JP2016086574A - Control apparatus for single operation detection, and single operation detection device - Google Patents

Control apparatus for single operation detection, and single operation detection device Download PDF

Info

Publication number
JP2016086574A
JP2016086574A JP2014219013A JP2014219013A JP2016086574A JP 2016086574 A JP2016086574 A JP 2016086574A JP 2014219013 A JP2014219013 A JP 2014219013A JP 2014219013 A JP2014219013 A JP 2014219013A JP 2016086574 A JP2016086574 A JP 2016086574A
Authority
JP
Japan
Prior art keywords
voltage
harmonic voltage
harmonic
deviation
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014219013A
Other languages
Japanese (ja)
Other versions
JP6399892B2 (en
Inventor
義彦 小道
Yoshihiko Komichi
義彦 小道
中林 弘一
Koichi Nakabayashi
弘一 中林
清俊 田中
Kiyotoshi Tanaka
清俊 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014219013A priority Critical patent/JP6399892B2/en
Publication of JP2016086574A publication Critical patent/JP2016086574A/en
Application granted granted Critical
Publication of JP6399892B2 publication Critical patent/JP6399892B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a control apparatus for single operation detection capable of stopping operation of a power conditioner in the case of a power failure in a power system regardless of ripple or noise that is generated by switching an inverter.SOLUTION: The control apparatus for single operation detection comprises: a system frequency deviation calculation part 103 for calculating a system frequency deviation of a system voltage; a filter part 104 for performing filtering processing performed on the system voltage; a harmonic voltage deviation calculation part 109 for calculating a harmonic voltage deviation of a harmonic voltage included in a voltage on which the filtering processing is performed by the filter part 104; and a single operation discrimination part 110 for discriminating whether a distributed power supply device is in a single operation state by outputting reactive power to the power system if the system frequency deviation and the harmonic voltage deviation meet a condition of injecting the reactive power to the power system.SELECTED DRAWING: Figure 2

Description

本発明は、分散型電源装置が電力系統から切り離され単独運転しているか否かを検出する単独運転検出用の制御装置、および単独運転検出装置に関する。   The present invention relates to an isolated operation detection control device that detects whether or not a distributed power supply device is disconnected from an electric power system and is operated independently, and an isolated operation detection device.

分散型電源装置における単独運転は、電力系統が停止しているとき、分散型電源装置が独立して運転され、局所的な系統負荷に電力が供給されている状態である。電力系統の停止は、工事または事故といった要因によって引き起こされる。   The isolated operation in the distributed power supply device is a state in which when the power system is stopped, the distributed power supply device is operated independently and power is supplied to the local system load. Power system outages are caused by factors such as construction or accidents.

電力系統に接続される分散型電源には、太陽光発電装置、風力発電装置、エンジン発電機、電力貯蔵装置、燃料電池が代表的なものである。これらの分散型電源では、太陽電池、蓄電池、燃料電池といった特性または性質の異なる電力供給手段を電力系統に接続させて使用するため、周波数および電圧を電力系統に適合させるインバータ機能と、電力系統の異常を検出する保護装置とを内蔵したパワーコンディショナが数多く提案されている。   Typical distributed power sources connected to the power system are solar power generation devices, wind power generation devices, engine generators, power storage devices, and fuel cells. In these distributed power supplies, power supply means having different characteristics or properties, such as solar cells, storage batteries, and fuel cells, are connected to the power system, so that an inverter function that adapts the frequency and voltage to the power system, and the power system Many power conditioners with built-in protection devices for detecting abnormalities have been proposed.

以上に説明した電力供給手段と、直流を交流に変換するパワーコンディショナとを備えた分散型電源装置を電力系統に連系させて、例えば家電製品に給電する分散型電源装置が実用化されている。   A distributed power supply device that supplies power to home appliances, for example, by connecting a distributed power supply device including the power supply means described above and a power conditioner that converts direct current to alternating current to a power system has been put into practical use. Yes.

この種の分散型電源装置では、電力系統の停電時および作業停電時において、電力系統における工事作業の安全を確保するため、分散型電源装置側のインバータの動作を停止させるか、または、開閉器を作動させて連系を解除することにより、分散型電源装置を電力系統から解列させて、分散型電源装置の単独運転を防止する機能が不可欠である。なおこの機能は、単独運転検出機能と呼ばれ、日本電機工業会(JEMA)によりJEM1498(方式名:ステップ注入付周波数フィードバック方式)として標準化されている。   In this type of distributed power supply, in order to ensure the safety of construction work in the power system at the time of power failure and work power failure, the operation of the inverter on the distributed power supply side is stopped or a switch The function of disconnecting the distributed power supply device from the power system by actuating the connection to prevent the isolated operation of the distributed power supply device is indispensable. This function is called an isolated operation detection function and is standardized as JEM1498 (method name: frequency feedback method with step injection) by the Japan Electrical Manufacturers' Association (JEMA).

単独運転を検出する方式の1つとして、下記特許文献1では、電力系統に無効電力を注入する手法が既に提案されている。この手法を用いた単独運転検出装置では、注入した無効電力によって引き起こされる周波数変動を検知して、分散型電源装置の単独運転を検出することが行われる。   As one of the methods for detecting an isolated operation, Japanese Patent Application Laid-Open No. 2004-228561 has already proposed a method for injecting reactive power into an electric power system. In the isolated operation detection device using this method, the frequency variation caused by the injected reactive power is detected to detect the isolated operation of the distributed power supply device.

特開2009−136095号公報JP 2009-136095 A

JEM1498 ステップ注入付周波数フィードバック方式(太陽光発電用パワーコンディショナの標準型能動的単独運転検出方式)JEM1498 Frequency feedback method with step injection (standard active isolated operation detection method for power conditioners for photovoltaic power generation)

JEM1498で定められる単独運転検出能動的方式では、パワーコンディショナの出力電力と系統負荷がバランスした状態にて、基本波電圧と2次から7次までの高調波電圧とが一定条件を満たしたときに無効電力を注入することが規定されている。しかしながら、パワーコンディショナは、インバータ機能を内蔵しており、インバータがスイッチングすることで発生するリップルまたはノイズの影響を受けて、基本波電圧と高調波電圧の演算結果に変動を生ずることがある。従来の単独運転検出装置では、基本波電圧と高調波電圧の値によって無効電力の注入の動作判定が行われるため、リップルまたはノイズの影響が大きい場合、基本波電圧と高調波電圧とが一定条件を満たさず、無効電力の注入が行われずにパワーコンディショナの運転が継続する場合があるという問題があった。   In the independent operation detection active method defined in JEM1498, when the fundamental voltage and the harmonic voltages from the second to the seventh order satisfy a certain condition in a state where the output power of the power conditioner and the system load are balanced. It is stipulated that reactive power is injected into the system. However, the power conditioner has a built-in inverter function, and the calculation result of the fundamental voltage and the harmonic voltage may fluctuate due to the influence of ripple or noise generated by switching of the inverter. In conventional isolated operation detectors, reactive power injection operation is determined based on the values of the fundamental voltage and harmonic voltage, so if the influence of ripple or noise is large, the fundamental voltage and harmonic voltage are constant. Therefore, there is a problem that the operation of the power conditioner may continue without injecting reactive power.

本発明は、上記に鑑みてなされたものであって、インバータのスイッチングにより発生するリップルまたはノイズに関わりなく、電力系統の停電時にはパワーコンディショナの運転を停止することができる単独運転検出用の制御装置を得ることを目的とする。   The present invention has been made in view of the above, and is a control for detecting an independent operation that can stop the operation of a power conditioner when a power failure occurs in an electric power system regardless of ripples or noise generated by switching of an inverter. The object is to obtain a device.

上述した課題を解決し、目的を達成するために、本発明は、電力系統と分散型電源装置との連系点での系統電圧の系統周波数偏差を演算する系統周波数偏差演算部と、前記系統電圧のフィルタ処理を行うフィルタ部と、前記フィルタ部でフィルタ処理された電圧に含まれる高調波電圧の高調波電圧偏差を演算する高調波電圧偏差演算部と、前記系統周波数偏差と前記高調波電圧偏差とが、前記電力系統に無効電力を注入する条件を満たしたとき、前記電力系統に無効電力を出力して前記分散型電源装置が単独運転状態であるか否かを判定する単独運転判定部と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides a system frequency deviation calculating unit that calculates a system frequency deviation of a system voltage at a connection point between the power system and the distributed power supply device, and the system A filter unit that performs voltage filtering, a harmonic voltage deviation calculation unit that calculates a harmonic voltage deviation of a harmonic voltage included in the voltage filtered by the filter unit, the system frequency deviation, and the harmonic voltage When the deviation satisfies a condition for injecting reactive power into the electric power system, the reactive power is output to the electric power system to determine whether or not the distributed power supply is in an independent operation state And.

本発明によれば、インバータのスイッチングにより発生するリップルまたはノイズに関わりなく、電力系統の停電時にはパワーコンディショナの運転を停止することができるという効果を奏する。   According to the present invention, there is an effect that the operation of the power conditioner can be stopped at the time of a power failure of the power system regardless of the ripple or noise generated by switching of the inverter.

本発明の実施の形態1に係る単独運転検出装置および単独運転検出用の制御装置を含む分散型電源装置の構成図1 is a configuration diagram of a distributed power supply device including an isolated operation detection device and an isolated operation detection control device according to Embodiment 1 of the present invention. 実施の形態1に係る制御装置を構成する機能の内、単独運転検出に係わる機能の一例を示す図The figure which shows an example of the function in connection with the independent operation detection among the functions which comprise the control apparatus which concerns on Embodiment 1. 高調波電圧の無効電力を注入する判定条件の説明図Explanatory drawing of determination conditions for injecting reactive power of harmonic voltage 基本波電圧の無効電力を注入する判定条件の説明図Explanatory diagram of determination conditions for injecting reactive power of fundamental voltage 従来の制御装置を構成する機能の内、単独運転検出に係わる機能の一例を示す図The figure which shows an example of the function in connection with the independent operation detection among the functions which comprise the conventional control apparatus 従来の制御装置における連系運転時に演算される高調波電圧偏差と判定閾値との関係を説明するための図The figure for demonstrating the relationship between the harmonic voltage deviation calculated at the time of the interconnection operation in the conventional control apparatus, and a determination threshold value 判定条件(a),(b)の判定閾値と同レベルの高調波電圧が印加された場合、従来の制御装置で連系運転時に演算される高調波電圧偏差と判定閾値との関係を説明するための図When the harmonic voltage of the same level as the determination threshold value of the determination conditions (a) and (b) is applied, the relationship between the harmonic voltage deviation calculated at the time of interconnection operation in the conventional control device and the determination threshold value will be described. Illustration for 実施の形態1の制御装置における連系運転時に演算される高調波電圧偏差と判定閾値との関係を説明するための図The figure for demonstrating the relationship between the harmonic voltage deviation calculated at the time of the interconnection | linkage driving | operation in the control apparatus of Embodiment 1, and a determination threshold value. 判定条件(a),(b)の判定閾値と同レベルの高調波電圧が印加された場合、実施の形態1の制御装置で連系運転時に演算される高調波電圧偏差と判定閾値との関係を説明するための図When a harmonic voltage having the same level as the determination threshold value of the determination conditions (a) and (b) is applied, the relationship between the harmonic voltage deviation calculated during the interconnected operation by the control device of Embodiment 1 and the determination threshold value Illustration for explaining 本発明の実施の形態2に係る制御装置を構成する機能の内、単独運転検出に係わる機能の一例を示す図The figure which shows an example of the function in connection with the independent operation detection among the functions which comprise the control apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る制御装置を構成する機能の内、単独運転検出に係わる機能の一例を示す図The figure which shows an example of the function in connection with the independent operation detection among the functions which comprise the control apparatus which concerns on Embodiment 3 of this invention.

以下に、本発明の実施の形態にかかる単独運転検出用の制御装置、および単独運転検出装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, a control device for isolated operation detection and an isolated operation detection device according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は本発明の実施の形態1に係る単独運転検出装置および単独運転検出用の制御装置を含む分散型電源装置1の構成図、図2は実施の形態1に係る制御装置を構成する機能の内、単独運転検出に係わる機能の一例を示す図、図3は高調波電圧の無効電力を注入する判定条件の説明図、図4は基本波電圧の無効電力を注入する条件の説明図である。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a distributed power supply device 1 including an isolated operation detection device and an isolated operation detection control device according to the first embodiment of the present invention, and FIG. 2 is a function configuring the control device according to the first embodiment. FIG. 3 is a diagram illustrating an example of a function related to the isolated operation detection, FIG. 3 is an explanatory diagram of determination conditions for injecting reactive power of harmonic voltage, and FIG. 4 is an explanatory diagram of conditions for injecting reactive power of fundamental voltage. is there.

図1に示す分散型電源装置1は、発電した直流電力を供給する電力供給部5と、電力供給部5が発電した直流電力を交流電力に変換する電力変換機能を有するパワーコンディショナ10とを有して構成される。   A distributed power supply apparatus 1 shown in FIG. 1 includes a power supply unit 5 that supplies generated DC power, and a power conditioner 10 that has a power conversion function that converts DC power generated by the power supply unit 5 into AC power. It is configured.

電力供給部5は、太陽電池またはガスエンジン発電機であり、パワーコンディショナ10を介して電力系統2と接続され、直流電力を発電して電力変換部であるパワーコンディショナ10に供給する。なお、電力供給部5は、太陽電池またはガスエンジン発電機に限定されず、太陽電池またはガスエンジン発電機以外の発電手段、例えば風力発電装置または燃料電池でもよい。   The power supply unit 5 is a solar cell or a gas engine generator, and is connected to the power system 2 via the power conditioner 10 to generate DC power and supply it to the power conditioner 10 that is a power conversion unit. The power supply unit 5 is not limited to a solar cell or a gas engine generator, and may be a power generation means other than the solar cell or the gas engine generator, such as a wind power generator or a fuel cell.

パワーコンディショナ10は、電力系統2と接続され、パワーコンディショナ10で変換された交流電力は、電力系統2に供給される他、一般家電機器である負荷3にも供給される。   The power conditioner 10 is connected to the power system 2, and the AC power converted by the power conditioner 10 is supplied to the power system 2 and also to a load 3 that is a general household electrical appliance.

パワーコンディショナ10は、電力変換機能を担うインバータ11と、単独運転検出装置16とを有して構成される。単独運転検出装置16は、インバータ制御部12と、単独運転検出用の制御装置13と、連系リレー14と、インバータ11と電力系統2との間に流れる電流を検出する電流検出器15とを有して構成される。インバータ制御部12は、電力系統2との連系点17に印加される電圧と、電流検出器15で検出された電流とに基づいて、インバータ11を制御する。   The power conditioner 10 includes an inverter 11 having a power conversion function and an isolated operation detection device 16. The isolated operation detection device 16 includes an inverter control unit 12, an isolated operation detection control device 13, an interconnection relay 14, and a current detector 15 that detects a current flowing between the inverter 11 and the power system 2. It is configured. The inverter control unit 12 controls the inverter 11 based on the voltage applied to the interconnection point 17 with the power system 2 and the current detected by the current detector 15.

図2には、実施の形態1に係る制御装置13の機能の内、単独運転検出に係わる機能ブロックが示されている。制御装置13は、電力系統2が出力する電圧である連系点17での電圧を検出する系統電圧検出部100と、系統電圧検出部100で検出された電圧の波形をパルス状の電圧信号に変換する電圧波形変換部101と、電圧波形変換部101からの電圧信号に基づいて電力系統2が出力する電圧の周波数である系統周波数を計測する系統周波数計測部102と、系統周波数計測部102で計測された系統周波数より周波数偏差を演算する系統周波数偏差演算部103と、系統電圧検出部100で検出された電圧に対してソフトウェアでフィルタ処理を実行するフィルタ部104と、フィルタ部104でフィルタ処理された電圧に含まれる基本波成分である基本波電圧を演算する基本波電圧演算部105と、基本波電圧演算部105で演算された基本波電圧を用いて基本波電圧偏差を演算する基本波電圧偏差演算部106と、フィルタ部104でフィルタ処理された電圧に含まれる2次から7次までの高調波電圧を離散フーリエ解析により演算する高調波電圧演算部107と、高調波電圧演算部107で演算された2次から7次までの個々の高調波電圧の合計値を演算する総合高調波電圧演算部108と、総合高調波電圧演算部108で演算された高調波電圧を用いて高調波電圧偏差を演算する高調波電圧偏差演算部109と、単独運転判定部110とを有する。   FIG. 2 shows functional blocks related to the isolated operation detection among the functions of the control device 13 according to the first embodiment. The control device 13 detects a voltage at the interconnection point 17 that is a voltage output from the power system 2, and converts the waveform of the voltage detected by the system voltage detection unit 100 into a pulsed voltage signal. A voltage waveform conversion unit 101 for conversion, a system frequency measurement unit 102 for measuring a system frequency that is a frequency of a voltage output from the power system 2 based on a voltage signal from the voltage waveform conversion unit 101, and a system frequency measurement unit 102 A system frequency deviation calculation unit 103 that calculates a frequency deviation from the measured system frequency, a filter unit 104 that performs a filter process with software on the voltage detected by the system voltage detection unit 100, and a filter process performed by the filter unit 104 The fundamental wave voltage computing unit 105 that computes the fundamental wave voltage that is the fundamental wave component included in the measured voltage, and the fundamental wave voltage computing unit 105 A fundamental wave voltage deviation calculating unit 106 that calculates a fundamental wave voltage deviation using the main wave voltage, and a second to seventh harmonic voltage included in the voltage filtered by the filter unit 104 are calculated by discrete Fourier analysis. A harmonic voltage calculation unit 107, a total harmonic voltage calculation unit 108 that calculates a total value of individual harmonic voltages from the second order to the seventh order calculated by the harmonic voltage calculation unit 107, and a total harmonic voltage The harmonic voltage deviation calculating part 109 which calculates a harmonic voltage deviation using the harmonic voltage calculated by the calculating part 108, and the independent operation determination part 110 are provided.

高調波電圧演算部107は、系統電圧検出部100で検出された電圧の2次高調波電圧を演算する2次高調波電圧演算部107−2と、系統電圧検出部100で検出された電圧の3次高調波電圧を演算する3次高調波電圧演算部107−3と、系統電圧検出部100で検出された電圧の7次高調波電圧を演算する7次高調波電圧演算部107−7とを有する。図2では4次から6次までの高調波電圧演算部の図示を省略している。   The harmonic voltage calculation unit 107 includes a second harmonic voltage calculation unit 107-2 that calculates a second harmonic voltage of the voltage detected by the system voltage detection unit 100, and a voltage detected by the system voltage detection unit 100. A third harmonic voltage calculator 107-3 for calculating the third harmonic voltage, a seventh harmonic voltage calculator 107-7 for calculating the seventh harmonic voltage of the voltage detected by the system voltage detector 100, and Have In FIG. 2, illustration of harmonic voltage calculation units from the 4th order to the 6th order is omitted.

単独運転判定部110には、JEM1498で定められる単独運転検出能動的方式に従い、以下に示すステップ注入条件が成立した場合に無効電力をステップ注入する機能が搭載されている。
(ステップ注入条件)
(1)系統周波数偏差が±0.01Hz以内である。
(2)高調波電圧偏差が図3(b)に示す条件を満たし、または基本波電圧偏差が図4(b)に示す条件を満たす。
The isolated operation determination unit 110 is equipped with a function of step-injecting reactive power when the following step injection condition is satisfied according to the isolated operation detection active method defined in JEM 1498.
(Step injection conditions)
(1) The system frequency deviation is within ± 0.01 Hz.
(2) The harmonic voltage deviation satisfies the condition shown in FIG. 3B, or the fundamental voltage deviation satisfies the condition shown in FIG. 4B.

なおJEM1498では、高調波電圧の算出に関して具体的な手段は規定されていないが、以下のように規定されている。
(1)高調波電圧の演算には2次から7次までの高調波を用いる。
(2)高調波電圧の演算には離散フーリエ解析を用いてもよい。
In JEM 1498, specific means for calculating the harmonic voltage is not defined, but is defined as follows.
(1) The second to seventh harmonics are used for the calculation of the harmonic voltage.
(2) Discrete Fourier analysis may be used for the calculation of the harmonic voltage.

単独運転判定部110は、系統周波数偏差演算部103で演算された系統周波数偏差と、基本波電圧偏差演算部106で演算された基本波電圧の偏差と、高調波電圧偏差演算部109で演算された高調波電圧の偏差とに基づいて、図3および図4に示す条件が成立するか否かを判定する。条件が成立する場合、単独運転判定部110は、系統周期で3周期分の無効電力を注入するための指令をインバータ制御部12に出力する。   The isolated operation determination unit 110 is calculated by the system frequency deviation calculated by the system frequency deviation calculation unit 103, the deviation of the fundamental voltage calculated by the fundamental voltage deviation calculation unit 106, and the harmonic voltage deviation calculation unit 109. Whether or not the conditions shown in FIGS. 3 and 4 are satisfied is determined based on the deviation of the harmonic voltage. When the condition is satisfied, the isolated operation determination unit 110 outputs a command for injecting reactive power for three cycles in the system cycle to the inverter control unit 12.

このとき、分散型電源装置1が単独運転状態であれば、注入した無効電力により系統周波数が変動する。系統周波数が変動した場合、単独運転判定部110は、分散型電源装置1が単独運転状態であると判定し、連系リレー14をオフ制御するためのリレー制御信号を生成し、生成した信号を連系リレー14に出力することでパワーコンディショナ10を系統から解列させる。また、分散型電源装置1が単独運転状態であると判定したとき、単独運転判定部110は、インバータ11を停止させるためのゲートブロック信号を生成してインバータ制御部12に出力する。   At this time, if the distributed power supply device 1 is in a single operation state, the system frequency fluctuates due to the injected reactive power. When the system frequency fluctuates, the isolated operation determination unit 110 determines that the distributed power supply device 1 is in the isolated operation state, generates a relay control signal for controlling the interconnection relay 14 to be turned off, and generates the generated signal. By outputting to the interconnection relay 14, the power conditioner 10 is disconnected from the system. When it is determined that the distributed power supply device 1 is in the single operation state, the single operation determination unit 110 generates a gate block signal for stopping the inverter 11 and outputs the gate block signal to the inverter control unit 12.

一方、分散型電源装置1が単独運転状態でなければ、注入した無効電力は電力系統2で吸収される。そのため、系統周波数が変動しない場合、単独運転判定部110は、分散型電源装置1が単独運転状態ではないと判定し、分散型電源装置1では運転が継続される。   On the other hand, the injected reactive power is absorbed by the power system 2 if the distributed power supply device 1 is not in a single operation state. Therefore, when the system frequency does not vary, the isolated operation determination unit 110 determines that the distributed power supply device 1 is not in the isolated operation state, and the distributed power supply device 1 continues to operate.

図3(a)に示す0から15までの番号は、高調波電圧演算部107で順次計測される系統周期を表す。具体的には、0は現在の系統周期であり、1から15はi(iは1から15までの自然数)サイクル前に計測された系統周期である。N0は、現在の系統周期で演算された2次から7次までの高調波電圧を合計した高調波電圧実効値である。同様にN1からN5は、iサイクル前の系統周期で演算された2次から7次までの高調波電圧を合計した高調波電圧実効値である。Navrは、現在から3サイクル前の高調波電圧実効値N3と4サイクル前の高調波電圧実効値N4と5サイクル前の高調波電圧実効値N5との、3周期分の高調波電圧実効値の平均値である。高調波電圧実効値の平均値Navrは、高調波電圧偏差演算部109で演算される。   The numbers from 0 to 15 shown in FIG. 3A represent the system periods sequentially measured by the harmonic voltage calculation unit 107. Specifically, 0 is the current system cycle, and 1 to 15 are system cycles measured before i (i is a natural number from 1 to 15) cycles. N0 is a harmonic voltage effective value obtained by summing up the second to seventh harmonic voltages calculated in the current system cycle. Similarly, N1 to N5 are harmonic voltage effective values obtained by summing up the second to seventh harmonic voltages calculated in the system cycle before i cycles. Navr is a harmonic voltage effective value for three cycles of a harmonic voltage effective value N3 three cycles before the present, a harmonic voltage effective value N4 four cycles before, and a harmonic voltage effective value N5 five cycles before. Average value. The average value Navr of the harmonic voltage effective value is calculated by the harmonic voltage deviation calculating unit 109.

図3(b)には、JEM1498で定められる高調波電圧の無効電力を注入する上での6つの条件が示されている。条件(a)では、高調波電圧実効値N0と平均値Navrとの差分である高調波電圧偏差が予め設定された判定閾値、例えば2ボルトよりも大きい場合には条件が成立する。条件(b)によれば、高調波電圧実効値N1と平均値Navrとの差分である高調波電圧偏差が予め設定された判定閾値、例えば2ボルトよりも大きい場合には条件が成立する。条件(c)によれば、高調波電圧実効値N2と平均値Navrとの差分である高調波電圧偏差が予め設定された判定閾値、例えば−0.5ボルトよりも大きい場合には条件が成立する。条件(d)によれば、高調波電圧実効値N3と平均値Navrとの差分である高調波電圧偏差が予め設定された判定閾値、例えば−0.5ボルトよりも大きく、かつ、0.5ボルトよりも小さい場合には条件が成立する。条件(e)によれば、高調波電圧実効値N4と平均値Navrとの差分である高調波電圧偏差が予め設定された判定閾値、例えば−0.5ボルトよりも大きく、かつ、0.5ボルトよりも小さい場合には条件が成立する。条件(f)によれば、高調波電圧実効値N5と平均値Navrとの差分である高調波電圧偏差が予め設定された判定閾値、例えば−0.5ボルトよりも大きく、かつ、0.5ボルトよりも小さい場合には条件が成立する。   FIG. 3B shows six conditions for injecting the reactive power of the harmonic voltage defined by JEM1498. In the condition (a), the condition is satisfied when the harmonic voltage deviation, which is the difference between the harmonic voltage effective value N0 and the average value Navr, is larger than a predetermined determination threshold, for example, 2 volts. According to the condition (b), the condition is satisfied when the harmonic voltage deviation, which is the difference between the harmonic voltage effective value N1 and the average value Navr, is larger than a predetermined determination threshold, for example, 2 volts. According to the condition (c), the condition is satisfied when the harmonic voltage deviation, which is the difference between the harmonic voltage effective value N2 and the average value Navr, is larger than a predetermined determination threshold, for example, −0.5 volts. To do. According to the condition (d), the harmonic voltage deviation, which is the difference between the harmonic voltage effective value N3 and the average value Navr, is larger than a predetermined determination threshold, for example, −0.5 volts, and 0.5 If it is smaller than the bolt, the condition is met. According to the condition (e), the harmonic voltage deviation which is the difference between the harmonic voltage effective value N4 and the average value Navr is larger than a predetermined determination threshold, for example, −0.5 volts, and 0.5 If it is smaller than the bolt, the condition is met. According to the condition (f), the harmonic voltage deviation which is the difference between the harmonic voltage effective value N5 and the average value Navr is larger than a predetermined determination threshold, for example, −0.5 volts, and 0.5 If it is smaller than the bolt, the condition is met.

図4(a)に示す0から13までの番号は、基本波電圧演算部105で順次計測される系統周期を表す。具体的には、0は現在の系統周期であり、1から15はi(iは1から15までの自然数)サイクル前に計測された系統周期である。N0は、現在の系統周期で演算された基本波電圧実効値である。同様にN1からN5は、iサイクル前の系統周期で演算された基本波電圧実効値である。Navrは、現在から3サイクル前の基本波電圧実効値N3と4サイクル前の基本波電圧実効値N4と5サイクル前の基本波電圧実効値N5との、3周期分の基本波電圧実効値の平均値である。基本波電圧実効値の平均値Navrは、基本波電圧偏差演算部106で演算される。   The numbers from 0 to 13 shown in FIG. 4A represent the system periods sequentially measured by the fundamental voltage calculator 105. Specifically, 0 is the current system cycle, and 1 to 15 are system cycles measured before i (i is a natural number from 1 to 15) cycles. N0 is the fundamental voltage effective value calculated in the current system cycle. Similarly, N1 to N5 are fundamental wave voltage effective values calculated in the system cycle before i cycles. Navr is a fundamental voltage effective value for three cycles of a fundamental wave voltage effective value N3 three cycles before the present, a fundamental wave effective value N4 four cycles before, and a fundamental voltage effective value N5 five cycles before. Average value. The average value Navr of the fundamental wave voltage effective value is calculated by the fundamental wave voltage deviation calculation unit 106.

図4(b)には、JEM1498で定められる基本波電圧の無効電力を注入する上での6つの条件が示されている。条件(a)では、基本波電圧実効値N0と平均値Navrとの差分である基本波電圧偏差が予め設定された判定閾値、例えば2.5ボルトよりも大きい場合には条件が成立する。条件(b)によれば、基本波電圧実効値N1と平均値Navrとの差分である基本波電圧偏差が予め設定された判定閾値、例えば2.5ボルトよりも大きい場合には条件が成立する。条件(c)によれば、基本波電圧実効値N2と平均値Navrとの差分である基本波電圧偏差が予め設定された判定閾値、例えば−0.5ボルトよりも大きい場合には条件が成立する。条件(d)によれば、基本波電圧実効値N3と平均値Navrとの差分である基本波電圧偏差が予め設定された判定閾値、例えば−0.5ボルトよりも大きく、かつ、0.5ボルトよりも小さい場合には条件が成立する。条件(e)によれば、基本波電圧実効値N4と平均値Navrとの差分である基本波電圧偏差が予め設定された判定閾値、例えば−0.5ボルトよりも大きく、かつ、0.5ボルトよりも小さい場合には条件が成立する。条件(f)によれば、基本波電圧実効値N5と平均値Navrとの差分である基本波電圧偏差が予め設定された判定閾値、例えば−0.5ボルトよりも大きく、かつ、0.5ボルトよりも小さい場合には条件が成立する。   FIG. 4B shows six conditions for injecting the reactive power of the fundamental wave voltage defined by JEM 1498. In the condition (a), the condition is satisfied when a fundamental wave voltage deviation, which is a difference between the fundamental wave voltage effective value N0 and the average value Navr, is larger than a predetermined determination threshold, for example, 2.5 volts. According to the condition (b), the condition is satisfied when the fundamental voltage deviation, which is the difference between the fundamental voltage effective value N1 and the average value Navr, is larger than a predetermined determination threshold, for example, 2.5 volts. . According to the condition (c), the condition is satisfied when the fundamental voltage deviation, which is the difference between the fundamental voltage effective value N2 and the average value Navr, is larger than a predetermined determination threshold, for example, −0.5 volts. To do. According to the condition (d), the fundamental voltage deviation, which is the difference between the fundamental voltage effective value N3 and the average value Navr, is larger than a predetermined determination threshold, for example, −0.5 volts, and 0.5 If it is smaller than the bolt, the condition is met. According to the condition (e), the fundamental voltage deviation, which is the difference between the fundamental voltage effective value N4 and the average value Navr, is larger than a predetermined determination threshold, for example, −0.5 volts, and 0.5 If it is smaller than the bolt, the condition is met. According to the condition (f), the fundamental voltage deviation, which is the difference between the fundamental voltage effective value N5 and the average value Navr, is larger than a predetermined determination threshold, for example, −0.5 volts, and 0.5 If it is smaller than the bolt, the condition is met.

図5は従来の制御装置を構成する機能の内、単独運転検出に係わる機能の一例を示す図であり、図5に示す制御装置130では、図2のフィルタ部104が設けられていない点が実施の形態1の制御装置13と相違する。   FIG. 5 is a diagram showing an example of a function related to the isolated operation detection among the functions constituting the conventional control device. In the control device 130 shown in FIG. 5, the filter unit 104 of FIG. 2 is not provided. This is different from the control device 13 of the first embodiment.

図6は従来の制御装置における連系運転時に演算される高調波電圧偏差と判定閾値との関係を説明するための図である。図6には、系統電圧の波形と、高調波電圧偏差演算部109における高調波電圧の演算タイミングと、単独運転判定部110に設定される判定条件(d)から(f)の判定閾値と、高調波電圧偏差演算部109で演算される高調波電圧偏差とが示されている。図中の実線が高調波電圧偏差演算部109で演算される高調波電圧偏差の値を表し、網掛け部分は、判定条件(d)から(f)の判定閾値である点線の−0.5ボルトから0.5ボルトの範囲を表す。   FIG. 6 is a diagram for explaining the relationship between the harmonic voltage deviation calculated during the linked operation in the conventional control device and the determination threshold. In FIG. 6, the waveform of the system voltage, the calculation timing of the harmonic voltage in the harmonic voltage deviation calculation unit 109, the determination thresholds of the determination conditions (d) to (f) set in the isolated operation determination unit 110, The harmonic voltage deviation calculated by the harmonic voltage deviation calculating unit 109 is shown. The solid line in the figure represents the value of the harmonic voltage deviation calculated by the harmonic voltage deviation calculating unit 109, and the shaded portion is -0.5 of the dotted line that is the determination threshold value of the determination conditions (d) to (f). Represents a range from volt to 0.5 volt.

図7は判定条件(a),(b)の判定閾値と同レベルの高調波電圧が印加された場合、従来の制御装置で連系運転時に演算される高調波電圧偏差と判定閾値との関係を説明するための図である。図7には、図6と同様に、系統電圧の波形と高調波電圧偏差演算部109における高調波電圧の演算タイミングとが示されている。図7に示す符号(a)から(e)は、図3(b)に示す判定条件(a)から(e)に対応する。図中の実線の内、(a)の上部に示す実線は、高調波電圧偏差演算部109で演算される高調波電圧実効値N0と高調波電圧の平均値Navrとの高調波電圧偏差を表す。同様に、(b)の上部に示す実線はN1とNavrとの高調波電圧偏差、(c)の上部に示す実線はN2とNavrとの高調波電圧偏差、(d)の上部に示す実線はN3とNavrとの高調波電圧偏差、(e)の上部に示す実線はN4と平均値Navrとの高調波電圧偏差を表す。(a)から(e)の上部に示す網掛け部分の内、(a),(b)に対応する部分は、判定条件(a),(b)の判定閾値である点線の2.0ボルト以上の範囲を表し、(c)に対応する部分は、判定条件(c)の判定閾値である点線の−0.5ボルト以上の範囲を表し、(d),(e)に対応する部分は、判定条件(d),(e)の判定閾値であるである点線の−0.5ボルトから0.5ボルトの範囲を表す。   FIG. 7 shows the relationship between the harmonic voltage deviation calculated at the time of interconnection operation in the conventional control device and the determination threshold when a harmonic voltage of the same level as the determination threshold of the determination conditions (a) and (b) is applied. It is a figure for demonstrating. FIG. 7 shows the waveform of the system voltage and the calculation timing of the harmonic voltage in the harmonic voltage deviation calculation unit 109, as in FIG. Reference numerals (a) to (e) shown in FIG. 7 correspond to the determination conditions (a) to (e) shown in FIG. 3 (b). Of the solid lines in the figure, the solid line shown at the top of (a) represents the harmonic voltage deviation between the harmonic voltage effective value N0 calculated by the harmonic voltage deviation calculating unit 109 and the average value Navr of the harmonic voltage. . Similarly, the solid line shown at the top of (b) is the harmonic voltage deviation between N1 and Navr, the solid line shown at the top of (c) is the harmonic voltage deviation between N2 and Navr, and the solid line at the top of (d) is The harmonic voltage deviation between N3 and Navr, and the solid line shown at the top of (e) represents the harmonic voltage deviation between N4 and the average value Navr. Among the shaded portions shown in the upper part of (a) to (e), the portions corresponding to (a) and (b) are the dotted 2.0 volts that is the determination threshold value of the determination conditions (a) and (b). The part corresponding to (c) represents the above range, and the part corresponding to (d) and (e) Represents a range from -0.5 volts to 0.5 volts of a dotted line, which is a determination threshold value of the determination conditions (d) and (e).

図5に示す制御装置130では、実施の形態1の制御装置13と同様に、系統周波数偏差と基本波電圧偏差と高調波電圧偏差とが以下の条件を満たすか否かを判定する。
(ステップ注入条件)
(1)系統周波数偏差が±0.01Hz以内である。
(2)高調波電圧偏差が図3(b)に示す条件を満たし、または基本波電圧偏差が図4(b)に示す条件を満たす。
In the control device 130 shown in FIG. 5, as in the control device 13 of the first embodiment, it is determined whether the system frequency deviation, the fundamental voltage deviation, and the harmonic voltage deviation satisfy the following conditions.
(Step injection conditions)
(1) The system frequency deviation is within ± 0.01 Hz.
(2) The harmonic voltage deviation satisfies the condition shown in FIG. 3B, or the fundamental voltage deviation satisfies the condition shown in FIG. 4B.

条件が成立する場合、制御装置130の単独運転判定部110は、無効電力を注入するための指令をインバータ制御部12に出力する。このとき分散型電源装置1が単独運転状態であれば、注入した無効電力により系統周波数が変動するため、分散型電源装置1では単独運転状態であることが検出される。一方、分散型電源装置1が単独運転状態でなければ、注入した無効電力は電力系統2で吸収されるため、系統周波数が変動しないため、分散型電源装置1では運転が継続される。   When the condition is satisfied, the isolated operation determination unit 110 of the control device 130 outputs a command for injecting reactive power to the inverter control unit 12. At this time, if the distributed power supply 1 is in the single operation state, the system frequency is changed by the injected reactive power, and therefore it is detected that the distributed power supply device 1 is in the single operation state. On the other hand, if the distributed power supply device 1 is not in the single operation state, the injected reactive power is absorbed by the power system 2 and the system frequency does not fluctuate.

ここで、インバータ11の出力電圧には、スイッチングによるリップルまたはノイズが含まれているため、リップルまたはノイズが含まれた状態で高調波電圧が演算されると、分散型電源装置1が連系運転中であるにも関わらず、図6の実線のように高調波電圧偏差が変動することがある。このように分散型電源装置1が連系運転中に高調波電圧偏差が変動し、高調波電圧偏差が判定条件(d)から(f)の判定閾値を逸脱している場合、その後に分散型電源装置1が単独運転状態になることで高調波電圧が急増し、高調波電圧偏差が判定条件(a)から(c)を満たしても判定条件(d)から(f)を満たさない。そのため、分散型電源装置1が単独運転状態になったとしても無効電力が注入されず、単独運転検出ができない、または、単独運転検出までの時間が長くなることがあった。   Here, since the output voltage of the inverter 11 includes a ripple or noise due to switching, when the harmonic voltage is calculated in a state where the ripple or noise is included, the distributed power supply device 1 operates in an interconnected manner. In spite of being inside, the harmonic voltage deviation may fluctuate as shown by the solid line in FIG. In this way, when the distributed power supply 1 fluctuates during the grid operation, and the harmonic voltage deviation deviates from the determination threshold value (f) from the determination condition (d), the distributed power supply device 1 thereafter When the power supply device 1 enters the single operation state, the harmonic voltage increases rapidly, and even if the harmonic voltage deviation satisfies the determination conditions (a) to (c), the determination conditions (d) to (f) are not satisfied. For this reason, even when the distributed power supply device 1 is in an isolated operation state, reactive power is not injected and the isolated operation cannot be detected, or the time until the isolated operation is detected may be long.

また、スイッチングによるリップルまたはノイズの影響により高調波電圧が高めになると、図3(a)に示す平均値Navrも高めになる。分散型電源装置1が単独運転状態でないとき、図7の(d),(e)に示す高調波電圧偏差が図3(b)に示す判定条件(d),(e)を満たしたとしても、その後に分散型電源装置1が単独運転状態になることで判定条件(a),(b)の判定閾値2.0ボルトと同レベルの高調波電圧が印加された場合、図3(a)に示すN0とNavrとの高調波電圧偏差と、N1とNavrとの高調波電圧偏差とは、図7の(a),(b)に示す実線のように、判定条件(a),(b)の判定閾値以下となってしまうことがある。従って、分散型電源装置1が単独運転状態になっても、無効電力が注入されず、単独運転検出ができない、または、単独運転検出までの時間が長くなることがあった。   Further, when the harmonic voltage increases due to the ripple or noise caused by switching, the average value Navr shown in FIG. 3A also increases. Even when the distributed power supply 1 is not in a single operation state, even if the harmonic voltage deviations shown in (d) and (e) of FIG. 7 satisfy the determination conditions (d) and (e) shown in FIG. When the harmonic voltage of the same level as the determination threshold value 2.0 volts of the determination conditions (a) and (b) is applied after the distributed power supply device 1 enters the single operation state, FIG. The harmonic voltage deviation between N0 and Navr and the harmonic voltage deviation between N1 and Navr shown in FIGS. 7 (a) and 7 (b) are judged conditions (a), (b ) May be below the determination threshold. Therefore, even when the distributed power supply device 1 enters the single operation state, reactive power is not injected, and the single operation detection cannot be performed, or the time until the single operation detection may be long.

これに対して実施の形態1にかかる制御装置13は、インバータ11の駆動に起因したリップルまたはノイズによる高調波電圧の増加を防ぐため、測定された系統電圧を図2のフィルタ部104によりソフトウェアでフィルタ処理を実行し、その値を用いて基本波電圧および高調波電圧を演算する。ここで使用するフィルタの特性としてはJEM1498では、2次から7次までの高調波電圧を計測するように要求しており、系統周波数が60Hzのとき、7次の高調波成分は420Hzであるため、カットオフ周波数は420Hzよりも大きい値にするとよい。また系統周波数が50Hzのとき、7次の高調波成分は350Hzであるため、カットオフ周波数は350Hzよりも大きい値にするとよい。   On the other hand, the control device 13 according to the first embodiment uses the filter unit 104 in FIG. 2 to display the measured system voltage by software in order to prevent an increase in harmonic voltage due to ripple or noise caused by driving the inverter 11. The filter process is executed, and the fundamental voltage and the harmonic voltage are calculated using the values. As the characteristics of the filter used here, JEM 1498 requires that harmonic voltages from the second order to the seventh order be measured, and when the system frequency is 60 Hz, the seventh order harmonic component is 420 Hz. The cut-off frequency is preferably set to a value larger than 420 Hz. When the system frequency is 50 Hz, the seventh harmonic component is 350 Hz, so the cutoff frequency is preferably set to a value larger than 350 Hz.

図8は実施の形態1の制御装置における連系運転時に演算される高調波電圧偏差と判定閾値との関係を説明するための図である。図8には、図6と同様に、系統電圧の波形と、高調波電圧の演算タイミングと、判定条件(d)から(f)の判定閾値と、高調波電圧偏差とが示されている。図6との相違点は、フィルタ処理された電圧値で基本波電圧および高調波電圧が演算されることで、実線で示される高調波電圧偏差が判定条件(d)から(f)の判定閾値である−0.5ボルトから0.5ボルトまでの範囲に収まっている点である。実施の形態1の制御装置13では、フィルタ処理された電圧値で基本波電圧および高調波電圧が演算されるため、基本波電圧および高調波電圧の演算時にスイッチングによるリップルまたはノイズによる影響を軽減することができる。従って、連系運転中の高調波電圧偏差の変動が少なくなり、連系運転時の高調波電圧の実効値はほぼ0になる。結果として無効電力のステップ注入の判定精度を向上させることができる。   FIG. 8 is a diagram for explaining the relationship between the harmonic voltage deviation calculated during the grid operation in the control device of the first embodiment and the determination threshold value. FIG. 8 shows the waveform of the system voltage, the calculation timing of the harmonic voltage, the determination threshold values of the determination conditions (d) to (f), and the harmonic voltage deviation, as in FIG. The difference from FIG. 6 is that the fundamental voltage and the harmonic voltage are calculated from the filtered voltage value, so that the harmonic voltage deviation indicated by the solid line is determined from the determination conditions (d) to (f). This is a point that falls within the range of −0.5 volts to 0.5 volts. In the control device 13 according to the first embodiment, the fundamental wave voltage and the harmonic voltage are calculated using the filtered voltage value, so that the influence of ripple or noise due to switching is reduced when the fundamental wave voltage and the harmonic voltage are calculated. be able to. Accordingly, the fluctuation of the harmonic voltage deviation during the interconnection operation is reduced, and the effective value of the harmonic voltage during the interconnection operation is almost zero. As a result, the determination accuracy of the reactive power step injection can be improved.

図9は判定条件(a),(b)の判定閾値と同レベルの高調波電圧が印加された場合、実施の形態1の制御装置で連系運転時に演算される高調波電圧偏差と判定閾値との関係を説明するための図である。図9には、図7と同様に、系統電圧の波形と、高調波電圧の演算タイミングと、判定条件(a)から(e)に対応する判定閾値と、高調波電圧偏差とが示されている。図7との相違点は、フィルタ処理された電圧値で基本波電圧および高調波電圧が演算されることで、実線で示される高調波電圧偏差が、判定条件(a),(b)の判定閾値である2.0ボルト以上となっている点である。実施の形態1の制御装置13では、フィルタ処理された電圧値で基本波電圧および高調波電圧が演算されるため、連系運転中の高調波電圧偏差の変動が少なくなり、平均値Navrの変動も抑制される。結果として無効電力のステップ注入の判定精度を向上させることができる。   FIG. 9 shows a harmonic voltage deviation and a determination threshold value that are calculated at the time of interconnection operation in the control device of the first embodiment when a harmonic voltage of the same level as the determination threshold values of the determination conditions (a) and (b) is applied. It is a figure for demonstrating the relationship. FIG. 9 shows the waveform of the system voltage, the calculation timing of the harmonic voltage, the determination threshold value corresponding to the determination conditions (a) to (e), and the harmonic voltage deviation, as in FIG. Yes. The difference from FIG. 7 is that the fundamental voltage and the harmonic voltage are calculated from the filtered voltage value, and the harmonic voltage deviation indicated by the solid line is determined in the determination conditions (a) and (b). The threshold is 2.0 volts or more. In the control device 13 of the first embodiment, the fundamental voltage and the harmonic voltage are calculated with the filtered voltage value, so that the fluctuation of the harmonic voltage deviation during the interconnection operation is reduced, and the fluctuation of the average value Navr. Is also suppressed. As a result, the determination accuracy of the reactive power step injection can be improved.

なお、実施の形態1で説明した単独運転検出に係わる機能は、新しく回路を追加することなく、既存のパワーコンディショナ10に用いられる制御装置のソフトウェアを変更することにより実現することができる。   Note that the functions related to the isolated operation detection described in the first embodiment can be realized by changing the software of the control device used in the existing power conditioner 10 without adding a new circuit.

実施の形態2.
図10は本発明の実施の形態2に係る制御装置を構成する機能の内、単独運転検出に係わる機能の一例を示す図である。以下、実施の形態1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。実施の形態1との相違点は、フィルタ部104が、基本波電圧演算部105に対応する第1のフィルタ部104−1と、2次高調波電圧演算部107−2に対応する第2のフィルタ部104−2と、3次高調波電圧演算部107−3に対応する第3のフィルタ部104−3と、7次高調波電圧演算部107−7に対応する第4のフィルタ部104−7とを備える点である。図10では4次から6次までの高調波電圧演算部の図示を省略している。また図10では4次から6次までの高調波電圧演算部に対応するフィルタ部の図示を省略している。このように実施の形態2の制御装置13−1は、基本波電圧と2次から7次までの高調波電圧との演算時に各々の周波数に適したフィルタを使用することを特徴とする。
Embodiment 2. FIG.
FIG. 10 is a diagram illustrating an example of a function related to the isolated operation detection among the functions constituting the control device according to the second embodiment of the present invention. Hereinafter, the same reference numerals are given to the same parts as those in the first embodiment, and the description thereof is omitted, and only different parts will be described here. The difference from the first embodiment is that the filter unit 104 includes a first filter unit 104-1 corresponding to the fundamental voltage calculator 105 and a second filter unit corresponding to the second harmonic voltage calculator 107-2. Filter unit 104-2, third filter unit 104-3 corresponding to third harmonic voltage calculator 107-3, and fourth filter unit 104- corresponding to seventh harmonic voltage calculator 107-7 7. In FIG. 10, the harmonic voltage calculation units from the 4th order to the 6th order are not shown. Further, in FIG. 10, the illustration of the filter unit corresponding to the fourth to sixth harmonic voltage calculation units is omitted. As described above, the control device 13-1 of the second embodiment uses a filter suitable for each frequency when calculating the fundamental voltage and the second to seventh harmonic voltages.

例えば系統周波数が60Hzのとき、2次から7次までの高調波電圧演算時のカットオフ周波数を150Hz、210Hz、270Hz、330Hz、390Hz、450Hzとする。動作については実施の形態1と同様であるが、各々の周波数に適したフィルタを使用することで、効果的にリップル電圧およびノイズ成分による影響を低減することが可能となり、さらに判定精度の向上ができる。   For example, when the system frequency is 60 Hz, the cutoff frequencies at the time of calculating the harmonic voltages from the second to the seventh are 150 Hz, 210 Hz, 270 Hz, 330 Hz, 390 Hz, and 450 Hz. Although the operation is the same as in the first embodiment, it is possible to effectively reduce the influence of the ripple voltage and noise component by using a filter suitable for each frequency, and further improve the determination accuracy. it can.

実施の形態3.
図11は本発明の実施の形態3に係る制御装置を構成する機能の内、単独運転検出に係わる機能の一例を示す図である。以下、実施の形態1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。実施の形態1との相違点は、高調波電圧演算部107の代わりに電圧演算部120が用いられ、基本波電圧演算部105の演算結果と電圧演算部120の演算結果とが総合高調波電圧演算部108に入力され、総合高調波電圧演算部108では、双方の演算結果の差を求めることで2次から7次までの個々の高調波電圧の合計値を演算する点である。
Embodiment 3 FIG.
FIG. 11 is a diagram illustrating an example of a function related to the isolated operation detection among the functions constituting the control device according to the third embodiment of the present invention. Hereinafter, the same reference numerals are given to the same parts as those in the first embodiment, and the description thereof is omitted, and only different parts will be described here. The difference from the first embodiment is that the voltage calculation unit 120 is used instead of the harmonic voltage calculation unit 107, and the calculation result of the fundamental wave voltage calculation unit 105 and the calculation result of the voltage calculation unit 120 are the total harmonic voltage. The total harmonic voltage calculation unit 108, which is input to the calculation unit 108, calculates the total value of the individual harmonic voltages from the second order to the seventh order by obtaining the difference between the two calculation results.

実施の形態3では、例えば2次から7次までの高調波電圧を演算する場合、フィルタ部104のカットオフ周波数の特性を7次と8次の中間の周波数、すなわち系統周波数が50Hzの場合には375Hz、系統周波数が60Hzの場合には450Hzに設定する。これにより電圧演算部120では8次以上の周波数の高調波電圧を除去した電圧が演算される。総合高調波電圧演算部108では、電圧演算部120で演算された電圧から基本波電圧演算部105で演算された基本波電圧が除去されることで、2次から7次までの総合高調波電圧が演算される。実施の形態3の制御装置13−2によれば、実施の形態1の高調波電圧演算部107において、ソフトウェアの処理時間を要する離散フーリエ解析を不要とすることができる。   In the third embodiment, for example, when calculating harmonic voltages from the second order to the seventh order, the characteristic of the cutoff frequency of the filter unit 104 is an intermediate frequency between the seventh order and the eighth order, that is, when the system frequency is 50 Hz. Is set to 450 Hz when the system frequency is 60 Hz. As a result, the voltage calculation unit 120 calculates a voltage obtained by removing the harmonic voltage of the 8th or higher frequency. The total harmonic voltage calculation unit 108 removes the fundamental wave voltage calculated by the fundamental wave voltage calculation unit 105 from the voltage calculated by the voltage calculation unit 120, so that total harmonic voltages from the second to the seventh order are obtained. Is calculated. According to the control device 13-2 of the third embodiment, the discrete Fourier analysis that requires software processing time can be eliminated in the harmonic voltage calculation unit 107 of the first embodiment.

なお、実施の形態3では、系統周波数が50Hzであるか60Hzであるかによってフィルタの特性を変化させる必要があるが、系統連系を行う場合、系統周波数の値は既知であり、ソフトウェアで実施する場合に特性を変更することは極めて容易である。   In the third embodiment, it is necessary to change the filter characteristics depending on whether the system frequency is 50 Hz or 60 Hz. However, when system interconnection is performed, the value of the system frequency is known and is implemented by software. It is very easy to change the characteristics when doing so.

なお実施の形態1から3では、スイッチングによるリップルまたはノイズの影響により、高調波電圧が変動した場合または高調波電圧偏差が変動した場合でも、無効電力注入の判定精度を向上させることができるものとして説明したが、基本波電圧が変動した場合または基本波偏差が変動した場合でも、同様の効果を得ることができる。   In Embodiments 1 to 3, it is possible to improve reactive power injection determination accuracy even when the harmonic voltage fluctuates or the harmonic voltage deviation fluctuates due to the ripple or noise caused by switching. As described above, the same effect can be obtained even when the fundamental wave voltage fluctuates or the fundamental wave deviation fluctuates.

以上に説明したように実施の形態1から3に係る単独運転検出用の制御装置は、系統周波数偏差演算部と、フィルタ部と、フィルタ部でフィルタ処理された電圧に含まれる高調波電圧の高調波電圧偏差を演算する高調波電圧偏差演算部と、系統周波数偏差と高調波電圧偏差とが、電力系統に無効電力を注入する条件を満たしたとき、電力系統に無効電力を出力して分散型電源装置が単独運転状態であるか否かを判定する単独運転判定部と、を備える。この構成により、フィルタ処理された電圧値で高調波電圧が演算されるため、インバータのスイッチングで発生するリップルまたはノイズによる基本波電圧または高調波電圧の演算結果の変動が軽減され、無効電力のステップ注入の判定精度を向上させることができ、確実に無効電力のステップ注入を行うことが可能となる。その結果、インバータのスイッチングにより発生するリップルまたはノイズに関わりなく、電力系統の停電時にはパワーコンディショナの運転を停止することができ、電力系統の停電時および作業停電時において、電力系統における工事作業の安全を確保することができる。   As described above, the control device for detecting an isolated operation according to the first to third embodiments includes the system frequency deviation calculation unit, the filter unit, and the harmonic voltage included in the voltage filtered by the filter unit. When the harmonic voltage deviation calculator that calculates the wave voltage deviation, the system frequency deviation and the harmonic voltage deviation satisfy the conditions for injecting reactive power into the power system, the reactive power is output to the power system and distributed. A single operation determination unit that determines whether or not the power supply device is in a single operation state. With this configuration, the harmonic voltage is calculated with the filtered voltage value, so fluctuations in the calculation result of the fundamental voltage or harmonic voltage due to ripples or noise generated by inverter switching are reduced, and the reactive power step Injection determination accuracy can be improved, and step injection of reactive power can be reliably performed. As a result, it is possible to stop the operation of the power conditioner during a power outage regardless of the ripple or noise generated by the inverter switching. Safety can be ensured.

以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。   The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

1 分散型電源装置、2 電力系統、3 負荷、5 電力供給部、10 パワーコンディショナ、11 インバータ、12 インバータ制御部、13,13−1,13−2 制御装置、14 連系リレー、15 電流検出器、16 単独運転検出装置、17 連系点、100 系統電圧検出部、101 電圧波形変換部、102 系統周波数計測部、103 系統周波数偏差演算部、104 フィルタ部、104−1 第1のフィルタ部、104−2 第2のフィルタ部、104−3 第3のフィルタ部、104−4 第4のフィルタ部、105 基本波電圧演算部、106 基本波電圧偏差演算部、107 高調波電圧演算部、107−2 2次高調波電圧演算部、107−3 3次高調波電圧演算部、107−7 7次高調波電圧演算部、108 総合高調波電圧演算部、109 高調波電圧偏差演算部、110 単独運転判定部、120 電圧演算部、130 制御装置。   DESCRIPTION OF SYMBOLS 1 Distributed type power supply device, 2 Power system, 3 Load, 5 Power supply part, 10 Power conditioner, 11 Inverter, 12 Inverter control part, 13, 13-1, 13-2 Control apparatus, 14 Interconnection relay, 15 Current Detector, 16 islanding detection device, 17 interconnection point, 100 system voltage detection unit, 101 voltage waveform conversion unit, 102 system frequency measurement unit, 103 system frequency deviation calculation unit, 104 filter unit, 104-1 first filter Unit, 104-2 second filter unit, 104-3 third filter unit, 104-4 fourth filter unit, 105 fundamental wave voltage calculation unit, 106 fundamental wave voltage deviation calculation unit, 107 harmonic voltage calculation unit 107-2 Second harmonic voltage calculation unit, 107-3 Third harmonic voltage calculation unit, 107-7 Seventh harmonic voltage calculation unit, 108 Total harmonic Voltage calculation unit, 109 harmonic voltage deviation calculation unit, 110 isolated operation determination unit 120 voltage calculating unit, 130 controller.

Claims (7)

電力系統と分散型電源装置との連系点での系統電圧の系統周波数偏差を演算する系統周波数偏差演算部と、
前記系統電圧のフィルタ処理を行うフィルタ部と、
前記フィルタ部でフィルタ処理された電圧に含まれる高調波電圧の高調波電圧偏差を演算する高調波電圧偏差演算部と、
前記系統周波数偏差と前記高調波電圧偏差とが、前記電力系統に無効電力を注入する条件を満たしたとき、前記電力系統に無効電力を出力して前記分散型電源装置が単独運転状態であるか否かを判定する単独運転判定部と、
を備えたことを特徴とする単独運転検出用の制御装置。
A system frequency deviation calculating unit that calculates the system frequency deviation of the system voltage at the connection point between the power system and the distributed power supply device;
A filter unit for filtering the system voltage;
A harmonic voltage deviation calculating unit for calculating a harmonic voltage deviation of the harmonic voltage included in the voltage filtered by the filter unit;
When the system frequency deviation and the harmonic voltage deviation satisfy a condition for injecting reactive power into the power system, is the reactive power output to the power system and is the distributed power supply device in a single operation state? An independent operation determination unit for determining whether or not,
A control device for detecting an isolated operation, comprising:
前記フィルタ部でフィルタ処理された電圧に含まれる基本波電圧の基本波電圧偏差を演算する基本波電圧偏差演算部を備え、
前記単独運転判定部は、前記系統周波数偏差と前記基本波電圧偏差とが前記電力系統に無効電力を注入する条件を満たしたとき、前記電力系統に無効電力を出力して前記分散型電源装置が単独運転状態であるか否かを判定することを特徴とする請求項1に記載の単独運転検出用の制御装置。
A fundamental wave voltage deviation calculating unit for calculating a fundamental wave voltage deviation of a fundamental wave voltage included in the voltage filtered by the filter unit;
The isolated operation determination unit outputs reactive power to the power system when the system frequency deviation and the fundamental voltage deviation satisfy a condition for injecting reactive power into the power system, and the distributed power supply device It is determined whether it is a single operation state, The control apparatus for single operation detection of Claim 1 characterized by the above-mentioned.
前記フィルタ部は、複数の次数の前記高調波電圧の演算に用いる複数のフィルタ部に区分されることを特徴とする請求項1または請求項2に記載の単独運転検出用の制御装置。   The said filter part is divided into the several filter part used for the calculation of the said harmonic voltage of several orders, The control apparatus for isolated operation detection of Claim 1 or Claim 2 characterized by the above-mentioned. 前記フィルタ部は、前記基本波電圧の演算部に用いるフィルタ部と、複数の次数の前記高調波電圧の演算に用いる複数のフィルタ部とに区分されることを特徴とする請求項2に記載の単独運転検出用の制御装置。   3. The filter unit according to claim 2, wherein the filter unit is divided into a filter unit used for the calculation unit of the fundamental voltage and a plurality of filter units used for calculation of the harmonic voltages of a plurality of orders. Control device for isolated operation detection. 前記フィルタ部でフィルタ処理された電圧に含まれる複数の次数の前記高調波電圧を合計した総合高調波電圧を演算する総合高調波電圧演算部を備え、
前記高調波電圧偏差演算部は、前記総合高調波電圧を用いて前記高調波電圧偏差を演算することを特徴とする請求項1から請求項4の何れか1項に記載の単独運転検出用の制御装置。
A total harmonic voltage calculation unit that calculates a total harmonic voltage obtained by summing the harmonic voltages of a plurality of orders included in the voltage filtered by the filter unit;
The said harmonic voltage deviation calculating part calculates the said harmonic voltage deviation using the said total harmonic voltage, The point for independent operation detection of any one of Claim 1 to 4 characterized by the above-mentioned. Control device.
前記総合高調波電圧演算部は、前記フィルタ部でフィルタ処理された電圧に含まれる基本波電圧と、前記フィルタ部でフィルタ処理された電圧との差より、前記総合高調波電圧を演算することを特徴とする請求項5に記載の単独運転検出用の制御装置。   The total harmonic voltage calculation unit calculates the total harmonic voltage from a difference between a fundamental wave voltage included in the voltage filtered by the filter unit and a voltage filtered by the filter unit. The control device for detecting an isolated operation according to claim 5, wherein: 請求項1から請求項6の何れか1項に記載の単独運転検出用の制御装置を備えることを特徴とする単独運転検出装置。   An isolated operation detection device comprising the isolated operation detection control device according to any one of claims 1 to 6.
JP2014219013A 2014-10-28 2014-10-28 Control device for isolated operation detection and isolated operation detection device Expired - Fee Related JP6399892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014219013A JP6399892B2 (en) 2014-10-28 2014-10-28 Control device for isolated operation detection and isolated operation detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014219013A JP6399892B2 (en) 2014-10-28 2014-10-28 Control device for isolated operation detection and isolated operation detection device

Publications (2)

Publication Number Publication Date
JP2016086574A true JP2016086574A (en) 2016-05-19
JP6399892B2 JP6399892B2 (en) 2018-10-03

Family

ID=55972358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014219013A Expired - Fee Related JP6399892B2 (en) 2014-10-28 2014-10-28 Control device for isolated operation detection and isolated operation detection device

Country Status (1)

Country Link
JP (1) JP6399892B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018032725A1 (en) * 2016-08-18 2018-02-22 华为技术有限公司 Islanding detection method and device for inverter and power supply system
JP2019057972A (en) * 2017-09-20 2019-04-11 株式会社明電舎 Solo-operation detection device, solo-operation detection method, and solo-operation detection program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6292725A (en) * 1985-10-16 1987-04-28 三洋電機株式会社 System linkage inverter
JPH07322506A (en) * 1994-05-25 1995-12-08 Sanyo Electric Co Ltd Detection operation of single operation
JPH09322556A (en) * 1996-06-04 1997-12-12 Tokyo Electric Power Co Inc:The Voltage system linkage inverter system
JP2002116228A (en) * 2000-10-06 2002-04-19 Matsushita Electric Ind Co Ltd Harmonics measuring device
JP2009136095A (en) * 2007-11-30 2009-06-18 Omron Corp Islanding operation detecting method, controller, islanding operation detecting apparatus and distribution type power supply system
JP2012044815A (en) * 2010-08-20 2012-03-01 Toshiba Corp Individual operation detector and individual operation detection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6292725A (en) * 1985-10-16 1987-04-28 三洋電機株式会社 System linkage inverter
JPH07322506A (en) * 1994-05-25 1995-12-08 Sanyo Electric Co Ltd Detection operation of single operation
JPH09322556A (en) * 1996-06-04 1997-12-12 Tokyo Electric Power Co Inc:The Voltage system linkage inverter system
JP2002116228A (en) * 2000-10-06 2002-04-19 Matsushita Electric Ind Co Ltd Harmonics measuring device
JP2009136095A (en) * 2007-11-30 2009-06-18 Omron Corp Islanding operation detecting method, controller, islanding operation detecting apparatus and distribution type power supply system
JP2012044815A (en) * 2010-08-20 2012-03-01 Toshiba Corp Individual operation detector and individual operation detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018032725A1 (en) * 2016-08-18 2018-02-22 华为技术有限公司 Islanding detection method and device for inverter and power supply system
US10488450B2 (en) 2016-08-18 2019-11-26 Huawei Technologies Co., Ltd. Islanding detection method and apparatus for inverter, and power supply system
JP2019057972A (en) * 2017-09-20 2019-04-11 株式会社明電舎 Solo-operation detection device, solo-operation detection method, and solo-operation detection program

Also Published As

Publication number Publication date
JP6399892B2 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
US8319466B2 (en) Modular line-to-ground fault identification
Chen et al. An islanding detection method for inverter-based distributed generators based on the reactive power disturbance
JP5893057B2 (en) Isolated operation detection device and isolated operation detection method
US9843191B2 (en) Power converter for executing anti-islanding procedures upon detecting an islanding condition
US9991819B2 (en) Power conversion system and method for detecting isolated operation of the same
US10024928B2 (en) Inverter and detection method for an inverter for detecting a network fault
KR101614797B1 (en) Device for protection of power factor correction in three phase power supply and control method thereof
US10892623B2 (en) Method for detecting islanding condition for a DC/AC converter apparatus and a DC/AC converter apparatus thereof
JP6399892B2 (en) Control device for isolated operation detection and isolated operation detection device
JP2012026836A (en) Frequency detection method for distributed power source and system interconnection protection apparatus
Lissandron et al. Impact of non-simultaneous P/f and Q/V grid code requirements on PV inverters on unintentional islanding operation in distribution network
CN103515981A (en) Grid-connected photovoltaic power generation system and automatic phase displacement islanding phenomenon detecting method thereof
JP2007097311A (en) System linking interactive device
JP2017022800A (en) Single operation detector, single operation detection method and system interconnection system
JP6345078B2 (en) Control device for isolated operation detection, isolated operation detection device, and isolated operation detection method
JP6341791B2 (en) Isolated operation detection device, isolated operation detection method, isolated operation detection control device, and distributed power supply device
JP6574725B2 (en) Power converter and isolated operation detection method
KR20150005822A (en) Apparatus and method of controlling instant power failure of h-bridge multi-level inverter
JP4155214B2 (en) Grid-connected inverter device
JP6366470B2 (en) Isolated operation detection device, isolated operation detection control device, and distributed power supply device
JP7081201B2 (en) Independent operation detector
JP2016082723A (en) Single operation detection device, single operation detection method, control device for single operation detection, and distributed power supply device
JP2013243879A (en) Individual operation detection circuit, individual operation detection method, and system interconnection inverter device including individual operation detection circuit
Yuan et al. A novel IGBT open-circuit protection method for three-phase PWM rectifier
JP2017050921A (en) Power supply device and charge control method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180904

R150 Certificate of patent or registration of utility model

Ref document number: 6399892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees