JP2009136095A - Islanding operation detecting method, controller, islanding operation detecting apparatus and distribution type power supply system - Google Patents

Islanding operation detecting method, controller, islanding operation detecting apparatus and distribution type power supply system Download PDF

Info

Publication number
JP2009136095A
JP2009136095A JP2007309907A JP2007309907A JP2009136095A JP 2009136095 A JP2009136095 A JP 2009136095A JP 2007309907 A JP2007309907 A JP 2007309907A JP 2007309907 A JP2007309907 A JP 2007309907A JP 2009136095 A JP2009136095 A JP 2009136095A
Authority
JP
Japan
Prior art keywords
operation detection
voltage
power
reactive power
isolated operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007309907A
Other languages
Japanese (ja)
Other versions
JP4835587B2 (en
Inventor
Kazuyoshi Imamura
和由 今村
Yasuhiro Tsubota
康弘 坪田
Masao Mabuchi
雅夫 馬渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2007309907A priority Critical patent/JP4835587B2/en
Publication of JP2009136095A publication Critical patent/JP2009136095A/en
Application granted granted Critical
Publication of JP4835587B2 publication Critical patent/JP4835587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an islanding operation detecting method capable of maintaining the sensitivity of detecting islanding operation at excellent or comparatively excellent state as a whole while reducing the effect on a power system, irrespective of the state of islanding operation. <P>SOLUTION: In this islanding operation detecting method, a plurality of kinds of islanding operation detecting systems for applying electrical variation for detecting isolating operation to a power system, and the isolating operation detecting systems are combined with each other to remove or reduce a dead zone in detection of isolating operation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、分散型電源が電力系統から切り離され単独運転しているか否かの検出のため電力系統に電気的な能動信号を与えて電気的変動を起こさせると共に、この電気的変動に基づいて単独運転検出を行う単独運転検出方法に関するものである。また、本発明は、分散型電源の単独運転検出用制御装置、単独運転検出装置および分散型電源システムに関するものである。   The present invention provides an electrical active signal to the power system to detect whether or not the distributed power source is disconnected from the power system and is operating independently, and based on this electrical fluctuation. The present invention relates to an isolated operation detection method for performing isolated operation detection. The present invention also relates to a control device for detecting an isolated operation of a distributed power source, an isolated operation detecting device, and a distributed power system.

単独運転は、事故発生やその他の事情で電力系統が停止しているときに、分散型電源が局所的な系統負荷に電力を供給している状態である。分散型電源は、需要地あるいはその近辺に電源を設置して発電することができる。分散型電源には、電力系統に連系された、エンジン発電機、タービン発電機、電力貯蔵装置、燃料電池等、の各種がある。また、このような分散電源を系統電力に連系させて使用するため、周波数や電圧を電力系統に適合させるパワーコンディショナが数多く提案されている。   Independent operation is a state in which a distributed power source supplies power to a local system load when the power system is stopped due to an accident or other circumstances. A distributed power source can generate power by installing a power source at or near a demand location. There are various types of distributed power sources such as an engine generator, a turbine generator, a power storage device, and a fuel cell that are linked to a power system. In addition, in order to use such a distributed power supply in conjunction with system power, many power conditioners that adapt the frequency and voltage to the power system have been proposed.

以上説明した分散型電源と、その分散型電源の出力を交流に変換するパワーコンディショナとを備えた分散型電源設備を商用電力系統と連系して家電製品などの負荷に給電する分散型電源システムが実施されている。この分散型電源システムでは、商用電力系統の保全作業の安全を確保するため、商用電力系統の不測の停電時及び作業停電時において、直ちに分散型電源設備側のパワーコンディショナの動作を停止させるか、又は直ちに開閉器を作動させて連系を解除することにより、分散型電源を商用電力系統から解列させて、分散型電源の単独運転を防止する機能が不可欠である。   A distributed power source that feeds loads such as home appliances by connecting a distributed power source facility including the distributed power source described above and a power conditioner that converts the output of the distributed power source into alternating current with a commercial power system The system is implemented. In this distributed power system, in order to ensure the safety of maintenance work for the commercial power system, the operation of the power conditioner on the distributed power facility side should be stopped immediately in the event of an unexpected power outage and work outage of the commercial power system. Alternatively, it is essential to have a function of disconnecting the distributed power source from the commercial power system by operating the switch immediately to release the interconnection and preventing the distributed power source from operating independently.

図14に、分散型電源の多数台連系のイメージ図を示す。パワーコンディショナの単独運転検出時間は、能動方式で0.5〜1.0秒要している。これは、(i)住宅単位での単独運転を想定した特性であり、分散型電源が少量普及の段階では問題にならなかった。しかし昨今、分散型電源が普及期にはいっており、図14で示すような多数台連系が実施されている。この場合、(ii)柱上変圧器単位、(iii)区分開閉器単位、(iv)遮断機単位での単独運転の可能性がある。これらの高圧系を含んだ場合、高低圧混触事故を想定して、単独運転の検出が必要となる。   FIG. 14 shows an image diagram of a multi-unit interconnection of distributed power sources. The independent operation detection time of the inverter is 0.5 to 1.0 seconds in the active method. This is a characteristic that assumes (i) isolated operation in units of houses, and there was no problem at the stage of the spread of distributed power sources in small quantities. Recently, however, distributed power sources are in the period of widespread use, and a multi-unit interconnection as shown in FIG. 14 is being implemented. In this case, there is a possibility of independent operation in units of (ii) pole transformers, (iii) units of section switches, and (iv) units of circuit breakers. When these high-pressure systems are included, it is necessary to detect an isolated operation assuming a high-low pressure mixed accident.

このような単独運転を検出する方式の1つに、電力系統に能動信号として無効電力を注入し単独運転発生時には上記注入した無効電力により電気的変動を引き起し、この電気的変動を検出して、分散型電源の単独運転を検出する能動方式が既に提案されている。   As one of the methods for detecting such an isolated operation, reactive power is injected as an active signal into the power system, and when the isolated operation occurs, an electrical variation is caused by the injected reactive power, and this electrical variation is detected. Thus, an active method for detecting the isolated operation of a distributed power source has already been proposed.

そして、本出願人は、特願2006−225016で電気的変動が系統周波数変動である単独運転検出方法、特願2007−168421で電気的変動が系統電圧である単独運転検出方法、特願2007−209285で電気的変動が高調波変動である単独運転検出方法について出願している。   In addition, the applicant of the present invention disclosed in Japanese Patent Application No. 2006-2225016 an isolated operation detection method in which the electrical variation is a system frequency variation, and in Japanese Patent Application No. 2007-168421, an isolated operation detection method in which the electrical variation is a system voltage. No. 209285 has filed for an isolated operation detection method in which the electrical fluctuation is a harmonic fluctuation.

しかしながら、これら各単独運転検出方法では、単独運転状態として、単独運転検出装置からの注入無効電力と負荷無効電力とがバランスしている場合と、バランスしていない場合とで、また、注入無効電力と負荷無効電力とがバランスしていても、していなくても、単独運転検出装置からの注入有効電力と、負荷有効電力とがバランスしている場合と、バランスしていない場合とでは、単独運転検出感度が高く良好な単独運転検出方法がある一方で、単独運転検出感度が著しく低くなる単独運転検出方法がある。   However, in each of these isolated operation detection methods, as the isolated operation state, the injection reactive power and the load reactive power from the isolated operation detection device are balanced and not balanced, and the injection reactive power Even if the load reactive power and the load reactive power are balanced, the case where the injection active power from the isolated operation detection device and the load active power are balanced and the case where they are not balanced are independent. While there is a single operation detection method with high and high operation detection sensitivity, there is an individual operation detection method in which the single operation detection sensitivity is significantly low.

なお、単独運転検出の特許文献は多数あり代表例を以下に挙げる。
特開平02−144615号公報 特開平08−98411号公報 特許3397912号公報 特許3424443号公報
In addition, there are many patent documents of isolated operation detection, and typical examples are given below.
Japanese Patent Laid-Open No. 02-144615 Japanese Patent Laid-Open No. 08-98411 Japanese Patent No. 3397912 Japanese Patent No. 3424443

そこで、本出願人は、上記電力バランス等の単独運転状態のいかんにかかわらず、複数の単独運転検出方法を組み合わせることにより、単独運転状態の広範囲な態様にわたり単独運転検出を良好ないし比較的良好な感度で行うことができることに関して鋭意研究を行ったのである。   Therefore, the applicant of the present invention is able to detect single operation over a wide range of single operation states by combining a plurality of single operation detection methods regardless of the single operation state such as the power balance. He has eagerly studied what can be done with sensitivity.

しかしながら、一方では、複数の単独運転検出方法を組み合わせて、同時に電力系統に無効電力等の能動信号を注入した場合では、電力系統に好ましくない影響を及ぼす場合があるので、その影響を考えた場合、単純に、複数の単独運転検出方法を組み合わせることはできない。   However, on the other hand, when a plurality of islanding detection methods are combined and an active signal such as reactive power is injected into the power system at the same time, it may adversely affect the power system. It is simply not possible to combine a plurality of islanding detection methods.

そこで、本発明においては、上記単独運転検出方法における単独運転検出系統を組み合わせることで、単独運転状態のいかんにかかわらず、電力系統に与える影響を軽減しつつ、全体的には単独運転検出感度を良好ないし比較的良好に維持することができる単独運転検出方法を提供することを課題としている。   Therefore, in the present invention, by combining the single operation detection system in the single operation detection method, the single operation detection sensitivity is generally reduced while reducing the influence on the power system regardless of the single operation state. It is an object of the present invention to provide an isolated operation detection method that can be maintained in good or relatively good condition.

(1)本発明による単独運転検出方法は、分散型電源が電力系統から切り離され単独運転しているか否かの検出のため電力系統に電気的な能動信号を与えて電気的変動を起こさせると共に、この電気的変動に基づいて単独運転検出を行う単独運転検出方法において、上記能動信号の付与で電力系統に起きる複数種の電気的変動に対してそれぞれ個別に対応して単独運転検出する複数の単独運転検出系統を設け、上記各単独運転検出系統を組み合わせることで単独運転検出の不感帯を無くすかまたは低減することを特徴とするものである。   (1) The islanding operation detection method according to the present invention causes an electrical fluctuation by giving an electrical active signal to the power system for detecting whether the distributed power source is disconnected from the power system and operating independently. In the islanding operation detection method for detecting islanding based on the electrical fluctuation, a plurality of islanding operations are detected corresponding to each of a plurality of types of electrical fluctuations that occur in the power system due to the application of the active signal. An independent operation detection system is provided, and the dead zone of the isolated operation detection is eliminated or reduced by combining the individual operation detection systems.

上記単独運転検出の不感帯は、単独運転検出感度において相対的な感度である。すなわち、単独運転検出感度を、例えば、高感帯、低感帯との2つに相対的に感度を分けた場合に、その低感帯より感度が低い感度帯のことである。あるいは、通常の感度に対してそれより以下の感度を不感帯と称することもできる。これらはユーザの設定により、不感帯を定義することができる。いずれにしても、上記複数の単独運転検出系統において、少なくともいずれか1つの単独運転検出系統に他の単独運転検出系統と相対的に比較して、電気的変動の種類によっては、単独運転検出の感度が不足する場合には、他の単独運転検出系統でその不感帯を補足することである。   The dead zone for detecting an isolated operation is a relative sensitivity in the isolated operation detection sensitivity. That is, when the isolated operation detection sensitivity is relatively divided into, for example, a high sensitivity zone and a low sensitivity zone, it is a sensitivity zone having a lower sensitivity than the low sensitivity zone. Alternatively, the sensitivity below the normal sensitivity can be referred to as a dead zone. These can define dead zones according to user settings. In any case, in the plurality of isolated operation detection systems, at least one of the isolated operation detection systems is relatively compared with other isolated operation detection systems, and depending on the type of electrical fluctuation, When the sensitivity is insufficient, the dead zone is supplemented by another isolated operation detection system.

したがって、能動信号を電力系統に付与して各種の電気的変動が起きても、単独運転検出が例えば全く不可能な程度の検出感度の単独運転検出系統から、単独運転検出が可能な単独運転検出系統もあるので、単独運転検出系統としては、複数の単独運転検出系統を備え、それら単独運転検出系統の組み合わせ(単独の場合も含む意義)で広い単独運転状態を単独運転検出感度がより低い感度帯を不感帯とし、他の単独運転検出系統が検出できるように相対的に各単独運転検出系統が検出感度をカバーするものである。   Therefore, even if various electrical fluctuations occur by applying an active signal to the power system, it is possible to detect a single operation from a single operation detection system having a detection sensitivity that is impossible to detect a single operation. Since there are also systems, the isolated operation detection system is equipped with a plurality of isolated operation detection systems, and a combination of these isolated operation detection systems (including meanings of independent operation) makes it possible to detect a wide range of isolated operation conditions. The zone is set as a dead zone, and each islanding detection system relatively covers the detection sensitivity so that other islanding detection systems can be detected.

本発明では、単独運転検出系統を単独でまたは複数組み合わせるので、広範囲にわたる単独運転状態に対して、電力系統に与える影響を軽減しながら、全体的には単独運転検出感度を良好に維持することができる。   In the present invention, since the single operation detection system is singly or combined, it is possible to maintain the single operation detection sensitivity as a whole while reducing the influence on the power system for a wide range of single operation states. it can.

本発明において好ましい態様は、上記各単独運転検出系統を複数組み合わせるときは、少なくともいずれか1つの単独運転検出系統に単独運転検出の不感帯が存在するときに、他の単独運転検出系統にその不感帯で単独運転検出動作をさせることである。   In a preferred aspect of the present invention, when a plurality of the above-mentioned individual operation detection systems are combined, when at least any one of the single operation detection systems has a single operation detection dead band, the other single operation detection systems have the dead band. It is to perform an isolated operation detection operation.

本発明において好ましい態様は、上記能動信号が、無効電力である。   In a preferred aspect of the present invention, the active signal is reactive power.

本発明において好ましい態様は、上記電気的変動の組み合わせが、系統周波数変動、系統電圧変動、高調波変動である。   In a preferred aspect of the present invention, the combination of the electrical fluctuations is system frequency fluctuation, system voltage fluctuation, and harmonic fluctuation.

(2)本発明による制御装置は、分散型電源が電力系統から切り離されて単独運転しているか否かを検出する単独運転検出装置に対してその検出動作を制御する制御装置において、上記(1)の方法を実施することが可能になっている、ことを特徴とするものである。   (2) A control device according to the present invention is a control device that controls a detection operation of an isolated operation detection device that detects whether or not a distributed power source is disconnected from an electric power system and is operating alone. It is possible to carry out the method (1).

(3)本発明による単独運転検出装置は、分散型電源が電力系統から切り離され単独運転しているか否かの検出のため無効電力を電力系統に注入する単独運転検出装置において、上記(2)に記載の制御装置を備えた、ことを特徴とするものである。   (3) The isolated operation detection device according to the present invention is the isolated operation detection device that injects reactive power into the power system for detecting whether the distributed power source is disconnected from the power system and is operating independently. It is characterized by including the control device described in 1.

(4)本発明による分散型電源システムは、分散型電源と、この分散型電源が電力系統から切り離されて単独運転しているか否かを検出する単独運転検出装置とを備える分散型電源システムにおいて、この単独運転検出装置が上記(3)に記載の単独運転検出装置である、ことを特徴とするものである。   (4) A distributed power supply system according to the present invention is a distributed power supply system including a distributed power supply and an isolated operation detection device that detects whether or not the distributed power supply is disconnected from the power system and is operated independently. The islanding operation detection device is the islanding operation detection device described in (3) above.

本発明での単独運転検出装置はその名称に限定されるものではなく、パワーコンディショナ、その他の名称で称する場合も含む。   The isolated operation detection device according to the present invention is not limited to the name, and includes a case where it is referred to as a power conditioner or other names.

本発明によれば、単独運転状態のいかんにかかわらず、電力系統に与える影響を軽減しつつ、全体的には単独運転検出を良好な感度で行うことができる。   According to the present invention, independent operation detection can be performed with good sensitivity as a whole while reducing the influence on the electric power system regardless of the isolated operation state.

以下、添付図面を参照して、本発明の実施の形態に係る単独運転検出方法を説明する。図1は実施の形態の単独運転検出方法で単独運転を検出する単独運転検出装置を備えた分散型電源システムの概略構成を示す。実施の形態では高調波として総合高調波歪電圧や高調波歪電圧で説明するが、これに限定されない。   Hereinafter, an isolated operation detection method according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a schematic configuration of a distributed power supply system including an isolated operation detection device that detects an isolated operation by the isolated operation detection method of the embodiment. In the embodiment, a description will be given using a total harmonic distortion voltage or a harmonic distortion voltage as a harmonic, but the present invention is not limited to this.

図1に示す分散型電源システム10は、直流電力を発電する、例えば太陽光発電機やガスエンジン発電機等の分散型電源12と、この分散型電源12と連系接続する電力系統14と、分散型電源12および電力系統14間に配置され、電力変換機能を備えたパワーコンディショナ16と、パワーコンディショナ16および電力系統14間に配置され、電力系統14停電時の分散型電源12の単独運転を検出する単独運転検出装置18とを有し、パワーコンディショナ16は、電力変換機能を通じて、分散型電源12にて発電した直流電力を電力系統14の交流電力に変換し、この変換した交流電力を−般家電機器等の図外の負荷等に供給するものである。   A distributed power system 10 shown in FIG. 1 generates DC power, for example, a distributed power source 12 such as a solar power generator or a gas engine generator, and a power system 14 connected to the distributed power source 12. A power conditioner 16 disposed between the distributed power source 12 and the power system 14 and having a power conversion function, and a power conditioner 16 disposed between the power conditioner 16 and the power system 14. The power conditioner 16 converts the DC power generated by the distributed power source 12 into the AC power of the power system 14 through the power conversion function, and the converted AC current. Electric power is supplied to loads outside the figure such as general household appliances.

単独運転検出装置18は、連系リレー20,22と、制御装置24と、インバータ制御部26と、インバータ28と、電流検出器30とを備える。   The isolated operation detection device 18 includes interconnection relays 20 and 22, a control device 24, an inverter control unit 26, an inverter 28, and a current detector 30.

制御装置24は、入力線L1,L2,Mそれぞれ通じて電力系統ライン32に接続して電力系統14の系統電圧、高調波歪電圧、系統周波数を計測し、これらから、出力線Pを通じて連系リレー20,22に単独運転検出出力を出力することにより連系リレー20,22をオフすると共にインバータ制御部26に出力線Qを通じて注入無効電力を注入するための電流制御指令値を出力するようになっている。   The control device 24 is connected to the power system line 32 through the input lines L1, L2, and M, and measures the system voltage, the harmonic distortion voltage, and the system frequency of the power system 14, and from these, the connection is made through the output line P. By outputting the isolated operation detection output to the relays 20 and 22, the interconnection relays 20 and 22 are turned off, and a current control command value for injecting injection reactive power through the output line Q is output to the inverter control unit 26. It has become.

そして制御装置24は、計測した系統周波数から所定系統周期内での系統周波数偏差を演算すると共にこの演算した系統周波数偏差に基づいて電力系統に注入するべき無効電力を演算し、この演算に係る無効電力を電力系統に注入している一方、上記計測した系統周波数と系統電圧と高調波歪電圧とから上記系統周波数偏差が所定系統周期数分にわたり連続して一定以下となる状態が継続して系統周波数に実質変化が無くかつ系統電圧、高調波歪電圧が所定電圧変動範囲を超える変化でもって急変したという条件が成立させるか否かを判定し、上記条件が成立との判定により、上記既に注入している無効電力に加えて、さらに無効電力を注入する制御を行うことができる。   The control device 24 calculates a system frequency deviation within a predetermined system cycle from the measured system frequency, calculates a reactive power to be injected into the power system based on the calculated system frequency deviation, While power is being injected into the power system, the system frequency deviation continues from the measured system frequency, system voltage, and harmonic distortion voltage for a predetermined number of system cycles continuously. It is determined whether or not the condition that the system voltage and the harmonic distortion voltage have suddenly changed with a change exceeding the predetermined voltage fluctuation range is satisfied, and whether or not the above condition has been satisfied, the above injection is already performed. In addition to the reactive power being used, it is possible to perform control for injecting reactive power further.

制御装置24をマイコンで構成してもよい。例えば、制御装置24をマイコンで構成した場合、制御装置24は、CPU、メモリ、インターフェース等を有する。上記メモリに実施の形態の単独運転検出方法を実施するための制御プログラムが記憶されている。CPUは、インターフェースを介して、入力される系統電圧、系統電流、系統電力、等に基づいて、各種演算等を実行し、その実行結果から、インターフェースを介して、連系リレー20,22の開閉指令である単独運転検出出力を出力し、インバータ制御部26に対する各種指令である電流制御指令値を出力するようになっている。   The control device 24 may be constituted by a microcomputer. For example, when the control device 24 is configured by a microcomputer, the control device 24 includes a CPU, a memory, an interface, and the like. The memory stores a control program for carrying out the isolated operation detection method of the embodiment. The CPU executes various calculations based on the system voltage, system current, system power, etc. input through the interface, and opens / closes the interconnection relays 20 and 22 through the interface from the execution result. An independent operation detection output that is a command is output, and current control command values that are various commands to the inverter control unit 26 are output.

実施の形態では、説明の理解のため、制御装置24にマイコンを内蔵させそのマイコンの制御プログラムにより以下に説明する機能を実行するようになっている。図2はそのマイコンの機能構成を示す。   In the embodiment, for understanding of the explanation, a microcomputer is built in the control device 24, and functions described below are executed by a control program of the microcomputer. FIG. 2 shows the functional configuration of the microcomputer.

図2を参照して制御装置24の機能を詳細に説明する。図2は制御装置24の機能の理解に供するためブロック構成で示した図であり、マイコン内部にこのブロック構成がハードウェアとして存在するものではない。勿論、ハードウェアとして構成することも可能であるから、実施の形態ではそのいずれにも限定しない。   The function of the control device 24 will be described in detail with reference to FIG. FIG. 2 is a block diagram for understanding the function of the control device 24, and this block configuration does not exist as hardware in the microcomputer. Of course, since it can be configured as hardware, the embodiment is not limited to any of them.

制御装置24は、電力系統ライン32から入力線L1を通じて入力する系統電力の電圧を計測する系統電圧計測部34aと、電力系統ライン32から入力線L2を通じて入力する系統電力の高調波歪電圧を計測する高調波歪計測部34bと、電力系統ライン32から入力線Mを通じて入力する系統電力の系統周波数を計測する系統周波数計測部36と、この系統周波数計測部36の計測値から単独運転判定を行いその判定に従い連系リレー20,22をオンオフする単独運転検出出力を出力線Pに出力する単独運転判定部38と、系統周波数計測部36の計測値から現在の系統周波数の移動平均値と、過去の系統周波数の移動平均値とを算出すると共にこの算出値から系統周波数偏差を演算する系統周波数偏差演算部40と、この系統周波数偏差演算部40の系統周波数偏差から電力系統に注入する無効電力量を演算する無効電力量注入演算部42とを備える。   The control device 24 measures the system voltage measurement unit 34a that measures the voltage of the system power input from the power system line 32 through the input line L1, and the harmonic distortion voltage of the system power input from the power system line 32 through the input line L2. The isolated harmonic determination is performed from the measured value of the system frequency measuring unit 36, the system frequency measuring unit 36b for measuring the system frequency of the system power input from the power system line 32 through the input line M, and the harmonic distortion measuring unit 34b. According to the determination, the isolated operation determination unit 38 that outputs the isolated operation detection output for turning on / off the interconnection relays 20 and 22 to the output line P, the moving average value of the current system frequency from the measured value of the system frequency measuring unit 36, and the past And a system frequency deviation calculating unit 40 for calculating a system frequency deviation from the calculated value and calculating a moving average value of the system frequency of the system frequency, And a reactive energy injected calculation unit 42 for calculating the amount of reactive power to be injected from the grid frequency deviation of the difference computation unit 40 to the power grid.

制御装置24はまた、系統周波数偏差が所定系統周期数分にわたり連続して一定以下となる状態が継続して系統周波数に実質変化が無く、かつ、系統電圧が予め設定した所定電圧範囲内に沿って変化したときに系統電圧が単独運転発生に起因して急変したと判定して一定の無効電力を注入する制御を行う第1無効電力注入演算部44aを備える。   The control device 24 also maintains a state in which the system frequency deviation is continuously below a predetermined number of system cycles for a certain number of continuous periods, the system frequency is not substantially changed, and the system voltage is within a predetermined voltage range set in advance. A first reactive power injection computing unit 44a that performs control to determine that the system voltage has suddenly changed due to the occurrence of isolated operation and to inject constant reactive power.

制御装置24はさらにまた、系統周波数偏差が所定系統周期数分にわたり連続して一定以下となる状態が継続して系統周波数に実質変化が無く、かつ、高調波歪電圧が予め設定した所定電圧範囲内に沿って変化したときに高調波歪電圧が単独運転発生に起因して急変したと判定して一定の無効電力を注入する制御を行う第2無効電力注入演算部44bを備える。   Further, the control device 24 further maintains a state in which the system frequency deviation continuously becomes constant or less over a predetermined number of system cycles, the system frequency does not substantially change, and the harmonic distortion voltage is set in a predetermined voltage range set in advance. A second reactive power injection computing unit 44b that performs control to determine that the harmonic distortion voltage has suddenly changed due to the occurrence of an isolated operation when it is changed along the inside, and to inject constant reactive power.

制御装置24はさらにまた、第1、第2無効電力注入演算部44a,44bからのいずれか一方の無効電力を選択して出力する選択ゲート45と、選択ゲート45の選択動作を制御する無効電力注入方式判定部47と、無効電力量演算部42からの演算無効電力と、選択ゲート45からの第1、第2無効電力注入演算部44a,44bからの無効電力とを加算する無効電力加算部46と、無効電力加算部46の出力に応じて出力電流制御信号をインバータ制御部26へ出力線Qを通じて出力する出力電流制御部48と、を備える。   Further, the control device 24 selects and outputs one of the reactive powers from the first and second reactive power injection arithmetic units 44a and 44b, and the reactive power that controls the selection operation of the selection gate 45. Reactive power addition unit that adds the calculation reactive power from the injection method determination unit 47, the reactive power amount calculation unit 42, and the reactive power from the first and second reactive power injection calculation units 44a and 44b from the selection gate 45. 46, and an output current control unit 48 that outputs an output current control signal to the inverter control unit 26 through the output line Q in accordance with the output of the reactive power adding unit 46.

系統周波数偏差演算部40は、現在の系統周波数の移動平均値を算出する現在移動平均算出部40aと、過去の系統周波数の移動平均値を算出する過去移動平均算出部40bと、これら両算出値から系統周波数偏差を演算する演算部40cとを備える。   The system frequency deviation calculating unit 40 includes a current moving average calculating unit 40a that calculates a moving average value of a current system frequency, a past moving average calculating unit 40b that calculates a moving average value of a past system frequency, and both of these calculated values. And a calculation unit 40c for calculating the system frequency deviation.

系統周波数計測部36は、系統電圧から電力系統の系統周波数を計測周期単位、例えば5m秒単位で順次計測するものである。なお、電力系統の系統周波数を50Hz(1系統周期は20m秒)とした場合、その系統周期単位は、電力系統の系統周期の1/3以下、例えば、5m秒単位にすることが望ましい。   The system frequency measuring unit 36 sequentially measures the system frequency of the power system from the system voltage in units of measurement periods, for example, 5 milliseconds. When the system frequency of the power system is 50 Hz (one system period is 20 msec), the system cycle unit is desirably 1/3 or less of the system period of the power system, for example, 5 msec unit.

系統周波数偏差演算部40においては、系統周波数計測部36で順次計測した5m秒単位の系統周期に基づき、連続した所定移動平均時間分、例えば40m秒分の系統周期の移動平均値を順次算出するものである。なお、所定移動平均時間は、系統周期の一周期、例えば20m秒よりも長く、かつ所望する検出速度、例えば100m秒よりもできる限り短い時間を条件とするため、例えば40m秒にすることが望ましい。   In the system frequency deviation calculation unit 40, based on the system period in units of 5 milliseconds sequentially measured by the system frequency measurement unit 36, the moving average value of the system period for a continuous predetermined moving average time, for example, 40 milliseconds is sequentially calculated. Is. The predetermined moving average time is preferably set to, for example, 40 milliseconds because it is longer than one cycle of the system period, for example, 20 milliseconds, and is as short as possible for a desired detection speed, for example, 100 milliseconds. .

図3は、系統周波数計測部36、系統周波数偏差演算部40に関わる動作説明図であり、C0は系統周波数計測部36で現在計測した系統周期、C1が5m秒前に計測した系統周期、Cnはn*5m秒前の系統周期の計測値を示す。したがって、系統周波数偏差演算部40は、最新の移動平均値は、C0−C7分の40m秒分の系統周期を移動平均化して5m秒単位で順次算出するものである。   FIG. 3 is an operation explanatory diagram related to the system frequency measuring unit 36 and the system frequency deviation calculating unit 40, where C0 is a system period currently measured by the system frequency measuring unit 36, C1 is a system period measured 5 ms before, Cn Indicates the measured value of the system cycle n * 5 ms before. Therefore, the system frequency deviation calculation unit 40 sequentially calculates the latest moving average value in units of 5 milliseconds by moving average the system period for 40 milliseconds of C0-C7.

過去の移動平均値は、C0−C7の最新の移動平均値とした場合、C0から200m秒前のC40−C47の40m秒分の系統周期を移動平均化して5m秒単位で順次算出したものである。また、現在の系統周波数偏差は、過去の移動平均値(C40−C47)−最新の移動平均値(C0−C7)で算出するものである。   The past moving average value is calculated by moving average the system cycle for 40 ms of C40-C47 200 ms before C0 and sequentially calculating in 5 ms units when the latest moving average value of C0-C7 is used. is there. The current system frequency deviation is calculated by the past moving average value (C40-C47) -the latest moving average value (C0-C7).

無効電力量注入演算部42は、図4の無効電力量対系統周波数偏差との特性を使用して、系統周波数偏差演算部40で算出した系統周波数偏差に基づいて無効電力量を算出し、この無効電力量を加算部46を経て出力電流制御部48に通知するものである。図4に示す無効電力量対系統周波数偏差特性は、系統周波数偏差が小さいときは系統周波数偏差の変化に対する無効電力量の変化割合を小さくすなわち特性線L1の傾きを小さくして単独運転検出感度を低くするレンジである低感帯レンジR1と、系統周波数偏差が大きいときは系統周波数偏差の変化に対する無効電力量の変化割合を大きくすなわち特性線L1の傾きを大きくして単独運転検出感度を高くするレンジである高感帯レンジR21,R22とを設定する。   The reactive energy injection calculating unit 42 calculates the reactive power amount based on the system frequency deviation calculated by the system frequency deviation calculating unit 40 using the characteristic of the reactive power amount versus the system frequency deviation of FIG. The reactive power amount is notified to the output current control unit 48 through the addition unit 46. The reactive power amount vs. system frequency deviation characteristic shown in FIG. 4 is such that when the system frequency deviation is small, the change rate of the reactive power amount with respect to the change of the system frequency deviation is reduced, that is, the slope of the characteristic line L1 is reduced, and the isolated operation detection sensitivity When the system frequency deviation is large, the low sensitivity band range R1, which is the range to be lowered, increases the rate of change of the reactive power amount with respect to the change of the system frequency deviation, that is, increases the slope of the characteristic line L1 to increase the isolated operation detection sensitivity. Sensitive band ranges R21 and R22, which are ranges, are set.

系統周波数偏差が高感帯レンジR21では無効電力量を減少し、高感帯レンジR22では無効電力量を増加し、低感帯レンジR1では、系統周波数偏差に対する無効電力量の変化割合を小さく設定する。すなわち系統周波数偏差が小さい低感帯レンジR1でも、分散型電源12の単独運転を検出すべく、無効電力を注入することができ、さらには、無効電力量の変化割合を高感帯レンジR21,R22の場合に比較して小さくすることで、系統電圧の低速な系統周波数の揺れの影響を受けることなく、分散型電源12が電力系統14に与える影響を確実に防止可能とする。   The reactive power amount is decreased in the high frequency range R21, the reactive power amount is increased in the high frequency range R22, and the change rate of the reactive power with respect to the system frequency deviation is set small in the low frequency range R1. To do. That is, reactive power can be injected even in the low-risk range R1 where the system frequency deviation is small to detect the isolated operation of the distributed power source 12, and the change rate of the reactive power amount can be set to the high-sensitive range R21, R21, By making it smaller than in the case of R22, it is possible to reliably prevent the influence of the distributed power source 12 on the power system 14 without being affected by the slow fluctuation of the system voltage.

以上説明した分散型電源システムは図5で示すシステムでも同様である。このシステムではパワーコンディショナ16内部に単独運転検出装置を内蔵したものである。図1と対応する部分には同一の符号を付している。   The distributed power supply system described above is the same as the system shown in FIG. In this system, an independent operation detection device is built in the power conditioner 16. Parts corresponding to those in FIG. 1 are denoted by the same reference numerals.

そして、系統周波数偏差演算部40と、無効電力量注入演算部42とが系統周波数変動を単独運転状態時に示す1つの電気的変動として電力系統に無効電力を注入する1つの単独運転検出系統(系統周波数変動型単独運転検出系統)を構成する。   Then, a single operation detection system (system) in which the system frequency deviation calculation unit 40 and the reactive power amount injection calculation unit 42 inject reactive power into the power system as one electrical fluctuation indicating the system frequency fluctuation in the single operation state. A frequency fluctuation type isolated operation detection system).

また、系統電圧計測部34aと、第1無効電力注入演算部44aとが系統電圧変動を単独運転状態時に示す1つの電気的変動として電力系統に無効電力を注入する1つの単独運転検出系統(系統電圧変動型単独運転検出系統)を構成する。   In addition, one independent operation detection system (system) in which the system voltage measuring unit 34a and the first reactive power injection calculating unit 44a inject reactive power into the power system as one electrical variation indicating the system voltage variation in the single operation state. A voltage fluctuation type isolated operation detection system).

さらに、高調波歪計測部34bと、第2無効電力注入演算部44bとが高調波歪電圧変動(高調波変動)を単独運転状態時に示す1つの電気的変動として電力系統に無効電力を注入する1つの単独運転検出系統(高調波変動型単独運転検出系統)を構成する。   Further, the harmonic distortion measuring unit 34b and the second reactive power injection calculating unit 44b inject reactive power into the power system as one electrical fluctuation indicating the harmonic distortion voltage fluctuation (harmonic fluctuation) in the single operation state. One isolated operation detection system (harmonic fluctuation type isolated operation detection system) is configured.

なお、上記各単独運転検出系統は、一例であり、他の単独運転検出系統であってもよいことは勿論である。また、単独運転検出系統は3つ以上の複数であってもよいことは勿論である。   In addition, each said independent operation detection system | strain is an example, and of course, other independent operation detection systems may be sufficient. Of course, the number of isolated operation detection systems may be three or more.

以下、さらに説明する。なお、説明では、説明の重複等を回避するため系統電圧変動型と高調波変動型両単独運転検出系統についてはまとめて説明する。   This will be further described below. In the description, the system voltage fluctuation type and harmonic fluctuation type single operation detection systems will be described together to avoid duplication of explanation.

系統電圧計測部34aと高調波歪計測部34bでは、それぞれ、図6で示すように、各系統周期ごとに系統電圧、総合高調波歪電圧を計測する。図6で「T0」,「T1」,「T2」,…,「T13」は系統周期であり、「N0」,「N1」,「N2」,「N3」,「N4」,「N5」;「M0」,「M1」,「M2」,「M3」,「M4」,「M5」は、それぞれの系統周期での系統電圧と総合高調波歪電圧である。N0,M0は現在の系統周期T0での系統電圧,総合高調波歪電圧、N1,M1は系統周期T1での系統電圧,総合高調波歪電圧、…、N5,M5は系統周期T5での系統電圧,総合高調波歪電圧である。Navr,Mavrは実施の形態では現在系統周期T0から3系統周期前の系統周期T3から5系統周期前の系統周期T5までの合計3系統周期の系統電圧,総合高調波歪電圧の平均値である。もちろん、この系統電圧,総合高調波歪電圧の平均値Navr,Mavrは実施の形態の3系統周期に限定されず、適宜に決定することができる。   The system voltage measurement unit 34a and the harmonic distortion measurement unit 34b measure the system voltage and the total harmonic distortion voltage for each system period, as shown in FIG. In FIG. 6, “T0”, “T1”, “T2”,..., “T13” are system cycles, and “N0”, “N1”, “N2”, “N3”, “N4”, “N5”; “M0”, “M1”, “M2”, “M3”, “M4”, and “M5” are the system voltage and the total harmonic distortion voltage in each system cycle. N0 and M0 are the system voltage and total harmonic distortion voltage at the current system period T0, N1 and M1 are the system voltage and total harmonic distortion voltage at the system period T1,..., N5 and M5 are systems at the system period T5. Voltage and total harmonic distortion voltage. In the embodiment, Navr and Mavr are the average values of the system voltage and the total harmonic distortion voltage of a total of 3 system cycles from the system cycle T3 of 3 system cycles before the current system cycle T0 to the system cycle T5 of 5 system cycles before. . Of course, the average values Navr and Mavr of the system voltage and the total harmonic distortion voltage are not limited to the three system periods of the embodiment, and can be determined as appropriate.

総合高調波歪電圧をTHD、2次高調波歪電圧をV2、3次高調波歪電圧をV3、4次高調波歪電圧をV4、5次高調波歪電圧をV5、6次高調波歪電圧をV6、7次高調波歪電圧をV7とすると、総合高調波歪電圧は、それぞれの高調波歪電圧V2ないしV7を二乗し、それらの加算値の平方根である次式で与えられる。 Total harmonic distortion voltage is THD, second harmonic distortion voltage is V 2 , third harmonic distortion voltage is V 3 , fourth harmonic distortion voltage is V 4 , fifth harmonic distortion voltage is V 5 , sixth order Assuming that the harmonic distortion voltage is V 6 and the seventh harmonic distortion voltage is V 7 , the total harmonic distortion voltage is the square root of each of the harmonic distortion voltages V 2 to V 7, and the sum of these squares. It is given by

THD=√(V22+(V32+(V42+(V52+(V62+(V72
ただし、上記式の総合高調波歪電圧は、2次ないし7次の高調波歪電圧から上記演算式で与えられるが、それ以上の次数の高調波波電圧を除外するものではない。
THD = √ (V 2 ) 2 + (V 3 ) 2 + (V 4 ) 2 + (V 5 ) 2 + (V 6 ) 2 + (V 7 ) 2
However, the total harmonic distortion voltage of the above equation is given by the above equation from the second to seventh harmonic distortion voltages, but does not exclude higher harmonic voltages.

また、高調波歪計測部34bでは、総合高調波歪電圧を計測したが、例えば、3次高調波歪電圧V3を計測してもよいし、他の次数の高調波歪電圧を計測してもよい。   The harmonic distortion measurement unit 34b measures the total harmonic distortion voltage. However, for example, the third-order harmonic distortion voltage V3 may be measured, or another order harmonic distortion voltage may be measured. Good.

その意味で、以下の説明では総合高調波歪電圧と称するのではなく、単に高調波歪電圧として説明する。   In that sense, in the following description, it is not referred to as a total harmonic distortion voltage, but simply described as a harmonic distortion voltage.

上記では、単独運転検出を総合高調波電圧や2次以上の高調波歪電圧で行うが、総合高調波歪電流、総合高調波歪電力、あるいは2次以上の高調波歪電流、2次以上の高調波歪電力でもよい。   In the above, the isolated operation detection is performed with the total harmonic voltage or the second or higher harmonic distortion voltage, but the total harmonic distortion current, the total harmonic distortion power, or the second or higher harmonic distortion current, or the second or higher harmonic distortion voltage. Harmonic distortion power may be used.

第1無効電力注入演算部44aにおいては、系統電圧計測部34aからの系統電圧の計測値と、系統周波数計測部36からの系統周波数の計測値と、系統周波数偏差演算部40からの系統周波数偏差と、を入力し、これらから、条件(a1)として系統周波数偏差が所定系統周期数分にわたり連続して一定範囲内となる状態が継続して系統周波数に実質変化が無いか、かつ、条件(b1)として系統電圧が予め設定した所定電圧変動範囲内に沿って変化したかという上記2条件(a1)(b1)が成立するか否かを判定する。   In the first reactive power injection calculating unit 44a, the measured value of the system voltage from the system voltage measuring unit 34a, the measured value of the system frequency from the system frequency measuring unit 36, and the system frequency deviation from the system frequency deviation calculating unit 40 From these, as a condition (a1), a state in which the system frequency deviation is continuously within a certain range for a predetermined number of system cycles continues and there is no substantial change in the system frequency, and the condition ( Whether or not the above two conditions (a1) and (b1), that is, whether the system voltage has changed within a predetermined voltage fluctuation range set in advance, is determined as b1).

第2無効電力注入演算部44bにおいては、高調波歪計測部34bからの高調波歪の計測値と、系統周波数計測部36からの系統周波数の計測値と、系統周波数偏差演算部40からの系統周波数偏差と、を入力し、これらから、条件(a2)として系統周波数偏差が所定系統周期数分にわたり連続して一定範囲内となる状態が継続して系統周波数に実質変化が無いか、かつ、条件(b2)として高調波歪電圧が予め設定した電圧範囲内に沿って変化したかという上記2条件(a2)(b2)が成立するか否かを判定する。   In the second reactive power injection calculating unit 44b, the measured value of the harmonic distortion from the harmonic distortion measuring unit 34b, the measured value of the system frequency from the system frequency measuring unit 36, and the system from the system frequency deviation calculating unit 40 The frequency deviation is input, and from these, as a condition (a2), a state in which the system frequency deviation is continuously within a certain range for a predetermined number of system cycles continues and there is no substantial change in the system frequency, and It is determined whether or not the above two conditions (a2) and (b2), that is, whether the harmonic distortion voltage has changed within a preset voltage range as the condition (b2).

この判定を系統電圧、高調波歪電圧が上昇と下降方向とに分けて図7(a)(b)、図8(a)(b)(c)(d)、図9(a)(b)を参照して説明する。   This determination is divided into the system voltage and the harmonic distortion voltage in the rising and falling directions, and FIGS. 7 (a), 7 (b), 8 (a), (b), (c), (d), and FIGS. ) Will be described.

図7(a)(b)は判定条件(a1)(a2)、図8(a)(b)は判定条件(b1)、図8(c)(d)は判定条件(b2)、図9(a)(b)は上記判定条件(a1)(b1)または(a2)(b2)が共に成立する場合の第1、第2無効電力注入判定部44a,44bからの無効電力の注入状態、を示す。   7 (a) and 7 (b) are the determination conditions (a1) and (a2), FIGS. 8 (a) and 8 (b) are the determination conditions (b1), FIGS. 8 (c) and 8 (d) are the determination conditions (b2), and FIG. (A) and (b) are the reactive power injection states from the first and second reactive power injection determination units 44a and 44b when the determination conditions (a1) (b1) or (a2) (b2) are both satisfied, Indicates.

また、図7(a)、図8(a)、図8(c)、図9(a)はそれぞれ系統電圧が上昇方向に急変する場合、図7(b)、図8(b)、図8(d)、図9(b)はそれぞれ系統電圧が下降方向に急変する場合を示す。   FIGS. 7 (a), 8 (a), 8 (c), and 9 (a) are respectively shown in FIGS. 7 (b), 8 (b), and 9 (a) when the system voltage suddenly changes in the upward direction. 8 (d) and FIG. 9 (b) show cases where the system voltage suddenly changes in the downward direction.

判定条件(a1)(a2)に関して、図7(a)(b)で横方向のT0,T1,T2,T3,T4,T5は上記した系統周期、縦軸は系統周波数偏差である。点線f1は系統周波数偏差が偏差0Hzからプラス(+)側に0.5Hz、f2は系統周波数偏差が偏差0Hzからマイナス(−)側に0.5Hzである。この系統周波数偏差が±0.5Hzの一定範囲(偏差範囲ΔT=1.0Hz)内の状態が所定系統周期数分、実施の形態では例えば6系統周期にわたり連続して継続すれば系統周波数に実質変化が無いと判定する。もちろん、上記判定では系統周波数偏差が上記一定範囲内に連続して継続する系統周期の数は6系統周期に限定されず、少なくとも2以上の系統周期でよい。   Regarding determination conditions (a1) and (a2), T0, T1, T2, T3, T4, and T5 in the horizontal direction in FIGS. 7A and 7B are the system cycle described above, and the vertical axis is the system frequency deviation. The dotted line f1 has a system frequency deviation of 0.5 Hz from the deviation 0 Hz to the plus (+) side, and f2 has a system frequency deviation of 0.5 Hz from the deviation 0 Hz to the minus (−) side. If the system frequency deviation is within a certain range of ± 0.5 Hz (deviation range ΔT = 1.0 Hz) for a predetermined number of system cycles, in the embodiment, for example, continuously for 6 system cycles, the system frequency is substantially reduced. Judge that there is no change. Of course, in the above determination, the number of system cycles in which the system frequency deviation continues continuously within the certain range is not limited to 6 system cycles, and may be at least 2 system cycles.

図7(a)で示すように系統電圧、高調波歪電圧が上昇方向に急変する場合では系統周波数偏差が系統周期T1から偏差0Hzからプラス(+)側であり、図7(b)で示すように系統電圧、高調波歪電圧が下降方向に急変する場合では系統周波数偏差が系統周期T1から偏差0Hzからマイナス(−)側である。なお、系統周期ごとに系統周波数偏差を演算するために系統周期と系統周期との間の系統周波数偏差はデジタル的に変化する。また、実施の形態では系統周波数偏差演算部40で系統周期ごとに系統周波数偏差を演算するが、これに限定されない。   As shown in FIG. 7A, when the system voltage and the harmonic distortion voltage change suddenly in the increasing direction, the system frequency deviation is from the system cycle T1 to the plus (+) side from the deviation 0 Hz, and is shown in FIG. 7B. Thus, when the system voltage and the harmonic distortion voltage change suddenly in the downward direction, the system frequency deviation is from the system cycle T1 to the minus (−) side from the deviation 0 Hz. In addition, in order to calculate a system | strain frequency deviation for every system | strain period, the system | strain frequency deviation between a system | strain period and a system | strain period changes digitally. In the embodiment, the system frequency deviation calculation unit 40 calculates the system frequency deviation for each system period, but the present invention is not limited to this.

なお図7(a)(b)では理解のため系統周波数偏差が現在系統周期T0から過去3系統周期以上連続して上記一定範囲内として系統周波数は実質変化していないとして判定条件(a1)(a2)は成立する状態で示している。   In FIGS. 7A and 7B, for the sake of understanding, it is assumed that the system frequency deviation is continuously within the predetermined range from the current system period T0 for the past three system periods or more, and the system frequency is not substantially changed. a2) is shown in an established state.

次に図8(a)(b)(c)(d)を参照して、判定条件(b1)(b2)を説明する。   Next, the determination conditions (b1) and (b2) will be described with reference to FIGS.

図8(a)(b)は横軸に系統周期、縦軸は系統電圧(V)、図8(c)(d)は横軸に系統周期、縦軸は高調波歪電圧(V)である。実線(Navr),(Mavr)は、現在系統周期T0から3周期前から5周期前までの3系統周期T3,T4,T5の系統電圧の平均値Navr、高調波歪電圧の平均値Mavrを示す線である。N0,N1,N2,N3,N4,N5;M0,M1,M2,M3,M4,M5はそれぞれ系統周期T0,T1,T2,T3,T4,T5それぞれでの系統電圧、高調波歪電圧である。   8A and 8B, the horizontal axis represents the system cycle, the vertical axis represents the system voltage (V), FIGS. 8C and 8D, the horizontal axis represents the system period, and the vertical axis represents the harmonic distortion voltage (V). is there. The solid lines (Navr) and (Mavr) indicate the average value Navr of the system voltage and the average value Mavr of the harmonic distortion voltage in the three system periods T3, T4, and T5 from the current system period T0 to the previous three periods to five periods. Is a line. N0, N1, N2, N3, N4, and N5; M0, M1, M2, M3, M4, and M5 are system voltages and harmonic distortion voltages in the system periods T0, T1, T2, T3, T4, and T5, respectively. .

点線(Ni)は、各系統電圧の変化を示すためにそれらを結ぶ線、点線(Mi)は、各高調波歪電圧の変化を示すためにそれらを結ぶ線である。   A dotted line (Ni) is a line connecting them in order to show a change in each system voltage, and a dotted line (Mi) is a line connecting them in order to show a change in each harmonic distortion voltage.

図8(a)(c)で示すように系統電圧、高調波歪電圧上昇方向での系統電圧、高調波歪電圧変動の判定条件(b1)(b2)は、上記各系統電圧、高調波歪電圧が図8(a)(c)中の網掛け領域S1a、S1b内の電圧であることである。この網掛け領域S1a、S1bに関して具体数値による判定条件式を示すと、下記(1a)(1b)である。図8(a)(c)中の黒丸(●)印は、各系統電圧、高調波歪電圧を示す目印である。この判定条件式では、各系統周期T0,T1,T2,T3,T4,T5ごとの系統電圧N0,N1,N2,N3,N4,N5;各系統周期T0,T1,T2,T3,T4,T5ごとの高調波歪電圧M0,M1,M2,M3,M4,M5が、それぞれ、過去複数の系統周期それぞれの系統電圧平均値Navr、高調波歪み電圧平均値Mavrに対して各系統周期T0,T1,T2,T3,T4,T5ごとに定めた所定電圧変動範囲でもって変化したときに系統電圧、高調波歪電圧が変動したと判定する。これは図8(b)(d)でも同様である。   As shown in FIGS. 8A and 8C, the determination conditions (b1) and (b2) of the system voltage, the system voltage in the increasing direction of the harmonic distortion voltage, and the harmonic distortion voltage fluctuation are as follows. The voltage is the voltage in the shaded areas S1a and S1b in FIGS. Regarding the shaded areas S1a and S1b, specific conditional expressions are shown as (1a) and (1b) below. The black circles (●) in FIGS. 8A and 8C are marks indicating the system voltage and the harmonic distortion voltage. In this judgment condition formula, system voltages N0, N1, N2, N3, N4, N5 for each system period T0, T1, T2, T3, T4, T5; each system period T0, T1, T2, T3, T4, T5 Harmonic distortion voltages M0, M1, M2, M3, M4, and M5 for each of the system periods T0, T1 with respect to the system voltage average value Navr and the harmonic distortion voltage average value Mavr of each of the plurality of system periods in the past, respectively. , T2, T3, T4, and T5, it is determined that the system voltage and the harmonic distortion voltage have fluctuated when changing within a predetermined voltage fluctuation range. The same applies to FIGS. 8B and 8D.

この場合、判定条件式(1a)(1b)では、系統電圧N0,N1,N2,N3,N4,N5のうち、N0,N1は、系統電圧平均値Navrとの差、また、高調波歪電圧M0,M1,M2,M3,M4,M5のうち、M0,M1は、高調波歪電圧平均値Mavrとの差が、それぞれ他の系統電圧N2,N3,N4,N5、高調波歪電圧M2,M3,M4,M5それぞれよりも大きく急増するような系統電圧変化パターン、高調波歪電圧変化パターンを判定条件に含めている。このことにより、単独運転発生が原因とする場合と、そうではない他の原因とを区別できるようにしている。また、系統電圧N3,N4,N5が系統電圧平均値Navrとの差が所定電圧変化幅(−0.5〜+0.5V)内で推移していたが、系統電圧N2では系統電圧平均値Navrとの差が、所定電圧+0.5を超えて、系統電圧N0,N1では所定電圧、実施の形態では系統電圧平均値Navrとの差(系統電圧変化幅)は3Vを超えて、また、高調波歪電圧系統電圧M3,M4,M5が所定電圧変化幅(−0.5〜+0.5V)内で推移していたが、高調波歪電圧M2では高調波歪電圧平均値Mavrとの差が、所定電圧+0.5を超えて、高調波歪電圧M0,M1では高調波歪電圧平均値Mavrとの差(高調波歪電圧変化幅)は、所定電圧、実施の形態では2Vを超えて急増することを判定条件にしている。   In this case, in the determination conditional expressions (1a) and (1b), among the system voltages N0, N1, N2, N3, N4, and N5, N0 and N1 are the difference from the system voltage average value Navr, and the harmonic distortion voltage. Among M0, M1, M2, M3, M4, and M5, M0 and M1 are different from the harmonic distortion voltage average value Mavr in terms of other system voltages N2, N3, N4, and N5, and harmonic distortion voltage M2, respectively. A system voltage change pattern and a harmonic distortion voltage change pattern that increase more rapidly than M3, M4, and M5 are included in the determination conditions. This makes it possible to distinguish between cases caused by isolated operation and other causes that are not. Further, the difference between the system voltages N3, N4, and N5 and the system voltage average value Navr was within a predetermined voltage change range (−0.5 to +0.5 V), but the system voltage average value Navr at the system voltage N2. And the difference between the system voltage N0 and N1 and the system voltage average value Navr in the embodiment (system voltage change width) exceeds 3V, The wave distortion voltage system voltages M3, M4, and M5 have changed within a predetermined voltage change range (−0.5 to +0.5 V), but the harmonic distortion voltage M2 has a difference from the harmonic distortion voltage average value Mavr. The difference from the harmonic distortion voltage average value Mavr (harmonic distortion voltage change width) at the harmonic distortion voltages M0 and M1 exceeds the predetermined voltage +0.5, and rapidly increases beyond 2 V in the embodiment. It is a judgment condition to do.

以上から、系統電圧、高調波歪電圧が過去複数の系統周期に沿って予め設定した系統電圧変化パターン、高調波歪電圧変化パターンに対応した変化を呈したときに、単独運転発生に関わる系統電圧変動あり、あるいは高調波変動有りと判定して当該電力系統に無効電力を注入することができる。   From the above, when the system voltage and harmonic distortion voltage show changes corresponding to the system voltage change pattern and harmonic distortion voltage change pattern set in advance along multiple past system cycles, the system voltage related to the occurrence of isolated operation Reactive power can be injected into the power system by determining that there is fluctuation or harmonic fluctuation.

また、上記判定を行う第1、第2無効電力注入演算部44a,44bそれぞれの判定出力を、選択ゲート45からいずれかを選択出力することが可能であるので、単独運転発生態様に対応する側の判定出力で無効電力を電力系統により高速に注入して単独運転検出することを可能とし、単独運転検出の高速化を図ることができる。

〔(N0−Navr)>3V〕and
〔(N1−Navr)>3V〕and
〔(N2−Navr)>−0.5V〕and
〔−0.5<(N3−Navr)<0.5V〕and
〔−0.5<(N4−Navr)<0.5V〕and
〔−0.5<(N5−Navr)<0.5V〕 …(1a)

〔(M0−Mavr)>2V〕and
〔(M1−Mavr)>2V〕and
〔(M2−Mavr)>−0.5V〕and
〔−0.5<(M3−Mavr)<0.5V〕and
〔−0.5<(M4−Mavr)<0.5V〕and
〔−0.5<(M5−Mavr)<0.5V〕 …(1a)

図8(b)(d)で示すように系統電圧、高調波歪電圧下降方向での系統電圧変動、高調波歪電圧変動の判定条件(b1)(b2)は、上記各系統電圧、高調波歪電圧が図8(b)(d)中の網掛け領域S2a,S2b内の電圧であることである。この網掛け領域S2a,S2bに関して具体数値による判定条件式を示すと、下記式(2a)(2b)である。図8(b)(d)中の黒丸(●)印は、各系統電圧、高調波歪電圧を示す目印である。図8(b)(d)中の(Navr)(Ni)(Mavr)(Mi)は図8(a)(b)中の(Navr)(Ni)(Mavr)(Mi)に対応する。()書きは、系統電圧の平均値Navr、高調波歪電圧の平均値Mavr、系統電圧N0ないしN5、高調波歪電圧M0ないしM5と区別するためである。

〔(N0−Navr)<−3V〕and
〔(N1−Navr)<−3V〕and
〔(N2−Navr)<0.5V〕and
〔−0.5<(N3−Navr)<0.5V〕and
〔−0.5<(N4−Navr)<0.5V〕and
〔−0.5<(N5−Navr)<0.5V〕 …(2a)

〔(M0−Mavr)<−2V〕and
〔(M1−Mavr)<−2V〕and
〔(M2−Mavr)<0.5V〕and
〔−0.5<(M3−Mavr)<0.5V〕and
〔−0.5<(M4−Mavr)<0.5V〕and
〔−0.5<(M5−Mavr)<0.5V〕 …(2b)

なお、理解のため代表例として各系統周期ごとの系統電圧は上記網掛け領域S1a,S2a内、各系統周期ごとの高調波歪電圧は上記網掛け領域S1b,S2b内に入っていて系統電圧、高調波歪電圧が上昇する場合も下降する場合も系統電圧変動の判定条件(b1)、高調波歪電圧変動の判定条件(b2)を充足するようになっている。
In addition, since it is possible to select and output either of the determination outputs of the first and second reactive power injection calculating units 44a and 44b that perform the above determination from the selection gate 45, the side corresponding to the isolated operation generation mode. With this determination output, reactive power can be injected at high speed through the power system to detect the isolated operation, and the isolated operation can be detected at high speed.

[(N0-Navr)> 3V] and
[(N1-Navr)> 3V] and
[(N2-Navr)>-0.5V] and
[-0.5 <(N3-Navr) <0.5V] and
[-0.5 <(N4-Navr) <0.5V] and
[−0.5 <(N5-Navr) <0.5V] (1a)

[(M0-Mavr)> 2V] and
[(M1-Mavr)> 2V] and
[(M2-Mavr)>-0.5V] and
[−0.5 <(M3-Mavr) <0.5V] and
[−0.5 <(M4-Mavr) <0.5V] and
[−0.5 <(M5-Mavr) <0.5V] (1a)

As shown in FIGS. 8B and 8D, the determination conditions (b1) and (b2) for the system voltage, the system voltage fluctuation in the descending direction of the harmonic distortion voltage, and the harmonic distortion voltage fluctuation are as follows. The distortion voltage is the voltage in the shaded areas S2a and S2b in FIGS. 8B and 8D. Regarding the hatched areas S2a and S2b, specific conditional expressions are shown as the following expressions (2a) and (2b). The black circles (●) in FIGS. 8B and 8D are marks indicating the system voltage and the harmonic distortion voltage. (Navr) (Ni) (Mavr) (Mi) in FIGS. 8B and 8D corresponds to (Navr) (Ni) (Mavr) (Mi) in FIGS. 8A and 8B. () Is for distinguishing from the average value Navr of the system voltage, the average value Mavr of the harmonic distortion voltage, the system voltage N0 to N5, and the harmonic distortion voltage M0 to M5.

[(N0-Navr) <-3V] and
[(N1-Navr) <-3V] and
[(N2-Navr) <0.5V] and
[-0.5 <(N3-Navr) <0.5V] and
[-0.5 <(N4-Navr) <0.5V] and
[−0.5 <(N5-Navr) <0.5V] (2a)

[(M0-Mavr) <-2V] and
[(M1-Mavr) <-2V] and
[(M2-Mavr) <0.5V] and
[−0.5 <(M3-Mavr) <0.5V] and
[−0.5 <(M4-Mavr) <0.5V] and
[-0.5 <(M5-Mavr) <0.5V] (2b)

For the sake of understanding, as a representative example, the system voltage for each system period is in the shaded areas S1a and S2a, and the harmonic distortion voltage for each system period is in the shaded areas S1b and S2b. Whether the harmonic distortion voltage rises or falls, the system voltage fluctuation determination condition (b1) and the harmonic distortion voltage fluctuation determination condition (b2) are satisfied.

判定条件(b1)(b2)は、上記条件式で示すように現在系統周期T0から3周期前から5周期前までの3系統周期T3,T4,T5それぞれの系統電圧平均値Navr、高調波歪電圧平均値Mavrに対して過去6周期T0−T5それぞれの系統電圧、高調波歪電圧がそれぞれの系統周期ごとにいずれも網掛け領域S1a,S1b,S2a,S2b内であるときである。   The determination conditions (b1) and (b2) are, as shown in the above conditional expression, the system voltage average value Navr, harmonic distortion of each of the three system periods T3, T4, T5 from the current system period T0 to three periods before to five periods. This is when the system voltage and the harmonic distortion voltage in each of the past six cycles T0 to T5 are within the shaded areas S1a, S1b, S2a, and S2b for each system cycle with respect to the voltage average value Mavr.

第1無効電力注入演算部44aは、上記図7(a)(b)、図8(a)(b)で示すように上記判定条件(a1)(b1)が成立するか否かの判定を行うと共に成立するとの判定により、図9(a)(b)で示すように電力系統に無効電力を注入する制御を行うことができる。   The first reactive power injection calculating unit 44a determines whether or not the determination conditions (a1) and (b1) are satisfied as shown in FIGS. 7 (a), 7 (b), 8 (a), and 8 (b). When it is determined that it is established, control for injecting reactive power into the power system can be performed as shown in FIGS. 9 (a) and 9 (b).

第2無効電力注入演算部44bは、上記図7(a)(b)、図8(c)(d)で示すように上記判定条件(a2)(b2)が成立するか否かの判定を行うと共に成立するとの判定により、図9(a)(b)で示すように電力系統に無効電力を注入する制御を行うことができる。   The second reactive power injection calculating unit 44b determines whether or not the determination conditions (a2) and (b2) are satisfied as shown in FIGS. 7 (a), 7 (b), 8 (c), and 8 (d). When it is determined that it is established, control for injecting reactive power into the power system can be performed as shown in FIGS. 9 (a) and 9 (b).

図9(a)(b)において横軸は、図7(a)(b)、図8(a)ないし(d)それぞれに対応した系統周期であり、縦軸は無効電力注入演算部44から位相進み側または位相遅れ側に追加注入する無効電力(Var)を示す。実施の形態では図解のため図9(a)(b)中に無効電力(Var)の値が位相進み側200Var、位相遅れ側200Varが記入されているが、注入無効電力の値を限定する趣旨ではない。   9 (a) and 9 (b), the horizontal axis represents the system cycle corresponding to FIGS. 7 (a) and 7 (b) and FIGS. 8 (a) to (d), and the vertical axis represents the reactive power injection calculation unit 44. Reactive power (Var) additionally injected to the phase advance side or the phase delay side is shown. In the embodiment, for the purpose of illustration, the values of reactive power (Var) are entered in FIG. 9 (a) and FIG. 9 (b) as phase advance side 200Var and phase lag side 200Var. is not.

また、現在系統周期T0で判定条件(a1)(b1);(a2)(b2)が成立すると共に、系統周波数偏差の符号が図9(a)では現在系統周期T0ではプラス側、図9(b)ではマイナス側になっているので、現在系統周期0で系統電圧上昇、高調波歪電圧上昇では位相進み、系統電圧下降、高調波歪電圧下降では位相遅れの無効電力として200Varを注入している。   Further, the determination conditions (a1) (b1); (a2) (b2) are satisfied in the current system cycle T0, and the sign of the system frequency deviation is positive in the current system period T0 in FIG. In b), since it is on the negative side, the phase advances when the system voltage rises and the harmonic distortion voltage rises at the current system cycle 0, and 200 Var is injected as reactive power with phase lag when the system voltage falls and the harmonic distortion voltage falls. Yes.

これは、系統周波数偏差の符号がプラスでは無効電力量注入演算部42からの無効電力が位相進みで、系統周波数偏差の符号がマイナスでは無効電力量注入演算部42からの無効電力が位相遅れであるから、加算部46で無効電力量注入演算部42からの無効電力と無効電力注入演算部44a,44bからの無効電力とが相殺されないように、無効電力量注入演算部42からの無効電力の位相遅れ進みと、無効電力注入演算部44a,44bからの無効電力の位相遅れ進みとを一致させるためである。   This is because when the sign of the system frequency deviation is positive, the reactive power from the reactive power injection calculating section 42 is in phase advance, and when the sign of the system frequency deviation is negative, the reactive power from the reactive power injection calculating section 42 is out of phase. Therefore, the reactive power from the reactive power injection arithmetic unit 42 is not canceled by the adding unit 46 so that the reactive power from the reactive power injection arithmetic unit 42 and the reactive power from the reactive power injection arithmetic units 44a and 44b are not offset. This is because the phase delay advance and the phase delay advance of the reactive power from the reactive power injection calculating units 44a and 44b are made to coincide.

以上の説明において、本実施の形態では、図10で示すように、上記した系統周波数変動型、系統電圧変動型、および高調波変動型三者の単独運転検出系統に対して、以下の単独運転検出方法を提供することができる。   In the above description, in the present embodiment, as shown in FIG. 10, the following islanding operation is performed with respect to the above-described system frequency variation type, system voltage variation type, and harmonic variation type independent operation detection system. A detection method can be provided.

すなわち、電力系統への無効電力の注入に関して、まず、ステップn0で、系統周波数計測部36、系統電圧計測部34a、高調波歪計測部34bそれぞれからの系統周波数、系統電圧、高調波を計測し、それら計測から、ステップn1では、系統周波数偏差演算部40で系統周波数偏差を演算する。そして、ステップn2で、系統周波数変動型の単独運転検出系統内の無効電力量注入演算部42で注入無効電力量が演算され、ステップn3で、その演算された量の無効電力が無効電力加算部46に入力される。ステップn3は、ステップn2での無効電力と、後述するステップn6、n8の一方の無効電力とを加算するステップである。そしてステップn4は、それら加算した無効電力による出力電流制御部48での出力電流制御である。   That is, regarding the injection of reactive power into the power system, first, at step n0, the system frequency, system voltage, and harmonics from the system frequency measurement unit 36, system voltage measurement unit 34a, and harmonic distortion measurement unit 34b are measured. From these measurements, at step n1, the system frequency deviation calculating unit 40 calculates the system frequency deviation. In step n2, the reactive power injection calculation unit 42 in the system frequency fluctuation type isolated operation detection system calculates the injection reactive power amount, and in step n3, the calculated reactive power is converted to the reactive power addition unit. 46 is input. Step n3 is a step of adding the reactive power in step n2 and one reactive power in steps n6 and n8 described later. And step n4 is output current control in the output current control part 48 by these added reactive power.

一方、ステップn1で演算した系統周波数偏差が0.1Hz以下で、かつ、単独運転状態での電気的変動が系統電圧変動である場合は、無効電力注入方式判定部47は、系統電圧変動型単独運転検出系統である第1無効電力注入演算部44aからの無効電力を選択するように選択ゲート45を切り替えることで、ステップn5から、ステップn6に移行し、ステップn3で第1無効電力注入演算部44aからの一定量の無効電力が無効電力加算部46に入力される。   On the other hand, when the system frequency deviation calculated in step n1 is 0.1 Hz or less and the electrical fluctuation in the single operation state is the system voltage fluctuation, the reactive power injection method determination unit 47 determines that the system voltage fluctuation type single unit By switching the selection gate 45 so as to select the reactive power from the first reactive power injection calculation unit 44a that is the operation detection system, the process proceeds from step n5 to step n6, and in step n3, the first reactive power injection calculation unit A certain amount of reactive power from 44 a is input to the reactive power adding unit 46.

また、ステップn1で演算した系統周波数偏差が0.1Hz以下であるが、単独運転状態での電気的変動が系統電圧変動でない場合は、ステップn7に移行する。そして、このステップn7で、系統周波数偏差が0.1Hz以下で、かつ、単独運転状態での電気的変動が高調波変動である場合は、無効電力注入方式判定部47は、高調波変動型単独運転検出系統である第2無効電力注入演算部44bからの無効電力を選択するように選択ゲート45を切り替えることで、ステップn7から、ステップn8に移行し、ステップn3で第2無効電力注入演算部44bからの一定量の無効電力が無効電力加算部46に入力される。   Moreover, although the system | strain frequency deviation calculated by step n1 is 0.1 Hz or less, when the electrical fluctuation | variation in a single operation state is not a system | strain voltage fluctuation | variation, it transfers to step n7. In step n7, when the system frequency deviation is 0.1 Hz or less and the electrical fluctuation in the single operation state is a harmonic fluctuation, the reactive power injection method determination unit 47 determines that the harmonic fluctuation type single By switching the selection gate 45 so as to select the reactive power from the second reactive power injection calculation unit 44b that is the operation detection system, the process proceeds from step n7 to step n8, and in step n3, the second reactive power injection calculation unit A certain amount of reactive power from 44 b is input to the reactive power adding unit 46.

そして、単独運転検出時には、上記三者の単独運転検出系統のうち、系統周波数変動型単独運転検出系統からの無効電力と、系統電圧変動型または高調波変動型の単独運転検出系統のうちのいずれか一方の無効電力とを、ステップn4で、出力電流制御部48からインバータ制御部26に出力させることとなる。   At the time of isolated operation detection, among the above three independent operation detection systems, any of the reactive power from the system frequency fluctuation type independent operation detection system and any of the system voltage fluctuation type or harmonic fluctuation type independent operation detection systems One of the reactive powers is output from the output current control unit 48 to the inverter control unit 26 in step n4.

以上の無効電力の出力形態を、図11の表を参照して説明する。この表では、系統周波数偏差に基づく無効電力量注入演算部42から無効電力を注入している場合に、注入無効電力と負荷無効電力とがバランスしているか否か、注入無効電力と負荷無効電力とがバランスしている場合とバランスしていない場合それぞれで分散型電源12の有効電力と負荷有効電力とがバランスしているか否か、さらに、高調波のあり、なしで、上記三者の単独運転検出系統のどの組み合わせが好ましいかを示す表である。この表で○印は、単独運転検出感度が高く単独運転検出可能、△印は、単独運転検出感度が低いが単独運転検出可能、×印は、単独運転検出感度が無く単独運転検出不可能であることを示す。   The output form of the above reactive power will be described with reference to the table of FIG. In this table, when the reactive power is injected from the reactive power injection calculating unit 42 based on the system frequency deviation, whether or not the injected reactive power and the load reactive power are balanced, the injected reactive power and the load reactive power. Whether the active power of the distributed power source 12 and the load active power are balanced in the case where the power source is balanced and the case where the power source is not balanced, and whether or not the harmonic power is present or not. It is a table | surface which shows which combination of a driving | operation detection system | strain is preferable. In this table, a circle indicates that the isolated operation detection sensitivity is high and the isolated operation can be detected. Indicates that there is.

すなわち、系統周波数変動型では、無効電力がバランスしていない領域のすべてにわたり、○印であり、無効電力量がバランスしている領域のすべてにわたり、△印である。   That is, in the system frequency variation type, the mark is ◯ over the whole area where the reactive power is not balanced, and the mark △ is over the whole area where the reactive power is balanced.

系統電圧変動型では、有効電力がバランスしていない領域のすべてで○印であり、有効電力がバランスしている領域のすべてで×印である。   In the system voltage fluctuation type, all the regions where the active power is not balanced are indicated by a circle, and all the regions where the active power is balanced are indicated by a cross.

高調波変動型では、高調波ありのすべてで○印であり、高調波なしのすべてで×印である。   In the harmonic fluctuation type, all the symbols with a harmonic are indicated by a circle, and all symbols without a harmonic are indicated by a cross.

図11では、結局、上記三者の単独運転検出系統を組み合わせることで、無効電力、有効電力のすべてのバランス状態において、単独運転検出が可能であり、また、無効電力量がバランスし、有効電力もバランスし、高調波なしの場合の単独運転検出状態でも、系統周波数変動型の単独運転検出系統により、単独運転検出が可能である。   In FIG. 11, by combining the above three independent operation detection systems, it is possible to detect the independent operation in all the balance states of the reactive power and the active power, and the reactive power amount balances the active power. Even in the isolated operation detection state without harmonics, the isolated operation detection system of the system frequency variation type can detect the isolated operation.

そして、上記三者の単独運転検出系統から無効電力を注入するのではなく、電力系統への影響を軽減するために、系統周波数変動型の単独運転検出系統一者単独による単独運転検出のための無効電力量注入、あるいは、系統周波数変動型の単独運転検出系統と、系統周波数変動型または高調波変動型の単独運転検出系統のいずれか一方との二者で単独運転検出のための無効電力の注入を行うので、電力系統に対する影響を極力軽減しつつ広範囲の単独運転状態に対して単独運転検出を良好な感度で行うことができる。   And, in order to reduce the influence on the power system, rather than injecting reactive power from the above three independent operation detection systems, the system frequency variation type isolated operation detection system for independent operation detection alone Reactive power injection or reactive power detection for islanding operation detection with either system frequency fluctuation type isolated operation detection system and either system frequency fluctuation type or harmonic fluctuation type isolated operation detection system Since injection is performed, it is possible to perform isolated operation detection with good sensitivity in a wide range of isolated operation states while reducing the influence on the power system as much as possible.

図12、図13を参照して本発明の他の実施の形態を説明する。この実施の形態では、選択ゲート49により、上記三者のいずれか1つを選択するものである。図13のステップn9で、系統周波数偏差が0.1Hz以下でなければ、ステップn2に進み、系統周波数偏差が0.1Hz以下であれば、ステップn5´以降に進むものである。したがって、図10のステップn5は、図13のステップn9とn5´、図10のステップn7は図13のステップn9とn7´と同等である。したがって、この実施の形態の場合でも、図11の表から、電力系統に対する影響を極力軽減しつつ広範囲の単独運転状態に対して単独運転検出を良好な感度で行うことができる。   Another embodiment of the present invention will be described with reference to FIGS. In this embodiment, the selection gate 49 selects any one of the above three. In step n9 of FIG. 13, if the system frequency deviation is not 0.1 Hz or less, the process proceeds to step n2, and if the system frequency deviation is 0.1 Hz or less, the process proceeds to step n5 'and subsequent steps. Therefore, step n5 in FIG. 10 is equivalent to steps n9 and n5 ′ in FIG. 13, and step n7 in FIG. 10 is equivalent to steps n9 and n7 ′ in FIG. Therefore, even in the case of this embodiment, it is possible to perform isolated operation detection with good sensitivity for a wide range of isolated operation states from the table in FIG. 11 while reducing the influence on the power system as much as possible.

本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲に記載した範囲内で、種々な変更ないしは変形を含むものである。   The present invention is not limited to the above-described embodiment, and includes various changes or modifications within the scope described in the claims.

図1は、本発明の実施の形態に係る単独運転検出方法が適用される分散型電源システムの構成を示す図である。FIG. 1 is a diagram showing a configuration of a distributed power supply system to which an isolated operation detection method according to an embodiment of the present invention is applied. 図2は、図1の制御装置の機能ブロック図である。FIG. 2 is a functional block diagram of the control device of FIG. 図3は周期偏差を演算の説明に供する図である。FIG. 3 is a diagram for explaining the calculation of the period deviation. 図4は周期偏差対無効電力量との関係を示す図である。FIG. 4 is a diagram illustrating the relationship between the period deviation and the reactive power amount. 図5は本発明の実施の形態に係る単独運転検出方法が適用される他の分散型電源システムの構成を示す図である。FIG. 5 is a diagram showing the configuration of another distributed power supply system to which the isolated operation detection method according to the embodiment of the present invention is applied. 図6は各系統周期ごとの系統電圧、高調波歪電圧と3周期分の系統電圧、高調波歪電圧の平均値との説明に用いる図である。FIG. 6 is a diagram used for explaining the system voltage, the harmonic distortion voltage, the system voltage for three periods, and the average value of the harmonic distortion voltage for each system period. 図7(a)は系統電圧、高調波歪電圧が上昇側に急変する場合に系統周波数変化が判定条件(a1)(a2)を充足するか否かの説明に用いる図、図7(b)は系統電圧、高調波歪電圧が下降側に急変する場合に系統周波数変化が判定条件(a1)(a2)を充足するか否かの説明に用いる図である。FIG. 7A is a diagram used to explain whether or not the system frequency change satisfies the determination conditions (a1) and (a2) when the system voltage and the harmonic distortion voltage suddenly change to the rising side, and FIG. FIG. 6 is a diagram used for explaining whether or not the system frequency change satisfies the determination conditions (a1) and (a2) when the system voltage and the harmonic distortion voltage change suddenly to the lower side. 図8(a)は系統電圧が上昇側に急変する場合の系統電圧変化が判定条件(b1)を充足するか否かの説明に用いる図、図8(b)は系統電圧が下降側に急変する場合の系統電圧変化が判定条件(b1)を充足するか否かの説明に用いる図、図8(c)は高調波歪電圧が上昇側に急変する場合の高調波歪電圧変化が判定条件(b2)を充足するか否かの説明に用いる図、図8(d)は高調波歪電圧が下降側に急変する場合の高調波歪電圧変化が判定条件(b2)を充足するか否かの説明に用いる図である。FIG. 8A is a diagram used for explaining whether or not the system voltage change satisfies the determination condition (b1) when the system voltage suddenly changes to the rising side, and FIG. 8B shows the system voltage suddenly changing to the decreasing side. FIG. 8C is a diagram used for explaining whether or not the system voltage change satisfies the determination condition (b1), and FIG. 8C shows the harmonic distortion voltage change when the harmonic distortion voltage suddenly changes to the rising side. FIG. 8D is a diagram used for explaining whether or not (b2) is satisfied. FIG. 8D is whether or not the harmonic distortion voltage change when the harmonic distortion voltage suddenly changes to the lower side satisfies the determination condition (b2). It is a figure used for description. 図9(a)は系統電圧、高調波歪電圧が上昇側に急変する場合の無効電力注入の説明に用いる図、図9(b)は系統電圧、高調波歪電圧が下降側に急変する場合の無効電力注入の説明に用いる図である。9A is a diagram used for explaining reactive power injection when the system voltage and the harmonic distortion voltage suddenly change to the rising side, and FIG. 9B is a case where the system voltage and the harmonic distortion voltage suddenly change to the decreasing side. It is a figure used for description of no reactive power injection. 図10は実施の形態の動作説明に関わるフローチャートである。FIG. 10 is a flowchart relating to the explanation of the operation of the embodiment. 図11は上記フローチャートに対応する系統周波数変動型、系統電圧変動型、高調波変動型三者の単独運転検出系統における無効電力バランス、有効電力バランス、高調波あり、なしでの単独運転検出状態を示す表図である。FIG. 11 shows the isolated operation detection state with or without reactive power balance, active power balance, and harmonics in the three-way isolated operation detection system corresponding to the above-described flowchart. FIG. 図12は他の実施の形態に関わる制御装置の機能ブロック図である。FIG. 12 is a functional block diagram of a control device according to another embodiment. 図13は他の実施の形態の動作説明に関わるフローチャートである。FIG. 13 is a flowchart for explaining the operation of another embodiment. 図14は、分散型電源の多数台連系のイメージ図である。FIG. 14 is an image diagram of a multi-unit interconnection of distributed power sources.

符号の説明Explanation of symbols

10 分散型電源システム
12 分散型電源
14 電力系統
16 パワーコンディショナ
18 単独運転検出装置
20,22 連系リレー
24 制御装置
26 インバータ制御部
28 インバータ
DESCRIPTION OF SYMBOLS 10 Distributed type power supply system 12 Distributed type power supply 14 Electric power system 16 Power conditioner 18 Independent operation detection apparatus 20, 22 Interconnection relay 24 Control apparatus 26 Inverter control part 28 Inverter

Claims (7)

分散型電源が電力系統から切り離され単独運転しているか否かの検出のため電力系統に電気的な能動信号を与えて電気的変動を起こさせると共に、この電気的変動に基づいて単独運転検出を行う単独運転検出方法において、
上記能動信号の付与で電力系統に起きる複数種の電気的変動に対してそれぞれ個別に対応して単独運転検出する複数の単独運転検出系統を設け、
上記各単独運転検出系統を組み合わせることで単独運転検出の不感帯を無くすかまたは低減する、
ことを特徴とする単独運転検出方法。
In order to detect whether the distributed power source is disconnected from the power system and operated independently, an electrical active signal is given to the power system to cause electrical fluctuations, and the isolated operation detection is performed based on the electrical fluctuations. In the isolated operation detection method to be performed,
A plurality of single operation detection systems for detecting single operation corresponding to each of a plurality of types of electrical fluctuations that occur in the power system due to the application of the active signal are provided,
Eliminate or reduce the dead zone of isolated operation detection by combining the above isolated operation detection systems,
An isolated operation detection method characterized by the above.
上記各単独運転検出系統を複数組み合わせるときに、少なくともいずれか1つの単独運転検出系統に単独運転検出の不感帯が存在するときに、他の単独運転検出系統にその不感帯で単独運転検出動作させる、ことを特徴とする請求項1に記載の方法。   When a plurality of the above-mentioned individual operation detection systems are combined, when there is a dead zone for detecting an independent operation in at least one of the individual operation detection systems, the other independent operation detection system is caused to perform an independent operation detection in the dead zone. The method of claim 1, wherein: 上記能動信号が、無効電力である請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the active signal is reactive power. 上記電気的変動の種類が、系統周波数変動、系統電圧変動、高調波変動である、請求項1ないし3のいずれかに記載の方法。   The method according to claim 1, wherein the type of electrical fluctuation is system frequency fluctuation, system voltage fluctuation, or harmonic fluctuation. 分散型電源が電力系統から切り離されて単独運転しているか否かを検出する単独運転検出装置に対してその検出動作を制御する制御装置において、請求項1ないし4のうちのいずれか1項に記載の単独運転検出方法が実施可能になっている、ことを特徴とする制御装置。   5. A control device that controls the detection operation of an isolated operation detection device that detects whether or not a distributed power source is disconnected from an electric power system and is operating alone, according to any one of claims 1 to 4. A control device, characterized in that the described isolated operation detection method can be implemented. 分散型電源が電力系統から切り離され単独運転しているか否かの検出のため無効電力を電力系統に注入する単独運転検出装置において、
請求項5に記載の制御装置を備えた、ことを特徴とする単独運転検出装置。
In a single operation detection device that injects reactive power into a power system for detection of whether a distributed power source is disconnected from the power system and is operating independently,
An isolated operation detection device comprising the control device according to claim 5.
分散型電源と、この分散型電源が電力系統から切り離されて単独運転しているか否かを検出する単独運転検出装置とを備える分散型電源システムにおいて、この単独運転検出装置が請求項6に記載の単独運転検出装置である、ことを特徴とする分散型電源システム。   The distributed operation system comprising: a distributed power supply; and an isolated operation detection device that detects whether or not the distributed power supply is isolated from the electric power system and operates independently. A distributed power supply system characterized by being a single operation detection device.
JP2007309907A 2007-11-30 2007-11-30 Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system Active JP4835587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007309907A JP4835587B2 (en) 2007-11-30 2007-11-30 Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007309907A JP4835587B2 (en) 2007-11-30 2007-11-30 Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system

Publications (2)

Publication Number Publication Date
JP2009136095A true JP2009136095A (en) 2009-06-18
JP4835587B2 JP4835587B2 (en) 2011-12-14

Family

ID=40867442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007309907A Active JP4835587B2 (en) 2007-11-30 2007-11-30 Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system

Country Status (1)

Country Link
JP (1) JP4835587B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012044815A (en) * 2010-08-20 2012-03-01 Toshiba Corp Individual operation detector and individual operation detection method
JP2012075245A (en) * 2010-09-28 2012-04-12 Sanyo Electric Co Ltd Power conversion apparatus and power supply system
WO2014076906A1 (en) 2012-11-16 2014-05-22 パナソニック株式会社 Relay operation setting device, power conditioner and distributed power supply system
JP2014117016A (en) * 2012-12-06 2014-06-26 Panasonic Corp Single operation detection device and method, power conditioner and distributed power source system
JP2015107032A (en) * 2013-12-02 2015-06-08 山洋電気株式会社 Individual operation detector, and individual operation detecting method
JP2015133785A (en) * 2014-01-10 2015-07-23 田淵電機株式会社 Single operation detector and single operation detection method
JP2016039746A (en) * 2014-08-11 2016-03-22 株式会社高砂製作所 Ac power supply device and method of detecting isolated operation
JP2016086574A (en) * 2014-10-28 2016-05-19 三菱電機株式会社 Control apparatus for single operation detection, and single operation detection device
US9520819B2 (en) 2014-02-28 2016-12-13 General Electric Company System and method for controlling a power generation system based on a detected islanding event
JP2018068014A (en) * 2016-10-18 2018-04-26 シャープ株式会社 Individual operation detection device and power conditioner
JP2020145835A (en) * 2019-03-06 2020-09-10 パナソニックIpマネジメント株式会社 Power conversion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180036A (en) * 2001-10-01 2003-06-27 Canon Inc Power converter, power conversion system, and method of detecting single operation
JP2006262557A (en) * 2005-03-15 2006-09-28 Omron Corp Single operation detection device, single operation detection method and system linkage system
JP2007202266A (en) * 2006-01-25 2007-08-09 Omron Corp Detecting method for isolated operation, controller for detection of isolated operation in dispersed power system, isolated operation detector, and dispersed power system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180036A (en) * 2001-10-01 2003-06-27 Canon Inc Power converter, power conversion system, and method of detecting single operation
JP2006262557A (en) * 2005-03-15 2006-09-28 Omron Corp Single operation detection device, single operation detection method and system linkage system
JP2007202266A (en) * 2006-01-25 2007-08-09 Omron Corp Detecting method for isolated operation, controller for detection of isolated operation in dispersed power system, isolated operation detector, and dispersed power system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012044815A (en) * 2010-08-20 2012-03-01 Toshiba Corp Individual operation detector and individual operation detection method
JP2012075245A (en) * 2010-09-28 2012-04-12 Sanyo Electric Co Ltd Power conversion apparatus and power supply system
WO2014076906A1 (en) 2012-11-16 2014-05-22 パナソニック株式会社 Relay operation setting device, power conditioner and distributed power supply system
JP2014117016A (en) * 2012-12-06 2014-06-26 Panasonic Corp Single operation detection device and method, power conditioner and distributed power source system
JP2015107032A (en) * 2013-12-02 2015-06-08 山洋電気株式会社 Individual operation detector, and individual operation detecting method
JP2015133785A (en) * 2014-01-10 2015-07-23 田淵電機株式会社 Single operation detector and single operation detection method
US9520819B2 (en) 2014-02-28 2016-12-13 General Electric Company System and method for controlling a power generation system based on a detected islanding event
JP2016039746A (en) * 2014-08-11 2016-03-22 株式会社高砂製作所 Ac power supply device and method of detecting isolated operation
JP2016086574A (en) * 2014-10-28 2016-05-19 三菱電機株式会社 Control apparatus for single operation detection, and single operation detection device
JP2018068014A (en) * 2016-10-18 2018-04-26 シャープ株式会社 Individual operation detection device and power conditioner
JP2020145835A (en) * 2019-03-06 2020-09-10 パナソニックIpマネジメント株式会社 Power conversion device
JP7190662B2 (en) 2019-03-06 2022-12-16 パナソニックIpマネジメント株式会社 power converter

Also Published As

Publication number Publication date
JP4835587B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4835587B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP5418079B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP4661856B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP3948487B1 (en) Isolated operation detection method, distributed power supply isolated operation detection control device, isolated operation detection device, and distributed power supply
EP2613164B1 (en) Distributed power generation device and method for operating same
JP5050723B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP5893057B2 (en) Isolated operation detection device and isolated operation detection method
JP6579117B2 (en) Inverter
JP4231849B2 (en) Isolated operation detection method and isolated operation detection device
WO2012132258A1 (en) Distributed power generation system and method for operating same
US9935463B2 (en) Redundant point of common coupling (PCC) to reduce risk of microgrid&#39;s islanding
JP2019083689A (en) Power conditioner, power system, control method of power conditioner
EP3252908B1 (en) Power management device configured to determine mounting directions of current sensors of a power grid
JP2015107032A (en) Individual operation detector, and individual operation detecting method
JP4872826B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP2013099058A (en) Power conditioner
CN103515981A (en) Grid-connected photovoltaic power generation system and automatic phase displacement islanding phenomenon detecting method thereof
JP6341791B2 (en) Isolated operation detection device, isolated operation detection method, isolated operation detection control device, and distributed power supply device
JP6345078B2 (en) Control device for isolated operation detection, isolated operation detection device, and isolated operation detection method
JP2014217177A (en) Power supply system and power storage device
WO2020022194A1 (en) Power conditioner
JP2018207786A (en) Control method for power control system, power control system, and power controller
JP2019201503A (en) Electric power conversion system
US11101660B2 (en) Storage battery system and power display device
JP5793349B2 (en) Isolated operation detection method, power conditioner, and distributed power supply system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4835587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250