK material), alloy tool steel (SKS material), etc., which are inferior in hardenability, are currently processed mainly using a vacuum oil quenching furnace.

特許文献1には、加熱室、冷却室、水冷装置からなる3室で構成される水焼入れ装置が開示されている。各種雰囲気中で加熱した被焼入れ物を加熱室と同じ雰囲気に調整された冷却室に移し、冷却室の雰囲気を大気圧に調節した後に、被焼入れ物を高速で冷却水が流れる水槽に浸漬して水焼入れを行う。   Patent Document 1 discloses a water quenching apparatus configured by three chambers including a heating chamber, a cooling chamber, and a water cooling device. The to-be-quenched object heated in various atmospheres is transferred to a cooling room adjusted to the same atmosphere as the heating room, and after adjusting the atmosphere in the cooling room to atmospheric pressure, the to-be-quenched object is immersed in a water tank in which cooling water flows at high speed. Perform water quenching.

しかし、前記3室型水焼入れ装置では、水焼入れを雰囲気加熱炉や真空加熱炉に直接接続して無酸化のまま行うことができるが、一旦冷却室に移してから大気圧に調整するため加熱から冷却までに時間を要することで温度低下が避けられず、加熱炉にて余分に昇温を行うといった欠点がある。 However, in the three-chamber water quenching apparatus, water quenching can be performed directly connected to an atmospheric heating furnace or a vacuum heating furnace without oxidation. However, heating is performed to adjust to atmospheric pressure after moving to a cooling chamber. Since it takes time from cooling to cooling, a decrease in temperature is inevitable, and there is a disadvantage that the temperature is excessively raised in a heating furnace.

特許文献2には、加熱室、連通部、焼入れ室からなる横型真空熱処理炉において真空熱処理装置が開示されている。連通部に設置した開閉扉を瞬時開閉する間に、被焼入れ物を水平移動のピストン機構で押し出すことによって焼入れ室に放出、搬出して水焼入れ処理を行う。   Patent Document 2 discloses a vacuum heat treatment apparatus in a horizontal vacuum heat treatment furnace including a heating chamber, a communication portion, and a quenching chamber. While opening and closing the open / close door installed in the communication section, the material to be quenched is pushed out by a horizontally moving piston mechanism and discharged into the quenching chamber for water quenching.

しかし、前記横型真空熱処理装置の水焼入れの場合、浸水までに費やされる時間も短くできるが、被焼入れ物を浸水させるだけでは被焼入れ物の大きさよっては、焼入れ時に生成する水蒸気膜の影響により十分な冷却速度が確保できず、被焼入れ物全域に焼入れ効果が得られない可能性がある。 However, in the case of the water quenching of the horizontal vacuum heat treatment apparatus, the time spent until the water can be shortened, but depending on the size of the material to be quenched only by immersing the material to be quenched, the effect of the water vapor film generated during the quenching A sufficient cooling rate cannot be secured, and there is a possibility that the quenching effect cannot be obtained over the entire area to be quenched.

特開2002−97520号公報JP 2002-97520 A 特開2012−12637号公報JP 2012-12737 A

河原全作、JFE21世紀財団 2009年度技術研究報告書Kawahara Zensaku, JFE 21st Century Foundation 2009 Technical Research Report

大気中の熱処理では被焼入れ物の取り扱いやすさから、水焼入れについて様々な水冷方法が実施されているが、大気中の加熱は酸化が避けられず、表面粗さや寸法精度に影響を及ぼす。 In the heat treatment in the atmosphere, various water cooling methods are carried out for the water quenching because of easy handling of the object to be quenched, but heating in the atmosphere cannot avoid oxidation and affects the surface roughness and dimensional accuracy.

S15Cなどの合金元素も少なくC量が低い鋼を中心部まで焼入れにより硬化するには、被焼入れ物をJIS規格(JISG0561)などで定められた焼入れ温度以上まで加熱し、この温度で保持後に迅速に中心部温度を室温付近まで急冷する必要がある。また、厚板材又はバルク材といった熱容量が大きい被焼入れ物の中心部まで焼入れ効果を得るには、いかに効率よく熱を奪い、急冷できるかが重要となる。 To harden steel with low alloying elements such as S15C and low C content to the center by quenching, the material to be hardened is heated to a temperature higher than the quenching temperature defined in JIS standards (JISG0561) and quickly kept at this temperature. In addition, it is necessary to rapidly cool the center temperature to near room temperature. In addition, in order to obtain a quenching effect up to the center of an object to be quenched having a large heat capacity such as a thick plate material or a bulk material, it is important how efficiently heat can be taken away and rapidly cooled.

また、SUS304鋼などのオーステナイト系ステンレス鋼の熱処理法である1000℃以上の高温に加熱し、析出物を固溶化させる固溶化熱処理も同様の急冷が必要である。 Moreover, the same rapid cooling is required for the solution heat treatment for heating the precipitate to a high temperature of 1000 ° C. or higher, which is a heat treatment method for austenitic stainless steel such as SUS304 steel.

急冷は一般的に熱伝達が大きい水冷により行われるが、特に焼入れ性が悪い材料や厚板材又はバルク材を高温から水冷する場合、被焼入れ物を水に浸漬させるだけでは焼入れ時に被焼入れ物表面に発生する水蒸気膜により水が被焼入れ物に接触することができず、効果的に冷却ができない(非特許文献1参照)。そのため被焼入れ物の中心部まで焼入れや溶体化の効果を得るには、被焼入れ物表面の水蒸気膜を破壊し、核沸騰状態で冷却しなければならない。 Rapid cooling is generally performed by water cooling with high heat transfer. Especially when materials with poor hardenability, thick plate materials, or bulk materials are water-cooled from a high temperature, the surface of the object to be quenched is simply immersed in water. Water cannot be brought into contact with the object to be quenched due to the water vapor film generated in the film, and cooling cannot be effectively performed (see Non-Patent Document 1). Therefore, in order to obtain the effect of quenching and solution treatment to the center of the object to be quenched, the water vapor film on the surface of the object to be quenched must be destroyed and cooled in a nucleate boiling state.

現状では、焼入れ性が悪い材料や厚板材又はバルク材を、真空あるいは不活性ガス雰囲気にて高温に加熱、保持された状態から被焼入れ物の中心部まで急速に冷却することが困難であり、いかに被焼入れ物の表面近傍の冷却を核沸騰状態にするかが問題とされている。 At present, it is difficult to rapidly cool a material having poor hardenability, a thick plate material, or a bulk material from a state heated to a high temperature in a vacuum or an inert gas atmosphere to the center of the object to be quenched. There is a problem of how to cool the vicinity of the surface of the object to be quenched to a nucleate boiling state.

本発明は真空あるいは不活性ガス雰囲気にて焼入れ性の劣る被焼入れ物の焼入れに好適な水焼入れ装置及び水焼入れ方法を提供する。   The present invention provides a water quenching apparatus and a water quenching method suitable for quenching a to-be-quenched article having poor quenchability in a vacuum or an inert gas atmosphere.

発明の第1は、上部に加熱機能、下部に冷却機能を有する上下2室構造を有する水焼入れ装置であって、真空あるいは不活性ガス雰囲気で被焼入れ物を加熱する装置及び前記被焼入れ物を保持し冷却室に落下させる装置で構成する加熱室、並びに、前記被焼入れ物を急速冷却する加圧水ジェット冷却装置及び不活性ガス噴射によるバブルジェット(登録商標)で冷却水を強撹拌することによって前記被焼入れ物の表面近傍の水冷却が核沸騰状態に保持する機能を有する冷却水槽で構成する冷却室、前記加熱室及び前記冷却室間のスライド式圧力仕切り弁、前記加熱室及び前記冷却室のそれぞれに接続される複数個の真空排気装置、冷却水供給装置、及び、不活性ガス供給装置により構成する水焼入れ装置を提供する。   A first aspect of the invention is a water quenching apparatus having an upper and lower two-chamber structure having a heating function at the upper part and a cooling function at the lower part, and the apparatus for heating the quenching object in a vacuum or an inert gas atmosphere A heating chamber constituted by a device that holds and drops the cooling chamber, a pressurized water jet cooling device that rapidly cools the to-be-quenched object, and a bubble jet (registered trademark) by inert gas injection to strongly agitate the cooling water. A cooling chamber composed of a cooling water tank having a function of maintaining water cooling in the nucleate boiling state near the surface of the object to be quenched, a sliding pressure partition valve between the heating chamber and the cooling chamber, the heating chamber and the cooling chamber Provided is a water quenching device constituted by a plurality of vacuum exhaust devices, a cooling water supply device, and an inert gas supply device connected to each.

発明の第2は、発明1に記載の水焼入れ装置による水焼入れ方法であって、真空あるいは不活性ガス雰囲気で被焼入れ物を所定の温度まで加熱、保持した後、冷却室に落下し、高温を保持したままに加圧水ジェット装置で高圧放水し、更に、不活性ガス噴射によるバブルジェット(登録商標)で冷却水を強撹拌し冷却室内で急速冷却を行う水焼入れ方法を提供する。 A second aspect of the invention is a water quenching method using the water quenching apparatus according to the first aspect of the invention, wherein the object to be quenched is heated to a predetermined temperature in a vacuum or an inert gas atmosphere, and then dropped into a cooling chamber. A water quenching method is provided in which high-pressure water discharge is performed with a pressurized water jet apparatus while holding water, and the cooling water is vigorously stirred with a bubble jet (registered trademark) by inert gas injection to rapidly cool in the cooling chamber.

発明の第3は、発明2に記載の水焼入れ方法であって、冷却室における被焼入れ物の表面が加圧水ジェットの高圧放水や不活性ガス噴射による強攪拌の冷却によって核沸騰状態に保持する水焼入れ方法を提供する。 A third aspect of the invention is a water quenching method according to the second aspect of the invention, wherein the surface of the object to be quenched in the cooling chamber is maintained in a nucleate boiling state by high-pressure water discharge of a pressurized water jet or strong stirring cooling by inert gas injection. Provide a quenching method.

発明の第4は、発明2又は3に記載の水焼入れ方法であって、不活性ガス雰囲気及び不活性ガス噴射の成分が、ヘリウムガス、アルゴンガス、窒素ガスのうちのいずれか1種、あるいは、2種以上の混合気体で構成する水焼入れ方法を提供する。 A fourth aspect of the invention is the water quenching method according to the aspect 2 or 3, wherein the inert gas atmosphere and the inert gas injection component are any one of helium gas, argon gas, and nitrogen gas, or A water quenching method comprising two or more mixed gases is provided.

本発明による水焼入れ置及び水焼入れ方法は、被焼入れ物の加熱室から冷却室までの移送に要する時間を1秒以下にすることができ、加熱温度を保持した被焼入れ物を加圧水ジェットによる高圧放水と不活性ガス噴射によるバブルジェット(登録商標)で冷却水を強攪拌することで被焼入れ物表面を核沸騰状態に保持することができ、被焼入れ物中心部まで焼入れを可能とし、大気による酸化も排除することができる。   In the water quenching and water quenching method according to the present invention, the time required for transferring the quenching object from the heating chamber to the cooling chamber can be reduced to 1 second or less, and the quenching object holding the heating temperature is pressurized with a pressurized water jet. The surface of the object to be hardened can be maintained in a nucleate boiling state by vigorously stirring the cooling water with a bubble jet (registered trademark) by water discharge and inert gas injection. Oxidation can also be eliminated.

更に、前記水焼入れ方法は、被焼入れ物を全方向から冷却することで冷却速度の差を低減し、前記被焼入れ物を均一に冷却することで、前記被焼入れ物全体の歪み、硬さや内部組織、結晶粒度のばらつきも低減することができる。 Further, the water quenching method reduces the difference in cooling rate by cooling the to-be-quenched object from all directions, and uniformly cools the to-be-quenched object, so that the distortion, hardness and internal Variations in texture and grain size can also be reduced.

本発明の実施形態に係る水焼入れ装置の概略構成図。The schematic block diagram of the water quenching apparatus which concerns on embodiment of this invention. 前記装置の水焼入れ時における冷却室概要図。The cooling chamber schematic diagram at the time of the water quenching of the said apparatus. 水焼入れ試験による試験材中心部の金属組織観察及び硬さ。Observation of metal structure and hardness at the center of test material by water quenching test. 水焼入れ試験方法の違いによる試験材中心部の金属組織及び硬さ。Metal structure and hardness at the center of the test material due to differences in water quenching test methods. 水焼入れ試験方法の違いによる試験材中心部の温度履歴。Temperature history of the test material center due to differences in water quenching test methods.

以下、本発明の実施形態を、図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の水焼き入れ装置の構成を示す。水冷ジャケットを有する加熱室1内に、断熱壁2にて構成する加熱空間3を設けている。この加熱空間3にはヒータ4とその内側にヒータ4の損傷を防ぐため被焼入れ物の転倒防止ガイド5を内設している。加熱室1上部のチャンバー蓋6を開閉して、被焼入れ物7と被焼入れ物7を固定する支持台8を支持シャッター9の上にセットする。支持シャッター9には冷却水が循環し、冷却することによって支持シャッター自体の過昇温を防止している。 FIG. 1 shows the configuration of the water quenching apparatus of the present invention. A heating space 3 constituted by a heat insulating wall 2 is provided in a heating chamber 1 having a water cooling jacket. In this heating space 3, a heater 4 and a guide 5 for preventing toppling of the object to be hardened are provided inside the heater 4 to prevent damage to the heater 4. The chamber lid 6 at the top of the heating chamber 1 is opened and closed, and the object to be quenched 7 and the support base 8 for fixing the object to be quenched 7 are set on the support shutter 9. Cooling water circulates through the support shutter 9, and the support shutter itself is prevented from being overheated by cooling.

セット後、加熱室1全体を加熱室用油回転真空ポンプ10及び加熱室油拡散真空ポンプ11により排気し、真空度6.6×10−3Pa以下の真空状態あるいはヘリウムガス、アルゴンガス、窒素ガスの不活性ガスにより置換を行い、無酸化状態で加熱処理を行う。加熱室1の排気と同時に、冷却室13を冷却室用油回転真空ポンプ14によって排気する。冷却室13の排気は、加熱室1と同様真空状態あるいは不活性ガスによる置換を行い、2室が同圧になるように設定する。 After setting, the entire heating chamber 1 is evacuated by the heating chamber oil rotary vacuum pump 10 and the heating chamber oil diffusion vacuum pump 11, and the vacuum state is 6.6 × 10 −3 Pa or less, or helium gas, argon gas, nitrogen The gas is replaced with an inert gas, and heat treatment is performed in a non-oxidized state. Simultaneously with the exhaust of the heating chamber 1, the cooling chamber 13 is exhausted by the cooling chamber oil rotary vacuum pump 14. The exhaust of the cooling chamber 13 is set so that the two chambers have the same pressure by being replaced with a vacuum state or an inert gas as in the heating chamber 1.

被焼入れ物の加熱後はヒータ4がOFF状態になり、冷却室13の排気弁を閉じた後、スライド式圧力仕切り弁12が開き、続いて支持シャッター9が開口する。開口後に被焼入れ物7と支持台8が冷却室13に1秒以内に落下し、落ちると同時にスライド式圧力仕切り弁12と支持シャッター9が閉口する。閉口によって加熱室1の雰囲気を乱さない状態となり、被焼入れ物の水焼入れが可能となる。水焼入れ終了後は冷却室13の設けられた図示しないリーク弁を開放し、被焼入れ物7と支持台8を室内より取り出す。 After heating the object to be quenched, the heater 4 is turned off, the exhaust valve of the cooling chamber 13 is closed, the slide pressure gate valve 12 is opened, and then the support shutter 9 is opened. After opening, the to-be-quenched object 7 and the support base 8 fall into the cooling chamber 13 within 1 second, and at the same time, the sliding pressure gate valve 12 and the support shutter 9 are closed. By closing, the atmosphere of the heating chamber 1 is not disturbed, and water quenching of the object to be quenched is possible. After the water quenching is completed, a leak valve (not shown) provided with the cooling chamber 13 is opened, and the object 7 and the support base 8 are taken out from the room.

図2は前記冷却室13での被焼入れ物の水冷却について示している。前記加熱室1で加熱した被焼入れ物7と支持台8が網目状の処理物受け皿15に落ちると同時に前記スライド式圧力仕切り弁12が閉口し、冷却室13内に設置する3つの加圧水ジェットノズル16からの高圧放水により被焼入れ物7を冷却する。 FIG. 2 shows water cooling of the object to be quenched in the cooling chamber 13. Three pressurizing water jet nozzles installed in the cooling chamber 13 when the object 7 to be quenched and the support 8 heated in the heating chamber 1 fall into the mesh-shaped processed material tray 15 and the sliding pressure gate valve 12 is closed. The to-be-quenched object 7 is cooled by the high-pressure water discharge from 16.

前記加圧水ジェットノズル16から高圧放水される水は、水焼入れ装置外に併設している貯水タンク17にあらかじめ貯水されている。貯水タンク17には加圧弁18が設置されており、不活性ガスが導入され、加圧した状態の水が押し込まれている。 The water discharged at high pressure from the pressurized water jet nozzle 16 is stored in advance in a water storage tank 17 provided outside the water quenching apparatus. A pressurizing valve 18 is installed in the water storage tank 17, an inert gas is introduced, and pressurized water is pushed in.

前記加圧水ジェットノズル16は所定の流量を放水し、冷却室13に所定の水量が注水された後に放水を停止する。放水により十分に冷却水が貯水された状態で、冷却室13下部のガス噴射口19からガス供給ユニット20により供給される不活性ガスを冷却水中に直接噴射することで、冷却水を強攪拌させる。この加圧水ジェットと不活性ガス噴射によるバブルジェット(登録商標)で冷却水を強攪拌し、被焼入れ物7の表面近傍を核沸騰状態に保持することができる。また、ガス噴射によって冷却室13の圧力が0.5KPa以上になると、冷却室13に設置されている図示しないガス開放弁が作動し室内圧力の調整を行う。 The pressurized water jet nozzle 16 discharges a predetermined flow rate, and stops water discharge after a predetermined amount of water is injected into the cooling chamber 13. The cooling water is strongly stirred by directly injecting the inert gas supplied by the gas supply unit 20 from the gas injection port 19 below the cooling chamber 13 into the cooling water in a state where the cooling water is sufficiently stored by the water discharge. . Cooling water is vigorously stirred with this pressurized water jet and bubble jet (registered trademark) by inert gas injection, and the vicinity of the surface of the object to be quenched 7 can be maintained in a nucleate boiling state. Further, when the pressure in the cooling chamber 13 becomes 0.5 KPa or more due to gas injection, a gas release valve (not shown) installed in the cooling chamber 13 is operated to adjust the indoor pressure.

前記水焼入れ装置を加熱するヒータ4は、本発明ではカーボンヒータによる抵抗加熱方式を採用しているが、目的に応じたヒータ材質を選定できる。また、被焼入れ物7を加熱、保持できれば高周波加熱や通電直接加熱でも問題はなく、加熱方式は特に限定するものではない。 The heater 4 for heating the water quenching apparatus employs a resistance heating method using a carbon heater in the present invention, but a heater material can be selected according to the purpose. Moreover, if the to-be-quenched thing 7 can be heated and hold | maintained, there will be no problem in high-frequency heating or direct current heating, and the heating method is not particularly limited.

前記冷却室13の加圧水ジェットノズル16及び噴射口19については、前記水焼入れ装置の大きさを考慮した上で被焼入れ物7への水焼入れが効果的に作用する条件を満たせば、設置数や設置位置又は放水流量を特に限定する必要はない。 Regarding the pressurized water jet nozzle 16 and the injection port 19 in the cooling chamber 13, the number of installations and the number of installations can be increased as long as the conditions for effective water quenching on the object to be quenched 7 are satisfied in consideration of the size of the water quenching apparatus. There is no need to particularly limit the installation position or discharge flow rate.

被焼入れ物加熱前の排気において、冷却室13に水やガスが混入していない場合はスライド式圧力仕切り弁12を必ずしも閉口しておく必要はなく、開口した状態で加熱室用油回転真空ポンプ10と加熱室用油拡散真空ポンプ11で加熱室1と冷却室13を同時に排気、置換することができ、開口のまま加熱開始することもできる。 When the cooling chamber 13 is not mixed with water or gas in the exhaust before heating the to-be-quenched object, it is not always necessary to close the slide pressure gate valve 12, and the oil rotary vacuum pump for the heating chamber is open. The heating chamber 1 and the cooling chamber 13 can be exhausted and replaced at the same time by the oil diffusion vacuum pump 11 for heating chamber 10 and heating can be started with the opening kept open.

前記冷却室13では、加圧水ジェットノズル16をガスノズルに取り替え不活性ガスを噴射するガス焼入れや、油注入ノズルに取り替え注油による油焼入れ、又は冷却室13内で放冷することが可能で、水焼き入れよりも遅い焼入れ速度にも対応することができる。 In the cooling chamber 13, the pressurized water jet nozzle 16 can be replaced with a gas nozzle, gas quenching for injecting an inert gas, oil injection nozzle can be replaced with oil quenching by oiling, or cooling can be performed in the cooling chamber 13. It can also cope with quenching speeds slower than quenching.

前記加熱室1では被焼入れ物を様々なガス雰囲気中で保持することにより浸炭処理や窒化処理をすることができ、処理後直ちに冷却といった他の熱処理との組み合わせも可能である。 The heating chamber 1 can be carburized or nitrided by holding the object to be quenched in various gas atmospheres, and can be combined with other heat treatments such as cooling immediately after the treatment.

前記水焼入れおいて、焼入れ性の良い被焼入れ物であれば、加圧水ジェットノズル16よって貯められた冷却水中に噴射口19からの不活性ガス噴射によるバブルジェット(登録商標)で冷却水の強攪拌を行わずに水焼き入れをすることも可能である。   In the case of quenching with water, if the material is to be hardened, the cooling water is strongly stirred by a bubble jet (registered trademark) by an inert gas injection from the injection port 19 in the cooling water stored by the pressurized water jet nozzle 16. It is also possible to quench with water without performing the above.

被焼入れ物の表面酸化を問わない水焼入れにおいては、真空あるいは不活性ガス雰囲気での加熱から大気中での加熱に変更できる。そして、冷却室13内も真空あるいは不活性ガス雰囲気の必要がなければ、あらかじめ冷却水を貯水し、加熱された被焼入れ物を直接落水させて、不活性ガス又はエアー噴射によるバブルジェット(登録商標)で冷却水を強攪拌し冷却を行っても構わない。   In water quenching regardless of the surface oxidation of the object to be quenched, heating in a vacuum or inert gas atmosphere can be changed to heating in the atmosphere. If the inside of the cooling chamber 13 does not need a vacuum or an inert gas atmosphere, the cooling water is stored in advance, the heated object to be quenched is directly dropped, and a bubble jet (registered trademark) by inert gas or air injection is used. The cooling water may be vigorously stirred and cooled.

<実施例1>
通常、炭素鋼は冷却速度が大きくなるにつれてフェライト、ベイナイト、マルテンサイトへと硬い組織に移行する。炭素鋼は炭素含有量の減少に伴い、マルテンサイト組織の生成には急速な冷却が必要である。そこで焼入れ性が悪く、焼入れにムラが生じやすい0.15%の炭素を含んだ低炭素鋼であるS15Cを選択し、真空中での水焼入れ試験を行った。表1は水焼入れ試験で使用したS15C(JISG4051)の成分組成範囲を示す。
<Example 1>
Normally, carbon steel shifts to a hard structure such as ferrite, bainite, and martensite as the cooling rate increases. Carbon steel requires rapid cooling to produce a martensitic structure as the carbon content decreases. Therefore, S15C, which is a low carbon steel containing 0.15% carbon that is poor in hardenability and easily causes unevenness in quenching, was selected, and a water quenching test was performed in a vacuum. Table 1 shows the component composition range of S15C (JISG4051) used in the water quenching test.

市販のS15C材を直径15mm、長さ100mmの水焼入れ試験材に機械加工した。試験材の温度を計測するため試験材の中心部に直径1.0mm、深さ7.5mmの穴空け加工を行い、この穴に直径1.0mm のシース熱電対(JIS1605、熱電対種類:SK、シース材質:B)を挿入した。このS15C試験材を使用し、本発明の真空熱処理炉の加熱室に室温で投入した後、油回転真空ポンプと油拡散真空ポンプによって6.6×10−3Pa以下まで排気した。その際、温度計測のためスライド式圧力仕切り弁を開口したまま排気し、加熱室と冷却室は同じ真空度とした。加熱は1200℃まで2時間で昇温させ、試験材中心部の温度が設定温度に到達後に10分間保持し、加熱を停止した。加熱停止後、支持シャッターを開き、冷却室内に試験材を落下させ、スライド式圧力仕切り弁と支持シャッターを閉口した。加熱後から加圧水ジェット開始までを5秒以内に行い、加圧水ジェット流水量は55L/minで高圧放水し、放水から数秒後に冷却室下部の噴射口からからアルゴンガスを噴射させ、バブルジェット(登録商標)で冷却水を強攪拌した。加圧水ジェットは冷却室に40Lまで貯水すると放水を停止し、冷却室下部から冷却水中へのアルゴンガス噴射は試験材料の中心温度が50℃以下に冷却された後にガス供給を停止した。 A commercially available S15C material was machined into a water-quenched test material having a diameter of 15 mm and a length of 100 mm. In order to measure the temperature of the test material, a hole with a diameter of 1.0 mm and a depth of 7.5 mm is drilled in the center of the test material, and a 1.0 mm diameter sheath thermocouple (JIS 1605, thermocouple type: SK) is formed in this hole. Sheath material: B) was inserted. After using this S15C test material and putting it in the heating chamber of the vacuum heat treatment furnace of the present invention at room temperature, it was evacuated to 6.6 × 10 −3 Pa or less by an oil rotary vacuum pump and an oil diffusion vacuum pump. At that time, the temperature was measured while the slide pressure gate valve was opened, and the heating chamber and the cooling chamber were set to the same degree of vacuum. The heating was increased to 1200 ° C. in 2 hours, and the temperature at the center of the test material was maintained for 10 minutes after reaching the set temperature, and the heating was stopped. After stopping the heating, the support shutter was opened, the test material was dropped into the cooling chamber, and the sliding pressure gate valve and the support shutter were closed. From the heating to the start of the pressurized water jet is performed within 5 seconds, the pressurized water jet flow rate is 55 L / min, and the high pressure water discharge is performed. ) The cooling water was vigorously stirred. When the pressurized water jet was stored up to 40 L in the cooling chamber, the water discharge was stopped, and the argon gas injection from the lower portion of the cooling chamber into the cooling water was stopped after the center temperature of the test material was cooled to 50 ° C. or lower.

なお、真空容器内への放水は、瞬間的な水の蒸発作用により急激に昇圧する危険性や多量の気化熱発生により水が氷に変化する懸念があったが、本発明装置で初期真空度が6.6×10−3Pa以下の条件下でも順調な急速冷却が可能であった。 In addition, although there was a risk of water being discharged into the vacuum vessel, there was a risk of sudden pressure increase due to the instantaneous evaporation of water or the generation of a large amount of heat of vaporization. However, smooth rapid cooling was possible even under conditions of 6.6 × 10 −3 Pa or less.

焼入れ試験前と焼入れ試験後の試験材中心部の金属組織観察及び硬さ計測結果を図3に示す。焼入れ前の試験材はフェライトとパーライトからなる組織となり硬さもビッカース硬さ(以後、Hvと標記)135と一般的なS15C材の焼きならし硬さであるHv117〜156の範囲であった。この試験材を本発明の水焼き入れ方法で冷却することによって試験材中心部までマルテンサイト組織となり、硬さもHv394と十分な硬さが得られ、試験材全体に焼入れ効果があった。 The metal structure observation and hardness measurement results at the center of the test material before and after the quenching test are shown in FIG. The test material before quenching had a structure composed of ferrite and pearlite, and the hardness was in the range of Vickers hardness (hereinafter referred to as Hv) 135 and Hv 117 to 156, which is the normalization hardness of a general S15C material. By cooling this test material with the water quenching method of the present invention, a martensitic structure was obtained up to the center of the test material, and the hardness was sufficiently high as Hv394, and the entire test material had a quenching effect.

<比較例1>
実施例1と同じ条件で加熱し、試験材を落下させた後の冷却は加圧水ジェットのみを使用し、アルゴンガス噴射を行わない比較試験を行った。注水条件は実施例1と同じで、加熱後から加圧水ジェット開始までを5秒以内に行い、水ジェット流水量は55L/minで高圧放水し、冷却室に40Lまで貯水した後に放水を停止した。
<Comparative Example 1>
Heating was performed under the same conditions as in Example 1, and cooling after dropping the test material used only a pressurized water jet, and a comparative test was performed without performing argon gas injection. The water injection conditions were the same as those in Example 1, and after the heating, the pressurized water jet was started within 5 seconds. The water jet flow amount was high pressure water discharge at 55 L / min, and the water discharge was stopped after storing up to 40 L in the cooling chamber.

比較例1で実施した試験材中心部の金属組織観察及び硬さ計測の結果を図4に示している。アルゴンガス噴射でのバブルジェット(登録商標)による強攪拌を行わなかった比較例1は、実施例1のような焼入れ効果が十分に得られなかった。その結果、中心部の大部分がフェライトとなり、マルテンサイト組織に移行せずに硬度もHv167となった。 FIG. 4 shows the results of metal structure observation and hardness measurement at the center of the test material performed in Comparative Example 1. In Comparative Example 1 in which strong stirring by bubble jet (registered trademark) with argon gas injection was not performed, the quenching effect as in Example 1 was not sufficiently obtained. As a result, most of the central portion became ferrite, and the hardness became Hv167 without shifting to the martensite structure.

表2は実施例1と比較例1の試験材の中心温度の冷却時間を示しており、1200℃から100℃までの冷却に100秒以上の違いがあった。実施例1は加圧水ジェットの高圧放水による蒸気膜を破壊しながらの冷却だけでなく、アルゴンガス噴射によるバブルジェット(登録商標)での冷却水の強攪拌が冷却速度の加速に大きく作用していることがわかる。特に800℃(40秒前後)からは、加圧水ジェットの放水によって冷却水中に試験材が完全に浸漬した状態でも、アルゴンガス噴射によるバブルジェット(登録商標)の強攪拌によって、試験材が冷却水槽内で激しく動き回りながら試験材全表面が水と直接接触しながら冷却する核沸騰状態が維持されている。実施例1に比べ、アルゴンガス噴射による強攪拌を行わない比較例1は、試験材が完全に冷却水中に浸漬しまうと試験材の中心部の冷却速度が図4に示すように大きく低減する。その原因は、高温の試験材が水に接触する前に蒸発する膜沸騰状態に移行してしまうことで、水蒸気膜を通して蒸気の対流熱伝達と輻射熱伝達によってのみ冷却されるためである。 Table 2 shows the cooling time of the center temperature of the test materials of Example 1 and Comparative Example 1, and there was a difference of 100 seconds or more in cooling from 1200 ° C to 100 ° C. In Example 1, not only cooling while destroying a vapor film by high-pressure water discharge of a pressurized water jet, but also strong stirring of cooling water by bubble jet (registered trademark) by argon gas injection greatly affects the acceleration of the cooling rate. I understand that. In particular, from 800 ° C. (around 40 seconds), even when the test material is completely immersed in the cooling water by discharging the pressurized water jet, the test material is brought into the cooling water tank by vigorous stirring of the bubble jet (registered trademark) by argon gas injection. The nucleate boiling state in which the entire surface of the test material is cooled while in direct contact with water while moving around vigorously is maintained. Compared with Example 1, in Comparative Example 1 in which strong stirring by argon gas injection is not performed, when the test material is completely immersed in the cooling water, the cooling rate at the center of the test material is greatly reduced as shown in FIG. The reason is that the high temperature test material is cooled only by convection heat transfer and radiant heat transfer through the water vapor film by shifting to a film boiling state where it evaporates before coming into contact with water.

1 加熱室
2 断熱壁
3 熱処理空間
4 ヒータ
5 転倒防止ガイド
6 チャンバー蓋
7 被焼入れ物
8 支持台
9 支持シャッター
10 加熱室用油回転真空ポンプ
11 油拡散真空ポンプ
12 スライド式圧力仕切り弁
13 冷却室
14 冷却室用油回転真空ポンプ
15 処理物受け皿
16 加圧水ジェットノズル
17 貯水タンク
18 加圧弁
19 噴射口
20 ガス供給ユニット
DESCRIPTION OF SYMBOLS 1 Heating chamber 2 Heat insulation wall 3 Heat treatment space 4 Heater 5 Fall prevention guide 6 Chamber lid 7 Hardened object 8 Support stand 9 Support shutter 10 Oil rotary vacuum pump 11 for oil heating chamber Oil diffusion vacuum pump 12 Sliding pressure gate valve 13 Cooling chamber 14 Oil rotary vacuum pump for cooling chamber 15 Processed object tray 16 Pressurized water jet nozzle 17 Reservoir tank 18 Pressurization valve 19 Injection port 20 Gas supply unit

水焼入れ装置及びこの装置を利用した焼入れ方法によって、焼入れ性が悪い材料や厚板材、あるいはバルク材の中心部まで焼入れが可能となり、大気の酸化を排除した状態で熱処理部品を提供できるため自動車や建築用の構造部材への転用が見込まれる。   The water quenching device and the quenching method using this device enable quenching to the center of a poorly hardened material, thick plate material, or bulk material. Diversion to structural members for construction is expected.

Claims (4)

上部に加熱機能、下部に冷却機能を有する上下2室構造を有する水焼入れ装置であって、被焼入れ物を加熱する装置及び前記被焼入れ物を保持し冷却室に落下させる装置で構成する加熱室、並びに、前記被焼入れ物を急速冷却する加圧式の水ジェット冷却装置及び不活性ガス噴射によるバブルジェット(登録商標)で冷却水を強撹拌することによって前記被焼入れ物の表面近傍の水冷却が核沸騰状態に保持する機能を有する冷却水槽で構成する冷却室、前記加熱室及び前記冷却室間のスライド式圧力仕切り弁、前記加熱室及び前記冷却室のそれぞれに接続される複数個の真空排気装置、冷却水供給装置、及び、不活性ガス供給装置により構成することを特徴とする水焼入れ装置。 A water quenching apparatus having an upper and lower two-chamber structure having a heating function at the upper part and a cooling function at the lower part, comprising a device for heating the material to be quenched and a device for holding the material to be quenched and dropping it into the cooling chamber In addition, the water-cooling in the vicinity of the surface of the object to be quenched can be performed by vigorously stirring the cooling water with a pressurized water jet cooling device that rapidly cools the object to be quenched and a bubble jet (registered trademark) by inert gas injection. A cooling chamber composed of a cooling water tank having a function of maintaining a nucleate boiling state, a sliding pressure gate valve between the heating chamber and the cooling chamber, a plurality of vacuum exhausts connected to each of the heating chamber and the cooling chamber A water quenching apparatus comprising an apparatus, a cooling water supply apparatus, and an inert gas supply apparatus. 請求項1に記載の水焼入れ装置による水焼入れ方法であって、真空あるいは不活性ガス雰囲気で被焼入れ物を所定の温度まで加熱、保持した後冷却室に落下し、高温を保持したままに加圧水ジェット装置で高圧放水し、更に不活性ガス噴射によるバブルジェット(登録商標)で冷却室内の冷却水を強撹拌し急速冷却することを特徴とする水焼入れ方法。 A water quenching method using the water quenching apparatus according to claim 1, wherein the object to be quenched is heated and held to a predetermined temperature in a vacuum or an inert gas atmosphere, then dropped into a cooling chamber, and pressurized water is maintained while maintaining a high temperature. A water quenching method characterized in that high-pressure water is discharged by a jet device, and cooling water in the cooling chamber is vigorously stirred and rapidly cooled by bubble jet (registered trademark) by inert gas injection. 請求項2に記載の水焼入れ方法であって、冷却室における被焼入れ物の表面の水による冷却が核沸騰状態に保持されていることを特徴とする水焼入れ方法。 3. The water quenching method according to claim 2, wherein the cooling of the surface of the object to be quenched in the cooling chamber by water is maintained in a nucleate boiling state. 請求項2又は3に記載の水焼入れ方法であって、不活性ガス雰囲気及び不活性ガス噴射の成分が、ヘリウムガス、アルゴンガス、窒素ガスのうちのいずれか1種、あるいは2種以上の混合気体で構成されていることを特徴とする水焼入れ方法。














The water quenching method according to claim 2 or 3, wherein the inert gas atmosphere and the inert gas injection component are any one of helium gas, argon gas, nitrogen gas, or a mixture of two or more. A water quenching method comprising a gas.














JP2014223971A 2014-11-04 2014-11-04 Water quenching apparatus and water quenching method Active JP6465281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014223971A JP6465281B2 (en) 2014-11-04 2014-11-04 Water quenching apparatus and water quenching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014223971A JP6465281B2 (en) 2014-11-04 2014-11-04 Water quenching apparatus and water quenching method

Publications (2)

Publication Number Publication Date
JP2016089212A true JP2016089212A (en) 2016-05-23
JP6465281B2 JP6465281B2 (en) 2019-02-06

Family

ID=56015906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014223971A Active JP6465281B2 (en) 2014-11-04 2014-11-04 Water quenching apparatus and water quenching method

Country Status (1)

Country Link
JP (1) JP6465281B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106217A (en) * 2021-03-25 2021-07-13 广州市型腔模具制造有限公司 Cold machining process for nozzle point
CN113512633A (en) * 2021-08-04 2021-10-19 长春电子科技学院 Intelligent water circulating device for heat treatment
JP7024958B2 (en) 2017-09-15 2022-02-24 中部電力株式会社 Cooling device and cooling method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429813A (en) * 1977-08-10 1979-03-06 Mitsubishi Heavy Ind Ltd Hardening process
JP2003072077A (en) * 2001-09-05 2003-03-12 Canon Inc Method for driving ink jet recording head
JP2007084863A (en) * 2005-09-20 2007-04-05 Edison Haado Kk Heat treatment furnace
JP2008038190A (en) * 2006-08-04 2008-02-21 Edison Haado Kk Bath cooling apparatus
JP2014162933A (en) * 2013-02-22 2014-09-08 Fuji Heavy Ind Ltd Method and device for heat treatment of shaft parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429813A (en) * 1977-08-10 1979-03-06 Mitsubishi Heavy Ind Ltd Hardening process
JP2003072077A (en) * 2001-09-05 2003-03-12 Canon Inc Method for driving ink jet recording head
JP2007084863A (en) * 2005-09-20 2007-04-05 Edison Haado Kk Heat treatment furnace
JP2008038190A (en) * 2006-08-04 2008-02-21 Edison Haado Kk Bath cooling apparatus
JP2014162933A (en) * 2013-02-22 2014-09-08 Fuji Heavy Ind Ltd Method and device for heat treatment of shaft parts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7024958B2 (en) 2017-09-15 2022-02-24 中部電力株式会社 Cooling device and cooling method
CN113106217A (en) * 2021-03-25 2021-07-13 广州市型腔模具制造有限公司 Cold machining process for nozzle point
CN113512633A (en) * 2021-08-04 2021-10-19 长春电子科技学院 Intelligent water circulating device for heat treatment
CN113512633B (en) * 2021-08-04 2022-09-06 长春电子科技学院 Intelligent water circulating device for heat treatment

Also Published As

Publication number Publication date
JP6465281B2 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
US11085096B2 (en) Method for preventing cracking along the surface at the inner hole of a hollow shaft during horizontal water quenching
JP6465281B2 (en) Water quenching apparatus and water quenching method
CA2907259C (en) Device for individual quench hardening of technical equipment components
WO2011118737A1 (en) Heat treatment method
JP2011122211A (en) Mist cooling apparatus, heat treatment apparatus and mist cooling method
JP2014051695A (en) Heat treatment apparatus, and heat treatment method
JP2015052150A (en) Surface hardening treatment method for steel member and surface hardening treatment device
CN109022705A (en) The heat treatment method of potassium steel casting bucket tooth
CN111954722A (en) High pressure instantaneous uniform quench to control part performance
AU2012285581B2 (en) Method for cooling metal parts having undergone a nitriding/nitrocarburising treatment in a molten salt bath, unit for implementing said method and the treated metal parts
Dychtoń et al. Process temperature effect on surface layer of vacuum carburized low-alloy steel gears
WO2014069149A1 (en) Heat treatment method and method for manufacturing machine part
JP2009203522A (en) Method for manufacturing race ring of rolling bearing
JP2015108164A (en) High frequency carburization processing method
JP4709955B2 (en) Gas cooling method for steel parts
JPWO2019182140A1 (en) Vacuum carburizing method and carburized component manufacturing method
JP2018162480A (en) Hardening device and hardening method of steel pipe, and manufacturing device and manufacturing method of steel pipe
JP2013112877A (en) Carburizing treatment method
JP2008163394A (en) Apparatus for and method of hardening conductive hollow pipe
JP2001089809A (en) Method and device for high-frequency induction hardening
US11352689B2 (en) Method and system for cooling metal parts after nitriding
Goldsteinas et al. Redefining Quenching Technology
RU2646180C1 (en) Method for thermocyclic treatment of steels
Yao et al. The Significance of Mn Prepartitioning on Bainitic Transformation and Mechanical Properties of a Low‐Carbon Bainitic Steel
JP6187441B2 (en) Method and apparatus for quenching steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181225

R150 Certificate of patent or registration of utility model

Ref document number: 6465281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250