JP4709955B2 - Gas cooling method for steel parts - Google Patents

Gas cooling method for steel parts Download PDF

Info

Publication number
JP4709955B2
JP4709955B2 JP2007018463A JP2007018463A JP4709955B2 JP 4709955 B2 JP4709955 B2 JP 4709955B2 JP 2007018463 A JP2007018463 A JP 2007018463A JP 2007018463 A JP2007018463 A JP 2007018463A JP 4709955 B2 JP4709955 B2 JP 4709955B2
Authority
JP
Japan
Prior art keywords
gas
cooling
steel
steel part
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007018463A
Other languages
Japanese (ja)
Other versions
JP2007162142A (en
Inventor
慎一 武本
文隆 虻川
敬二 横瀬
淳 高橋
英寿 十良沢
英樹 井上
伊孝 中広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Thermotech Co Ltd
Original Assignee
Dowa Thermotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Thermotech Co Ltd filed Critical Dowa Thermotech Co Ltd
Priority to JP2007018463A priority Critical patent/JP4709955B2/en
Publication of JP2007162142A publication Critical patent/JP2007162142A/en
Application granted granted Critical
Publication of JP4709955B2 publication Critical patent/JP4709955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Furnace Details (AREA)

Description

本発明は鋼部品のガス冷却方法に関するものである。   The present invention relates to a gas cooling method for steel parts.

真空炉においてトレーに積載さた鋼部品を浸炭もしくはオーステナイト加熱後に前記処理を行なった容器内に冷却ガスを圧入し、循環ファンによりガスを循環させることによる強制対流冷却を行ない、この冷却ガスを循環流路に設けられた熱交換器により冷却することは、例えば特開平4−280916号公報に示されるように既知である。   In the vacuum furnace, steel parts loaded on the tray are carburized or austenite heated, and then the cooling gas is injected into the vessel that has been treated as described above, and forced convection cooling is performed by circulating the gas using a circulation fan, and this cooling gas is circulated. Cooling by a heat exchanger provided in the flow path is known as disclosed in, for example, Japanese Patent Laid-Open No. 4-280916.

然しながら、従来のガス冷却方法及び装置では冷却ガスの流速が低く冷却速度が十分ではない為、あまり速い冷却速度を必要としない一部の工具鋼等に用途が限られ、SCM420やSCr420等の肌焼き鋼には適用できなかった。   However, since the conventional gas cooling method and apparatus have a low cooling gas flow rate and an insufficient cooling rate, the application is limited to some tool steels and the like that do not require a very high cooling rate, such as SCM420 and SCr420. It was not applicable to baked steel.

また、冷却速度を高めるためには、冷却ガス圧力を約4MPaのように非常に高圧にすれば良いが冷却ガスの高圧化は大型化、設備費の増加、また取扱い性及び安全性の低下を招く。   In order to increase the cooling rate, the cooling gas pressure may be set to a very high pressure, such as about 4 MPa. However, increasing the cooling gas pressure increases the size, increases the equipment cost, and decreases the handling and safety. Invite.

また、鋼部品をトレーに積載して処理を行なう場合には個々の鋼部品に対する流速が均一にならない為、冷却速度に差が生じ、鋼部品の品質がばらつくようになる。また、熱交換器を設ければ流路抵抗が増大し、流速の低下を招く。   In addition, when steel parts are loaded on a tray for processing, the flow rates for the individual steel parts are not uniform, so that the cooling rate is different and the quality of the steel parts varies. Moreover, if a heat exchanger is provided, flow path resistance will increase and the flow velocity will fall.

本発明は上記の欠点を除くようにしたものである。   The present invention eliminates the above-mentioned drawbacks.

本発明の鋼部品のガス冷却方法は、被処理鋼部品を入れた減圧密閉容器内に冷却ガスを封入し、上記減圧密閉容器の上部中央に設けた軸流ファンにより上記冷却ガスを上記減圧密閉容器内で循環させ、上記鋼部品を強制対流冷却する鋼部品のガス冷却方法であって、中心に逆円錐状の空間20を有する環状壁22の上部と上記逆円錐状の空間内に配置された逆円錐台状コア部26との間に形成される上部環状空間と、中心に円錐状の空間21を有する上記環状壁22の下部との間に形成される、通路断面狭くなり、冷却ガスの流速が増加する流路に上記鋼部品を配置し、上記鋼部品を強制冷却することを特徴とする。 In the gas cooling method for steel parts of the present invention, the cooling gas is enclosed in a vacuum sealed container containing the steel parts to be processed , and the cooling gas is sealed under reduced pressure by an axial fan provided in the upper center of the vacuum sealed container. A gas cooling method for a steel part that circulates in a vessel and forcibly convectively cools the steel part, and is disposed in an upper part of an annular wall 22 having an inverted conical space 20 in the center and the inverted conical space. and an upper annular space formed between the inverted truncated cone-shaped core portion 26 is formed between the lower portion of the annular wall 22 having a conical space 21 in the center, the passage cross section is narrowed, cooled The steel parts are arranged in a flow path where the gas flow rate increases, and the steel parts are forcibly cooled.

また、鋼部品のガス冷却方法は、上記冷却ガス循環通路が、上下方向及び半径方向外方に延び、その上端が同一円周方向に弧状に湾曲する複数のガイド片を有することを特徴とする。 The gas cooling method for steel parts is characterized in that the cooling gas circulation passage has a plurality of guide pieces that extend in the vertical direction and radially outward, and whose upper ends are curved in an arc shape in the same circumferential direction. .

また、本発明の鋼部品のガス冷却方法は、上記ファンの回転数を変えて上記鋼部品に任意の冷却覆歴を与えるようにしたことを特徴とする。   The gas cooling method for steel parts according to the present invention is characterized in that an arbitrary cooling history is given to the steel parts by changing the rotational speed of the fan.

また、上記冷却ガスは1MPa以下の圧力の窒素、ヘリウムなどの不活性ガス、水素ガス、或いはこれらの2種或いは3種以上の混合ガス、または0.6MPaの圧力の窒素であることを特徴とする。   The cooling gas may be nitrogen having a pressure of 1 MPa or less, an inert gas such as helium, hydrogen gas, or a mixed gas of two or more of these, or nitrogen having a pressure of 0.6 MPa. To do.

上記のように本発明のガス冷却方法によれば、冷却ガスとして安価で取り扱い性の良い窒素ガス単体を用い、0.6MPaという従来装置に比較して低い圧力において従来の装置では困難であった、肌焼き鋼に対して焼き入れを行なうことができる。また使用圧力が低く、複雑な熱交換器を必要とせず、モータも低出力の汎用モータを使用することができるから設備の簡素化、設備費の低減が可能となり安全性も高い等大きな利益がある。   As described above, according to the gas cooling method of the present invention, an inexpensive and easy-to-handle nitrogen gas is used as the cooling gas, which is difficult with the conventional apparatus at a lower pressure than the conventional apparatus of 0.6 MPa. The case-hardened steel can be quenched. In addition, since the operating pressure is low, a complicated heat exchanger is not required, and the motor can use a low-power general-purpose motor, the equipment can be simplified, equipment costs can be reduced, and safety is high. is there.

以下図面によって本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は減圧密閉容器1と、真空ポンプ2と、この真空ポンプ2と上記容器1間を接続する排気路3と、この排気路3に介挿した排気バルブ4と、冷却ガスを貯蔵したリザーバタンク5と、このリザーバタンク5と上記容器1間を接続する冷却ガス導入路6と、この冷却ガス導入路6に介挿した導入バルブ7とより成る鋼部品冷却装置である。   FIG. 1 shows a vacuum sealed container 1, a vacuum pump 2, an exhaust path 3 connecting the vacuum pump 2 and the container 1, an exhaust valve 4 interposed in the exhaust path 3, and a reservoir storing cooling gas. The steel part cooling device includes a tank 5, a cooling gas introduction path 6 connecting the reservoir tank 5 and the container 1, and an introduction valve 7 inserted in the cooling gas introduction path 6.

上記鋼部品冷却装置における減圧密閉容器1は、図2に示すように外筒8と内筒9とより成る二重筒構造とし、この二重筒間に冷却水通路10を形成し、例えばリング状の被処理鋼部品11を支持台12によって上記内筒9の中心部13で保持せしめると共に、上記内筒9と上記支持台12間に中間筒状体14を配置し、この中間筒状体14と上記内筒9間、容器1の上蓋15間及び底板16間に夫々流体通路17〜19を形成し、上記中間筒状体14の内周面には、上記中心部13で最も狭くなり、これより上下方向に向って次第に広がる逆円錐台状及び円錐台状の断面形状の空間20及び21が形成されるようにした縦断側面が梯形状の環状壁22を設ける。   The decompression sealed container 1 in the steel parts cooling apparatus has a double cylinder structure composed of an outer cylinder 8 and an inner cylinder 9 as shown in FIG. 2, and a cooling water passage 10 is formed between the double cylinders. A steel part 11 to be treated is held at the center portion 13 of the inner cylinder 9 by a support base 12, and an intermediate cylindrical body 14 is disposed between the inner cylinder 9 and the support base 12, and this intermediate cylindrical body 14 and the inner cylinder 9, between the top lid 15 of the container 1 and between the bottom plate 16, fluid passages 17 to 19 are formed, respectively, and the inner peripheral surface of the intermediate cylindrical body 14 is narrowest at the central portion 13. In addition, an annular wall 22 having a trapezoidal longitudinal side surface is formed so that spaces 20 and 21 having an inverted frustoconical shape and a frustoconical cross-sectional shape gradually spreading in the vertical direction are formed.

また、上記中間筒状体14内の上部中央には循環ファン23を配置し、上記上蓋15に載置したモーター24によって回転せしめる。   A circulation fan 23 is disposed at the upper center in the intermediate cylindrical body 14 and is rotated by a motor 24 placed on the upper lid 15.

また、上記循環ファン23の下面と上記支持台12間における上記空間20内には上記空間20を流れる流体を整流するための内部ダクト25を配置し、この内部ダクト25は図3及び図4に示すように、上記空間20の上部から上記中心部13に向って延びる逆円円錐台状断面のコア部26と、このコア部26の外周面に互に円周方向に離間して上下方向及び半径方向外方に延び、その上端が互に同一円周方向に弧状に湾曲する複数のガイド片27とにより構成し、このガイド片27の任意のものを上記中間筒状体14の壁22に固定せしめる。このガイド片27により冷却ガスは旋回流から下方流に変えられる。 Further, an internal duct 25 for rectifying the fluid flowing in the space 20 is disposed in the space 20 between the lower surface of the circulation fan 23 and the support base 12, and this internal duct 25 is shown in FIGS. As shown in the figure, a core portion 26 having an inverted circular frustoconical cross section extending from the upper portion of the space 20 toward the central portion 13, and an outer circumferential surface of the core portion 26 spaced apart from each other in the circumferential direction, A plurality of guide pieces 27 extending outward in the radial direction and having upper ends curved in an arc shape in the same circumferential direction, and any one of the guide pieces 27 is formed on the wall 22 of the intermediate cylindrical body 14. Fix it. This guide piece 27 changes the cooling gas from a swirling flow to a downward flow.

更に上記内筒9の内周面には図5に示すように半径方向内方にV字状に開いて上下方向に延びる鋼製の伝熱フィン28を複数個取り付けると共に、上記容器1の底板16上には、その中央部29が円錐状に上方に盛り上がり、周辺部30が弧状に上方に湾曲する下部整流板31を配置し、上記上蓋15の下面には、その中央部32が逆円錐台状に下方に突出する上部整流板33を配置し、この中央部を貫通して上記モーター24の回転軸34が上記循環ファン23に向って延びるようにする。   Further, on the inner peripheral surface of the inner cylinder 9, a plurality of steel heat transfer fins 28, which are V-shaped radially inward and extend in the vertical direction as shown in FIG. A lower rectifying plate 31 whose central portion 29 swells upward in a conical shape and whose peripheral portion 30 curves upward in an arc shape is disposed on the upper surface 16, and the central portion 32 has an inverted conical shape on the lower surface of the upper lid 15. An upper baffle plate 33 that protrudes downward in a trapezoidal shape is disposed, and the rotation shaft 34 of the motor 24 extends toward the circulation fan 23 through the central portion.

なお、35は上記上蓋15と上記モーター24の回転軸34間に形成した磁気シール、36は上記底板16と、上記支持台12の支持棒37間に形成した真空シールである。   Reference numeral 35 denotes a magnetic seal formed between the upper lid 15 and the rotating shaft 34 of the motor 24, and 36 denotes a vacuum seal formed between the bottom plate 16 and the support rod 37 of the support base 12.

本発明の鋼部品のガス冷却方法においては、減圧密閉容器1内を真空ポンプ2により排気バルブ3を介して内部圧力が1Pa程度(被処理鋼部品が焼き入れ温度で酸化されない圧力)になるまで真空排気し、上記減圧密閉容器1内の所定の位置に被処理鋼部品11を保持した後、排気バルブ4を閉じてから上記減圧密閉容器1内に外部に設置したリザーバタンク5に蓄えた冷却ガスを導入バルブ7を開いて所定の圧力例えば1MPa〜0.6MPaになるまで導入する。導入バルブ7を閉じて容器1内に冷却ガスを封入した後、被処理鋼部品11の上部に設けた循環ファン23をモータ24で駆動し図2中に矢印で示すように冷却ガスを空間20,21、流体通路19,17,18を介して循環せしめる。   In the gas cooling method for steel parts of the present invention, the internal pressure of the vacuum sealed container 1 is reduced to about 1 Pa (pressure at which the steel parts to be treated are not oxidized at the quenching temperature) through the exhaust valve 3 by the vacuum pump 2. After evacuating and holding the steel part 11 to be processed at a predetermined position in the vacuum sealed container 1, the exhaust valve 4 is closed, and then the cooling stored in the reservoir tank 5 installed outside in the vacuum sealed container 1 is stored. The gas is introduced until the introduction valve 7 is opened and a predetermined pressure, for example, 1 MPa to 0.6 MPa is reached. After the introduction valve 7 is closed and the cooling gas is sealed in the container 1, the circulation fan 23 provided on the upper part of the steel part 11 to be processed is driven by the motor 24, and the cooling gas is supplied to the space 20 as shown by an arrow in FIG. , 21 and the fluid passages 19, 17, 18.

所定の時間、循環ファン23を駆動させ被処理鋼部品11を冷却し、その間、冷却ガスを水冷された伝熱フィン28を有する内筒9を介して冷却する。   The circulating fan 23 is driven for a predetermined time to cool the steel part 11 to be processed, and during that time, the cooling gas is cooled via the inner cylinder 9 having the heat transfer fins 28 that are water-cooled.

上記冷却ガスとしては一種の不活性ガス、一種或いは二種以上の混合不活性ガス、または水素ガス単体或いは水素ガスと不活性ガスの混合ガスを用いる。   As the cooling gas, one kind of inert gas, one kind or a mixture of two or more kinds of inert gas, or hydrogen gas alone or a mixed gas of hydrogen gas and inert gas is used.

上記循環ファン23としては軸流ファンを用い、駆動モータ24の出力をインバータ等により調節し、その回転数を変えることにより被処理鋼部品に最適な熱履歴を与えるようにする。   As the circulation fan 23, an axial fan is used, and the output of the drive motor 24 is adjusted by an inverter or the like, and the rotation speed is changed to give an optimum heat history to the steel parts to be processed.

(実験例1) (Experimental example 1)

図1に示すガス冷却装置内に、被処理鋼部品11として前工程で約870℃に加熱した外径190mm、内径140mm、厚さ25mm、重さ2.4Kgの角状断面のリング状鋼部品を入れ焼入れを行なった。鋼部品の材質は一般的な肌焼き鋼であるSCM420及びSCr420とし、冷却ガスは窒素単体、導入圧力は0.6MPaとした。   In the gas cooling apparatus shown in FIG. 1, a ring-shaped steel part having a square cross section having an outer diameter of 190 mm, an inner diameter of 140 mm, a thickness of 25 mm, and a weight of 2.4 kg as the steel part 11 to be processed is heated to about 870 ° C. in the previous step. And quenching was performed. The material of the steel parts was SCM420 and SCr420, which are general case-hardened steel, the cooling gas was nitrogen alone, and the introduction pressure was 0.6 MPa.

循環ファン駆動モータ24としては出力18.5kwの2極汎用モータを用い、運転周波数は60Hzとし循環ファン23の回転数を3600rpmとした。   As the circulation fan drive motor 24, a 2-pole general-purpose motor with an output of 18.5 kw was used, the operation frequency was 60 Hz, and the rotation speed of the circulation fan 23 was 3600 rpm.

図6は冷却時の被処理鋼部品各部分の、冷却時間−温度の変化を示したものである。図6における曲線(1)〜(3)は夫々図2に示す配置のリング状鋼部品の前部,背部,側部の温度変化を示す。この図6から明らかなように被処理鋼部品の各部は略均一に冷却されており、ファン起動時の被処理鋼部品の温度は搬送中に降温し約850℃であったが、ファン起動後は30秒後で530℃、60秒後で300℃、90秒後で150℃、120秒後で100℃であった。   FIG. 6 shows the change in cooling time-temperature of each part of the steel part to be treated during cooling. Curves (1) to (3) in FIG. 6 show temperature changes at the front, back, and side portions of the ring-shaped steel parts arranged as shown in FIG. As is apparent from FIG. 6, the respective parts of the steel parts to be treated were cooled substantially uniformly, and the temperature of the steel parts to be treated at the time of starting the fan was lowered to about 850 ° C. during the conveyance. Was 530 ° C. after 30 seconds, 300 ° C. after 60 seconds, 150 ° C. after 90 seconds, and 100 ° C. after 120 seconds.

また、被処理鋼部品の冷却ガスの流速は34m/sであった(大気圧下において羽根車式流速計により測定)。焼き入れの結果、被処理鋼部品の芯部硬さはロックウェル硬さでSCM420材がHRC32.5、SCr420材でHRC31.4であった。この値は焼き入れ油による焼き入れ硬さと略同等である。   Moreover, the flow velocity of the cooling gas of the steel parts to be treated was 34 m / s (measured with an impeller-type current meter under atmospheric pressure). As a result of quenching, the core hardness of the steel parts to be processed was Rockwell hardness, SCM420 material was HRC32.5, and SCr420 material was HRC31.4. This value is substantially equivalent to the quenching hardness by quenching oil.

図7は、被処理鋼部品の材質をSCM420とし、ファンの回転数を3600rpmとしてガス圧力を変化させた場合の被処理鋼部品の焼入れした芯部硬さの関係を、図8は同様の条件の下で、ファン回転数と被処理鋼部品の焼入れした芯部硬さの関係を示したものである。このようにガス圧力およびファン回転数を変化させることで任意の芯部硬さを得ることが可能となる。   FIG. 7 shows the relationship between the hardness of the hardened core part of the steel part to be treated when the material pressure of the steel part to be treated is SCM420 and the gas pressure is changed with the fan rotation speed of 3600 rpm, and FIG. Fig. 4 shows the relationship between the fan rotation speed and the hardness of the hardened core part of the steel part to be processed. Thus, it becomes possible to obtain arbitrary core hardness by changing a gas pressure and fan rotation speed.

(実験例2) (Experimental example 2)

図1に示すガス冷却装置内に、外径220mmのリングギアを入れ焼入れを行なった。鋼部品の材質は一般的な肌焼き鋼であるSCM420とし、冷却ガスは窒素単体、導入圧力は0.6MPaとした。   A ring gear having an outer diameter of 220 mm was placed in the gas cooling apparatus shown in FIG. 1 and quenched. The material of the steel part was SCM420, which is a general case-hardened steel, the cooling gas was nitrogen alone, and the introduction pressure was 0.6 MPa.

循環ファン駆動モータ24としては出力18.5kwの2極汎用モータを用い、運転周波数は60Hzとし循環ファン23の回転数を3600rpmとした。   As the circulation fan drive motor 24, a 2-pole general-purpose motor with an output of 18.5 kw was used, the operation frequency was 60 Hz, and the rotation speed of the circulation fan 23 was 3600 rpm.

ファン起動時の被処理鋼部品の温度は、搬送中に降温し約830℃であったが、ファン起動後の被処理鋼部品の温度(最大肉厚部)は30秒後で430℃、60秒後で200℃、90秒後で80℃、120秒後で50℃であった。   The temperature of the steel part to be treated at the time of starting the fan was lowered to about 830 ° C. during the conveyance, but the temperature (maximum wall thickness) of the steel part to be treated after the start of the fan was 430 ° C., 60 seconds after 30 seconds. It was 200 ° C. after 90 seconds, 80 ° C. after 90 seconds, and 50 ° C. after 120 seconds.

図9は浸炭後焼入れした後の被処理鋼部品の各部分の断面の硬さ分布測定結果である。図9における曲線(1)〜(3)は夫々図2に示す配置のリング状鋼部品の前部,背部,側部の硬さ変化を示す。被処理鋼部品の表面から0.05mmの部分の硬さはマイクロビッカース硬さで約Hmv(0.5)730、焼入れした芯部硬さはロックウェル硬さでHRC30であった。図9から明らかなように、被処理鋼部品はその各部で均一な硬さ分布が得られている。   FIG. 9 shows the results of measurement of the hardness distribution of the cross section of each part of the steel part to be treated after quenching after carburizing. Curves (1) to (3) in FIG. 9 show changes in the hardness of the front, back, and side portions of the ring-shaped steel parts arranged as shown in FIG. The hardness of the 0.05 mm portion from the surface of the steel part to be treated was about Hmv (0.5) 730 in terms of micro Vickers hardness, and the core hardness after quenching was HRC 30 in terms of Rockwell hardness. As is clear from FIG. 9, a uniform hardness distribution is obtained at each part of the steel part to be processed.

図10は、鋼部品としてSCM420を用い循環ファンの回転数を換えた場合の冷却時間−温度の変化を示し、曲線(1)〜(4)は夫々6barのN2 ガスを用い、ファンの回転数を3600rpm,3000rpm,1800rpm,600rpmとした場合である。 FIG. 10 shows the change in cooling time-temperature when the rotational speed of the circulation fan is changed using SCM420 as a steel part. Curves (1) to (4) use N 2 gas of 6 bar, respectively. This is the case where the number is 3600 rpm, 3000 rpm, 1800 rpm, 600 rpm.

ガス冷却装置の説明図である。It is explanatory drawing of a gas cooling device. ガス冷却装置における減圧密閉容器の縦断正面図である。It is a vertical front view of the pressure-reduced airtight container in a gas cooling device. 図2に示す減圧密閉容器における内部ダクトの平面図である。It is a top view of the internal duct in the pressure-reduced airtight container shown in FIG. 図3に示す内部ダクトの正面図である。It is a front view of the internal duct shown in FIG. 図2に示す減圧密閉容器の一部の横断平面図である。FIG. 3 is a cross-sectional plan view of a part of the vacuum sealed container shown in FIG. 2. 本発明の鋼部品のガス冷却方法によって処理した鋼部品の冷却時間−温度の関係を示す線図である。It is a diagram which shows the relationship of the cooling time-temperature of the steel components processed with the gas cooling method of the steel components of this invention. 本発明の鋼部品のガス冷却方法によって処理した鋼部品の芯部硬さと冷却ガス圧の関係を示す線図である。It is a diagram which shows the relationship between the core part hardness of the steel components processed by the gas cooling method of the steel components of this invention, and a cooling gas pressure. 本発明の鋼部品のガス冷却方法によって処理した鋼部品の芯部硬さとファン回転数の関係を示す線図である。It is a diagram which shows the relationship between the core part hardness of a steel component processed with the gas cooling method of the steel component of this invention, and a fan rotation speed. 本発明の鋼部品のガス冷却方法によって処理した浸炭した鋼部品の表面からの距離と硬さの関係を示す線図である。It is a diagram which shows the relationship from the distance from the surface of the carburized steel part processed with the gas cooling method of the steel part of this invention, and hardness. 本発明の鋼部品のガス冷却方法によって処理した鋼部品の温度−冷却時間と循環ファン回転数との関係を示す線図である。It is a diagram which shows the relationship between the temperature-cooling time of the steel component processed with the gas cooling method of the steel component of this invention, and a circulation fan rotation speed.

符号の説明Explanation of symbols

1 減圧密閉容器
2 真空ポンプ
3 排気路
4 排気バルブ
5 リザーバタンク
6 冷却ガス導入路
7 導入バルブ
8 外筒
9 内筒
10 冷却水通路
11 被処理鋼部品
12 支持台
13 中心部
14 中間筒状体
15 上蓋
16 底板
17 流体通路
18 流体通路
19 流体通路
20 空間
21 空間
22 環状壁
23 循環ファン
24 モーター
25 内部ダクト
26 コア部
27 ガイド片
28 伝熱フィン
29 中央部
30 周辺部
31 下部整流板
32 中央部
33 上部整流板
34 回転軸
35 磁気シール
36 真空シール
37 支持棒
DESCRIPTION OF SYMBOLS 1 Pressure-reduced airtight container 2 Vacuum pump 3 Exhaust path 4 Exhaust valve 5 Reservoir tank 6 Cooling gas introduction path 7 Introducing valve 8 Outer cylinder 9 Inner cylinder 10 Cooling water path 11 Steel part 12 to be processed 12 Support base 13 Central part 14 Intermediate cylindrical body 15 Upper lid 16 Bottom plate 17 Fluid passage 18 Fluid passage 19 Fluid passage 20 Space 21 Space 22 Annular wall 23 Circulating fan 24 Motor 25 Internal duct 26 Core portion 27 Guide piece 28 Heat transfer fin 29 Central portion 30 Peripheral portion 31 Lower rectifying plate 32 Center Part 33 Upper rectifying plate 34 Rotating shaft 35 Magnetic seal 36 Vacuum seal 37 Support rod

Claims (5)

被処理鋼部品を入れた減圧密閉容器内に冷却ガスを封入し、上記減圧密閉容器の上部中央に設けた軸流ファンにより上記冷却ガスを上記減圧密閉容器内で循環させ、上記鋼部品を強制対流冷却する鋼部品のガス冷却方法であって、
中心に逆円錐状の空間20を有する環状壁22の上部と上記逆円錐状の空間内に配置された逆円錐台状コア部26との間に形成される上部環状空間と、
中心に円錐状の空間21を有する上記環状壁22の下部との間に形成される、通路断面狭くなり、冷却ガスの流速が増加する流路に上記鋼部品を配置し、
上記鋼部品を強制冷却することを特徴とする鋼部品のガス冷却方法。
Cooling gas is enclosed in a vacuum sealed container containing steel parts to be treated , and the cooling gas is circulated in the vacuum sealed container by an axial fan provided in the upper center of the vacuum sealed container, forcing the steel parts. A gas cooling method for steel parts for convection cooling,
An upper annular space formed between an upper portion of an annular wall 22 having an inverted conical space 20 in the center and an inverted frustoconical core portion 26 disposed in the inverted conical space;
The steel part is disposed in a flow path formed between the lower portion of the annular wall 22 having the conical space 21 at the center, the passage cross section becomes narrower, and the flow rate of the cooling gas is increased.
A method for gas cooling a steel part, comprising forcibly cooling the steel part.
上記コア部26の外周面が、上下方向及び半径方向外方に延び、その上端が同一円周方向に弧状に湾曲する複数のガイド片27を有することを特徴とする請求項1記載の鋼部品のガス冷却方法。 The steel part according to claim 1, wherein the outer peripheral surface of the core portion (26) has a plurality of guide pieces (27) extending in the vertical direction and radially outward, and having an upper end curved in an arc shape in the same circumferential direction. Gas cooling method. 上記ファンの回転数を変えて上記鋼部品に任意の冷却覆歴を与えるようにしたことを特徴とする請求項1または2記載の鋼部品のガス冷却方法。   The gas cooling method for a steel part according to claim 1 or 2, wherein an arbitrary cooling history is given to the steel part by changing the rotational speed of the fan. 上記冷却ガスが1MPa以下の圧力の窒素、ヘリウムなどの不活性ガス、水素ガス、或いはこれらの2種或いは3種以上の混合ガスであることを特徴とする請求項1、2または3記載の鋼部品のガス冷却方法。   The steel according to claim 1, 2 or 3, wherein the cooling gas is an inert gas such as nitrogen or helium at a pressure of 1 MPa or less, hydrogen gas, or a mixed gas of two or more of these. Gas cooling method for parts. 上記冷却ガスが0.6MPaの圧力の窒素であることを特徴とする請求項1、2、3または4記載の鋼部品のガス冷却方法。   5. The method for cooling a steel part gas according to claim 1, wherein the cooling gas is nitrogen at a pressure of 0.6 MPa.
JP2007018463A 2007-01-29 2007-01-29 Gas cooling method for steel parts Expired - Lifetime JP4709955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007018463A JP4709955B2 (en) 2007-01-29 2007-01-29 Gas cooling method for steel parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007018463A JP4709955B2 (en) 2007-01-29 2007-01-29 Gas cooling method for steel parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP26392298A Division JP3930648B2 (en) 1998-09-03 1998-09-03 Gas cooling device for steel parts

Publications (2)

Publication Number Publication Date
JP2007162142A JP2007162142A (en) 2007-06-28
JP4709955B2 true JP4709955B2 (en) 2011-06-29

Family

ID=38245379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007018463A Expired - Lifetime JP4709955B2 (en) 2007-01-29 2007-01-29 Gas cooling method for steel parts

Country Status (1)

Country Link
JP (1) JP4709955B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2524701T3 (en) * 2008-07-24 2014-12-11 Ipsen International Gmbh Electrically heated retort furnace for heat treatment of metal workpieces
JP5511240B2 (en) * 2009-07-01 2014-06-04 Dowaサーモテック株式会社 Gas cooling device for work and gas cooling method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118443U (en) * 1991-04-03 1992-10-22 大同特殊鋼株式会社 Vacuum heat treatment furnace
JP2859704B2 (en) * 1990-06-21 1999-02-24 日本真空技術株式会社 Vacuum heat treatment furnace
JP3930648B2 (en) * 1998-09-03 2007-06-13 Dowaホールディングス株式会社 Gas cooling device for steel parts

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126722A (en) * 1984-07-18 1986-02-06 Ishikawajima Harima Heavy Ind Co Ltd Impact air-cooled vacuum heat-treating furnace
JP3116334B2 (en) * 1991-06-22 2000-12-11 大同特殊鋼株式会社 Heat treatment equipment
JPH05230528A (en) * 1992-02-24 1993-09-07 Daido Steel Co Ltd Method for accelerating gas circulation cooling in vacuum furnace
JPH1081913A (en) * 1996-09-06 1998-03-31 Ishikawajima Harima Heavy Ind Co Ltd Isothermal quenching apparatus by gas cooling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2859704B2 (en) * 1990-06-21 1999-02-24 日本真空技術株式会社 Vacuum heat treatment furnace
JPH04118443U (en) * 1991-04-03 1992-10-22 大同特殊鋼株式会社 Vacuum heat treatment furnace
JP3930648B2 (en) * 1998-09-03 2007-06-13 Dowaホールディングス株式会社 Gas cooling device for steel parts

Also Published As

Publication number Publication date
JP2007162142A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
US6814573B2 (en) Vacuum heat-treatment apparatus
US8088328B2 (en) Vacuum nitriding furnace
US10072315B2 (en) Device for individual quench hardening of technical equipment components
JP2010053431A (en) Vacuum carburizing method and vacuum carburizing device
JP6147261B2 (en) Quenching chamber
JP2013227595A (en) Cooling device, quenching or surface treatment apparatus and surface treatment method
JP4709955B2 (en) Gas cooling method for steel parts
JP3930648B2 (en) Gas cooling device for steel parts
JP2019112689A (en) Heat treatment device and heat treatment method
JP2013181222A (en) Apparatus for gas-cooling workpiece
JP5817172B2 (en) Quenching method
US20110067784A1 (en) Process for the low-pressure carburisation of metal workpieces
JP6497446B2 (en) Gas quenching method
JP5817173B2 (en) Gas quenching method
JP2013019029A (en) Heat treatment tool and heat treatment device
WO2019131451A1 (en) Heat treatment device and heat treatment method
JP5511240B2 (en) Gas cooling device for work and gas cooling method
JP2006183874A (en) Heat treating apparatus and method of manufacturing heat treated parts
US9365919B2 (en) Method for reduction of time in a gas carburizing process and cooling apparatus utilizing a high speed quenching oil flow rate
JP2016089212A (en) Water hardening device and water hardening method
JP5356172B2 (en) Hot isostatic pressing apparatus and hot isostatic pressing method
Aronov et al. Experimental Validation of Intensive Quenching Technology for Steel Parts
JPH0533060A (en) Device and method for continuously quenching thin rings
JPH05302113A (en) Closed circulating type gas quenching device and gas quenching method
Hart et al. True Single-Piece Flow Case Hardening for In-Line Manufacturing

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110301

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20110404

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term