JP2019057972A - Solo-operation detection device, solo-operation detection method, and solo-operation detection program - Google Patents

Solo-operation detection device, solo-operation detection method, and solo-operation detection program Download PDF

Info

Publication number
JP2019057972A
JP2019057972A JP2017179981A JP2017179981A JP2019057972A JP 2019057972 A JP2019057972 A JP 2019057972A JP 2017179981 A JP2017179981 A JP 2017179981A JP 2017179981 A JP2017179981 A JP 2017179981A JP 2019057972 A JP2019057972 A JP 2019057972A
Authority
JP
Japan
Prior art keywords
harmonic voltage
harmonic
operation detection
reactive power
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017179981A
Other languages
Japanese (ja)
Other versions
JP6919449B2 (en
Inventor
大輔 松井
Daisuke Matsui
大輔 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2017179981A priority Critical patent/JP6919449B2/en
Publication of JP2019057972A publication Critical patent/JP2019057972A/en
Application granted granted Critical
Publication of JP6919449B2 publication Critical patent/JP6919449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To improve the detection accuracy of fluctuated higher harmonic voltages and detect occurrence of a solo operation more accurately.SOLUTION: A reactive power step injection unit 7 of a solo-operation detection device calculate at a harmonic voltage calculation unit 18: a total harmonic voltage distortion based on total harmonic voltages including all of second to seventh harmonic voltages; and a total harmonic voltage distortion A based on harmonic voltages of orders having levels less than a threshold level excluding harmonic voltages of orders having levels equal to or greater than the threshold level in stationary harmonic voltages. In addition, a step injection occurrence-conditions determination unit 19 determines occurrence of harmonic voltages when either the total harmonic voltage distortion or the total harmonic voltage distortion A exceeds a step injection determination criteria.SELECTED DRAWING: Figure 1

Description

本発明は、分散型電源設備が電力系統から切り離されて単独運転をしているか否かを検出する単独運転検出の技術に関する。   The present invention relates to a technique for detecting an isolated operation that detects whether or not a distributed power supply facility is isolated from an electric power system and is operating independently.

周知のようにパワーコンディショナ(以下、PCSとする。)は、太陽電池などの分散型電源設備の直流(DC)電力を交流(AC)電力に変換し、周波数や電圧を電力系統に適合させて連係させている。   As is well known, a power conditioner (hereinafter referred to as PCS) converts direct current (DC) power of a distributed power source facility such as a solar cell into alternating current (AC) power, and adapts the frequency and voltage to the power system. Are linked.

ところが、事故発生などの事情で電力系統が停止しているときに分散型電源設備が、電力系統から遮断されていない状態で局所的な系統負荷に電力を供給する単独運転の状態を継続していると、本来停電状態であるべき電力系統に分散型電源設備から電力の逆潮流が流れ込み、単独運転による感電事故などが発生し、安全を脅かすおそれがある。   However, when the power system is stopped due to circumstances such as the occurrence of an accident, the distributed power supply facility continues to operate in a single operation that supplies power to the local system load without being disconnected from the power system. If this is the case, a reverse power flow from the distributed power supply facility will flow into the power system that should be in a power outage, and an electric shock may occur due to an isolated operation, which may threaten safety.

そこで、分散型電源設備の単独運転状態を確実に検出して、分散型電源設備を電力系統から解列する機能、即ち分散型電源設備の単独運転を防止する機能が不可欠となり、各種の単独運転検出方法が提案されている。このうち能動的単独運転検出方法は、周波数偏差に応じた無効電力を注入することで周波数シフトをさらにシフトさせ、単独運転を検出する。   Therefore, the function of reliably detecting the isolated operation state of the distributed power facility and disconnecting the distributed power facility from the power system, that is, the function of preventing the isolated operation of the distributed power facility is indispensable. A detection method has been proposed. Among these, the active islanding detection method detects the islanding by further shifting the frequency shift by injecting reactive power according to the frequency deviation.

例えばJEM1498(日本電機工業会規格)は、太陽光発電用PCS(以下、太陽光PCSとする。)の能動的単独運転検出方式の標準規格に関する。この能動的単独運転検出方式は、図1に示すように、太陽光PCS1の制御部、即ち系統周波数計測部5,周波数フィードバック部(無効電力注入部)6,無効電力ステップ注入部7,単独運転検出部8により実行される。   For example, JEM 1498 (Japan Electrical Manufacturers' Association Standard) relates to a standard for an active islanding detection method of a PCS for photovoltaic power generation (hereinafter referred to as a photovoltaic PCS). As shown in FIG. 1, this active islanding detection method includes a control unit of the solar PCS 1, that is, a system frequency measurement unit 5, a frequency feedback unit (reactive power injection unit) 6, a reactive power step injection unit 7, and an isolated operation. This is executed by the detection unit 8.

このうち無効電力ステップ注入部7は、無効電力をステップ注入する条件判定を実行し、所定の条件を満たせば無効電力のステップ注入を開始させる。この条件の一つとして高調波電圧変動の発生が挙げられる。すなわち、図2に示すように、2次〜7次の全高調波電圧歪(THD)の推移を監視し、基準値との比較により高調波電圧変動の発生を判定する。   Among these, the reactive power step injection unit 7 performs a condition determination for step injection of reactive power, and starts reactive power step injection if a predetermined condition is satisfied. One of the conditions is generation of harmonic voltage fluctuations. That is, as shown in FIG. 2, the transition of second to seventh total harmonic voltage distortion (THD) is monitored, and the occurrence of harmonic voltage fluctuation is determined by comparison with a reference value.

ここで高調波電圧歪は、基本電圧を「V1」とし、2次高調波電圧を「V2」とし、3次高調波電圧を「V3」とし、4次高調波電圧を「V4」とし、5次高調波電圧を「V5」とし、6次高調波電圧を「V6」とし、7次高調波電圧を「V7」とすると式(1)で算出できる。   Here, the harmonic voltage distortion is such that the basic voltage is “V1”, the second harmonic voltage is “V2”, the third harmonic voltage is “V3”, the fourth harmonic voltage is “V4”, 5 The second harmonic voltage is “V5”, the sixth harmonic voltage is “V6”, and the seventh harmonic voltage is “V7”.

Figure 2019057972
Figure 2019057972

基本電圧「V1」は電圧計測回路15で計測した電圧を元に基本波電圧算出部17にて算出し、2次〜7次の高調波電圧「V2〜V7」は高調波電圧計測回路16にて計測した高調波電圧を高調波電圧算出部18にて周波数スペクトルに変換して算出する。   The fundamental voltage “V1” is calculated by the fundamental voltage calculator 17 based on the voltage measured by the voltage measurement circuit 15, and the second to seventh harmonic voltages “V2 to V7” are supplied to the harmonic voltage measurement circuit 16. The harmonic voltage measured in this manner is converted into a frequency spectrum by the harmonic voltage calculator 18 and calculated.

この周波数スペクトル変換には、例えばフーリエ変換(DFT)などの手法が用いられる。なお、高調波電圧変動の発生を検知して無効電力を注入する単独運転検出方法としては、特許文献1が公知となっている。   For example, a method such as Fourier transform (DFT) is used for the frequency spectrum conversion. Patent Document 1 is known as an independent operation detection method for injecting reactive power by detecting occurrence of harmonic voltage fluctuations.

特開2009−44910JP2009-44910A

前述のように高調波電圧は、単独運転の発生に伴って急増するものの、電力系統と正常に連係運転する平常時にも発生する(以下、平常時の高調波電圧を定常高調波電圧とする。)。   As described above, although the harmonic voltage increases rapidly with the occurrence of an isolated operation, it also occurs during normal operation in which the power system is normally linked (hereinafter, the normal harmonic voltage is referred to as a steady harmonic voltage). ).

そして、各次数の定常高調波電圧は、電力系統の負荷などの諸条件に応じて異なり、さらに時間帯によっても変動する。ここで平常時に高いレベルを示す次数は、単独運転が発生しても平常時と大きな差異が生じない場合があり、かかる場合には高調波電圧変動を検出できないおそれがある。もし高調波電発変動の検出に失敗すれば、無効電力が注入されず、単独運転が検出できない。   The steady-state harmonic voltage of each order varies depending on various conditions such as the load of the power system, and also varies depending on the time zone. Here, the order indicating a high level in normal times may not be significantly different from that in normal times even if an isolated operation occurs. In such a case, there is a risk that harmonic voltage fluctuations cannot be detected. If the detection of harmonic generation fluctuations fails, reactive power is not injected and isolated operation cannot be detected.

Figure 2019057972
Figure 2019057972

表1中の「平常時」は定常高調波電圧を示し、「単独運転時」は単独運転時の高調波電圧を示し、「変動差」は両高調波電圧の差分を示し、それぞれ次数毎に示されている。ここでは「平常時」に5次が高く、「単独運転時」に若干上昇しているものの、その変動差は小さい。   “Normal” in Table 1 indicates the steady harmonic voltage, “Independent operation” indicates the harmonic voltage during independent operation, “Fluctuation difference” indicates the difference between both harmonic voltages, and for each order. It is shown. Here, the fifth order is high in “normal” and slightly increased in “single operation”, but the fluctuation difference is small.

このとき全高調波電圧歪(THD)の変動差は、「0.91%」の上昇に留まるため、図2中のステップ注入判定基準「1.0%」を越えず、高調波電圧変動発生とは判定されない。   At this time, the fluctuation difference of the total harmonic voltage distortion (THD) stays only as high as “0.91%”, and therefore does not exceed the step injection criterion “1.0%” in FIG. Is not determined.

この点につき特許文献1では、2次〜7次に限らず、どの次数を計測しもよいと示唆しているものの、具体的にどのような基準でどの次数を計測すべきなのかを明確にしていない。そのため、特許文献1でも、「平常時」と「単独運転時」の「変動差」が小さい場合には、高調波電圧変動を検出できないおそれがある。   In this regard, Patent Document 1 suggests that any order can be measured, not limited to the second to seventh orders. However, it is clarified which order should be measured based on what standard. Not. For this reason, even in Patent Document 1, when the “variation difference” between “normal operation” and “during independent operation” is small, there is a possibility that the harmonic voltage variation cannot be detected.

本発明は、このような従来の問題を解決するためになされ、高調波電圧変動の検出精度を向上させ、より確実に単独運転の発生を検出することを解決課題としている。   The present invention has been made in order to solve such a conventional problem, and it is an object of the present invention to improve the detection accuracy of harmonic voltage fluctuations and more reliably detect the occurrence of isolated operation.

(1)本発明の一態様は、分散型電源が電力系統から切り離されて単独運転をしているか否かを検出する単独運転検出装置に関する。この単独運転検出装置は、前記電力系統に高調波電圧変動が発生したときに無効電力をステップ注入し、前記単独運転を検出させる無効電力ステップ注入部を備え、前記無効電力ステップ注入部は、平常時の高調波電圧から閾値以上のレベルの次数を除外して前記閾値未満のレベルの次数を選択して全高調破電圧歪Aを算出し、前記全高調破電圧歪Aを高調波電圧変動が発生したか否かの判定に用いる。   (1) One aspect of the present invention relates to an isolated operation detection device that detects whether or not a distributed power source is disconnected from an electric power system and is operated independently. The isolated operation detection device includes a reactive power step injection unit that injects reactive power when harmonic voltage fluctuations occur in the power system and detects the isolated operation. The order of the level higher than the threshold is excluded from the harmonic voltage at the time, and the order of the level lower than the threshold is selected to calculate the total harmonic breakdown voltage distortion A. Used to determine whether or not it has occurred.

(2)本発明の他の態様は、分散型電源が電力系統から切り離されて単独運転しているか否かを検出する装置の実行する単独運転検出方法に関する。この単独運転検出方法は、平常時の高調波電圧から閾値以上のレベルの次数を除外し、前記閾値未満のレベルの次数に基づき全高調破電圧歪Aを算出する算出ステップと、前記全高調破電圧歪Aを用いて高調波電圧変動が発生したか否かを判定する判定ステップと、前記高調波電圧変動が発生したときに無効電力をステップ注入し、前記単独運転を検出させる無効電力注入ステップと、を有する。   (2) Another aspect of the present invention relates to an isolated operation detection method executed by a device that detects whether or not a distributed power source is disconnected from an electric power system and operated independently. In this isolated operation detection method, a calculation step of calculating a total harmonic breakdown voltage distortion A based on the order of a level lower than the threshold by excluding a level higher than the threshold from the normal harmonic voltage, and the total harmonic breakdown, A determination step for determining whether or not a harmonic voltage fluctuation has occurred using the voltage distortion A, and a reactive power injection step for step-injecting reactive power when the harmonic voltage fluctuation has occurred and detecting the isolated operation And having.

本発明によれば、高調波電圧変動の検出精度を向上させ、より確実に単独運転の発生を検出することができる。   According to the present invention, it is possible to improve the detection accuracy of harmonic voltage fluctuation and more reliably detect the occurrence of an isolated operation.

標準形態能動的単独運転検出方式に係る太陽光PCSの全体ブロック図。The whole block diagram of sunlight PCS concerning a standard form active islanding detection method. 同 ステップ注入発生の条件(高調波電圧変動)を示す説明図。Explanatory drawing which shows the conditions (harmonic voltage fluctuation | variation) of the same step injection generation. 本発明の実施形態に係る太陽光PCSの無効電力ステップ注入部の機能ブロック図。The functional block diagram of the reactive power step injection | pouring part of sunlight PCS which concerns on embodiment of this invention. 図3中の高調波電圧算出部の詳細図。FIG. 4 is a detailed view of a harmonic voltage calculation unit in FIG. 3. 定常高調波電圧の算出を示す概略図。Schematic which shows calculation of a stationary harmonic voltage.

以下、本発明の実施形態に係る単独運転検出装置を説明する。この単独運転検出装置は、太陽光PCSに内蔵され、太陽光PCSの能動的単独運転検出方式(ステップ注入付周波数フィードバック方式)を実行する。   Hereinafter, an isolated operation detection apparatus according to an embodiment of the present invention will be described. This isolated operation detection device is built in the solar PCS and executes an active isolated operation detection method (frequency feedback method with step injection) of the solar PCS.

すなわち、図1に示す太陽光PCS1は、ハードウェア部とソフトウェア部とを備えている。このハードウェア部は、分散型電源設備(太陽電池など)3から供給されるDC電力をAC電力に変換するインバータ部(スイッチング電源装置など)10と、インバータ部10の出力側と電力系統2との間に設けられた周波数検出回路14,電圧計測回路15,高調波電圧計測回路16とを有している。   That is, the sunlight PCS 1 shown in FIG. 1 includes a hardware unit and a software unit. This hardware unit includes an inverter unit (such as a switching power supply device) 10 that converts DC power supplied from a distributed power supply facility (such as a solar cell) 3 into AC power, an output side of the inverter unit 10, and a power system 2. A frequency detection circuit 14, a voltage measurement circuit 15, and a harmonic voltage measurement circuit 16 provided between the two.

一方、ソフトウェア部は、例えば中央演算処理装置(CPU)4により実行され、インバータ部10のスイッチング動作を制御する電流制御処理部9と、前記単独運転検出装置とを有している。   On the other hand, the software unit is executed by, for example, a central processing unit (CPU) 4 and includes a current control processing unit 9 that controls the switching operation of the inverter unit 10 and the isolated operation detection device.

ここで前記単独運転検出装置は、従来と同様に四つの制御部、即ち系統周波数計測部5,周波数フィードバック部(無効電力注入部)6,無効電力ステップ注入部7,単独運転検出部8を有している。この系統周波数計測部5は周波数偏差の演算に用いる周波数を計測し、周波数フィードバック部6は系統周波数の偏差から注入する無効電力を演算して周波数シフトを促す機能を有している。   Here, the isolated operation detection device has four control units, that is, a system frequency measurement unit 5, a frequency feedback unit (reactive power injection unit) 6, a reactive power step injection unit 7, and an isolated operation detection unit 8 as in the prior art. doing. The system frequency measuring unit 5 measures the frequency used for calculating the frequency deviation, and the frequency feedback unit 6 has a function of calculating the reactive power to be injected from the system frequency deviation and promoting the frequency shift.

また、無効電力ステップ注入部7は周波数偏差が微小のときに周波数シフトを促すために無効電力をステップ注入し、無効電力検出部8は系統周波数の変化によって単独運転の発生の有無を判定する。   The reactive power step injection unit 7 injects reactive power in order to promote a frequency shift when the frequency deviation is small, and the reactive power detection unit 8 determines whether or not an isolated operation has occurred based on a change in system frequency.

ただし、前記単独運転検出装置は、無効電力ステップ注入部7の処理内容において従来と相違する。以下、前記単独運転検出装置を、無効電力ステップ注入部7を中心に説明する。   However, the isolated operation detecting device is different from the conventional one in the processing contents of the reactive power step injection unit 7. Hereinafter, the isolated operation detection device will be described focusing on the reactive power step injection unit 7.

≪無効電力ステップ注入部7の構成≫
図3に基づき無効電力ステップ注入部7を説明する。この無効電力ステップ注入部7は、分散型電源設備3の単独運転によりAC電圧の高調波歪が増加した場合にその増加を検出して無効電力をステップ注入する。これにより周波数が変化すれば周波数フィードバック部6が動作し、単独運転検出部8が単独運転を検出する。
<Configuration of reactive power step injection unit 7>
The reactive power step injection unit 7 will be described with reference to FIG. The reactive power step injection unit 7 detects the increase when the harmonic distortion of the AC voltage increases due to the independent operation of the distributed power supply facility 3 and performs step injection of reactive power. Thus, if the frequency changes, the frequency feedback unit 6 operates and the isolated operation detection unit 8 detects the isolated operation.

具体的には無効電力ステップ注入部7は、ハードウェア部内の基本波電圧計測回路15,高調破電圧計測回路16と、ソフトウェア部内の基本波電圧算出部17,高調波電圧算出部18,ステップ注入発生条件判定部19,ステップ注入量算出部20とにより構成されている。   Specifically, the reactive power step injection unit 7 includes a fundamental voltage measurement circuit 15 and a harmonic breakdown voltage measurement circuit 16 in the hardware unit, a fundamental voltage calculation unit 17 and a harmonic voltage calculation unit 18 in the software unit, and a step injection. The generation condition determination unit 19 and the step injection amount calculation unit 20 are configured.

電圧計測回路15は、インバータ部10側の出力電圧を計測する。この計測結果に基づき基本波電圧算出部17において、基本波電圧V1を算出してステップ注入発生条件判定部19に出力する。   The voltage measurement circuit 15 measures the output voltage on the inverter unit 10 side. Based on this measurement result, the fundamental voltage calculator 17 calculates the fundamental voltage V1 and outputs it to the step injection generation condition determination unit 19.

高調破電圧計測回路16は、インバータ部10側の出力電圧から高調波電圧を計測する。この測定結果に基づき高調波電圧算出部18において、2次〜7次の高調波電圧「V2〜V7」を算出する。この高調波電圧「V2〜V7」に基づき全高調波電圧実効値と全高調波電圧実効値Aとを算出し、各算出結果をステップ注入発生条件判定部19に出力する。   The harmonic breakdown voltage measuring circuit 16 measures the harmonic voltage from the output voltage on the inverter unit 10 side. Based on the measurement result, the harmonic voltage calculator 18 calculates the second to seventh harmonic voltages “V2 to V7”. Based on the harmonic voltages “V2 to V7”, the total harmonic voltage effective value and the total harmonic voltage effective value A are calculated, and each calculation result is output to the step injection generation condition determining unit 19.

Figure 2019057972
Figure 2019057972

このとき全高調波電圧実効値は、式(2)により算出される。この式(2)は式(1)の分子に相当し、全高調波電圧実効値は従来と同様に算出される。一方、全高調波電圧実効値Aは、高調波電圧「V2〜V7」のうち定常高調波電圧が閾値以上のレベルの次数を除外し、前記閾値未満のレベルの次数のみを選択して全高調波電圧実効値と同様に算出する。   At this time, the total harmonic voltage effective value is calculated by Equation (2). This formula (2) corresponds to the numerator of formula (1), and the total harmonic voltage effective value is calculated in the same manner as in the prior art. On the other hand, the total harmonic voltage effective value A is determined by excluding the orders of the harmonic voltage “V2 to V7” whose level of the steady harmonic voltage is equal to or higher than the threshold, and selecting only the order of the level lower than the threshold. Calculated in the same manner as the wave voltage effective value.

なお、定常高調波電圧は、時間帯により変動するため、定期的に計測して更新することが好ましく、また閾値を各次数に設けて次数毎に異なる閾値を設定してもよいものとする。   Since the steady harmonic voltage varies depending on the time zone, it is preferable to periodically measure and update the steady harmonic voltage. Further, a threshold value may be provided for each order, and a different threshold value may be set for each order.

ステップ注入発生条件判定部19は、入力された各情報(基本波電圧・全高調波電圧実効値・全高調波電圧実効値A)に基づき全高調波電圧歪と全高調波電圧歪Aとを算出する。   The step injection generation condition determination unit 19 calculates the total harmonic voltage distortion and the total harmonic voltage distortion A based on each input information (fundamental voltage, total harmonic voltage effective value, total harmonic voltage effective value A). calculate.

このとき全高調波電圧歪は、従来と同様に前記式(1)により算出する。一方、全高調波電圧歪Aは、前記式(1)中の全高調波電圧実効値を全高調波電圧実効値Aに置き換えて算出する。例えば表1のデータに基づき説明すれば、「平常時」の閾値に「3.0V」が設定され、5次の定常高調波電圧(4V)が閾値を越えている。   At this time, the total harmonic voltage distortion is calculated by the equation (1) as in the conventional case. On the other hand, the total harmonic voltage distortion A is calculated by replacing the total harmonic voltage effective value in the equation (1) with the total harmonic voltage effective value A. For example, based on the data in Table 1, the threshold value of “normal” is set to “3.0 V”, and the fifth-order stationary harmonic voltage (4 V) exceeds the threshold value.

Figure 2019057972
Figure 2019057972

そこで、高調波電圧算出部18は、表2に示すように、5次の定常高調波電圧(4V)を除外した2次・3次・4次・6次・7次の定常高調波電圧を選択し、全高調波電圧実効値Aを算出する。ここで算出された全高調波電圧実効値Aを式1中の全高調波電圧実効値と置き換えて、ステップ注入発生条件判定部19において全高調波電圧歪Aを算出する。   Therefore, as shown in Table 2, the harmonic voltage calculation unit 18 calculates the second, third, fourth, sixth, and seventh steady harmonic voltages excluding the fifth steady harmonic voltage (4 V). Select and calculate the total harmonic voltage RMS value A. The total harmonic voltage effective value A calculated here is replaced with the total harmonic voltage effective value in Equation 1, and the total harmonic voltage distortion A is calculated in the step injection generation condition determining unit 19.

また、ステップ注入発生条件判定部19は、全高調波電圧歪と全高調波電圧歪Aのいずれか一方がステップ注入判定基準を越えた場合に高調波電圧変動発生と判定する。   The step injection generation condition determination unit 19 determines that a harmonic voltage fluctuation has occurred when either one of the total harmonic voltage distortion or the total harmonic voltage distortion A exceeds the step injection determination criterion.

このとき表2のデータによれば、「平常時の変動差=1.13%」かつ「単独運転時の変動差=1.11%」となり、ステップ判定基準「1.0%」を越えて高調波電圧変動発生と判定することができる。なお、ステップ注入量算出部20は、ステップ注入発生条件判定部19の判定結果に応じて無効電力のステップ注入量を算出する。   At this time, according to the data in Table 2, “variation difference during normal operation = 1.13%” and “variation difference during single operation = 1.11%”, which exceeds the step criterion “1.0%” It can be determined that harmonic voltage fluctuation has occurred. The step injection amount calculation unit 20 calculates the step injection amount of reactive power according to the determination result of the step injection generation condition determination unit 19.

≪高調波電圧算出部18の処理≫
図4に基づき無効電力ステップ注入部7の主要部、即ち高調波電圧算出部18の詳細を説明する。ここでは高調波電圧算出部18は、全高調波電圧実効値を算出する全高調波電圧実効値算出部18aと、全高調波電圧実効値Aを算出する全高調波電圧実効値A算出部18bとに大別されている。
<< Processing of Harmonic Voltage Calculation Unit 18 >>
Details of the main part of the reactive power step injection unit 7, that is, the harmonic voltage calculation unit 18, will be described with reference to FIG. Here, the harmonic voltage calculation unit 18 includes a total harmonic voltage effective value calculation unit 18a that calculates the total harmonic voltage effective value, and a total harmonic voltage effective value A calculation unit 18b that calculates the total harmonic voltage effective value A. And is roughly divided.

(1)まず、全高調波電圧実効値算出部18aの処理内容を説明する。ここでは高調波電圧計測回路16から入力された2次〜7次の電圧を離散フーリエ変換(DFT処理)により周波数スペクトルに変換する。   (1) First, the processing content of the total harmonic voltage effective value calculation unit 18a will be described. Here, the second to seventh voltages input from the harmonic voltage measuring circuit 16 are converted into a frequency spectrum by discrete Fourier transform (DFT processing).

ここで変換された各次数の高調波電圧にそれぞれ二乗処理が施され、二乗処理後の高調波電圧をすべて合計する総和処理が施され、その後に平方根処理が施される。具体的には前述した式(2)の演算処理が実行される。   A square process is performed on the converted harmonic voltages of the respective orders, a total process is performed to sum all the harmonic voltages after the square process, and a square root process is performed thereafter. Specifically, the arithmetic processing of the above-described equation (2) is executed.

Figure 2019057972
Figure 2019057972

(2)つぎに図4および図5に基づき全高調波電圧実効値A算出部18bの処理内容(S01〜S04)を説明する。ここでは高調波電圧計測回路16から入力された2次〜7次の定常高調波電圧は、太陽光PCS1のバッファ21に登録されるものとする。   (2) Next, the processing contents (S01 to S04) of the total harmonic voltage effective value A calculation unit 18b will be described with reference to FIGS. Here, the secondary to seventh-order stationary harmonic voltages input from the harmonic voltage measuring circuit 16 are registered in the buffer 21 of the sunlight PCS1.

また、全高調波電圧実効値Aを算出するための定常高調波電圧には、次数毎に一定周期で更新された移動平均値を用いるものとする。さらに全高調波電圧実効値A算出部18bは、バッファ要素数算出部22,バッファ更新時刻判定部23,移動平均算出部24を実装しているものとする。   In addition, as the stationary harmonic voltage for calculating the total harmonic voltage effective value A, a moving average value updated at a constant period for each order is used. Furthermore, it is assumed that the total harmonic voltage effective value A calculation unit 18b includes a buffer element number calculation unit 22, a buffer update time determination unit 23, and a moving average calculation unit 24.

S01:バッファ要素数算出部22は、図5に示すように、バッファ21が保持すべき測定期間分の高調波電圧、即ちバッファ要素数を「バッファ要素数=測定期間設定値α/測定間隔設定値β」により算出する(S11)。ここで算出されたバッファ要素数分の高調波電圧がバッファ21に保持される。例えば「α=30分」かつ「β=1分」であれば、「30分/1分=30個」の高調波電圧が保持される。   S01: As shown in FIG. 5, the buffer element number calculation unit 22 sets the harmonic voltage for the measurement period to be held by the buffer 21, that is, the buffer element number as “number of buffer elements = measurement period setting value α / measurement interval setting”. The value β ”is calculated (S11). The harmonic voltages for the number of buffer elements calculated here are held in the buffer 21. For example, if “α = 30 minutes” and “β = 1 minute”, the harmonic voltage of “30 minutes / 1 minute = 30” is held.

S02:バッファ21に保持されたバッファ要素群は、所定の測定間隔毎に更新される。この更新の要否は、バッファ更新時刻判定部23にて判定する。このときバッファ更新時刻判定部23は、現在時刻tと前回計測時刻t−1との時間差Tを算出し、算出された時刻差Tと測定間隔設定値βとを比較する(S21)。   S02: The buffer element group held in the buffer 21 is updated at every predetermined measurement interval. Whether or not this update is necessary is determined by the buffer update time determination unit 23. At this time, the buffer update time determination unit 23 calculates a time difference T between the current time t and the previous measurement time t−1, and compares the calculated time difference T with the measurement interval set value β (S21).

比較の結果、「時刻差T=測定間隔設定値β」が成立しなければ、更新時刻ではなく、バッファの要素群を更新する必要は無い。一方、成立すれば、更新時刻となったため、移動平均算出部24に更新指令を送る。   If “time difference T = measurement interval set value β” does not hold as a result of the comparison, it is not necessary to update the buffer element group instead of the update time. On the other hand, if it is established, the update time is reached, so an update command is sent to the moving average calculation unit 24.

S03:移動平均算出部24は、更新指令を受け取ると最新に計測したn次の高調波電圧Z0をバッファ21の末尾に加える。その際、バッファ21の先頭の高調波電圧ZXを破棄し、各高調波電圧の総和処理を実行する(S31)。 S03: moving average calculation section 24 adds the n-th harmonic voltage Z 0 measured to date when receiving the update command to the end of the buffer 21. At this time, the harmonic voltage Z X at the head of the buffer 21 is discarded, and the total processing of each harmonic voltage is executed (S31).

このとき総和処理の結果を「a」とする一方、S01で算出されたバッファ21のバッファ要素数を「b」とする。ここでは測定期間αの平均値「a/b」、即ち移動平均値を当該次数の定常高調波電圧として算出する(S32)。例えば前述の「α=30分」かつ「β=1分」の場合、2次〜7次の定常高調波電圧は1分毎に過去30分間(バッファ要素数b=30)の移動平均値として算出される。   At this time, the result of the summation process is “a”, and the number of buffer elements of the buffer 21 calculated in S01 is “b”. Here, the average value “a / b” of the measurement period α, that is, the moving average value is calculated as a stationary harmonic voltage of the order (S32). For example, in the case of “α = 30 minutes” and “β = 1 minute” described above, the second to seventh stationary harmonic voltages are calculated as moving average values for the past 30 minutes (number of buffer elements b = 30) every minute. Calculated.

S04:S01〜S03の処理を経た2次〜7次の定常高調波電圧を、あらかじめ定められた閾値と比較し、前記閾値未満の高調波の次数のみを選択する。   S04: The second to seventh stationary harmonic voltages that have undergone the processing of S01 to S03 are compared with a predetermined threshold value, and only the order of the harmonics less than the threshold value is selected.

すなわち、2次〜7次の定常高調波電圧毎に「定常高調波電圧<閾値」が成立するか否か判定する。判定の結果、成立しなければ該次数の定常高調波電圧は全高調波電圧実効値Aの算出から除外される一方、成立すれば該次数の定常高調波電圧は全高調波電圧実効値Aの算出に選択される。   That is, it is determined whether or not “steady harmonic voltage <threshold” is satisfied for each of the second to seventh stationary harmonic voltages. As a result of the determination, if not established, the steady harmonic voltage of the order is excluded from the calculation of the total harmonic voltage effective value A, whereas if established, the steady harmonic voltage of the order is equal to the total harmonic voltage effective value A. Selected for calculation.

ここで選択された各次数の定常高調波電圧にそれぞれ二乗処理が施され、二乗処理後の定常高調波電圧をすべて合計する総和処理が施され、その後に平方根処理が施されて全高調波電圧実行値Aが算出される。具体的には、前述のように式(2)中から前記閾値以上の定常高調波電圧の次数を除外し、前記閾値未満の定常高調波電圧のみで式(2)の演算処理を実行すればよい。   The stationary harmonic voltages of each order selected here are squared, summed to sum all the stationary harmonic voltages after the squared processing, and then square root processing is applied to the total harmonic voltage. An execution value A is calculated. Specifically, as described above, if the order of the steady harmonic voltage equal to or higher than the threshold is excluded from the formula (2), and the calculation process of the formula (2) is executed only with the steady harmonic voltage less than the threshold, Good.

このように本実施形態の単独運転検出装置によれば、平常時の定常高調波電圧から閾値以上のレベルの次数を除外し、前記閾値未満のレベルの次数のみを用いた全高調破電圧歪Aが、ステップ注入判定基準を越えた場合にも高調波電圧変動発生と判定する。   As described above, according to the isolated operation detection device of the present embodiment, the total harmonic breakdown voltage distortion A using only the order of the level lower than the threshold value by excluding the order of the level higher than the threshold value from the stationary harmonic voltage in the normal time. However, even when the step injection criterion is exceeded, it is determined that the harmonic voltage fluctuation has occurred.

したがって、平常時の定常高調波電圧と単独運転時の高調波電圧との変動差が小さい場合にも高調波電圧変動の発生を検出することができる。その結果、高調波電圧変動の検出精度を向上させ、より確実に単独運転の発生を検出することが可能となる。   Therefore, the occurrence of harmonic voltage fluctuation can be detected even when the fluctuation difference between the normal harmonic voltage during normal operation and the harmonic voltage during single operation is small. As a result, it is possible to improve the detection accuracy of the harmonic voltage fluctuation and more reliably detect the occurrence of the isolated operation.

特に各次数の定常高調波電圧は一定周期で更新されるため、負荷変動などの環境変化が生じても、高調波電圧変動の発生を継続的に高精度で検出することができる。   In particular, the steady harmonic voltage of each order is updated at a constant period, so that even if an environmental change such as a load change occurs, the occurrence of the harmonic voltage fluctuation can be continuously detected with high accuracy.

なお、本発明は、前記実施形態に限定されるものではなく、各請求項に記載された範囲内で変形して実施することができる。例えば本発明に係る単独運転検出装置を太陽光PCSに内蔵することなく、別個の装置として構成することもできる。   In addition, this invention is not limited to the said embodiment, It can deform | transform and implement within the range described in each claim. For example, the isolated operation detection device according to the present invention can be configured as a separate device without being incorporated in the solar light PCS.

また、本発明は、本発明に係る単独運転検出装置としてコンピュータを機能させるプログラムとして構成することもできる。このプログラムによれば、コンピュータの中央演算処理装置4がS01〜S04の処理を実行する。このプログラムは、ネットワークを通じて配布することができ、また記録媒体に格納して配布することもできる。   The present invention can also be configured as a program that causes a computer to function as the isolated operation detection device according to the present invention. According to this program, the central processing unit 4 of the computer executes the processes of S01 to S04. This program can be distributed through a network, or can be stored in a recording medium for distribution.

1…太陽光PCS
2…電力系統
3…分散型電源設備(分散型電源)
4…中央演算処理装置(CPU)
5…系統周波数計測部
6…周波数フィードバック部(無効電力注入部)
7…無効電力ステップ注入部
8…単独運転検出部
9…電流制御処理部
10…インバータ部
11…電力系統ライン
15…基本波電圧計測回路
16…高調波電圧計測回路
17…基本波電圧算出部
18…高調波電圧算出部
18a…全長破電圧実行値算出部
18b…全長破電圧A実行値算出部
19…ステップ注入発生条件判定部
20…ステップ注入量算出部
21…バッファ
22…バッファ要素数算出部
23…バッファ更新時刻判定部
24…移動平均算出部
1 ... Solar PCS
2 ... Power system 3 ... Distributed power supply equipment (Distributed power supply)
4. Central processing unit (CPU)
5. System frequency measurement unit 6. Frequency feedback unit (reactive power injection unit)
DESCRIPTION OF SYMBOLS 7 ... Reactive power step injection part 8 ... Single operation detection part 9 ... Current control processing part 10 ... Inverter part 11 ... Electric power system line 15 ... Fundamental voltage measurement circuit 16 ... Harmonic voltage measurement circuit 17 ... Fundamental voltage calculation part 18 ... Harmonic voltage calculation unit 18a ... Full length breakdown voltage execution value calculation unit 18b ... Full length breakdown voltage A execution value calculation unit 19 ... Step injection generation condition determination unit 20 ... Step injection amount calculation unit 21 ... Buffer 22 ... Buffer element number calculation unit 23 ... Buffer update time determination unit 24 ... Moving average calculation unit

Claims (7)

分散型電源が電力系統から切り離されて単独運転をしているか否かを検出する単独運転検出装置であって、
前記電力系統に高調波電圧変動が発生したときに無効電力をステップ注入し、前記単独運転を検出させる無効電力ステップ注入部を備え、
前記無効電力ステップ注入部は、平常時の高調波電圧から閾値以上のレベルの次数を除外して前記閾値未満のレベルの次数を選択して全高調破電圧歪Aを算出し、
前記全高調破電圧歪Aを高調波電圧変動が発生したか否かの判定に用いることを特徴とする単独運転検出装置。
An isolated operation detection device that detects whether or not a distributed power source is disconnected from the power system and is operating alone,
Reactive power step injection when stepping in reactive power when a harmonic voltage fluctuation occurs in the power system, and detecting the isolated operation,
The reactive power step injection unit calculates the total harmonic breakdown voltage distortion A by selecting the order of the level lower than the threshold by excluding the order of the level higher than the threshold from the normal harmonic voltage.
The isolated operation detection device, wherein the total harmonic breakdown voltage distortion A is used for determining whether or not a harmonic voltage fluctuation has occurred.
前記無効電力ステップ注入部は、すべての次数の高調波電圧に基づき算出された全高調波電圧歪と、
前記全高調破電圧歪Aとのいずれか一方がステップ注入判定基準を越えた場合に高調波電圧変動の発生と判定する
ことを特徴とする請求項1記載の単独運転検出装置。
The reactive power step injecting unit calculates the total harmonic voltage distortion calculated based on the harmonic voltages of all orders,
The islanding operation detection device according to claim 1, wherein when any one of the total harmonic breakdown voltage distortion A exceeds a step injection criterion, it is determined that a harmonic voltage fluctuation has occurred.
前記無効電力ステップ注入部は、前記平常時の高調波電圧を次数毎に一定の移動平均値とする一方、
前記平常時の高調波電圧を一定周期で更新することを特徴とする請求項1または2記載の単独運転検出装置。
While the reactive power step injection unit, the normal harmonic voltage is a constant moving average for each order,
The isolated operation detection apparatus according to claim 1 or 2, wherein the harmonic voltage in the normal state is updated at a constant cycle.
分散型電源が電力系統から切り離されて単独運転しているか否かを検出する装置の実行する単独運転検出方法であって、
平常時の高調波電圧から閾値以上のレベルの次数を除外し、前記閾値未満のレベルの次数に基づき全高調破電圧歪Aを算出する算出ステップと、
前記全高調破電圧歪Aを用いて高調波電圧変動が発生したか否かを判定する判定ステップと、
前記高調波電圧変動が発生したときに無効電力をステップ注入し、前記単独運転を検出させる無効電力注入ステップと、
を有することを特徴とする単独運転検出方法。
An isolated operation detection method executed by an apparatus for detecting whether or not a distributed power source is disconnected from an electric power system and operated independently,
Calculating the total harmonic breakdown voltage distortion A based on the order of the level below the threshold by excluding the order of the level higher than the threshold from the normal harmonic voltage;
A determination step of determining whether or not a harmonic voltage fluctuation has occurred using the total harmonic breakdown voltage distortion A;
Reactive power injection step for injecting reactive power when the harmonic voltage fluctuation occurs and detecting the isolated operation;
An islanding operation detection method comprising:
前記判定ステップは、すべての次数の高調波電圧に基づく全高調波電圧歪と、
前記全高調波電圧歪Aとのいずれか一方がステップ注入判定基準を越えた場合に高調波電圧発生と判定する
ことを特徴とする請求項4記載の単独運転検出方法。
The determination step includes a total harmonic voltage distortion based on harmonic voltages of all orders,
5. The islanding operation detection method according to claim 4, wherein when any one of the total harmonic voltage distortion A exceeds a step injection determination criterion, it is determined that a harmonic voltage is generated.
前記平常時の高調波電圧を次数毎に一定の移動平均値とするステップと、
前記平常時の高調波電圧を一定周期で更新するステップと、
をさらに有することを特徴とする請求項4または5記載の単独運転検出方法。
A step of setting the normal harmonic voltage to a constant moving average value for each order;
Updating the normal harmonic voltage at regular intervals;
The islanding operation detection method according to claim 4 or 5, further comprising:
請求項1〜3のいずれか1項記載の単独運転検出装置としてコンピュータを機能させることを特徴とする単独運転検出プログラム。   An isolated operation detection program for causing a computer to function as the isolated operation detection device according to claim 1.
JP2017179981A 2017-09-20 2017-09-20 Independent operation detection device, independent operation detection method, independent operation detection program Active JP6919449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017179981A JP6919449B2 (en) 2017-09-20 2017-09-20 Independent operation detection device, independent operation detection method, independent operation detection program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017179981A JP6919449B2 (en) 2017-09-20 2017-09-20 Independent operation detection device, independent operation detection method, independent operation detection program

Publications (2)

Publication Number Publication Date
JP2019057972A true JP2019057972A (en) 2019-04-11
JP6919449B2 JP6919449B2 (en) 2021-08-18

Family

ID=66106340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017179981A Active JP6919449B2 (en) 2017-09-20 2017-09-20 Independent operation detection device, independent operation detection method, independent operation detection program

Country Status (1)

Country Link
JP (1) JP6919449B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044910A (en) * 2007-08-10 2009-02-26 Omron Corp Method for detecting isolated operation, contrl device, device for detecting isolated operation, and distributed power supply system
US20110309684A1 (en) * 2010-06-22 2011-12-22 Sungkyunkwan University Foundation For Corporate Collaboration Apparatus and method for the anti-islanding of power conditioning system
JP2016086574A (en) * 2014-10-28 2016-05-19 三菱電機株式会社 Control apparatus for single operation detection, and single operation detection device
JP2017163719A (en) * 2016-03-10 2017-09-14 シャープ株式会社 Power conversion equipment and individual operation detection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044910A (en) * 2007-08-10 2009-02-26 Omron Corp Method for detecting isolated operation, contrl device, device for detecting isolated operation, and distributed power supply system
US20110309684A1 (en) * 2010-06-22 2011-12-22 Sungkyunkwan University Foundation For Corporate Collaboration Apparatus and method for the anti-islanding of power conditioning system
JP2016086574A (en) * 2014-10-28 2016-05-19 三菱電機株式会社 Control apparatus for single operation detection, and single operation detection device
JP2017163719A (en) * 2016-03-10 2017-09-14 シャープ株式会社 Power conversion equipment and individual operation detection method

Also Published As

Publication number Publication date
JP6919449B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
US10989762B2 (en) Apparatus and method for detecting battery state of health
Sun et al. An islanding detection method by using frequency positive feedback based on FLL for single-phase microgrid
KR101542435B1 (en) Systems for and methods of controlling operation of a
EP2071699B1 (en) Battery load allocation in parallel-connected uninterruptible power supply systems
JP5893057B2 (en) Isolated operation detection device and isolated operation detection method
Jang et al. Development of a logical rule-based islanding detection method for distributed resources
CN110488148B (en) Islanding detection method and device and computer readable storage medium
JP5985775B1 (en) Isolated operation detection device and isolated operation detection method
JP6065273B2 (en) Isolated operation detection device and detection method
US10784677B2 (en) Enhanced utility disturbance monitor
US20190137550A1 (en) Sensitivity Based Thevenin Index for Voltage Stability Assessment Considering N-1 Contingency
US10892623B2 (en) Method for detecting islanding condition for a DC/AC converter apparatus and a DC/AC converter apparatus thereof
CN106124890B (en) A kind of anti-islanding detection method of grid-connected photovoltaic system
TWI418809B (en) Isolation operation detection method for mains voltage control type electric energy converter
JP2014168338A (en) Individual operation detector and individual operation detecting method
Goh et al. Dynamic estimation of power system stability in different Kalman filter implementations
JP2018064328A (en) Power conversion apparatus and control method thereof
KR101618918B1 (en) FACTS device operating point control apparatus and method
JP2019057972A (en) Solo-operation detection device, solo-operation detection method, and solo-operation detection program
US20150123626A1 (en) Power control apparatus, power control method, and power control program
US10175304B2 (en) Power-system short-circuit capacity monitoring method and system thereof
JP7289748B2 (en) Evaluation method for determining the islanding detection limit of a system connected to a PCS that does not use an active system
Hamzeh et al. Power quality comparison of active islanding detection methods in a single phase PV grid connected inverter
US20230018100A1 (en) Method and apparatus of detecting grid islanding
JP2021035125A (en) Independent operation detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210705

R150 Certificate of patent or registration of utility model

Ref document number: 6919449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150