WO2020022194A1 - Power conditioner - Google Patents

Power conditioner Download PDF

Info

Publication number
WO2020022194A1
WO2020022194A1 PCT/JP2019/028361 JP2019028361W WO2020022194A1 WO 2020022194 A1 WO2020022194 A1 WO 2020022194A1 JP 2019028361 W JP2019028361 W JP 2019028361W WO 2020022194 A1 WO2020022194 A1 WO 2020022194A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
current sensor
current
current value
per unit
Prior art date
Application number
PCT/JP2019/028361
Other languages
French (fr)
Japanese (ja)
Inventor
裕太 山本
浩平 柴田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2020532346A priority Critical patent/JP6901048B2/en
Publication of WO2020022194A1 publication Critical patent/WO2020022194A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a power conditioner.
  • a system including a power conditioner that converts DC power of a power generation device such as a solar power generation device into AC power and supplies power to an indoor AC load in connection with a power system.
  • the power conditioner and the power system are configured to detect a state in which power is supplied from the power system to the indoor AC load and a state in which reverse power flows from the power conditioner to the power system in order to buy and sell power.
  • a current sensor is provided for each of the U-phase wire and the W-phase wire in the single-phase three-wire wire between the two. In such a system, the current sensor may be mounted in the wrong direction.
  • An object of the present disclosure is to provide a power conditioner that does not require an additional configuration and that can detect an attached state of a current sensor attached to an electric wire connecting a power system and a power conditioner.
  • a power conditioner is a power conditioner that is connected to a single-phase two-wire power system including a first electric wire and a second electric wire, and is output by a DC power supply device.
  • a conversion unit capable of converting power to predetermined DC power
  • an inverter unit capable of converting the DC power to AC power and outputting the converted power
  • a first current sensor for detecting an output current of the inverter unit
  • Judgment for judging the attachment state of the second current sensor based on a first current value detected by one current sensor and a second current value detected by a second current sensor attached to the first electric wire. And a part.
  • the direction of fluctuation of the output power of the inverter unit and the direction of fluctuation of the power from the power system are opposite. That is, when the power consumption of the indoor AC load is constant, when the output power of the inverter unit increases, the power from the power system decreases, and when the output power of the inverter unit decreases, the power from the power system increases. Further, the power from the power system can be grasped from the second current value of the second current sensor.
  • the direction in which the second current sensor is mounted is normal as the direction in which the second current sensor is mounted such that the direction in which the output power of the inverter unit fluctuates and the direction in which the power from the power system fluctuates are opposite.
  • the mounting direction of the second current sensor is opposite, the direction of fluctuation of the output power of the inverter unit and the direction of fluctuation of the power from the power system are the same.
  • the second current sensor when the second current sensor is disconnected, the second current sensor does not output a signal corresponding to the fluctuation of the power from the power system even if the output power of the inverter unit fluctuates. In this manner, it can be determined that the second current sensor is disconnected according to the amount of change in the output power of the inverter and the amount of change in the power from the power system.
  • the present power conditioner determines the mounting state of the second current sensor based on the first current value detected by the first current sensor and the second current value detected by the second current sensor. By doing so, an additional configuration is not required, and the attachment state of the current sensor attached to the electric wire connecting the power system and the power conditioner can be detected.
  • a power conditioner is a power conditioner interconnected to a single-phase three-wire power system including a first electric wire, a second electric wire, and a third electric wire serving as a neutral wire.
  • a conversion unit that can convert the power output from the DC power supply into predetermined DC power, an inverter that can convert the DC power to AC power and output the power, and detect an output current of the inverter.
  • Current sensor a first current value detected by the first current sensor, and a second current detected by a second current sensor attached to each of the first electric wire and the second electric wire
  • a determination unit that determines the mounting state of the second current sensor based on the value.
  • the attachment state of the second current sensor is determined based on the first current value detected by the first current sensor and the second current value detected by the second current sensor. This eliminates the need for a configuration, and can detect the mounting state of the current sensor that is mounted on the electric wire that connects the power system and the power conditioner.
  • an additional configuration is not required, and it is possible to detect an attached state of a current sensor attached to an electric wire connecting the power system and the power conditioner.
  • FIG. 1 is a configuration diagram of a power management system in which a power conditioner according to a first embodiment is used.
  • FIG. 2 is a circuit diagram of an inverter section of the power conditioner and its periphery.
  • 4 is a graph showing an example of changes in output power of an inverter unit and purchased power from a power system.
  • 9 is a flowchart illustrating an example of a procedure of a process performed by a determination unit of the power conditioner to determine an attachment state of a second current sensor.
  • FIG. 4 is a schematic circuit diagram for explaining a relationship between output power of the inverter unit and power from the power system before the output power of the inverter unit fluctuates.
  • FIG. 1 is a configuration diagram of a power management system in which a power conditioner according to a first embodiment is used.
  • FIG. 2 is a circuit diagram of an inverter section of the power conditioner and its periphery.
  • 4 is a graph showing an example of changes in output power of an inverter unit and purchased
  • FIG. 4 is a schematic circuit diagram for explaining the relationship between the output power of the inverter unit and the power from the power system after the output power of the inverter unit has changed.
  • FIG. 7 is a schematic circuit diagram for explaining a relationship between output power of an inverter unit of another example and power from a power system.
  • FIG. 2 is a circuit diagram of an inverter section of the power conditioner and its periphery.
  • 9 is a flowchart illustrating an example of a procedure of a process performed by a determination unit of the power conditioner to determine an attachment state of a second current sensor.
  • FIG. 4 is a schematic circuit diagram for explaining a relationship between output power of the inverter unit and power from the power system before the output power of the inverter unit fluctuates.
  • FIG. 4 is a schematic circuit diagram for explaining the relationship between the output power of the inverter unit and the power from the power system after the output power of the inverter unit has changed.
  • the power management system 1 includes a power conditioner 10, a solar power generation device 2 electrically connected to the power conditioner 10, and a power storage device 3 which is an example of a DC power supply device.
  • Power conditioner 10 is connected to power system 5 via AC bus 4.
  • the power conditioner 10 of the present embodiment is connected to a single-phase two-wire power system 5 including a first electric wire 4A and a second electric wire 4B as the AC bus 4.
  • a load 6 is connected to the AC bus 4 via a distribution board (not shown) or the like.
  • the load 6 is, for example, an indoor AC load, and includes a lighting, a refrigerator, a washing machine, an air conditioner, a microwave oven, and the like.
  • the power management system 1 adjusts power between the solar power generation device 2, the power storage device 3, the power system 5, and the load 6 by the power conditioner 10. As an example of this adjustment, the reverse power flow of the power generated by the photovoltaic power generator 2 to the power system 5, the power storage in the power storage device 3, the adjustment of the supply to the load 6, and the power storage device of the power in the power system 5 3 and adjustment of supply to the load 6.
  • the power generation device for example, a wind power generation device, a gas power generation device, a geothermal power generation device, or the like can be used in addition to the solar power generation device.
  • the photovoltaic power generation device 2 has a photovoltaic power generation panel (not shown), and supplies the DC power generated by the photovoltaic power generation panel to the power conditioner 10.
  • the photovoltaic power generation device 2 executes a maximum power point tracking control (MPPT: Maximum Power Point Tracking) that extracts a current at an output voltage at which the power output from the photovoltaic panel becomes maximum.
  • MPPT Maximum Power Point Tracking
  • Power storage device 3 includes a plurality of storage batteries connected in series. Power conditioner 10 controls charging and discharging of power storage device 3.
  • the power conditioner 10 includes a PV converter 11, an inverter unit 12, a voltage sensor 13, a power conversion device 14 as an example of a conversion unit, and a control device 20.
  • the PV converter 11, the inverter unit 12, and the power converter 14 are each connected to a high-voltage DC bus 15. That is, the PV converter 11, the inverter unit 12, and the power converter 14 are connected to each other via the high-voltage DC bus 15.
  • the notification unit 7 is electrically connected to the power conditioner 10.
  • the notification unit 7 notifies the outside of the power conditioner 10 of predetermined information. Examples of the notification means by the notification unit 7 include light emission (light emission color, blinking), sound, and display by the display unit.
  • the solar power generation device 2 is connected to the PV converter 11.
  • the PV converter 11 outputs the photovoltaic power generator 2 that fluctuates according to the sunshine conditions such as the season, weather, and time zone to the high-voltage DC bus 15 by the maximum power point tracking control (MPPT).
  • MPPT maximum power point tracking control
  • An example of the set voltage output from the PV converter 11 to the high-voltage DC bus 15 is 380V.
  • Inverter unit 12 is connected to PV converter 11 and AC bus 4.
  • the inverter unit 12 is a DC / AC converter (DC / AC converter), and converts the DC power of the high-voltage DC bus 15 into, for example, an effective value of 200 V AC power and outputs the AC power to the AC bus 4.
  • the inverter unit 12 converts the AC power of the AC bus 4 into DC power of a set voltage and outputs the DC power to the high-voltage DC bus 15.
  • the inverter section 12 is a full-bridge type inverter circuit and has four switch elements 12a to 12d.
  • the switch elements 12a and 12b are connected in series between a first electric wire 15H and a second electric wire 15L constituting the high-voltage DC bus 15.
  • the switch elements 12c and 12d are connected in series between the first electric wire 15H and the second electric wire 15L.
  • the switch elements 12a and 12b and the switch elements 12c and 12d are connected in parallel.
  • the inverter unit 12 includes a third wire 12X connected to a connection node N1 between the switch element 12a and the switch element 12b, and a fourth wire connected to a connection node N2 between the switch element 12c and the switch element 12d. 12Y.
  • the third electric wire 12X and the fourth electric wire 12Y are connected to a pair of input / output terminals 10T of the power conditioner 10.
  • a first electric wire 4A and a second electric wire 4B of the AC bus 4 are connected to the pair of input / output terminals 10T.
  • the third wire 12X is provided with an inductor 17X
  • the fourth wire 12Y is provided with an inductor 17Y.
  • a smoothing capacitor 18 and a voltage sensor 13 are provided between the third electric wire 12X and the fourth electric wire 12Y. The voltage sensor 13 outputs a signal corresponding to the output voltage of the inverter unit 12, which is the voltage of the third electric wire 12X and the fourth electric wire 12Y.
  • the inverter unit 12 has a first current sensor 16 for detecting a current output from the inverter unit 12. More specifically, the first current sensor 16 is provided on the third electric wire 12X, and outputs a signal corresponding to the current flowing through the third electric wire 12X.
  • a second current sensor 8 is provided in a portion between the load 6 and the power system 5 on the AC bus 4.
  • the second current sensor 8 is attached to the first electric wire 4A of the AC bus 4.
  • the second current sensor 8 outputs a signal corresponding to the current flowing through the first electric wire 4A.
  • Power storage device 3 is connected to power conversion device 14.
  • Power conversion device 14 converts the power (DC power) output from power storage device 3 into predetermined DC power.
  • the power converter 14 outputs a predetermined DC power to the inverter unit 12.
  • One example of the power converter 14 is a DC-DC converter.
  • Power conversion device 14 converts the power output from power storage device 3 into DC power of a predetermined voltage and outputs the DC power to inverter unit 12.
  • control device 20 includes a control unit 21 that controls the PV converter 11, the inverter unit 12, and the power conversion device 14, and a determination unit 22 that determines a mounting state of the second current sensor 8. .
  • the control unit 21 is electrically connected to the gates (control terminals) of the switch elements 12a to 12d via a drive circuit (not shown), and sends a control signal for controlling on / off of the switch elements 12a to 12d to the gates of the switch elements 12a to 12d.
  • Output to Control unit 21 includes an arithmetic processing unit that executes a predetermined control program.
  • the arithmetic processing device includes, for example, a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
  • the control unit 21 may include one or more microcomputers.
  • the control unit 21 may include a plurality of arithmetic processing devices that are separately arranged at a plurality of locations.
  • Control unit 21 further includes a storage unit.
  • the storage unit stores various control programs and information used for various control processes.
  • the storage unit includes, for example, a nonvolatile memory and a volatile memory.
  • the determination unit 22 includes an A / D converter 23 and a DSP (Digital Signal Processor) 24.
  • the A / D converter 23 is electrically connected to the first current sensor 16, the second current sensor 8, and the voltage sensor 13.
  • the first current sensor 16 outputs an analog signal corresponding to the amount of current flowing through the third electric wire 12X.
  • the second current sensor 8 outputs an analog signal according to the amount of current flowing through the first electric wire 4A.
  • the voltage sensor 13 outputs an analog signal according to the output voltage of the inverter unit 12.
  • the A / D converter 23 converts an output signal of the first current sensor 16 into a first current value TA1. Further, the A / D converter 23 converts the output signal of the second current sensor 8 into a second current value TA2.
  • the A / D converter 23 converts the output signal of the voltage sensor 13 into a voltage value TV.
  • the A / D converter 23 outputs the converted values TA1, TA2, and TV to the DSP 24.
  • the DSP 24 takes in the first current value TA1, the second current value TA2, and the voltage value TV, performs a differentiation process using a digital filter, and performs the second current sensor 8 based on the processed value. Determine the state of attachment.
  • the respective increasing / decreasing directions are detected, Whether the value has increased (+) or decreased (-) is calculated by a differentiation process using a digital filter, and the product of the first current value TA1 and the second current value TA2 is positive (+) or negative (-).
  • the attachment state of the second current sensor 8 is determined based on either of them.
  • the load 6 is supplied with at least one of the output power from the inverter unit 12 and the purchased power from the power system 5, when the power consumption of the load 6 is constant,
  • the output power of the inverter unit 12 and the purchased power from the power system 5 fluctuate in conjunction with each other.
  • the output power of the inverter unit 12 decreases, the purchased power from the power system 5 increases, and when the output power of the inverter unit 12 increases, the purchased power from the power system 5 increases. Decrease. That is, the direction of fluctuation of the power purchased from the power system 5 detected by the output signal of the normally installed second current sensor 8 is opposite to the direction of fluctuation of the output power of the inverter unit 12.
  • the power purchased from the power system 5 is calculated based on the second current value TA2 detected by the second current sensor 8. Since the direction in which the alternating current flows cannot be specified only by the current value detected by the current sensor, the phase difference from the output voltage value of the inverter unit 12 detected by the voltage sensor 13 is actually detected, and the product ( By calculating the power value, the power value and its direction (whether to sell or buy) are detected. On the other hand, since the second current sensor 8 is connected to the AC bus 4 by the installer, the mounting direction of the second current sensor 8 to the AC bus 4 may be incorrect. Further, even if the second current sensor 8 is normally attached, the second current sensor 8 may be detached from the AC bus 4 due to, for example, aging.
  • the determination unit 22 of the present embodiment monitors the output power of the inverter unit 12 and the purchased power from the power system 5, and when the output power of the inverter unit 12 fluctuates, the output power of the inverter unit 12 and the power system 5, the state of attachment of the second current sensor 8 is determined.
  • the attachment state of the second current sensor 8 includes whether or not the attachment direction of the second current sensor 8 to the AC bus 4 is normal and whether or not the second current sensor 8 is off the AC bus 4.
  • the output power of the inverter unit 12 may slightly fluctuate due to the influence of noise or the like.
  • the power purchased from the power system 5 may not fluctuate in conjunction therewith, and the mounting state of the second current sensor 8 may be erroneously determined.
  • the determination unit 22 of the present embodiment determines the mounting state of the second current sensor 8 when the amount of fluctuation per unit time of the output power of the inverter unit 12 is equal to or greater than a predetermined value VX.
  • the predetermined value VX is a value larger than the maximum value of the fluctuation of the output power of the inverter unit 12 due to noise or the like, and is set in advance by a test or the like.
  • FIG. 4 is a flowchart illustrating an example of a procedure of a determination process of the attachment state of the second current sensor 8 performed by the determination unit 22.
  • the determining unit 22 starts the process when the power is supplied to the control device 20 and repeatedly executes the process at predetermined intervals until the power supply to the control device 20 is stopped.
  • the fluctuation direction and the fluctuation amount of the purchased power are calculated based on the output signal of the second current sensor 8, and are different from the actual fluctuation direction and the fluctuation amount in the AC bus 4.
  • the determination unit 22 determines in step S11 whether the amount of change in the output power of the inverter unit 12 per unit time is equal to or greater than a predetermined value VX.
  • the determination unit 22 calculates the amount of change in the output power of the inverter unit 12 per unit time. In one example, the determination unit 22 calculates the difference between the minimum value and the maximum value of the output power of the inverter unit 12 per unit time as the amount of change in the output power of the inverter unit 12 per unit time.
  • the unit time is a time for determining that a change in output power of the inverter unit 12 is not a change in output power due to noise or the like, and is set in advance by a test or the like.
  • the unit time is a time that is one cycle (for example, 1/50 (s) or 1/60 (s)) of the AC power of the power system 5.
  • the unit time is set to 10 (ms)
  • the predetermined value VX is set to 200 (W).
  • the output power of the inverter unit 12 is calculated by the product of the first current value TA1 detected by the first current sensor 16 and the voltage value TV detected by the voltage sensor 13.
  • the output power of the inverter unit 12 is such that the voltage value TV detected by the voltage sensor 13 and the first current value TA1 detected by the first current sensor 16 are both sinusoidal. Classified as Since the phase difference between the voltage value TV and the first current value TA1 fluctuates depending on the load 6, it is calculated by multiplying the phase difference to obtain an accurate power value. However, in order to determine the mounting state of the second current sensor 8, it is necessary to determine whether the increasing and decreasing directions are the same or different from each other in a state where the first current value TA1 and the second current value TA2 are synchronized.
  • step S11 can be said to be a determination as to whether or not the amount of change in the output current per unit time of the inverter unit 12 is equal to or greater than a predetermined value AX. That is, it can be said that the process of step S11 is a determination of whether or not the amount of change per unit time of the first current value TA1 detected by the first current sensor 16 is equal to or greater than the predetermined value AX.
  • the predetermined value AX is a value for determining that the change in the output current of the inverter unit 12 is not a change in the output current due to noise or the like, and is set in advance by a test or the like.
  • the determination value is 1 (A).
  • step S11: NO If the fluctuation amount per unit time of the output power of the inverter unit 12 is not equal to or larger than the predetermined value VX in step S11 (step S11: NO), the determination unit 22 ends the process once. That is, when the amount of change in the first current value TA1 per unit time is less than the predetermined value AX, the determination unit 22 ends the process once.
  • step S12 determines in step S12 that the variation of the purchased power from the power system 5 is the predetermined value. It is determined whether or not VX or more.
  • the process of step S12 can also be said to be a determination of whether or not the amount of change in current per unit time supplied from the power system 5 to the first electric wire 4A is equal to or greater than a predetermined value AX. That is, it can be said that the process of step S12 is a determination of whether or not the variation per unit time of the second current value TA2 detected by the second current sensor 8 is equal to or greater than the predetermined value AX.
  • the determination unit 22 calculates, for example, the difference between the minimum value and the maximum value of the power purchased from the power system 5 per unit time as the fluctuation amount of the power purchased from the power system 5 per unit time.
  • the purchased power from the power system 5 is the product of the second current value TA2 detected by the second current sensor 8 and the voltage value between the first electric wire 4A and the second electric wire 4B of the AC bus 4.
  • a predetermined value VY (0 ⁇ VY ⁇ VX) larger than 0 and smaller than the predetermined value VX is used to obtain the power purchased from the power system 5. It may be determined whether or not the amount of change per unit time is equal to or greater than a predetermined value VY.
  • step S12 determines in step S13 the variation in the output power of the inverter unit 12 per unit time. It is determined whether the direction is opposite to the direction in which the power purchased from the power system 5 fluctuates per unit time. In one example, the determination unit 22 defines the direction in which the power increases as plus and defines the direction in which the power decreases as negative, the fluctuation direction of the output power of the inverter unit 12 per unit time, and the power purchased from the power system 5. Are set as either plus or minus, respectively.
  • the determining unit 22 multiplies the direction of change per unit time of the output power of the inverter unit 12 by the direction of change per unit time of the power purchased from the power system 5 to determine whether the result of the multiplication is negative. Is determined. When the result of the multiplication is negative, the determination unit 22 determines that the direction of change in the output power of the inverter unit 12 per unit time is opposite to the direction of the change in the power purchased from the power system 5 per unit time. judge. In one example, when the output power of the inverter unit 12 increases (plus) and the purchased power from the power system 5 decreases (minus), the determination unit 22 calculates plus and minus.
  • the determination unit 22 determines that the fluctuation direction of the output power of the inverter unit 12 per unit time is opposite to the fluctuation direction of the power purchased from the power system 5 per unit time because the calculation result is negative. .
  • the process of step S13 is performed by changing the direction of change of the first current value TA1 per unit time when the amount of change per unit time of the first current value TA1 is equal to or more than the predetermined value AX and the second current value TA2. It can also be said that it is determined whether or not the direction of change per unit time is opposite.
  • step S14 determines the mounting direction of the second current sensor 8 based on the direction of change of the first current value TA1 per unit time and the direction of change of the second current value TA2 per unit time.
  • the determination unit 22 attaches the second current sensor 8 It is determined that the direction is normal.
  • step S15 it is determined that the mounting direction of the second current sensor 8 is abnormal.
  • the determination unit 22 it is determined that the mounting direction is abnormal.
  • the determination unit 22 outputs to the notification unit 7 that the mounting direction of the second current sensor 8 is abnormal in the process of step S15.
  • the notification unit 7 has a display unit such as a liquid crystal panel.
  • the notification unit 7 displays on the display unit that the mounting direction of the second current sensor 8 is abnormal. For example, when the installer constructs the power management system 1, by visually recognizing the display unit of the notification unit 7, it is possible to recognize that the mounting direction of the second current sensor 8 is abnormal.
  • the determination unit 22 disconnects the second current sensor 8 from the AC bus 4 in step S16. Is determined, and the process is temporarily terminated. As described above, the determination unit 22 determines that the second current sensor 8 is out of the AC bus 4 when the variation amount of the second current value TA2 per unit time is less than the predetermined value AX. In one example, when the variation amount of the first current value TA1 per unit time is equal to or more than the predetermined value AX and the second current value TA2 does not fluctuate over the unit time, the determination unit 22 determines that the second current sensor 8 Is determined to be out of the AC bus 4. The determination unit 22 outputs to the notification unit 7 that the second current sensor 8 is out of the AC bus 4 in the process of step S16. In one example, the notification unit 7 displays on the display unit that the second current sensor 8 is out of the AC bus 4.
  • FIG. 5 shows a state before the output power of the inverter unit 12 fluctuates
  • FIG. 6 shows a state after the output power of the inverter unit 12 fluctuates. 5 and 6, the power consumption of the load 6 is defined as 300 W.
  • the output power, the purchased power, and the sold power are actually a voltage value TV detected by the voltage sensor 13 of the inverter unit 12 and a first current value TA1 detected by the first current sensor 16. Since the second current value TA2 detected by the second current sensor 8 is all sinusoidal, for example, the product of the voltage value TV and the first current value TA1 is defined as an effective value during one cycle of the voltage value TV. , And the product of the voltage value TV and the second current value TA2. Therefore, if the current phase of the second current value TA2 is inverted with respect to the voltage phase of the voltage value TV, it is determined that the power is sold, and if not, the power is purchased.
  • the current flowing from the power system 5 to the power conditioner 10 or the load 6 is a positive signal
  • the current flowing from the power conditioner 10 to the power system 5 is a negative signal. Since the mounting direction is normal, the current value (second current value TA2) supplied from the power system 5 to the load 6 decreases. For this reason, the determination unit 22 determines that the purchased power supplied from the power system 5 to the load 6 decreases. Then, the determination unit 22 becomes negative as a result of the product of the fluctuation direction (plus) of the output power of the inverter unit 12 and the fluctuation direction (minus) of the purchased power supplied from the power system 5 to the load 6. 2 It is determined that the mounting state of the current sensor 8 is normal.
  • the determination unit 22 determines that the purchased power supplied from the power system 5 to the load 6 increases. Then, the determination unit 22 becomes positive as a result of the product of the fluctuation direction (plus) of the output power of the inverter unit 12 and the fluctuation direction (plus) of the purchased power supplied from the power system 5 to the load 6. 2 It is determined that the mounting state of the current sensor 8 is abnormal.
  • the second current value TA2 detected by the second current sensor 8 becomes “0A” or a predetermined fixed value.
  • the determination unit 22 determines that the purchased power supplied from the power system 5 to the load 6 is “0 W” or a predetermined fixed value. Then, the determining unit 22 determines that the purchased power supplied from the power system 5 to the load 6 does not fluctuate even though the output power of the inverter unit 12 fluctuates, and the second current sensor 8 It is determined that it is off.
  • the power management system 1 has two power conditioners 10A and 10B connected in parallel to each other.
  • the two power conditioners 10A and 10B are connected to the AC bus 4 respectively.
  • the power conditioner 10B determines that reverse power flows to the power system 5 even though power is not being output to the load 6, and the system interconnection relay (not shown) provided in the power conditioner 10B. Omitted) can prevent the inverter unit 12 from being disconnected from the load 6 and the power system 5.
  • the determination unit 22 attaches the second current sensor 8 based on the first current value TA1 detected by the first current sensor 16 and the second current value TA2 detected by the second current sensor 8. Determine the status. According to this configuration, it is not necessary to add a dedicated configuration for determining the mounting state of the second current sensor 8, and the second current sensor 8 attached to the first electric wire 4A connecting the power system 5 and the power conditioner 10 is unnecessary. The attachment state of the current sensor 8 can be detected.
  • the determination unit 22 determines the variation amount of the second current value TA2 per unit time and the variation direction. Then, the attachment state of the second current sensor 8 is determined. According to this configuration, when the variation of the first current value TA1 per unit time is equal to or greater than the determination value, the attachment state of the second current sensor 8 is determined, so that the first current value TA1 is reduced due to noise or the like. When it changes, the attachment state of the second current sensor 8 is not determined. Therefore, erroneous determination of the mounting state of the second current sensor 8 can be suppressed.
  • the determination unit 22 determines the second current based on the variation of the second current value TA2 per unit time. It is determined whether the sensor 8 is off the first electric wire 4A. According to this configuration, when the second current value TA2 does not fluctuate even though the first current value TA1 fluctuates, the determination unit 22 disconnects the second current sensor 8 from the first electric wire 4A. Is determined. Thus, it can be easily determined whether or not the second current sensor 8 is disengaged from the first electric wire 4A.
  • the determination unit 22 determines the direction of change of the first current value TA1 and the direction of change of the second current value TA2 when the variation amount of the first current value TA1 per unit time is equal to or greater than the determination value. It is determined whether or not the mounting direction of the second current sensor 8 is correct based on. According to this configuration, the mounting direction of the second current sensor 8 can be easily determined from the fluctuation direction of the first current value TA1 per unit time and the fluctuation direction of the second current value TA2 per unit time.
  • the determination unit 22 includes an A / D converter 23 and a DSP 24. According to this configuration, the output signal of the first current sensor 16 and the output signal of the second current sensor 8 are converted into the first current value TA1 and the second current value TA2, respectively, and the differential processing is performed. The determination of the mounting state of the two-current sensor 8 can be easily and promptly performed.
  • the determination unit 22 outputs the mounting state of the second current sensor 8 to the notification unit 7. According to this configuration, when the attachment state of the second current sensor 8 is abnormal, the installer can be notified via the notification unit 7 that the attachment state of the second current sensor 8 is abnormal.
  • the power conditioner 10 according to the second embodiment will be described with reference to FIGS.
  • the power conditioner 10 of the present embodiment is different from the first embodiment in that the power conditioner 10 is applied to a single-phase three-wire power system 5.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • the AC bus 4 of the power management system 1 includes a first electric wire 4A, a second electric wire 4B, and a third electric wire 4C serving as a neutral electric wire.
  • a second current sensor 9 is provided on the second electric wire 4B.
  • the second current sensor 9 is electrically connected to the A / D converter 23 of the control device 20.
  • the second current sensor 9 outputs a signal corresponding to the amount of current flowing through the second electric wire 4B to the A / D converter 23.
  • the A / D converter 23 converts the output signal of the second current sensor 9 into a second current value TA3.
  • the first load 6A is connected to the first wire 4A and the third wire 4C
  • the second load 6B is connected to the second wire 4B and the third wire 4C.
  • the power conditioner 10 has three input / output terminals 10T connected to a first electric wire 4A, a second electric wire 4B, and a third electric wire 4C.
  • the third wire 12X of the inverter unit 12 is connected to the first wire 4A via the input / output terminal 10T
  • the fourth wire 12Y is connected to the second wire 4B via the input / output terminal 10T.
  • the inverter unit 12 further has a fifth electric wire 12Z.
  • the fifth electric wire 12Z is connected to the third electric wire 4C via the input / output terminal 10T.
  • a smoothing capacitor 18A is provided between the third wire 12X and the fifth wire 12Z, and a smoothing capacitor 18B is provided between the fourth wire 12Y and the fifth wire 12Z.
  • the voltage sensor 13 has a first voltage sensor 13A and a second voltage sensor 13B.
  • the first voltage sensor 13A detects a voltage between the third electric wire 12X and the fifth electric wire 12Z.
  • the second voltage sensor 13B detects a voltage between the fourth electric wire 12Y and the fifth electric wire 12Z.
  • the first voltage sensor 13A and the second voltage sensor 13B are electrically connected to the A / D converter 23 (see FIG. 8).
  • the first voltage sensor 13A outputs a signal corresponding to the voltage between the third electric wire 12X and the fifth electric wire 12Z to the A / D converter 23.
  • the second voltage sensor 13B outputs a signal corresponding to a voltage between the fourth electric wire 12Y and the fifth electric wire 12Z to the A / D converter 23.
  • the A / D converter 23 converts the output signal of the first voltage sensor 13A into a first voltage value TV1.
  • the A / D converter 23 converts the output signal of the second voltage sensor 13B into a second voltage value TV2.
  • the A / D converter 23 outputs the converted values TV1 and TV2 to the DSP 24.
  • the DSP 24 takes in the first current value TA1, the second current values TA2, TA3, the first voltage value TV1, and the second voltage value TV2, and based on these values, the second current The attachment state of the sensors 8 and 9 is determined.
  • the determination unit 22 in FIG. 8 determines the value obtained by adding the first voltage value TV1 detected by the first voltage sensor 13A and the second voltage value TV2 detected by the second voltage sensor 13B, and the first current sensor 16
  • the output power of the inverter unit 12 is calculated based on the product of the detected first current value TA1 and the product.
  • the determining unit 22 determines whether the power system 5 has the first load 6A by the product of the voltage between the first electric wire 4A and the third electric wire 4C and the second current value TA2 detected by the second current sensor 8. Calculate the purchased power to be supplied to.
  • the determining unit 22 determines whether the power system 5 has the second load 6B based on the product of the voltage between the second electric wire 4B and the third electric wire 4C and the second current value TA3 detected by the second current sensor 9. Calculate the purchased power to be supplied to.
  • FIG. 10 is a flowchart illustrating an example of a procedure of a determination process in which the determination unit 22 determines the attachment state of the second current sensor 8 and the attachment state of the second current sensor 9 respectively.
  • the determining unit 22 starts the process when the power is supplied to the control device 20 and repeatedly executes the process at predetermined intervals until the power supply to the control device 20 is stopped.
  • the process of determining the mounting state of the second current sensor 8 of the present embodiment is the same as the process of determining the mounting state of the second current sensor 8 of the first embodiment. That is, the processing in step S21 in FIG. 10 is the same as the processing in step S11 in FIG. 4, the processing in step S22 is the same as the processing in step S12, and the processing in step S23 is the same as the processing in step S13.
  • the processing in step S24 is the same as the processing in step S14, the processing in step S25 is the same as the processing in step S15, and the processing in step S26 is the same as the processing in step S16.
  • the determination process of step S21 it is determined whether the amount of fluctuation per unit time of the purchased power supplied from the power system 5 to the first load 6A is equal to or greater than a predetermined value VX.
  • the determination unit 22 purchases power supplied from the power system 5 to the second load 6B in step S31. It is determined whether or not the fluctuation amount of the power per unit time is equal to or greater than a predetermined value VX. The determining unit 22 determines the difference between the minimum value and the maximum value of the purchased power supplied from the power system 5 to the second load 6B in the unit time by the fluctuation of the purchased power supplied from the power system 5 to the second load 6B. Calculate as quantity.
  • step S31 since the voltage between the second electric wire 4B and the third electric wire 4C is constant, the variation amount of the second current value TA3 per unit time is equal to or more than the determination value. It can be said that it is a judgment.
  • step S31: YES the determination unit 22 determines the output of the inverter unit 12 in step S32. It is determined whether the fluctuation direction per unit of power and the fluctuation direction per unit time of the purchased power supplied from the power system 5 to the second load 6B are the same.
  • the determination process of step S32 is performed in the unit of the first current value TA1. It can be said that the determination is made as to whether the fluctuation direction per unit time and the fluctuation direction per unit time of the second current value TA3 are the same.
  • the determination unit 22 determines that the direction of change per unit time of the output power of the inverter unit 12 and the direction of change per unit time of the purchased power supplied from the power system 5 to the second load 6B are the same (step S32). : YES), it is determined in step S33 that the mounting direction of the second current sensor 9 is normal, and the process is temporarily terminated. That is, when the direction of change of the first current value TA1 per unit time and the direction of change of the second current value TA3 per unit time are the same, the determination unit 22 determines that the mounting direction of the second current sensor 9 is It is determined that it is normal.
  • step S34 it is determined that the mounting direction of the second current sensor 9 is abnormal. That is, the determination unit 22 determines that the mounting direction of the second current sensor 9 is abnormal when the direction of change of the first current value TA1 per unit time is opposite to the direction of change of the second current value TA3 per unit time. Is determined. The determination unit 22 outputs to the notification unit 7 that the mounting direction of the second current sensor 9 is abnormal in the process of step S34.
  • the notification unit 7 displays on the display unit that the mounting direction of the second current sensor 9 is abnormal. For example, when the installer performs the power management system 1, by visually recognizing the display unit of the notification unit 7, it is possible to recognize that the mounting direction of the second current sensor 9 is abnormal.
  • step S31: NO the determination unit 22 determines in step S35 that the second current sensor 9 Is deviated from the second electric wire 4B of the AC bus 4, and the process is temporarily terminated. That is, the determination unit 22 determines that the second current sensor 9 is deviated from the second electric wire 4B when the variation amount of the second current value TA3 per unit time is less than the determination value.
  • the determination unit 22 outputs to the notification unit 7 that the second current sensor 9 is disconnected from the second electric wire 4B in the process of step S35. In one example, the notification unit 7 displays on the display unit that the second current sensor 9 is disconnected from the second electric wire 4B.
  • FIG. 11 shows a state before the output power of the inverter unit 12 fluctuates
  • FIG. 12 shows a state after the output power of the inverter unit 12 fluctuates.
  • the power consumption of the first load 6A is specified as 300W
  • the power consumption of the second load 6B is specified as 50W.
  • the determination unit 22 determines that the purchased power supplied from the power system 5 to the first load 6A decreases. Then, the determination unit 22 becomes negative as a result of the product of the fluctuation direction (plus) of the output power of the inverter unit 12 and the fluctuation direction (minus) of the purchased power supplied from the power system 5 to the first load 6A. It is determined that the mounting state of the second current sensor 8 is normal.
  • the determination unit 22 determines that the purchased power supplied from the power system 5 to the first load 6A increases. Then, the determination unit 22 becomes positive as a result of the product of the fluctuation direction (plus) of the output power of the inverter unit 12 and the fluctuation direction (plus) of the purchased power supplied from the power system 5 to the first load 6A. It is determined that the mounting state of the second current sensor 8 is abnormal.
  • the second current value TA2 detected by the second current sensor 8 becomes “0A” or a predetermined fixed value.
  • the determining unit 22 determines that the purchased power supplied from the power system 5 to the first load 6A is “0 W” or a predetermined fixed value.
  • the determination unit 22 determines that the purchased power supplied from the power system 5 to the first load 6A does not fluctuate even though the output power of the inverter unit 12 fluctuates, and the second current sensor 8 4 is determined to be out of range.
  • the determination unit 22 determines that the purchased power supplied from the power system 5 to the second electric wire 4B increases. Then, the determination unit 22 becomes positive as a result of the product of the fluctuation direction (plus) of the output power of the inverter unit 12 and the fluctuation direction (minus) of the purchased power supplied from the power system 5 to the second electric wire 4B. Therefore, it is determined that the mounting state of the second current sensor 9 is normal.
  • the determination unit 22 determines that the purchased power supplied from the power system 5 to the second electric wire 4B decreases. Then, determination unit 22 becomes negative as a result of the product of the fluctuation direction (plus) of the output power of inverter unit 12 and the fluctuation direction (minus) of the purchased power supplied from power system 5 to second electric wire 4B. Therefore, it is determined that the mounting state of the second current sensor 9 is abnormal.
  • the second current value TA3 detected by the second current sensor 9 becomes “0A” or a predetermined fixed value. It is determined that the purchased power supplied from the power system 5 to the second electric wire 4B is “0 W” or a predetermined fixed value. Then, the determining unit 22 determines that the purchased power supplied from the power system 5 to the second electric wire 4B does not change even though the output power of the inverter unit 12 changes, and the second current sensor 9 It is determined that the wire is disconnected from the second electric wire 4B.
  • the judging unit 22 judges the mounting state of the second current sensor 9 based on the second current value TA3 when the variation amount of the first current value TA1 per unit time is equal to or larger than the judgment value. I do. According to this configuration, it is not necessary to add a dedicated configuration for determining the mounting state of the second current sensor 9, and the second current sensor 9 is attached to the second electric wire 4 ⁇ / b> B connecting the power system 5 and the power conditioner 10. The attachment state of the current sensor 9 can be detected.
  • the determination unit 22 determines the variation amount of the second current value TA3 per unit time and the variation direction. Then, the attachment state of the second current sensor 9 is determined. According to this configuration, when the amount of change in the first current value TA1 per unit time is equal to or greater than the determination value, the attachment state of the second current sensor 9 is determined, so that the first current value TA1 is reduced due to noise or the like. When it fluctuates, the attachment state of the second current sensor 9 is not determined. Therefore, erroneous determination of the mounting state of the second current sensor 9 can be suppressed.
  • the determination unit 22 determines the second current value based on the variation amount of the second current value TA3 per unit time. It is determined whether or not the sensor 9 is off the second electric wire 4B. According to this configuration, when the second current value TA3 does not fluctuate even though the first current value TA1 fluctuates, the determination unit 22 disconnects the second current sensor 9 from the second electric wire 4B. Is determined. Thus, it can be easily determined whether or not the second current sensor 9 is off the second electric wire 4B.
  • the determination unit 22 determines the direction in which the first current value TA1 varies per unit time when the variation amount of the first current value TA1 per unit time is equal to or greater than the determination value, and the second current value TA3. It is determined whether the mounting direction of the second current sensor 9 is correct based on the fluctuation direction per unit time. According to this configuration, the mounting direction of the second current sensor 9 can be easily determined from the fluctuation direction of the first current value TA1 per unit time and the fluctuation direction of the second current value TA3 per unit time.
  • the determination unit 22 includes an A / D converter 23 and a DSP 24. According to this configuration, the output signal of the first current sensor 16 and the output signals of the second current sensors 8 and 9 are converted into the first current value TA1 and the second current values TA2 and TA3, respectively, to perform a differentiation process. This makes it possible to easily and quickly determine each of the attachment state of the second current sensor 8 and the attachment state of the second current sensor 9.
  • the determination unit 22 outputs the state of attachment of the second current sensor 9 to the notification unit 7. According to this configuration, when the mounting state of the second current sensor 9 is abnormal, the installer can be notified via the notification unit 7 that the mounting state of the second current sensor 9 is abnormal.
  • each of the above embodiments is an example of a form that the power conditioner according to the present disclosure can take, and is not intended to limit the form.
  • the power conditioner according to the present disclosure may take a form different from the forms exemplified in the above embodiments.
  • One example is a mode in which a part of the configuration of each of the above embodiments is replaced, changed, or omitted, or a mode in which a new configuration is added to each of the above embodiments.
  • the same reference numerals as those in the above-described embodiments denote the same parts as in the above-described embodiments, and a description thereof will be omitted.
  • the second current sensor 8 may be attached to the second electric wire 4 ⁇ / b> B of the AC bus 4.
  • the determination unit 22 determines that the direction of change per unit time of the output power of the inverter unit 12 is the same as the direction of change per unit time of the purchased power supplied from the power system 5 to the second electric wire 4B. It is determined that the mounting direction of the second current sensor 8 is normal. Therefore, when performing the determination process of the attachment state of the second current sensor 8 in FIG. 4, the determination unit determines the determination in step S13 of the flowchart in FIG.
  • the fluctuation direction per unit time of the purchased power supplied from the power system 5 to the second electric wire 4B is replaced with the same direction.
  • the second electric wire 4B to which the second current sensor 8 is attached corresponds to a first electric wire.
  • the determination unit 22 performs the determination of the attachment state of the second current sensor 8 and the determination of the attachment state of the second current sensor 9 in parallel, but is not limited thereto. .
  • the determination unit 22 may execute one of the determination of the attachment state of the second current sensor 8 and the determination of the attachment state of the second current sensor 9 before the other.
  • the determination part 22 may have the 1st determination part which determines the attachment state of the 2nd current sensor 8, and the 2nd determination part which determines the attachment state of the 2nd current sensor 9. Good.
  • the first determination unit and the second determination unit are electrically connected to the A / D converter 23 and the notification unit 7, respectively.
  • the number of determinations in step S12 and step S13 may be increased.
  • the determination unit 22 repeats the determination process of step S12 a plurality of times, and when all the determination results are the same, shifts to the next process (step S13 or step S16).
  • the determination unit 22 repeats the determination process of step S13 a plurality of times, and when all the determination results are the same, shifts to the next process (step S14 or step S15). According to this configuration, it is possible to reduce the influence of an accidental determination result due to disturbance or the like.
  • step S22 and step S23 may be increased as in the above-described modification.
  • the number of determinations in steps S31 and S32 may be increased as in the above-described modification. According to this configuration, it is possible to reduce the influence of an accidental determination result due to disturbance or the like, so that it is possible to reduce the occurrence of erroneous determination of the mounting state of the second current sensor 9.
  • the configuration of the control device 20 can be arbitrarily changed.
  • the control unit 21 and the determination unit 22 may be integrated.
  • the determination unit 22 may determine the attachment state of the second current sensor 8 and the attachment state of the second current sensor 9 by analog processing instead of the DSP 24.
  • a power generation device such as the solar power generation device 2 may be omitted from the power management system 1.
  • the PV converter 11 is omitted from the power conditioner 10.
  • Power conversion device 14 connected to power storage device 3 is connected to inverter unit 12 via high-voltage DC bus 15.
  • the power storage device 3 may be omitted from the power management system 1.
  • the power converter 14 is omitted from the power conditioner 10.
  • a power generation device such as the solar power generation device 2 corresponds to a DC power supply device
  • the PV converter 11 corresponds to a converter.
  • the present disclosure includes a non-transitory computer-readable storage medium storing computer-executable instructions configured to implement the functions, methods, or configurations described in the above embodiments.
  • the computer-readable storage medium may be any medium that can be accessed by one or more computer processors, such as a RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage device , And any combination thereof.
  • Power storage device (DC power supply device) 4A 1st electric wire 4B 2nd electric wire 4C 3rd electric wire 5 electric power system 8 2nd electric current sensor 9 2nd electric current sensor 10, 10A, 10B ... power conditioner 12 ... inverter part 14 ... electric power Converter (converter) 16 first current sensor 22 determination unit 23 A / D converter 24 DSP

Abstract

The present invention provides a power conditioner that, without requiring an additional structure, is able to detect the attachment state of a current sensor attached to an electrical wire that connects an electric power system and the power conditioner. This power conditioner (10) has: a power conversion device (14) that can convert electric power outputted by an electrical storage device (3) to a prescribed DC power; an inverter unit (12) that can convert DC power to AC power and output the AC power; a first current sensor (16) for detecting output current of the inverter unit (12); and an assessment unit (22) that assesses the attachment state of a second current sensor (8) on the basis of a first current value detected by the first current sensor (16), and a second current value detected by the second current sensor (8), which is attached to a first electrical wire (4A).

Description

パワーコンディショナPower conditioner
 本開示は、パワーコンディショナに関する。 The present disclosure relates to a power conditioner.
 太陽光発電装置等の発電装置の直流電力を交流電力に変換して、電力系統と連系して屋内交流負荷に電力を供給するパワーコンディショナを備えるシステムが知られている。このようなシステムでは、電力の売買のため、電力系統から屋内交流負荷に電力が供給される状態とパワーコンディショナから電力系統に逆潮流する状態とを検出するように、パワーコンディショナと電力系統との間の単相三線式の電線におけるU相の電線及びW相の電線のそれぞれに電流センサが設けられている。このようなシステムでは、誤った方向に電流センサが取り付けられる場合がある。このため、内部電力負荷を備え、接続機構によって電線を内部電力負荷に接続し、その内部電力負荷に電流を流すことで、電流センサの取付エラーを判断するものが提案されている(例えば、特許文献1参照)。 (2) There is known a system including a power conditioner that converts DC power of a power generation device such as a solar power generation device into AC power and supplies power to an indoor AC load in connection with a power system. In such a system, the power conditioner and the power system are configured to detect a state in which power is supplied from the power system to the indoor AC load and a state in which reverse power flows from the power conditioner to the power system in order to buy and sell power. A current sensor is provided for each of the U-phase wire and the W-phase wire in the single-phase three-wire wire between the two. In such a system, the current sensor may be mounted in the wrong direction. For this reason, there has been proposed a device that includes an internal power load, determines a mounting error of a current sensor by connecting a wire to the internal power load by a connection mechanism, and flowing a current through the internal power load (for example, see Patent Document 1). Reference 1).
国際公開WO2011/093109号公報International Publication WO2011 / 093109
 ところで、上記のようなシステムでは、U相の電線及びW相の電線のそれぞれに取り付けられた電流センサの取付エラーを判断するためにパワーコンディショナに設けられた内部電力負荷及び接続機構が必要であるため、パワーコンディショナの部品点数が増加してしまう。なお、このような問題は、単相三線式の電力系統に限られず、単相二線式の電力系統でも同様に生じる。 By the way, in the system as described above, an internal power load and a connection mechanism provided in the power conditioner are necessary in order to determine a mounting error of the current sensor mounted on each of the U-phase wire and the W-phase wire. Therefore, the number of components of the power conditioner increases. Note that such a problem is not limited to a single-phase three-wire power system, but also occurs in a single-phase two-wire power system.
 本開示の目的は、追加の構成を不要とし、電力系統とパワーコンディショナとを接続する電線に取り付けられる電流センサの取り付け状態を検出できるパワーコンディショナを提供することにある。 目的 An object of the present disclosure is to provide a power conditioner that does not require an additional configuration and that can detect an attached state of a current sensor attached to an electric wire connecting a power system and a power conditioner.
 本開示の一形態であるパワーコンディショナは、第1の電線と、第2の電線とを含む単相二線式の電力系統に連系するパワーコンディショナであって、直流電源装置が出力する電力を所定の直流電力に変換可能な変換部と、前記直流電力を交流電力に変換して出力可能なインバータ部と、前記インバータ部の出力電流を検出するための第1電流センサと、前記第1電流センサにより検出する第1の電流値と、前記第1の電線に取り付けられる第2電流センサにより検出する第2の電流値とに基づいて、前記第2電流センサの取り付け状態を判定する判定部と、を有する。 A power conditioner according to an embodiment of the present disclosure is a power conditioner that is connected to a single-phase two-wire power system including a first electric wire and a second electric wire, and is output by a DC power supply device. A conversion unit capable of converting power to predetermined DC power, an inverter unit capable of converting the DC power to AC power and outputting the converted power, a first current sensor for detecting an output current of the inverter unit, Judgment for judging the attachment state of the second current sensor based on a first current value detected by one current sensor and a second current value detected by a second current sensor attached to the first electric wire. And a part.
 インバータ部の出力電力と電力系統からの電力とを合算した電力を屋内交流負荷に供給するため、インバータ部の出力電力の変動方向と電力系統からの電力の変動方向とは逆方向となる。すなわち、屋内交流負荷の消費電力が一定の場合、インバータ部の出力電力が増加すると、電力系統からの電力が減少し、インバータ部の出力電力が減少すると、電力系統からの電力が増加する。また電力系統からの電力は、第2電流センサの第2の電流値から把握できる。 (4) Since the combined power of the output power of the inverter unit and the power from the power system is supplied to the indoor AC load, the direction of fluctuation of the output power of the inverter unit and the direction of fluctuation of the power from the power system are opposite. That is, when the power consumption of the indoor AC load is constant, when the output power of the inverter unit increases, the power from the power system decreases, and when the output power of the inverter unit decreases, the power from the power system increases. Further, the power from the power system can be grasped from the second current value of the second current sensor.
 ここで、インバータ部の出力電力の変動方向と電力系統からの電力の変動方向とは逆方向となるように第2電流センサを取り付ける方向が第2電流センサの取り付け方向として正常であるとすると、第2電流センサの取り付け方向が逆である場合、インバータ部の出力電力の変動方向と電力系統からの電力の変動方向とが同じ方向となる。このように、インバータ部の出力電力の変動方向と電力系統からの電力の変動方向との関係から第2電流センサの取り付け方向を判定できる。また、第2電流センサが外れている場合、インバータ部の出力電力が変動しても電力系統からの電力の変動に応じた信号を第2電流センサが出力しない。このように、インバータの出力電力の変動量と、電力系統からの電力の変動量とに応じて第2電流センサが外れていることを判定できる。 Here, assuming that the direction in which the second current sensor is mounted is normal as the direction in which the second current sensor is mounted such that the direction in which the output power of the inverter unit fluctuates and the direction in which the power from the power system fluctuates are opposite. When the mounting direction of the second current sensor is opposite, the direction of fluctuation of the output power of the inverter unit and the direction of fluctuation of the power from the power system are the same. As described above, it is possible to determine the mounting direction of the second current sensor from the relationship between the direction of fluctuation of the output power of the inverter unit and the direction of fluctuation of power from the power system. Further, when the second current sensor is disconnected, the second current sensor does not output a signal corresponding to the fluctuation of the power from the power system even if the output power of the inverter unit fluctuates. In this manner, it can be determined that the second current sensor is disconnected according to the amount of change in the output power of the inverter and the amount of change in the power from the power system.
 この点を鑑みて、本パワーコンディショナは、第1電流センサにより検出する第1の電流値及び第2電流センサにより検出する第2の電流値に基づいて、第2電流センサの取り付け状態を判定することにより、追加の構成を不要とし、電力系統とパワーコンディショナとを接続する電線に取り付けられる電流センサの取り付け状態を検出できる。 In view of this point, the present power conditioner determines the mounting state of the second current sensor based on the first current value detected by the first current sensor and the second current value detected by the second current sensor. By doing so, an additional configuration is not required, and the attachment state of the current sensor attached to the electric wire connecting the power system and the power conditioner can be detected.
 本開示の一形態であるパワーコンディショナは、第1の電線と、第2の電線と、中性線となる第3の電線とを含む単相三線式の電力系統に連系するパワーコンディショナであって、直流電源装置が出力する電力を所定の直流電力に変換可能な変換部と、前記直流電力を交流電力に変換して出力可能なインバータ部と、前記インバータ部の出力電流を検出するための第1電流センサと、前記第1電流センサにより検出する第1の電流値と、前記第1の電線と前記第2の電線とにそれぞれ取り付けられる第2電流センサにより検出する第2の電流値とに基づいて、前記第2電流センサの取り付け状態を判定する判定部と、を有する。 A power conditioner according to an embodiment of the present disclosure is a power conditioner interconnected to a single-phase three-wire power system including a first electric wire, a second electric wire, and a third electric wire serving as a neutral wire. A conversion unit that can convert the power output from the DC power supply into predetermined DC power, an inverter that can convert the DC power to AC power and output the power, and detect an output current of the inverter. Current sensor, a first current value detected by the first current sensor, and a second current detected by a second current sensor attached to each of the first electric wire and the second electric wire A determination unit that determines the mounting state of the second current sensor based on the value.
 この構成によれば、第1電流センサにより検出する第1の電流値及び第2電流センサにより検出する第2の電流値に基づいて、第2電流センサの取り付け状態を判定することにより、追加の構成を不要とし、電力系統とパワーコンディショナとを接続する電線に取り付けられる電流センサの取り付け状態を検出できる。 According to this configuration, the attachment state of the second current sensor is determined based on the first current value detected by the first current sensor and the second current value detected by the second current sensor. This eliminates the need for a configuration, and can detect the mounting state of the current sensor that is mounted on the electric wire that connects the power system and the power conditioner.
 本開示の一形態であるパワーコンディショナによれば、追加の構成を不要とし、電力系統とパワーコンディショナとを接続する電線に取り付けられる電流センサの取り付け状態を検出できる。 According to the power conditioner according to an embodiment of the present disclosure, an additional configuration is not required, and it is possible to detect an attached state of a current sensor attached to an electric wire connecting the power system and the power conditioner.
第1実施形態のパワーコンディショナが用いられる電力管理システムの構成図。FIG. 1 is a configuration diagram of a power management system in which a power conditioner according to a first embodiment is used. パワーコンディショナのインバータ部及びその周辺の回路図。FIG. 2 is a circuit diagram of an inverter section of the power conditioner and its periphery. インバータ部の出力電力及び電力系統からの買電電力の推移の一例を示すグラフ。4 is a graph showing an example of changes in output power of an inverter unit and purchased power from a power system. パワーコンディショナの判定部が実行する第2電流センサの取り付け状態を判定する処理の手順の一例を示すフローチャート。9 is a flowchart illustrating an example of a procedure of a process performed by a determination unit of the power conditioner to determine an attachment state of a second current sensor. インバータ部の出力電力が変動する前のインバータ部の出力電力と電力系統からの電力との関係を説明するための模式的な回路図。FIG. 4 is a schematic circuit diagram for explaining a relationship between output power of the inverter unit and power from the power system before the output power of the inverter unit fluctuates. インバータ部の出力電力が変動した後のインバータ部の出力電力と電力系統からの電力との関係を説明するための模式的な回路図。FIG. 4 is a schematic circuit diagram for explaining the relationship between the output power of the inverter unit and the power from the power system after the output power of the inverter unit has changed. 別例のインバータ部の出力電力と電力系統からの電力との関係を説明するための模式的な回路図。FIG. 7 is a schematic circuit diagram for explaining a relationship between output power of an inverter unit of another example and power from a power system. 第2実施形態のパワーコンディショナが用いられる電力管理システムの構成図。The block diagram of the power management system using the power conditioner of 2nd Embodiment. パワーコンディショナのインバータ部及びその周辺の回路図。FIG. 2 is a circuit diagram of an inverter section of the power conditioner and its periphery. パワーコンディショナの判定部が実行する第2電流センサの取り付け状態を判定する処理の手順の一例を示すフローチャート。9 is a flowchart illustrating an example of a procedure of a process performed by a determination unit of the power conditioner to determine an attachment state of a second current sensor. インバータ部の出力電力が変動する前のインバータ部の出力電力と電力系統からの電力との関係を説明するための模式的な回路図。FIG. 4 is a schematic circuit diagram for explaining a relationship between output power of the inverter unit and power from the power system before the output power of the inverter unit fluctuates. インバータ部の出力電力が変動した後のインバータ部の出力電力と電力系統からの電力との関係を説明するための模式的な回路図。FIG. 4 is a schematic circuit diagram for explaining the relationship between the output power of the inverter unit and the power from the power system after the output power of the inverter unit has changed.
 以下、図面を参照して、各実施形態について説明する。
 (第1実施形態)
 図1に示すように、電力管理システム1は、パワーコンディショナ10と、パワーコンディショナ10に電気的に接続された太陽光発電装置2及び直流電源装置の一例である蓄電装置3とを備える。パワーコンディショナ10は、交流母線4を介して電力系統5に接続される。本実施形態のパワーコンディショナ10は、交流母線4として第1の電線4Aと、第2の電線4Bとを含む単相二線式の電力系統5に連系する。交流母線4には、図示しない分電盤等を介して負荷6が接続されている。負荷6は、例えば屋内交流負荷であり、照明、冷蔵庫、洗濯機、空気調和機、電子レンジ等が挙げられる。電力管理システム1は、パワーコンディショナ10によって太陽光発電装置2、蓄電装置3、電力系統5、及び負荷6の間の電力の調整を行う。この調整の一例としては、太陽光発電装置2が発電した電力の電力系統5への逆潮流、蓄電装置3への蓄電、及び負荷6への供給の調整と、電力系統5の電力の蓄電装置3への蓄電及び負荷6への供給の調整とが挙げられる。なお、発電装置としては、太陽光発電装置のほか、例えば、風力発電装置、ガス発電装置、地熱発電装置等を用いることができる。
Hereinafter, each embodiment will be described with reference to the drawings.
(1st Embodiment)
As shown in FIG. 1, the power management system 1 includes a power conditioner 10, a solar power generation device 2 electrically connected to the power conditioner 10, and a power storage device 3 which is an example of a DC power supply device. Power conditioner 10 is connected to power system 5 via AC bus 4. The power conditioner 10 of the present embodiment is connected to a single-phase two-wire power system 5 including a first electric wire 4A and a second electric wire 4B as the AC bus 4. A load 6 is connected to the AC bus 4 via a distribution board (not shown) or the like. The load 6 is, for example, an indoor AC load, and includes a lighting, a refrigerator, a washing machine, an air conditioner, a microwave oven, and the like. The power management system 1 adjusts power between the solar power generation device 2, the power storage device 3, the power system 5, and the load 6 by the power conditioner 10. As an example of this adjustment, the reverse power flow of the power generated by the photovoltaic power generator 2 to the power system 5, the power storage in the power storage device 3, the adjustment of the supply to the load 6, and the power storage device of the power in the power system 5 3 and adjustment of supply to the load 6. As the power generation device, for example, a wind power generation device, a gas power generation device, a geothermal power generation device, or the like can be used in addition to the solar power generation device.
 太陽光発電装置2は、図示しない光発電パネルを有し、光発電パネルが発電した直流電力をパワーコンディショナ10に供給する。太陽光発電装置2は、例えば光発電パネルが出力する電力が最大となる出力電圧で電流を取り出す最大電力点追従制御(MPPT:Maximum Power Point Tracking)を実行する。 The photovoltaic power generation device 2 has a photovoltaic power generation panel (not shown), and supplies the DC power generated by the photovoltaic power generation panel to the power conditioner 10. The photovoltaic power generation device 2 executes a maximum power point tracking control (MPPT: Maximum Power Point Tracking) that extracts a current at an output voltage at which the power output from the photovoltaic panel becomes maximum.
 蓄電装置3は、直列に接続された複数の蓄電池を含む。パワーコンディショナ10は、蓄電装置3の充電と放電とを制御する。
 パワーコンディショナ10は、PVコンバータ11、インバータ部12、電圧センサ13、変換部の一例である電力変換装置14、及び制御装置20を有する。PVコンバータ11、インバータ部12、及び電力変換装置14はそれぞれ、高圧直流バス15に接続される。すなわち、PVコンバータ11とインバータ部12と電力変換装置14は、高圧直流バス15を介して互いに接続されている。パワーコンディショナ10には、報知部7が電気的に接続されている。報知部7は、パワーコンディショナ10の外部に所定の情報を報知する。報知部7による報知手段としては、例えば、発光(発光色、点滅)、音声、表示部による表示が挙げられる。
Power storage device 3 includes a plurality of storage batteries connected in series. Power conditioner 10 controls charging and discharging of power storage device 3.
The power conditioner 10 includes a PV converter 11, an inverter unit 12, a voltage sensor 13, a power conversion device 14 as an example of a conversion unit, and a control device 20. The PV converter 11, the inverter unit 12, and the power converter 14 are each connected to a high-voltage DC bus 15. That is, the PV converter 11, the inverter unit 12, and the power converter 14 are connected to each other via the high-voltage DC bus 15. The notification unit 7 is electrically connected to the power conditioner 10. The notification unit 7 notifies the outside of the power conditioner 10 of predetermined information. Examples of the notification means by the notification unit 7 include light emission (light emission color, blinking), sound, and display by the display unit.
 太陽光発電装置2は、PVコンバータ11に接続される。PVコンバータ11は、季節や天候、時間帯等の日照条件によって変動する太陽光発電装置2を最大電力点追従制御(MPPT)にて高圧直流バス15に出力する。PVコンバータ11が高圧直流バス15に出力する設定電圧の一例は、380Vである。インバータ部12は、PVコンバータ11と交流母線4とに接続されている。インバータ部12は、直流交流変換装置(DC/ACコンバータ)であり、高圧直流バス15の直流電力を例えば実効値で200Vの交流電力に変換して交流母線4に出力する。また、インバータ部12は、交流母線4の交流電力を設定電圧の直流電力に変換して高圧直流バス15に出力する。 The solar power generation device 2 is connected to the PV converter 11. The PV converter 11 outputs the photovoltaic power generator 2 that fluctuates according to the sunshine conditions such as the season, weather, and time zone to the high-voltage DC bus 15 by the maximum power point tracking control (MPPT). An example of the set voltage output from the PV converter 11 to the high-voltage DC bus 15 is 380V. Inverter unit 12 is connected to PV converter 11 and AC bus 4. The inverter unit 12 is a DC / AC converter (DC / AC converter), and converts the DC power of the high-voltage DC bus 15 into, for example, an effective value of 200 V AC power and outputs the AC power to the AC bus 4. The inverter unit 12 converts the AC power of the AC bus 4 into DC power of a set voltage and outputs the DC power to the high-voltage DC bus 15.
 図2に示すように、インバータ部12は、フルブリッジ型のインバータ回路であり、4個のスイッチ素子12a~12dを有する。スイッチ素子12a,12bは、高圧直流バス15を構成する第1の電線15Hと第2の電線15Lとの間に直列接続されている。スイッチ素子12c,12dは、第1の電線15Hと第2の電線15Lとの間に直列接続されている。スイッチ素子12a,12bとスイッチ素子12c,12dとは並列接続されている。 (2) As shown in FIG. 2, the inverter section 12 is a full-bridge type inverter circuit and has four switch elements 12a to 12d. The switch elements 12a and 12b are connected in series between a first electric wire 15H and a second electric wire 15L constituting the high-voltage DC bus 15. The switch elements 12c and 12d are connected in series between the first electric wire 15H and the second electric wire 15L. The switch elements 12a and 12b and the switch elements 12c and 12d are connected in parallel.
 インバータ部12は、スイッチ素子12aとスイッチ素子12bとの間の接続ノードN1に接続される第3電線12Xと、スイッチ素子12cとスイッチ素子12dとの間の接続ノードN2に接続される第4電線12Yとを有する。第3電線12X及び第4電線12Yは、パワーコンディショナ10の一対の入出力端子10Tに接続されている。一対の入出力端子10Tには、交流母線4の第1の電線4A及び第2の電線4Bが接続される。第3電線12Xにはインダクタ17Xが設けられ、第4電線12Yにはインダクタ17Yが設けられている。第3電線12Xと第4電線12Yとの間には、平滑用のコンデンサ18及び電圧センサ13が設けられている。電圧センサ13は、第3電線12Xと第4電線12Yとの電圧であるインバータ部12の出力電圧に応じた信号を出力する。 The inverter unit 12 includes a third wire 12X connected to a connection node N1 between the switch element 12a and the switch element 12b, and a fourth wire connected to a connection node N2 between the switch element 12c and the switch element 12d. 12Y. The third electric wire 12X and the fourth electric wire 12Y are connected to a pair of input / output terminals 10T of the power conditioner 10. A first electric wire 4A and a second electric wire 4B of the AC bus 4 are connected to the pair of input / output terminals 10T. The third wire 12X is provided with an inductor 17X, and the fourth wire 12Y is provided with an inductor 17Y. A smoothing capacitor 18 and a voltage sensor 13 are provided between the third electric wire 12X and the fourth electric wire 12Y. The voltage sensor 13 outputs a signal corresponding to the output voltage of the inverter unit 12, which is the voltage of the third electric wire 12X and the fourth electric wire 12Y.
 インバータ部12は、インバータ部12から出力される電流を検出するための第1電流センサ16を有する。より詳細には、第1電流センサ16は、第3電線12Xに設けられ、第3電線12Xに流れる電流に応じた信号を出力する。 The inverter unit 12 has a first current sensor 16 for detecting a current output from the inverter unit 12. More specifically, the first current sensor 16 is provided on the third electric wire 12X, and outputs a signal corresponding to the current flowing through the third electric wire 12X.
 また、図2に示されるように、交流母線4において負荷6と電力系統5との間の部分には、第2電流センサ8が設けられている。本実施形態では、第2電流センサ8は、交流母線4の第1の電線4Aに取り付けられている。第2電流センサ8は、第1の電線4Aに流れる電流に応じた信号を出力する。 As shown in FIG. 2, a second current sensor 8 is provided in a portion between the load 6 and the power system 5 on the AC bus 4. In the present embodiment, the second current sensor 8 is attached to the first electric wire 4A of the AC bus 4. The second current sensor 8 outputs a signal corresponding to the current flowing through the first electric wire 4A.
 蓄電装置3は、電力変換装置14に接続される。電力変換装置14は、蓄電装置3が出力する電力(直流電力)を所定の直流電力に変換する。電力変換装置14は、所定の直流電力をインバータ部12に出力する。電力変換装置14の一例は、DC-DCコンバータである。電力変換装置14は、蓄電装置3が出力する電力を所定電圧の直流電力に変換してインバータ部12に出力する。 Power storage device 3 is connected to power conversion device 14. Power conversion device 14 converts the power (DC power) output from power storage device 3 into predetermined DC power. The power converter 14 outputs a predetermined DC power to the inverter unit 12. One example of the power converter 14 is a DC-DC converter. Power conversion device 14 converts the power output from power storage device 3 into DC power of a predetermined voltage and outputs the DC power to inverter unit 12.
 図1に示すように、制御装置20は、PVコンバータ11、インバータ部12、及び電力変換装置14を制御する制御部21と、第2電流センサ8の取り付け状態を判定する判定部22とを有する。 As illustrated in FIG. 1, the control device 20 includes a control unit 21 that controls the PV converter 11, the inverter unit 12, and the power conversion device 14, and a determination unit 22 that determines a mounting state of the second current sensor 8. .
 制御部21は、図示しない駆動回路を介してスイッチ素子12a~12dのゲート(制御端子)に電気的に接続され、スイッチ素子12a~12dのオンオフを制御する制御信号をスイッチ素子12a~12dのゲートに出力する。制御部21は、予め定められる制御プログラムを実行する演算処理装置を含む。演算処理装置は、例えばCPU(Central Processing Unit)又はMPU(Micro Processing Unit)を含む。制御部21は、1又は複数のマイクロコンピュータを含んでいてもよい。制御部21は、複数の場所に離れて配置される複数の演算処理装置を含んでいてもよい。制御部21は、記憶部をさらに含む。記憶部には、各種の制御プログラム及び各種の制御処理に用いられる情報が記憶される。記憶部は、例えば不揮発性メモリ及び揮発性メモリを含む。 The control unit 21 is electrically connected to the gates (control terminals) of the switch elements 12a to 12d via a drive circuit (not shown), and sends a control signal for controlling on / off of the switch elements 12a to 12d to the gates of the switch elements 12a to 12d. Output to Control unit 21 includes an arithmetic processing unit that executes a predetermined control program. The arithmetic processing device includes, for example, a CPU (Central Processing Unit) or an MPU (Micro Processing Unit). The control unit 21 may include one or more microcomputers. The control unit 21 may include a plurality of arithmetic processing devices that are separately arranged at a plurality of locations. Control unit 21 further includes a storage unit. The storage unit stores various control programs and information used for various control processes. The storage unit includes, for example, a nonvolatile memory and a volatile memory.
 判定部22は、A/Dコンバータ23とDSP(Digital Signal Processor)24とを有する。A/Dコンバータ23は、第1電流センサ16、第2電流センサ8、及び電圧センサ13が電気的に接続されている。第1電流センサ16は、第3電線12Xに流れる電流量に応じたアナログ信号を出力する。第2電流センサ8は、第1の電線4Aに流れる電流量に応じたアナログ信号を出力する。電圧センサ13は、インバータ部12の出力電圧に応じたアナログ信号を出力する。A/Dコンバータ23は、第1電流センサ16の出力信号を第1の電流値TA1に変換する。また、A/Dコンバータ23は、第2電流センサ8の出力信号を第2の電流値TA2に変換する。さらに、A/Dコンバータ23は、電圧センサ13の出力信号を電圧値TVに変換する。A/Dコンバータ23は、変換後の各値TA1,TA2,TVをDSP24に出力する。本実施形態では、DSP24は、第1の電流値TA1、第2の電流値TA2、及び電圧値TVを取り込んで、デジタルフィルタによって微分処理を行い、処理後の値に基づいて第2電流センサ8の取り付け状態を判定する。より具体的には、第1電流センサ16により検出した第1の電流値TA1と第2電流センサ8により検出した第2の電流値TA2とを同期した状態で、それぞれの増減方向を検出し、増加(+)したのか、減少(-)したのかをデジタルフィルタによる微分処理によって算出し、第1の電流値TA1と第2の電流値TA2との積が正(+)又は負(-)のいずれかに基づいて、第2電流センサ8の取り付け状態を判定する。 The determination unit 22 includes an A / D converter 23 and a DSP (Digital Signal Processor) 24. The A / D converter 23 is electrically connected to the first current sensor 16, the second current sensor 8, and the voltage sensor 13. The first current sensor 16 outputs an analog signal corresponding to the amount of current flowing through the third electric wire 12X. The second current sensor 8 outputs an analog signal according to the amount of current flowing through the first electric wire 4A. The voltage sensor 13 outputs an analog signal according to the output voltage of the inverter unit 12. The A / D converter 23 converts an output signal of the first current sensor 16 into a first current value TA1. Further, the A / D converter 23 converts the output signal of the second current sensor 8 into a second current value TA2. Further, the A / D converter 23 converts the output signal of the voltage sensor 13 into a voltage value TV. The A / D converter 23 outputs the converted values TA1, TA2, and TV to the DSP 24. In the present embodiment, the DSP 24 takes in the first current value TA1, the second current value TA2, and the voltage value TV, performs a differentiation process using a digital filter, and performs the second current sensor 8 based on the processed value. Determine the state of attachment. More specifically, in a state where the first current value TA1 detected by the first current sensor 16 and the second current value TA2 detected by the second current sensor 8 are synchronized, the respective increasing / decreasing directions are detected, Whether the value has increased (+) or decreased (-) is calculated by a differentiation process using a digital filter, and the product of the first current value TA1 and the second current value TA2 is positive (+) or negative (-). The attachment state of the second current sensor 8 is determined based on either of them.
 このような構成の電力管理システム1では、負荷6にはインバータ部12からの出力電力及び電力系統5からの買電電力の少なくとも一方が供給されるため、負荷6の消費電力が一定の場合にインバータ部12の出力電力と電力系統5からの買電電力とが連動して変動する。一例では、図3に示すように、インバータ部12の出力電力が低下すると、電力系統5からの買電電力が増加し、インバータ部12の出力電力が増加すると、電力系統5からの買電電力が減少する。すなわち、インバータ部12の出力電力の変動方向に対して、正常に取り付けられた第2電流センサ8の出力信号により検出される電力系統5からの買電電力の変動方向が逆となる。 In the power management system 1 having such a configuration, since the load 6 is supplied with at least one of the output power from the inverter unit 12 and the purchased power from the power system 5, when the power consumption of the load 6 is constant, The output power of the inverter unit 12 and the purchased power from the power system 5 fluctuate in conjunction with each other. In one example, as shown in FIG. 3, when the output power of the inverter unit 12 decreases, the purchased power from the power system 5 increases, and when the output power of the inverter unit 12 increases, the purchased power from the power system 5 increases. Decrease. That is, the direction of fluctuation of the power purchased from the power system 5 detected by the output signal of the normally installed second current sensor 8 is opposite to the direction of fluctuation of the output power of the inverter unit 12.
 ところで、電力系統5からの買電電力は、第2電流センサ8により検出した第2の電流値TA2に基づいて算出される。電流センサによって検出した電流値のみでは、交流電流の流れる向きを特定することができないため、実際には電圧センサ13によって検出したインバータ部12の出力電圧値との位相差を検出し、その積(電力値)を算出することで、電力値とその方向(売電か買電か)を検出する。一方、第2電流センサ8は、施工業者によって交流母線4に接続されるため、第2電流センサ8の交流母線4への取り付け方向の間違いが生じるおそれがある。また第2電流センサ8が正常に取り付けられたとしても例えば経年劣化によって交流母線4から第2電流センサ8が外れてしまうおそれがある。このような第2電流センサ8の取り付け方向の間違いや第2電流センサ8が交流母線4から外れることが生じた場合、インバータ部12の出力電力の変動方向に対して、電力系統5からの買電電力の変動方向が第2電流センサ8の取り付け方向が正常な場合における変動方向と異なる、又は電力系統5からの買電電力が変動しない状態として検出される。 The power purchased from the power system 5 is calculated based on the second current value TA2 detected by the second current sensor 8. Since the direction in which the alternating current flows cannot be specified only by the current value detected by the current sensor, the phase difference from the output voltage value of the inverter unit 12 detected by the voltage sensor 13 is actually detected, and the product ( By calculating the power value, the power value and its direction (whether to sell or buy) are detected. On the other hand, since the second current sensor 8 is connected to the AC bus 4 by the installer, the mounting direction of the second current sensor 8 to the AC bus 4 may be incorrect. Further, even if the second current sensor 8 is normally attached, the second current sensor 8 may be detached from the AC bus 4 due to, for example, aging. When the mounting direction of the second current sensor 8 is incorrect or the second current sensor 8 is deviated from the AC bus 4, the purchase from the power system 5 in the direction in which the output power of the inverter unit 12 fluctuates. It is detected that the fluctuation direction of the electric power is different from the fluctuation direction when the mounting direction of the second current sensor 8 is normal, or that the purchased power from the power system 5 does not fluctuate.
 そこで、本実施形態の判定部22は、インバータ部12の出力電力及び電力系統5からの買電電力を監視し、インバータ部12の出力電力が変動した場合にインバータ部12の出力電力及び電力系統5からの買電電力に基づいて第2電流センサ8の取り付け状態を判定する。ここで、第2電流センサ8の取り付け状態は、第2電流センサ8の交流母線4への取り付け方向が正常か否かと、第2電流センサ8が交流母線4から外れているか否かとを含む。 Therefore, the determination unit 22 of the present embodiment monitors the output power of the inverter unit 12 and the purchased power from the power system 5, and when the output power of the inverter unit 12 fluctuates, the output power of the inverter unit 12 and the power system 5, the state of attachment of the second current sensor 8 is determined. Here, the attachment state of the second current sensor 8 includes whether or not the attachment direction of the second current sensor 8 to the AC bus 4 is normal and whether or not the second current sensor 8 is off the AC bus 4.
 一方、インバータ部12の出力電力は、ノイズ等の影響により微小に変動する場合がある。ノイズ等によってインバータ部12の出力電力が変動した場合に電力系統5からの買電電力が連動して変動しない場合があり、第2電流センサ8の取り付け状態を誤判定してしまうおそれがある。このため、本実施形態の判定部22は、インバータ部12の出力電力の単位時間当たりの変動量が予め規定された所定値VX以上のときに第2電流センサ8の取り付け状態を判定する。ここで、所定値VXとは、ノイズ等によるインバータ部12の出力電力の変動の最大値よりも大きい値であり、試験等により予め設定される。 On the other hand, the output power of the inverter unit 12 may slightly fluctuate due to the influence of noise or the like. When the output power of the inverter unit 12 fluctuates due to noise or the like, the power purchased from the power system 5 may not fluctuate in conjunction therewith, and the mounting state of the second current sensor 8 may be erroneously determined. For this reason, the determination unit 22 of the present embodiment determines the mounting state of the second current sensor 8 when the amount of fluctuation per unit time of the output power of the inverter unit 12 is equal to or greater than a predetermined value VX. Here, the predetermined value VX is a value larger than the maximum value of the fluctuation of the output power of the inverter unit 12 due to noise or the like, and is set in advance by a test or the like.
 図4は、判定部22が実行する第2電流センサ8の取り付け状態の判定処理の手順の一例を示すフローチャートである。判定部22は、制御装置20に電力が供給されたときに処理を開始し、制御装置20への電力の供給が停止されるまで処理を所定期間毎に繰り返し実行する。なお、以下のフローチャートの説明において、買電電力の変動方向及び変動量は、第2電流センサ8の出力信号により算出したものであり、交流母線4における実際の変動方向や変動量とは異なる。 FIG. 4 is a flowchart illustrating an example of a procedure of a determination process of the attachment state of the second current sensor 8 performed by the determination unit 22. The determining unit 22 starts the process when the power is supplied to the control device 20 and repeatedly executes the process at predetermined intervals until the power supply to the control device 20 is stopped. In the following description of the flowchart, the fluctuation direction and the fluctuation amount of the purchased power are calculated based on the output signal of the second current sensor 8, and are different from the actual fluctuation direction and the fluctuation amount in the AC bus 4.
 判定部22は、ステップS11においてインバータ部12の出力電力の単位時間当たりの変動量が所定値VX以上か否かを判定する。判定部22は、インバータ部12の出力電力の単位時間当たりの変動量を演算する。一例では、判定部22は、単位時間におけるインバータ部12の出力電力の最小値と最大値との差を、インバータ部12の出力電力の単位時間当たりの変動量として演算する。なお、単位時間とは、インバータ部12の出力電力の変動がノイズ等による出力電力の変動ではないことを判定するための時間であり、試験等により予め設定される。一例では、単位時間とは、電力系統5の交流電力の1周期(例えば1/50(s)又は1/60(s))となる時間である。本実施形態では、単位時間を10(ms)に設定し、所定値VXを200(W)に設定している。 The determination unit 22 determines in step S11 whether the amount of change in the output power of the inverter unit 12 per unit time is equal to or greater than a predetermined value VX. The determination unit 22 calculates the amount of change in the output power of the inverter unit 12 per unit time. In one example, the determination unit 22 calculates the difference between the minimum value and the maximum value of the output power of the inverter unit 12 per unit time as the amount of change in the output power of the inverter unit 12 per unit time. The unit time is a time for determining that a change in output power of the inverter unit 12 is not a change in output power due to noise or the like, and is set in advance by a test or the like. In one example, the unit time is a time that is one cycle (for example, 1/50 (s) or 1/60 (s)) of the AC power of the power system 5. In the present embodiment, the unit time is set to 10 (ms), and the predetermined value VX is set to 200 (W).
 またインバータ部12の出力電力は、第1電流センサ16により検出する第1の電流値TA1と、電圧センサ13により検出する電圧値TVとの積により算出される。インバータ部12の出力電力は、電圧センサ13により検出した電圧値TVと、第1電流センサ16により検出した第1の電流値TA1がともに正弦波状であるため、互いに位相差によって有効電力と無効電力とに分類される。電圧値TVと第1の電流値TA1との位相差は、負荷6によって変動するため、電力値を正確に得るために積をとって算出される。ただし、第2電流センサ8の取り付け状態を判定するためには、第1の電流値TA1と第2の電流値TA2とが同期された状態で、互いに増減方向が同じ方向か異なる方向かが判別できれば判別可能であるため、必ずしも電力値を求める必要はない。このため、ステップS11の処理は、インバータ部12の単位時間当たりの出力電流の変化量が予め規定された所定値AX以上か否かの判定とも言える。すなわちステップS11の処理は、第1電流センサ16により検出した第1の電流値TA1の単位時間当たりの変動量が所定値AX以上か否かの判定であるとも言える。ここで、所定値AXとは、インバータ部12の出力電流の変動がノイズ等による出力電流の変動ではないことを判定するための値であり、試験等により予め設定される。判定値の一例は、1(A)である。 The output power of the inverter unit 12 is calculated by the product of the first current value TA1 detected by the first current sensor 16 and the voltage value TV detected by the voltage sensor 13. The output power of the inverter unit 12 is such that the voltage value TV detected by the voltage sensor 13 and the first current value TA1 detected by the first current sensor 16 are both sinusoidal. Classified as Since the phase difference between the voltage value TV and the first current value TA1 fluctuates depending on the load 6, it is calculated by multiplying the phase difference to obtain an accurate power value. However, in order to determine the mounting state of the second current sensor 8, it is necessary to determine whether the increasing and decreasing directions are the same or different from each other in a state where the first current value TA1 and the second current value TA2 are synchronized. Since it can be determined if possible, it is not always necessary to determine the power value. For this reason, the process of step S11 can be said to be a determination as to whether or not the amount of change in the output current per unit time of the inverter unit 12 is equal to or greater than a predetermined value AX. That is, it can be said that the process of step S11 is a determination of whether or not the amount of change per unit time of the first current value TA1 detected by the first current sensor 16 is equal to or greater than the predetermined value AX. Here, the predetermined value AX is a value for determining that the change in the output current of the inverter unit 12 is not a change in the output current due to noise or the like, and is set in advance by a test or the like. One example of the determination value is 1 (A).
 判定部22は、ステップS11においてインバータ部12の出力電力の単位時間当たりの変動量が所定値VX以上ではない場合(ステップS11:NO)、処理を一旦終了する。すなわち、判定部22は、第1の電流値TA1の単位時間当たりの変動量が所定値AX未満の場合、処理を一旦終了する。 If the fluctuation amount per unit time of the output power of the inverter unit 12 is not equal to or larger than the predetermined value VX in step S11 (step S11: NO), the determination unit 22 ends the process once. That is, when the amount of change in the first current value TA1 per unit time is less than the predetermined value AX, the determination unit 22 ends the process once.
 判定部22は、インバータ部12の出力電力の単位時間当たりの変動量が所定値VX以上である場合(ステップS11:YES)、ステップS12において電力系統5からの買電電力の変動量が所定値VX以上か否かを判定する。なお、ステップS12の処理は、電力系統5から第1の電線4Aに供給される単位時間当たりの電流の変化量が所定値AX以上か否かの判定とも言える。すなわちステップS12の処理は、第2電流センサ8により検出した第2の電流値TA2の単位時間当たりの変動が所定値AX以上か否かの判定であるとも言える。 When the variation per unit time of the output power of the inverter 12 is equal to or more than the predetermined value VX (step S11: YES), the determination unit 22 determines in step S12 that the variation of the purchased power from the power system 5 is the predetermined value. It is determined whether or not VX or more. Note that the process of step S12 can also be said to be a determination of whether or not the amount of change in current per unit time supplied from the power system 5 to the first electric wire 4A is equal to or greater than a predetermined value AX. That is, it can be said that the process of step S12 is a determination of whether or not the variation per unit time of the second current value TA2 detected by the second current sensor 8 is equal to or greater than the predetermined value AX.
 判定部22は、例えば、単位時間における電力系統5からの買電電力の最小値と最大値との差を、単位時間当たりの電力系統5からの買電電力の変動量として算出する。電力系統5からの買電電力は、第2電流センサ8が検出する第2の電流値TA2と、交流母線4の第1の電線4Aと第2の電線4Bとの間の電圧値との積により算出される。なお、ステップS12の処理において、所定値VXに代えて、0よりも大きく、かつ所定値VXよりも小さい所定値VY(0<VY<VX)を用いて、電力系統5からの買電電力の単位時間当たりの変動量が所定値VY以上か否かの判定としてもよい。 The determination unit 22 calculates, for example, the difference between the minimum value and the maximum value of the power purchased from the power system 5 per unit time as the fluctuation amount of the power purchased from the power system 5 per unit time. The purchased power from the power system 5 is the product of the second current value TA2 detected by the second current sensor 8 and the voltage value between the first electric wire 4A and the second electric wire 4B of the AC bus 4. Is calculated by In the process of step S12, instead of the predetermined value VX, a predetermined value VY (0 <VY <VX) larger than 0 and smaller than the predetermined value VX is used to obtain the power purchased from the power system 5. It may be determined whether or not the amount of change per unit time is equal to or greater than a predetermined value VY.
 判定部22は、電力系統5からの買電電力の単位時間当たりの変動量が所定値VX以上である場合(ステップS12:YES)、ステップS13においてインバータ部12の出力電力の単位時間当たりの変動方向と電力系統5からの買電電力の単位時間当たりの変動方向とが逆か否かを判定する。一例では、判定部22は、電力が増加する方向をプラスとし、電力が減少する方向をマイナスと規定し、インバータ部12の出力電力の単位時間当たりの変動方向及び電力系統5からの買電電力の単位時間当たりの変動方向をそれぞれ、プラス及びマイナスのいずれかとして設定する。そして判定部22は、インバータ部12の出力電力の単位時間当たりの変動方向と電力系統5からの買電電力の単位時間当たりの変動方向とを乗算することによって、乗算の結果がマイナスか否かを判定する。判定部22は、その乗算の結果がマイナスである場合、インバータ部12の出力電力の単位時間当たりの変動方向と電力系統5からの買電電力の単位時間当たりの変動方向とが逆であると判定する。一例では、インバータ部12の出力電力が増加(プラス)し、電力系統5からの買電電力が減少(マイナス)する場合、判定部22は、プラス×マイナスを演算する。判定部22は、演算結果としてマイナスとなるため、インバータ部12の出力電力の単位時間当たりの変動方向と電力系統5からの買電電力の単位時間当たりの変動方向とが逆であると判定する。なお、ステップS13の処理は、第1の電流値TA1が単位時間当たりの変動量が所定値AX以上のときの第1の電流値TA1の単位時間当たりの変動方向と第2の電流値TA2の単位時間当たりの変動方向とが逆か否かを判定するとも言える。 If the variation per unit time of the power purchased from the power system 5 is equal to or greater than the predetermined value VX (step S12: YES), the determination unit 22 determines in step S13 the variation in the output power of the inverter unit 12 per unit time. It is determined whether the direction is opposite to the direction in which the power purchased from the power system 5 fluctuates per unit time. In one example, the determination unit 22 defines the direction in which the power increases as plus and defines the direction in which the power decreases as negative, the fluctuation direction of the output power of the inverter unit 12 per unit time, and the power purchased from the power system 5. Are set as either plus or minus, respectively. The determining unit 22 multiplies the direction of change per unit time of the output power of the inverter unit 12 by the direction of change per unit time of the power purchased from the power system 5 to determine whether the result of the multiplication is negative. Is determined. When the result of the multiplication is negative, the determination unit 22 determines that the direction of change in the output power of the inverter unit 12 per unit time is opposite to the direction of the change in the power purchased from the power system 5 per unit time. judge. In one example, when the output power of the inverter unit 12 increases (plus) and the purchased power from the power system 5 decreases (minus), the determination unit 22 calculates plus and minus. The determination unit 22 determines that the fluctuation direction of the output power of the inverter unit 12 per unit time is opposite to the fluctuation direction of the power purchased from the power system 5 per unit time because the calculation result is negative. . Note that the process of step S13 is performed by changing the direction of change of the first current value TA1 per unit time when the amount of change per unit time of the first current value TA1 is equal to or more than the predetermined value AX and the second current value TA2. It can also be said that it is determined whether or not the direction of change per unit time is opposite.
 判定部22は、インバータ部12の出力電力の単位時間当たりの変動方向と電力系統5からの買電電力の単位時間当たりの変動方向とが逆である場合(ステップS13:YES)、ステップS14において第2電流センサ8の取り付け方向は正常であると判定し、処理を一旦終了する。すなわち、判定部22は、第1の電流値TA1の単位時間当たりの変動方向と第2の電流値TA2の単位時間当たりの変動方向とに基づいて第2電流センサ8の取り付け方向を判定する。本実施形態では、判定部22は、第1の電流値TA1の単位時間当たりの変動方向と第2の電流値TA2の単位時間当たりの変動方向とが逆の場合、第2電流センサ8の取り付け方向が正常であると判定する。 If the fluctuation direction of the output power of the inverter unit 12 per unit time is opposite to the fluctuation direction of the purchased power from the power system 5 per unit time (step S13: YES), the determination unit 22 determines in step S14. It is determined that the mounting direction of the second current sensor 8 is normal, and the process is temporarily terminated. That is, the determination unit 22 determines the mounting direction of the second current sensor 8 based on the direction of change of the first current value TA1 per unit time and the direction of change of the second current value TA2 per unit time. In the present embodiment, when the direction of change of the first current value TA1 per unit time is opposite to the direction of change of the second current value TA2 per unit time, the determination unit 22 attaches the second current sensor 8 It is determined that the direction is normal.
 一方、判定部22は、インバータ部12の出力電力の単位時間当たりの変動方向と電力系統5からの買電電力の単位時間当たりの変動方向とが同じ向きである場合(ステップS13:NO)、ステップS15において第2電流センサ8の取り付け方向が異常であると判定する。本実施形態では、判定部22は、第1の電流値TA1の単位時間当たりの変動方向と第2の電流値TA2の単位時間当たりの変動方向とが同じ方向の場合、第2電流センサ8の取り付け方向が異常であると判定する。 On the other hand, when the fluctuation direction of the output power of the inverter unit 12 per unit time is the same as the fluctuation direction of the purchased power from the power system 5 per unit time (step S13: NO), In step S15, it is determined that the mounting direction of the second current sensor 8 is abnormal. In the present embodiment, when the direction of change of the first current value TA1 per unit time is the same as the direction of change of the second current value TA2 per unit time, the determination unit 22 It is determined that the mounting direction is abnormal.
 判定部22は、ステップS15の処理において、第2電流センサ8の取り付け方向が異常である旨を報知部7に出力する。一例では、報知部7は、液晶パネル等の表示部を有する。報知部7は、第2電流センサ8の取り付け方向が異常である旨を表示部に表示する。例えば施工者が電力管理システム1を施工する場合に報知部7の表示部を視認することによって、第2電流センサ8の取り付け方向が異常であることを認識できる。 The determination unit 22 outputs to the notification unit 7 that the mounting direction of the second current sensor 8 is abnormal in the process of step S15. In one example, the notification unit 7 has a display unit such as a liquid crystal panel. The notification unit 7 displays on the display unit that the mounting direction of the second current sensor 8 is abnormal. For example, when the installer constructs the power management system 1, by visually recognizing the display unit of the notification unit 7, it is possible to recognize that the mounting direction of the second current sensor 8 is abnormal.
 また判定部22は、電力系統5からの買電電力の単位時間当たりの変動量が所定値VX未満である場合(ステップS12:NO)、ステップS16において第2電流センサ8が交流母線4から外れていると判定し、処理を一旦終了する。このように、判定部22は、第2の電流値TA2の単位時間当たりの変動量が所定値AX未満の場合、第2電流センサ8が交流母線4から外れていると判定する。一例では、判定部22は、第1の電流値TA1の単位時間当たりの変動量が所定値AX以上のときに第2の電流値TA2が単位時間にわたり変動していないとき、第2電流センサ8が交流母線4から外れていると判定する。判定部22は、ステップS16の処理において、第2電流センサ8が交流母線4から外れている旨を報知部7に出力する。一例では、報知部7は、第2電流センサ8が交流母線4から外れている旨を表示部に表示する。 When the fluctuation amount per unit time of the power purchased from the power system 5 is less than the predetermined value VX (step S12: NO), the determination unit 22 disconnects the second current sensor 8 from the AC bus 4 in step S16. Is determined, and the process is temporarily terminated. As described above, the determination unit 22 determines that the second current sensor 8 is out of the AC bus 4 when the variation amount of the second current value TA2 per unit time is less than the predetermined value AX. In one example, when the variation amount of the first current value TA1 per unit time is equal to or more than the predetermined value AX and the second current value TA2 does not fluctuate over the unit time, the determination unit 22 determines that the second current sensor 8 Is determined to be out of the AC bus 4. The determination unit 22 outputs to the notification unit 7 that the second current sensor 8 is out of the AC bus 4 in the process of step S16. In one example, the notification unit 7 displays on the display unit that the second current sensor 8 is out of the AC bus 4.
 図5及び図6を用いて、第2電流センサ8の取り付け状態の判定処理の一実施態様について説明する。図5は、インバータ部12の出力電力が変動する前の状態を示し、図6は、インバータ部12の出力電力が変動した後の状態を示している。図5及び図6において負荷6の消費電力は300Wと規定する。 An embodiment of the process of determining the mounting state of the second current sensor 8 will be described with reference to FIGS. FIG. 5 shows a state before the output power of the inverter unit 12 fluctuates, and FIG. 6 shows a state after the output power of the inverter unit 12 fluctuates. 5 and 6, the power consumption of the load 6 is defined as 300 W.
 図5に示すとおり、パワーコンディショナ10から負荷6に200Wの電力が出力される場合、すなわちインバータ部12の出力電力が200Wの場合、電力系統5から負荷6に供給される買電電力は100Wとなる。 As shown in FIG. 5, when 200 W of power is output from power conditioner 10 to load 6, that is, when the output power of inverter unit 12 is 200 W, the purchased power supplied from power system 5 to load 6 is 100 W Becomes
 図6に示すとおり、パワーコンディショナ10から負荷6に400Wの電力が出力される場合、すなわちインバータ部12の出力電力が400Wの場合、電力系統5から負荷6に買電電力は供給されず、逆潮流されてパワーコンディショナ10から電力系統5に100Wの電力が供給される。そして図5及び図6に示すとおり、インバータ部12の出力電力が200Wから400Wに変動した場合、電力系統5から負荷6に供給される電力は100Wから「-100W」となる。すなわち、パワーコンディショナ10から電力系統5に100Wの売電電力が供給されることになる。 As shown in FIG. 6, when 400 W of power is output from the power conditioner 10 to the load 6, that is, when the output power of the inverter unit 12 is 400 W, the purchased power is not supplied from the power system 5 to the load 6. 100 W of power is supplied from the power conditioner 10 to the power system 5 due to the reverse flow. Then, as shown in FIGS. 5 and 6, when the output power of the inverter unit 12 changes from 200 W to 400 W, the power supplied from the power system 5 to the load 6 changes from 100 W to “−100 W”. That is, 100 W of sold power is supplied from the power conditioner 10 to the power system 5.
 ここで、出力電力、買電電力、及び売電電力とは、実際にはインバータ部12の電圧センサ13により検出した電圧値TVと、第1電流センサ16により検出した第1の電流値TA1と、第2電流センサ8により検出した第2の電流値TA2とが全て正弦波状であるため、例えば電圧値TVの1周期間における実効値として、電圧値TVと第1の電流値TA1との積、及び電圧値TVと第2の電流値TA2との積を算出している。したがって、電圧値TVの電圧位相に対して、第2の電流値TA2の電流位相が反転していれば売電、反転してなければ買電と判断する。 Here, the output power, the purchased power, and the sold power are actually a voltage value TV detected by the voltage sensor 13 of the inverter unit 12 and a first current value TA1 detected by the first current sensor 16. Since the second current value TA2 detected by the second current sensor 8 is all sinusoidal, for example, the product of the voltage value TV and the first current value TA1 is defined as an effective value during one cycle of the voltage value TV. , And the product of the voltage value TV and the second current value TA2. Therefore, if the current phase of the second current value TA2 is inverted with respect to the voltage phase of the voltage value TV, it is determined that the power is sold, and if not, the power is purchased.
 ここで、電力系統5からパワーコンディショナ10又は負荷6に向けて流れる電流をプラスの信号、パワーコンディショナ10から電力系統5に向けて流れる電流をマイナスの信号として出力する第2電流センサ8の取り付け方向を正常としているため、電力系統5から負荷6に供給される電流値(第2の電流値TA2)は減少する。このため、判定部22は、電力系統5から負荷6に供給される買電電力が減少すると判定する。そして判定部22は、インバータ部12の出力電力の変動方向(プラス)と電力系統5から負荷6に供給される買電電力の変動方向(マイナス)との積の結果、マイナスとなるため、第2電流センサ8の取り付け状態が正常であると判定する。 Here, the current flowing from the power system 5 to the power conditioner 10 or the load 6 is a positive signal, and the current flowing from the power conditioner 10 to the power system 5 is a negative signal. Since the mounting direction is normal, the current value (second current value TA2) supplied from the power system 5 to the load 6 decreases. For this reason, the determination unit 22 determines that the purchased power supplied from the power system 5 to the load 6 decreases. Then, the determination unit 22 becomes negative as a result of the product of the fluctuation direction (plus) of the output power of the inverter unit 12 and the fluctuation direction (minus) of the purchased power supplied from the power system 5 to the load 6. 2 It is determined that the mounting state of the current sensor 8 is normal.
 一方、第2電流センサ8の取り付け方向が逆であれば、電力系統5から負荷6に供給される電流値(第2の電流値TA2)は増加する。このため、判定部22は、電力系統5から負荷6に供給される買電電力が増加すると判定する。そして判定部22は、インバータ部12の出力電力の変動方向(プラス)と電力系統5から負荷6に供給される買電電力の変動方向(プラス)との積の結果、プラスとなるため、第2電流センサ8の取り付け状態が異常であると判定する。 On the other hand, if the mounting direction of the second current sensor 8 is reversed, the current value (second current value TA2) supplied from the power system 5 to the load 6 increases. Therefore, the determination unit 22 determines that the purchased power supplied from the power system 5 to the load 6 increases. Then, the determination unit 22 becomes positive as a result of the product of the fluctuation direction (plus) of the output power of the inverter unit 12 and the fluctuation direction (plus) of the purchased power supplied from the power system 5 to the load 6. 2 It is determined that the mounting state of the current sensor 8 is abnormal.
 また、第2電流センサ8が交流母線4の第1の電線4Aから外れていれば、第2電流センサ8が検出する第2の電流値TA2が「0A」又は所定の固定値となるため、判定部22は、電力系統5から負荷6に供給される買電電力が「0W」又は所定の固定値であると判定する。そして判定部22は、インバータ部12の出力電力が変動したにもかかわらず、電力系統5から負荷6に供給される買電電力が変動しないと判定し、第2電流センサ8が交流母線4から外れていると判定する。 Further, if the second current sensor 8 is off the first electric wire 4A of the AC bus 4, the second current value TA2 detected by the second current sensor 8 becomes “0A” or a predetermined fixed value. The determination unit 22 determines that the purchased power supplied from the power system 5 to the load 6 is “0 W” or a predetermined fixed value. Then, the determining unit 22 determines that the purchased power supplied from the power system 5 to the load 6 does not fluctuate even though the output power of the inverter unit 12 fluctuates, and the second current sensor 8 It is determined that it is off.
 なお、複数のパワーコンディショナ10が交流母線4に接続する場合でも第2電流センサ8の取り付け状態を判定できる。より詳細には、図7に示されるとおり、電力管理システム1は、互いに並列接続された2つのパワーコンディショナ10A,10Bを有する。2つのパワーコンディショナ10A,10Bはそれぞれ、交流母線4に接続されている。例えばパワーコンディショナ10Aから負荷6に400Wの電力が出力され、パワーコンディショナ10Bから負荷6に電力が出力されていない場合、パワーコンディショナ10Aからの電力によって電力系統5に逆潮流している。この場合、パワーコンディショナ10Bは、電力を負荷6に出力していないにもかかわらず電力系統5に逆潮流していると判断して、パワーコンディショナ10Bに設けられた系統連系リレー(図示略)によってインバータ部12と負荷6及び電力系統5とを解列することを回避できる。 Even when a plurality of power conditioners 10 are connected to the AC bus 4, the attachment state of the second current sensor 8 can be determined. More specifically, as shown in FIG. 7, the power management system 1 has two power conditioners 10A and 10B connected in parallel to each other. The two power conditioners 10A and 10B are connected to the AC bus 4 respectively. For example, when 400 W of power is output from the power conditioner 10A to the load 6 and no power is output from the power conditioner 10B to the load 6, reverse power flows to the power system 5 by the power from the power conditioner 10A. In this case, the power conditioner 10B determines that reverse power flows to the power system 5 even though power is not being output to the load 6, and the system interconnection relay (not shown) provided in the power conditioner 10B. Omitted) can prevent the inverter unit 12 from being disconnected from the load 6 and the power system 5.
 本実施形態は、以下の効果が得られる。
 (1-1)判定部22は、第1電流センサ16により検出した第1の電流値TA1及び第2電流センサ8により検出した第2の電流値TA2に基づいて、第2電流センサ8の取り付け状態を判定する。この構成によれば、第2電流センサ8の取り付け状態を判定するための専用の構成の追加を不要とし、電力系統5とパワーコンディショナ10とを接続する第1の電線4Aに取り付けられる第2電流センサ8の取り付け状態を検出できる。
This embodiment has the following advantages.
(1-1) The determination unit 22 attaches the second current sensor 8 based on the first current value TA1 detected by the first current sensor 16 and the second current value TA2 detected by the second current sensor 8. Determine the status. According to this configuration, it is not necessary to add a dedicated configuration for determining the mounting state of the second current sensor 8, and the second current sensor 8 attached to the first electric wire 4A connecting the power system 5 and the power conditioner 10 is unnecessary. The attachment state of the current sensor 8 can be detected.
 (1-2)判定部22は、第1の電流値TA1の単位時間当たりの変動量が判定値以上のとき、第2の電流値TA2の単位時間当たりの変動量と変動方向とに基づいて、第2電流センサ8の取り付け状態を判定する。この構成によれば、第1の電流値TA1の単位時間当たりの変動量が判定値以上のときに第2電流センサ8の取り付け状態を判定することによって、ノイズ等によって第1の電流値TA1が変化するときに第2電流センサ8の取り付け状態の判定を行わない。したがって、第2電流センサ8の取り付け状態の誤判定を抑制できる。 (1-2) When the variation amount of the first current value TA1 per unit time is equal to or greater than the determination value, the determination unit 22 determines the variation amount of the second current value TA2 per unit time and the variation direction. Then, the attachment state of the second current sensor 8 is determined. According to this configuration, when the variation of the first current value TA1 per unit time is equal to or greater than the determination value, the attachment state of the second current sensor 8 is determined, so that the first current value TA1 is reduced due to noise or the like. When it changes, the attachment state of the second current sensor 8 is not determined. Therefore, erroneous determination of the mounting state of the second current sensor 8 can be suppressed.
 (1-3)判定部22は、第1の電流値TA1の単位時間当たりの変動量が判定値以上のとき、第2の電流値TA2の単位時間当たりの変動量に基づいて、第2電流センサ8が第1の電線4Aから外れているか否かを判定する。この構成によれば、判定部22は、第1の電流値TA1が変動したにもかかわらず第2の電流値TA2が変動しない場合、第2電流センサ8が第1の電線4Aから外れていると判定する。このように、第2電流センサ8が第1の電線4Aから外れているか否かを容易に判定できる。 (1-3) When the variation of the first current value TA1 per unit time is equal to or greater than the determination value, the determination unit 22 determines the second current based on the variation of the second current value TA2 per unit time. It is determined whether the sensor 8 is off the first electric wire 4A. According to this configuration, when the second current value TA2 does not fluctuate even though the first current value TA1 fluctuates, the determination unit 22 disconnects the second current sensor 8 from the first electric wire 4A. Is determined. Thus, it can be easily determined whether or not the second current sensor 8 is disengaged from the first electric wire 4A.
 (1-4)判定部22は、第1の電流値TA1の単位時間当たりの変動量が判定値以上のときの第1の電流値TA1の変動方向と第2の電流値TA2の変動方向とに基づいて、第2電流センサ8の取り付け方向が正しいか否かを判定する。この構成によれば、第1の電流値TA1の単位時間当たりの変動方向と第2の電流値TA2の単位時間当たりの変動方向とから第2電流センサ8の取り付け方向を容易に判定できる。 (1-4) The determination unit 22 determines the direction of change of the first current value TA1 and the direction of change of the second current value TA2 when the variation amount of the first current value TA1 per unit time is equal to or greater than the determination value. It is determined whether or not the mounting direction of the second current sensor 8 is correct based on. According to this configuration, the mounting direction of the second current sensor 8 can be easily determined from the fluctuation direction of the first current value TA1 per unit time and the fluctuation direction of the second current value TA2 per unit time.
 (1-5)判定部22は、A/Dコンバータ23及びDSP24を有する。この構成によれば、第1電流センサ16の出力信号及び第2電流センサ8の出力信号をそれぞれ第1の電流値TA1及び第2の電流値TA2に変換して微分処理を行うことによって、第2電流センサ8の取り付け状態の判定を容易かつ速やかに実行できる。 (1-5) The determination unit 22 includes an A / D converter 23 and a DSP 24. According to this configuration, the output signal of the first current sensor 16 and the output signal of the second current sensor 8 are converted into the first current value TA1 and the second current value TA2, respectively, and the differential processing is performed. The determination of the mounting state of the two-current sensor 8 can be easily and promptly performed.
 (1-6)判定部22は、第2電流センサ8の取り付け状態を報知部7に出力する。この構成によれば、第2電流センサ8の取り付け状態が異常である場合、報知部7を介して施工者に第2電流センサ8の取り付け状態が異常であることを報知できる。 (1-6) The determination unit 22 outputs the mounting state of the second current sensor 8 to the notification unit 7. According to this configuration, when the attachment state of the second current sensor 8 is abnormal, the installer can be notified via the notification unit 7 that the attachment state of the second current sensor 8 is abnormal.
 (第2実施形態)
 図8~図12を参照して、第2実施形態のパワーコンディショナ10について説明する。本実施形態のパワーコンディショナ10は、第1実施形態と比較して、単相三線式の電力系統5に適用される点が異なる。以下の説明において、第1実施形態と共通の構成要素には同一の符号を付し、その説明を省略する。
(2nd Embodiment)
The power conditioner 10 according to the second embodiment will be described with reference to FIGS. The power conditioner 10 of the present embodiment is different from the first embodiment in that the power conditioner 10 is applied to a single-phase three-wire power system 5. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
 図8に示すように、電力管理システム1の交流母線4は、第1の電線4A、第2の電線4B、及び中性線となる第3の電線4Cを有する。第2の電線4Bには、第2電流センサ9が設けられている。第2電流センサ9は、制御装置20のA/Dコンバータ23に電気的に接続されている。第2電流センサ9は、第2の電線4Bに流れる電流量に応じた信号をA/Dコンバータ23に出力する。A/Dコンバータ23は、第2電流センサ9の出力信号を第2の電流値TA3に変換する。 交流 As shown in FIG. 8, the AC bus 4 of the power management system 1 includes a first electric wire 4A, a second electric wire 4B, and a third electric wire 4C serving as a neutral electric wire. A second current sensor 9 is provided on the second electric wire 4B. The second current sensor 9 is electrically connected to the A / D converter 23 of the control device 20. The second current sensor 9 outputs a signal corresponding to the amount of current flowing through the second electric wire 4B to the A / D converter 23. The A / D converter 23 converts the output signal of the second current sensor 9 into a second current value TA3.
 本実施形態の電力管理システム1では、第1の電線4Aと第3の電線4Cとに第1負荷6Aが接続され、第2の電線4Bと第3の電線4Cとに第2負荷6Bが接続されている。
 図9に示すように、パワーコンディショナ10は、第1の電線4A、第2の電線4B、及び第3の電線4Cに接続される3つの入出力端子10Tを有する。インバータ部12の第3電線12Xは、入出力端子10Tを介して第1の電線4Aに接続され、第4電線12Yは、入出力端子10Tを介して第2の電線4Bに接続される。インバータ部12は、第5電線12Zをさらに有する。第5電線12Zは、入出力端子10Tを介して第3の電線4Cに接続されている。第3電線12Xと第5電線12Zとの間には、平滑用のコンデンサ18Aが設けられ、第4電線12Yと第5電線12Zとの間には、平滑用のコンデンサ18Bが設けられている。
In the power management system 1 of the present embodiment, the first load 6A is connected to the first wire 4A and the third wire 4C, and the second load 6B is connected to the second wire 4B and the third wire 4C. Have been.
As shown in FIG. 9, the power conditioner 10 has three input / output terminals 10T connected to a first electric wire 4A, a second electric wire 4B, and a third electric wire 4C. The third wire 12X of the inverter unit 12 is connected to the first wire 4A via the input / output terminal 10T, and the fourth wire 12Y is connected to the second wire 4B via the input / output terminal 10T. The inverter unit 12 further has a fifth electric wire 12Z. The fifth electric wire 12Z is connected to the third electric wire 4C via the input / output terminal 10T. A smoothing capacitor 18A is provided between the third wire 12X and the fifth wire 12Z, and a smoothing capacitor 18B is provided between the fourth wire 12Y and the fifth wire 12Z.
 電圧センサ13は、第1電圧センサ13A及び第2電圧センサ13Bを有する。第1電圧センサ13Aは、第3電線12Xと第5電線12Zとの間の電圧を検出する。第2電圧センサ13Bは、第4電線12Yと第5電線12Zとの間の電圧を検出する。第1電圧センサ13A及び第2電圧センサ13Bは、A/Dコンバータ23(図8参照)に電気的に接続されている。第1電圧センサ13Aは、第3電線12Xと第5電線12Zとの間の電圧に応じた信号をA/Dコンバータ23に出力する。第2電圧センサ13Bは、第4電線12Yと第5電線12Zとの間の電圧に応じた信号をA/Dコンバータ23に出力する。A/Dコンバータ23は、第1電圧センサ13Aの出力信号を第1の電圧値TV1に変換する。またA/Dコンバータ23は、第2電圧センサ13Bの出力信号を第2の電圧値TV2に変換する。A/Dコンバータ23は、変換後の値TV1,TV2をDSP24に出力する。本実施形態では、DSP24は、第1の電流値TA1、第2の電流値TA2,TA3、第1の電圧値TV1、及び第2の電圧値TV2を取り込み、それらの値に基づいて第2電流センサ8,9の取り付け状態を判定する。 The voltage sensor 13 has a first voltage sensor 13A and a second voltage sensor 13B. The first voltage sensor 13A detects a voltage between the third electric wire 12X and the fifth electric wire 12Z. The second voltage sensor 13B detects a voltage between the fourth electric wire 12Y and the fifth electric wire 12Z. The first voltage sensor 13A and the second voltage sensor 13B are electrically connected to the A / D converter 23 (see FIG. 8). The first voltage sensor 13A outputs a signal corresponding to the voltage between the third electric wire 12X and the fifth electric wire 12Z to the A / D converter 23. The second voltage sensor 13B outputs a signal corresponding to a voltage between the fourth electric wire 12Y and the fifth electric wire 12Z to the A / D converter 23. The A / D converter 23 converts the output signal of the first voltage sensor 13A into a first voltage value TV1. The A / D converter 23 converts the output signal of the second voltage sensor 13B into a second voltage value TV2. The A / D converter 23 outputs the converted values TV1 and TV2 to the DSP 24. In the present embodiment, the DSP 24 takes in the first current value TA1, the second current values TA2, TA3, the first voltage value TV1, and the second voltage value TV2, and based on these values, the second current The attachment state of the sensors 8 and 9 is determined.
 図8の判定部22は、第1電圧センサ13Aにより検出した第1の電圧値TV1と第2電圧センサ13Bにより検出した第2の電圧値TV2とを加算した値と、第1電流センサ16により検出した第1の電流値TA1との積によって、インバータ部12の出力電力を演算する。判定部22は、第1の電線4Aと第3の電線4Cとの間の電圧と、第2電流センサ8が検出した第2の電流値TA2との積によって、電力系統5が第1負荷6Aに供給する買電電力を演算する。判定部22は、第2の電線4Bと第3の電線4Cとの間の電圧と、第2電流センサ9が検出した第2の電流値TA3との積によって、電力系統5が第2負荷6Bに供給する買電電力を演算する。 The determination unit 22 in FIG. 8 determines the value obtained by adding the first voltage value TV1 detected by the first voltage sensor 13A and the second voltage value TV2 detected by the second voltage sensor 13B, and the first current sensor 16 The output power of the inverter unit 12 is calculated based on the product of the detected first current value TA1 and the product. The determining unit 22 determines whether the power system 5 has the first load 6A by the product of the voltage between the first electric wire 4A and the third electric wire 4C and the second current value TA2 detected by the second current sensor 8. Calculate the purchased power to be supplied to. The determining unit 22 determines whether the power system 5 has the second load 6B based on the product of the voltage between the second electric wire 4B and the third electric wire 4C and the second current value TA3 detected by the second current sensor 9. Calculate the purchased power to be supplied to.
 また、判定部22は、第2電流センサ8の取り付け状態及び第2電流センサ9の取り付け状態をそれぞれ判定する。図10は、判定部22によって第2電流センサ8の取り付け状態及び第2電流センサ9の取り付け状態をそれぞれ判定する判定処理の手順の一例を示すフローチャートである。判定部22は、制御装置20に電力が供給されたときに処理を開始し、制御装置20への電力の供給が停止されるまで処理を所定期間毎に繰り返し実行する。 (4) The determining unit 22 determines the mounting state of the second current sensor 8 and the mounting state of the second current sensor 9 respectively. FIG. 10 is a flowchart illustrating an example of a procedure of a determination process in which the determination unit 22 determines the attachment state of the second current sensor 8 and the attachment state of the second current sensor 9 respectively. The determining unit 22 starts the process when the power is supplied to the control device 20 and repeatedly executes the process at predetermined intervals until the power supply to the control device 20 is stopped.
 本実施形態の第2電流センサ8の取り付け状態の判定処理は、第1実施形態の第2電流センサ8の取り付け状態の判定処理と同様である。すなわち、図10のステップS21の処理は、図4のステップS11の処理と同じであり、ステップS22の処理は、ステップS12の処理と同じであり、ステップS23の処理は、ステップS13の処理と同じであり、ステップS24の処理は、ステップS14の処理と同じであり、ステップS25の処理は、ステップS15の処理と同じであり、ステップS26の処理は、ステップS16の処理と同じである。なお、ステップS21の判定処理では、電力系統5から第1負荷6Aに供給される買電電力の単位時間当たりの変動量が所定値VX以上か否かを判定する。 判定 The process of determining the mounting state of the second current sensor 8 of the present embodiment is the same as the process of determining the mounting state of the second current sensor 8 of the first embodiment. That is, the processing in step S21 in FIG. 10 is the same as the processing in step S11 in FIG. 4, the processing in step S22 is the same as the processing in step S12, and the processing in step S23 is the same as the processing in step S13. The processing in step S24 is the same as the processing in step S14, the processing in step S25 is the same as the processing in step S15, and the processing in step S26 is the same as the processing in step S16. In the determination process of step S21, it is determined whether the amount of fluctuation per unit time of the purchased power supplied from the power system 5 to the first load 6A is equal to or greater than a predetermined value VX.
 判定部22は、インバータ部12の出力電力の単位時間当たりの変動量が所定値VX以上である場合(ステップS21:YES)、ステップS31において電力系統5から第2負荷6Bに供給される買電電力の単位時間当たりの変動量が所定値VX以上か否かを判定する。判定部22は、単位時間における電力系統5から第2負荷6Bに供給される買電電力の最小値と最大値との差を電力系統5から第2負荷6Bに供給される買電電力の変動量として算出する。ここで、ステップS31の処理は、第2の電線4Bと第3の電線4Cとの間の電圧は一定であるため、第2の電流値TA3の単位時間当たりの変動量が判定値以上か否かの判定と言える。 When the variation per unit time of the output power of the inverter unit 12 is equal to or more than the predetermined value VX (step S21: YES), the determination unit 22 purchases power supplied from the power system 5 to the second load 6B in step S31. It is determined whether or not the fluctuation amount of the power per unit time is equal to or greater than a predetermined value VX. The determining unit 22 determines the difference between the minimum value and the maximum value of the purchased power supplied from the power system 5 to the second load 6B in the unit time by the fluctuation of the purchased power supplied from the power system 5 to the second load 6B. Calculate as quantity. Here, in the process of step S31, since the voltage between the second electric wire 4B and the third electric wire 4C is constant, the variation amount of the second current value TA3 per unit time is equal to or more than the determination value. It can be said that it is a judgment.
 判定部22は、電力系統5から第2負荷6Bに供給される買電電力の単位時間当たりの変動量が所定値VX以上である場合(ステップS31:YES)、ステップS32においてインバータ部12の出力電力の単位間当たりの変動方向と電力系統5から第2負荷6Bに供給される買電電力の単位時間当たりの変動方向とが同じ方向か否かを判定する。ここで、ステップS32の判定処理は、インバータ部12の出力電圧と、第2の電線4Bと第3の電線4Cとの間の電圧とがそれぞれ一定であるため、第1の電流値TA1の単位時間当たりの変動方向と第2の電流値TA3の単位時間当たりの変動方向とが同じ方向か否かの判定であると言える。 When the fluctuation amount per unit time of the purchased power supplied from the power system 5 to the second load 6B is equal to or more than the predetermined value VX (step S31: YES), the determination unit 22 determines the output of the inverter unit 12 in step S32. It is determined whether the fluctuation direction per unit of power and the fluctuation direction per unit time of the purchased power supplied from the power system 5 to the second load 6B are the same. Here, since the output voltage of the inverter unit 12 and the voltage between the second electric wire 4B and the third electric wire 4C are respectively constant, the determination process of step S32 is performed in the unit of the first current value TA1. It can be said that the determination is made as to whether the fluctuation direction per unit time and the fluctuation direction per unit time of the second current value TA3 are the same.
 判定部22は、インバータ部12の出力電力の単位時間当たりの変動方向と電力系統5から第2負荷6Bに供給する買電電力の単位時間当たりの変動方向とが同じ方向である場合(ステップS32:YES)、ステップS33において第2電流センサ9の取り付け方向は正常であると判定し、処理を一旦終了する。すなわち、判定部22は、第1の電流値TA1の単位時間当たりの変動方向と第2の電流値TA3の単位時間当たりの変動方向とが同じ方向の場合に第2電流センサ9の取り付け方向が正常であると判定する。 The determination unit 22 determines that the direction of change per unit time of the output power of the inverter unit 12 and the direction of change per unit time of the purchased power supplied from the power system 5 to the second load 6B are the same (step S32). : YES), it is determined in step S33 that the mounting direction of the second current sensor 9 is normal, and the process is temporarily terminated. That is, when the direction of change of the first current value TA1 per unit time and the direction of change of the second current value TA3 per unit time are the same, the determination unit 22 determines that the mounting direction of the second current sensor 9 is It is determined that it is normal.
 一方、判定部22は、インバータ部12の出力電力の単位時間当たりの変動方向と電力系統5からの買電電力の単位時間当たりの変動方向とが逆である場合(ステップS32:NO)、ステップS34において第2電流センサ9の取り付け方向が異常であると判定する。すなわち、判定部22は、第1の電流値TA1の単位時間当たりの変動方向と第2の電流値TA3の単位時間当たりの変動方向とが逆の場合に第2電流センサ9の取り付け方向が異常であると判定する。判定部22は、ステップS34の処理において、第2電流センサ9の取り付け方向が異常である旨を報知部7に出力する。一例では、報知部7は、第2電流センサ9の取り付け方向が異常である旨を表示部に表示する。例えば施工者が電力管理システム1を施工する場合に報知部7の表示部を視認することによって、第2電流センサ9の取り付け方向が異常であることを認識できる。 On the other hand, if the direction of change in the output power of the inverter unit 12 per unit time is opposite to the direction of the change in the power purchased from the power system 5 per unit time (step S32: NO), the determination unit 22 determines the step. In S34, it is determined that the mounting direction of the second current sensor 9 is abnormal. That is, the determination unit 22 determines that the mounting direction of the second current sensor 9 is abnormal when the direction of change of the first current value TA1 per unit time is opposite to the direction of change of the second current value TA3 per unit time. Is determined. The determination unit 22 outputs to the notification unit 7 that the mounting direction of the second current sensor 9 is abnormal in the process of step S34. In one example, the notification unit 7 displays on the display unit that the mounting direction of the second current sensor 9 is abnormal. For example, when the installer performs the power management system 1, by visually recognizing the display unit of the notification unit 7, it is possible to recognize that the mounting direction of the second current sensor 9 is abnormal.
 また判定部22は、電力系統5から第2負荷6Bに供給する買電電力の単位時間当たりの変動量が所定値VX未満である場合(ステップS31:NO)、ステップS35において第2電流センサ9が交流母線4の第2の電線4Bから外れていると判定し、処理を一旦終了する。すなわち、判定部22は、第2の電流値TA3の単位時間当たりの変動量が判定値未満の場合に第2電流センサ9が第2の電線4Bから外れていると判定する。判定部22は、ステップS35の処理において、第2電流センサ9が第2の電線4Bから外れている旨を報知部7に出力する。一例では、報知部7は、第2電流センサ9が第2の電線4Bから外れている旨を表示部に表示する。 When the fluctuation amount per unit time of the purchased power supplied from the power system 5 to the second load 6B is less than the predetermined value VX (step S31: NO), the determination unit 22 determines in step S35 that the second current sensor 9 Is deviated from the second electric wire 4B of the AC bus 4, and the process is temporarily terminated. That is, the determination unit 22 determines that the second current sensor 9 is deviated from the second electric wire 4B when the variation amount of the second current value TA3 per unit time is less than the determination value. The determination unit 22 outputs to the notification unit 7 that the second current sensor 9 is disconnected from the second electric wire 4B in the process of step S35. In one example, the notification unit 7 displays on the display unit that the second current sensor 9 is disconnected from the second electric wire 4B.
 図11及び図12を用いて、第2電流センサ8の取り付け状態及び第2電流センサ9の取り付け状態の判定処理の一実施態様について説明する。図11は、インバータ部12の出力電力が変動する前の状態を示し、図12は、インバータ部12の出力電力が変動した後の状態を示している。図11及び図12において第1負荷6Aの消費電力を300Wと規定し、第2負荷6Bの消費電力を50Wと規定する。 11A and 11B, an embodiment of a process for determining the attached state of the second current sensor 8 and the attached state of the second current sensor 9 will be described. FIG. 11 shows a state before the output power of the inverter unit 12 fluctuates, and FIG. 12 shows a state after the output power of the inverter unit 12 fluctuates. 11 and 12, the power consumption of the first load 6A is specified as 300W, and the power consumption of the second load 6B is specified as 50W.
 図11に示すとおり、パワーコンディショナ10から第1負荷6Aに200Wの電力が出力される場合、すなわちインバータ部12の出力電力が200Wの場合、電力系統5から第1負荷6Aに供給される買電電力は100Wとなる。第3の電線4Cには、第1負荷6A及び第2負荷6Bが接続されるため、350Wの電力が供給される。すなわち第3の電線4Cを介して350Wの電力が電力系統5に供給される。第2の電線4Bには、250Wの電力が供給される。すなわち電力系統5に第3の電線4Cを介して350Wの買電電力が供給される一方、第1の電線4Aを介して第1負荷6Aに100Wの電力が供給されるため、電力系統5から第2の電線4Bに250Wの電力が供給される。 As shown in FIG. 11, when 200 W of power is output from power conditioner 10 to first load 6A, that is, when the output power of inverter unit 12 is 200 W, the power supplied from power system 5 to first load 6A is purchased. Electric power becomes 100W. Since the first load 6A and the second load 6B are connected to the third electric wire 4C, electric power of 350 W is supplied. That is, 350 W of electric power is supplied to the power system 5 via the third electric wire 4C. 250 W of electric power is supplied to the second electric wire 4B. That is, 350 W of purchased power is supplied to the power system 5 via the third electric wire 4C, while 100 W of electric power is supplied to the first load 6A via the first electric wire 4A. 250 W of electric power is supplied to the second electric wire 4B.
 図12に示すとおり、パワーコンディショナ10から第1負荷6Aに400Wの電力が出力される場合、すなわちインバータ部12の出力電力が400Wの場合、電力系統5から第1負荷6Aに買電電力は供給されず、逆潮流されてパワーコンディショナ10から電力系統5に100Wの電力が供給される。そして図11及び図12に示すとおり、インバータ部12の出力電力が200Wから400Wに変動した場合、電力系統5から第1負荷6Aに供給される電力は100Wから「-100W」となる。すなわちパワーコンディショナ10から電力系統5に100Wの売電電力が供給される。 As shown in FIG. 12, when 400 W of power is output from power conditioner 10 to first load 6A, that is, when the output power of inverter unit 12 is 400 W, the purchased power from power system 5 to first load 6A is The power is not supplied, the power flows backward, and 100 W of power is supplied from the power conditioner 10 to the power system 5. Then, as shown in FIGS. 11 and 12, when the output power of the inverter unit 12 varies from 200 W to 400 W, the power supplied from the power system 5 to the first load 6A changes from 100 W to “−100 W”. That is, 100 W of sold power is supplied from the power conditioner 10 to the power system 5.
 ここで、第2電流センサ8の取り付け方向が正常であれば、インバータ部12の出力電力が増加すると、電力系統5から第1負荷6Aに供給される電流値(第2の電流値TA2)は減少する。このため、判定部22は、電力系統5から第1負荷6Aに供給される買電電力が減少すると判定する。そして判定部22は、インバータ部12の出力電力の変動方向(プラス)と電力系統5から第1負荷6Aに供給される買電電力の変動方向(マイナス)との積の結果、マイナスとなるため、第2電流センサ8の取り付け状態が正常であると判定する。 Here, if the mounting direction of the second current sensor 8 is normal, when the output power of the inverter unit 12 increases, the current value (second current value TA2) supplied from the power system 5 to the first load 6A becomes Decrease. For this reason, the determination unit 22 determines that the purchased power supplied from the power system 5 to the first load 6A decreases. Then, the determination unit 22 becomes negative as a result of the product of the fluctuation direction (plus) of the output power of the inverter unit 12 and the fluctuation direction (minus) of the purchased power supplied from the power system 5 to the first load 6A. It is determined that the mounting state of the second current sensor 8 is normal.
 一方、第2電流センサ8の取り付け方向が逆であれば、インバータ部12の出力電力が増加すると、電力系統5から第1負荷6Aに供給される電流値(第2の電流値TA2)は増加する。このため、判定部22は、電力系統5から第1負荷6Aに供給される買電電力が増加すると判定する。そして判定部22は、インバータ部12の出力電力の変動方向(プラス)と電力系統5から第1負荷6Aに供給される買電電力の変動方向(プラス)との積の結果、プラスとなるため、第2電流センサ8の取り付け状態が異常であると判定する。 On the other hand, if the mounting direction of the second current sensor 8 is reversed, when the output power of the inverter unit 12 increases, the current value (second current value TA2) supplied from the power system 5 to the first load 6A increases. I do. For this reason, the determination unit 22 determines that the purchased power supplied from the power system 5 to the first load 6A increases. Then, the determination unit 22 becomes positive as a result of the product of the fluctuation direction (plus) of the output power of the inverter unit 12 and the fluctuation direction (plus) of the purchased power supplied from the power system 5 to the first load 6A. It is determined that the mounting state of the second current sensor 8 is abnormal.
 また、第2電流センサ8が交流母線4の第1の電線4Aから外れていれば、第2電流センサ8が検出する第2の電流値TA2が「0A」又は所定の固定値となるため、判定部22は、電力系統5から第1負荷6Aに供給される買電電力が「0W」又は所定の固定値であると判定する。そして判定部22は、インバータ部12の出力電力が変動したにもかかわらず、電力系統5から第1負荷6Aに供給される買電電力が変動しないと判定し、第2電流センサ8が交流母線4から外れていると判定する。 Further, if the second current sensor 8 is off the first electric wire 4A of the AC bus 4, the second current value TA2 detected by the second current sensor 8 becomes “0A” or a predetermined fixed value. The determining unit 22 determines that the purchased power supplied from the power system 5 to the first load 6A is “0 W” or a predetermined fixed value. The determination unit 22 determines that the purchased power supplied from the power system 5 to the first load 6A does not fluctuate even though the output power of the inverter unit 12 fluctuates, and the second current sensor 8 4 is determined to be out of range.
 また図12に示すとおり、パワーコンディショナ10から第1負荷6Aに400Wの電力が出力される場合、パワーコンディショナ10から電力系統5に100Wの買電電力が供給されるため、電力系統5から第2の電線4Bに供給する買電電力が450Wとなる。すなわち、インバータ部12の出力電力が増加すると、電力系統5から第2の電線4Bに供給する買電電力が増加する。 As shown in FIG. 12, when 400 W of power is output from power conditioner 10 to first load 6 </ b> A, 100 W of purchased power is supplied from power conditioner 10 to power system 5. The purchased power to be supplied to the second electric wire 4B is 450W. That is, when the output power of the inverter unit 12 increases, the purchased power supplied from the power system 5 to the second electric wire 4B increases.
 ここで、第2電流センサ9の取り付け方向が正常であれば、インバータ部12の出力電力が増加すると、電力系統5から第2の電線4Bに供給される電流値(第2の電流値TA3)は増加する。このため、判定部22は、電力系統5から第2の電線4Bに供給される買電電力が増加すると判定する。そして判定部22は、インバータ部12の出力電力の変動方向(プラス)と電力系統5から第2の電線4Bに供給される買電電力の変動方向(マイナス)との積の結果、プラスとなるため、第2電流センサ9の取り付け状態が正常であると判定する。 Here, if the mounting direction of the second current sensor 9 is normal and the output power of the inverter unit 12 increases, the current value supplied from the power system 5 to the second electric wire 4B (second current value TA3) Increases. For this reason, the determination unit 22 determines that the purchased power supplied from the power system 5 to the second electric wire 4B increases. Then, the determination unit 22 becomes positive as a result of the product of the fluctuation direction (plus) of the output power of the inverter unit 12 and the fluctuation direction (minus) of the purchased power supplied from the power system 5 to the second electric wire 4B. Therefore, it is determined that the mounting state of the second current sensor 9 is normal.
 一方、第2電流センサ9の取り付け方向が逆であれば、インバータ部12の出力電力が増加すると、電力系統5から第2の電線4Bに供給される電流値(第2の電流値TA3)は減少する。このため、判定部22は、電力系統5から第2の電線4Bに供給される買電電力が減少すると判定する。そして判定部22は、インバータ部12の出力電力の変動方向(プラス)と電力系統5から第2の電線4Bに供給される買電電力の変動方向(マイナス)との積の結果、マイナスとなるため、第2電流センサ9の取り付け状態が異常であると判定する。 On the other hand, if the mounting direction of the second current sensor 9 is reversed, and the output power of the inverter unit 12 increases, the current value (second current value TA3) supplied from the power system 5 to the second electric wire 4B becomes Decrease. For this reason, the determination unit 22 determines that the purchased power supplied from the power system 5 to the second electric wire 4B decreases. Then, determination unit 22 becomes negative as a result of the product of the fluctuation direction (plus) of the output power of inverter unit 12 and the fluctuation direction (minus) of the purchased power supplied from power system 5 to second electric wire 4B. Therefore, it is determined that the mounting state of the second current sensor 9 is abnormal.
 また、第2電流センサ9が第2の電線4Bから外れていれば、第2電流センサ9が検出する第2の電流値TA3が「0A」又は所定の固定値となるため、判定部22は、電力系統5から第2の電線4Bに供給される買電電力が「0W」又は所定の固定値であると判定する。そして判定部22は、インバータ部12の出力電力が変動したにもかかわらず、電力系統5から第2の電線4Bに供給される買電電力が変動しないと判定し、第2電流センサ9が第2の電線4Bから外れていると判定する。 If the second current sensor 9 is off the second electric wire 4B, the second current value TA3 detected by the second current sensor 9 becomes “0A” or a predetermined fixed value. It is determined that the purchased power supplied from the power system 5 to the second electric wire 4B is “0 W” or a predetermined fixed value. Then, the determining unit 22 determines that the purchased power supplied from the power system 5 to the second electric wire 4B does not change even though the output power of the inverter unit 12 changes, and the second current sensor 9 It is determined that the wire is disconnected from the second electric wire 4B.
 本実施形態によれば、以下の効果が得られる。
 (2-1)判定部22は、第1の電流値TA1の単位時間当たりの変動量が判定値以上のときに、第2の電流値TA3に基づいて第2電流センサ9の取り付け状態を判定する。この構成によれば、第2電流センサ9の取り付け状態を判定するための専用の構成の追加を不要とし、電力系統5とパワーコンディショナ10とを接続する第2の電線4Bに取り付けられる第2電流センサ9の取り付け状態を検出できる。
According to the present embodiment, the following effects can be obtained.
(2-1) The judging unit 22 judges the mounting state of the second current sensor 9 based on the second current value TA3 when the variation amount of the first current value TA1 per unit time is equal to or larger than the judgment value. I do. According to this configuration, it is not necessary to add a dedicated configuration for determining the mounting state of the second current sensor 9, and the second current sensor 9 is attached to the second electric wire 4 </ b> B connecting the power system 5 and the power conditioner 10. The attachment state of the current sensor 9 can be detected.
 (2-2)判定部22は、第1の電流値TA1の単位時間当たりの変動量が判定値以上のとき、第2の電流値TA3の単位時間当たりの変動量と変動方向とに基づいて、第2電流センサ9の取り付け状態を判定する。この構成によれば、第1の電流値TA1の単位時間当たりの変動量が判定値以上のときに第2電流センサ9の取り付け状態を判定することによって、ノイズ等によって第1の電流値TA1が変動するときに第2電流センサ9の取り付け状態の判定を行わない。したがって、第2電流センサ9の取り付け状態の誤判定を抑制できる。 (2-2) When the variation amount of the first current value TA1 per unit time is equal to or greater than the determination value, the determination unit 22 determines the variation amount of the second current value TA3 per unit time and the variation direction. Then, the attachment state of the second current sensor 9 is determined. According to this configuration, when the amount of change in the first current value TA1 per unit time is equal to or greater than the determination value, the attachment state of the second current sensor 9 is determined, so that the first current value TA1 is reduced due to noise or the like. When it fluctuates, the attachment state of the second current sensor 9 is not determined. Therefore, erroneous determination of the mounting state of the second current sensor 9 can be suppressed.
 (2-3)判定部22は、第1の電流値TA1の単位時間当たりの変動量が判定値以上のとき、第2の電流値TA3の単位時間当たりの変動量に基づいて、第2電流センサ9が第2の電線4Bから外れているか否かを判定する。この構成によれば、判定部22は、第1の電流値TA1が変動したにもかかわらず第2の電流値TA3が変動しない場合、第2電流センサ9が第2の電線4Bから外れていると判定する。このように、第2電流センサ9が第2の電線4Bから外れているか否かを容易に判定できる。 (2-3) When the variation amount of the first current value TA1 per unit time is equal to or greater than the determination value, the determination unit 22 determines the second current value based on the variation amount of the second current value TA3 per unit time. It is determined whether or not the sensor 9 is off the second electric wire 4B. According to this configuration, when the second current value TA3 does not fluctuate even though the first current value TA1 fluctuates, the determination unit 22 disconnects the second current sensor 9 from the second electric wire 4B. Is determined. Thus, it can be easily determined whether or not the second current sensor 9 is off the second electric wire 4B.
 (2-4)判定部22は、第1の電流値TA1の単位時間当たりの変動量が判定値以上のときの第1の電流値TA1の単位時間当たりの変動方向と第2の電流値TA3の単位時間当たりの変動方向に基づいて、第2電流センサ9の取り付け方向が正しいか否かを判定する。この構成によれば、第1の電流値TA1の単位時間当たりの変動方向と第2の電流値TA3の単位時間当たりの変動方向とから第2電流センサ9の取り付け方向を容易に判定できる。 (2-4) The determination unit 22 determines the direction in which the first current value TA1 varies per unit time when the variation amount of the first current value TA1 per unit time is equal to or greater than the determination value, and the second current value TA3. It is determined whether the mounting direction of the second current sensor 9 is correct based on the fluctuation direction per unit time. According to this configuration, the mounting direction of the second current sensor 9 can be easily determined from the fluctuation direction of the first current value TA1 per unit time and the fluctuation direction of the second current value TA3 per unit time.
 (2-5)判定部22は、A/Dコンバータ23及びDSP24を有する。この構成によれば、第1電流センサ16の出力信号及び第2電流センサ8,9の出力信号をそれぞれ第1の電流値TA1及び第2の電流値TA2,TA3に変換して微分処理を行うことによって、第2電流センサ8の取り付け状態及び第2電流センサ9の取り付け状態のそれぞれの判定を容易かつ速やかに実行できる。 (2-5) The determination unit 22 includes an A / D converter 23 and a DSP 24. According to this configuration, the output signal of the first current sensor 16 and the output signals of the second current sensors 8 and 9 are converted into the first current value TA1 and the second current values TA2 and TA3, respectively, to perform a differentiation process. This makes it possible to easily and quickly determine each of the attachment state of the second current sensor 8 and the attachment state of the second current sensor 9.
 (2-6)判定部22は、第2電流センサ9の取り付け状態を報知部7に出力する。この構成によれば、第2電流センサ9の取り付け状態が異常である場合、報知部7を介して施工者に第2電流センサ9の取り付け状態が異常であることを報知できる。 (2-6) The determination unit 22 outputs the state of attachment of the second current sensor 9 to the notification unit 7. According to this configuration, when the mounting state of the second current sensor 9 is abnormal, the installer can be notified via the notification unit 7 that the mounting state of the second current sensor 9 is abnormal.
 (変更例)
 上記各実施形態は本開示に関するパワーコンディショナが取り得る形態の例示であり、その形態を制限することを意図していない。本開示に関するパワーコンディショナは上記各実施形態に例示された形態とは異なる形態を取り得る。その一例は、上記各実施形態の構成の一部を置換、変更、もしくは、省略した形態、又は上記各実施形態に新たな構成を付加した形態である。以下の変更例において、上記各実施形態の形態と共通する部分については、上記各実施形態と同一の符号を付してその説明を省略する。
(Example of change)
Each of the above embodiments is an example of a form that the power conditioner according to the present disclosure can take, and is not intended to limit the form. The power conditioner according to the present disclosure may take a form different from the forms exemplified in the above embodiments. One example is a mode in which a part of the configuration of each of the above embodiments is replaced, changed, or omitted, or a mode in which a new configuration is added to each of the above embodiments. In the following modifications, the same reference numerals as those in the above-described embodiments denote the same parts as in the above-described embodiments, and a description thereof will be omitted.
 ・第1実施形態において、第2電流センサ8は交流母線4の第2の電線4Bに取り付けられてもよい。この場合、インバータ部12の出力電力が増加すると、電力系統5から第2の電線4Bに供給される買電電力が増加するような第2電流センサ8の取り付け向きを正常とする。このため、判定部22は、インバータ部12の出力電力の単位時間当たりの変動方向と、電力系統5から第2の電線4Bに供給される買電電力の単位時間当たりの変動方向とが同じ場合に第2電流センサ8の取り付け方向が正常であると判定する。したがって、判定部は、図4の第2電流センサ8の取り付け状態の判定処理を実行する場合、図4のフローチャートのステップS13の判定を、インバータ部12の出力電力の単位時間当たりの変動方向と、電力系統5から第2の電線4Bに供給される買電電力の単位時間当たりの変動方向とが同じ方向か否かに置き換える。なお、この場合、第2電流センサ8が取り付けられる第2の電線4Bは、第1の電線に相当する。 In the first embodiment, the second current sensor 8 may be attached to the second electric wire 4 </ b> B of the AC bus 4. In this case, when the output power of the inverter unit 12 increases, the mounting direction of the second current sensor 8 such that the purchased power supplied from the power system 5 to the second electric wire 4B increases is made normal. Therefore, the determination unit 22 determines that the direction of change per unit time of the output power of the inverter unit 12 is the same as the direction of change per unit time of the purchased power supplied from the power system 5 to the second electric wire 4B. It is determined that the mounting direction of the second current sensor 8 is normal. Therefore, when performing the determination process of the attachment state of the second current sensor 8 in FIG. 4, the determination unit determines the determination in step S13 of the flowchart in FIG. 4 with the fluctuation direction of the output power of the inverter unit 12 per unit time. , The fluctuation direction per unit time of the purchased power supplied from the power system 5 to the second electric wire 4B is replaced with the same direction. In this case, the second electric wire 4B to which the second current sensor 8 is attached corresponds to a first electric wire.
 ・第2実施形態において、判定部22は、第2電流センサ8の取り付け状態の判定と、第2電流センサ9の取り付け状態の判定とを並行して処理しているが、これに限られない。例えば、判定部22は、第2電流センサ8の取り付け状態の判定及び第2電流センサ9の取り付け状態の判定の一方を他方よりも先に実行してもよい。 In the second embodiment, the determination unit 22 performs the determination of the attachment state of the second current sensor 8 and the determination of the attachment state of the second current sensor 9 in parallel, but is not limited thereto. . For example, the determination unit 22 may execute one of the determination of the attachment state of the second current sensor 8 and the determination of the attachment state of the second current sensor 9 before the other.
 ・第2実施形態において、判定部22は、第2電流センサ8の取り付け状態を判定する第1判定部と、第2電流センサ9の取り付け状態を判定する第2判定部とを有してもよい。第1判定部及び第2判定部はそれぞれ、A/Dコンバータ23及び報知部7に電気的に接続されている。 -In 2nd Embodiment, the determination part 22 may have the 1st determination part which determines the attachment state of the 2nd current sensor 8, and the 2nd determination part which determines the attachment state of the 2nd current sensor 9. Good. The first determination unit and the second determination unit are electrically connected to the A / D converter 23 and the notification unit 7, respectively.
 ・第1実施形態における図4の第2電流センサ8の取り付け状態の判定処理において、ステップS12及びステップS13の判定回数を増やしてもよい。一例では、判定部22は、ステップS12の判定処理を複数回繰り返し行い、全て同じ判定結果となる場合、次の処理(ステップS13又はステップS16)に移行する。判定部22は、ステップS13の判定処理を複数回繰り返し行い、全て同じ判定結果となる場合、次の処理(ステップS14又はステップS15)に移行する。この構成によれば、外乱等による偶然の判定結果による影響を低減できるため、第2電流センサ8の取り付け状態の誤判定の発生を低減できる。 In the first embodiment, in the determination process of the attachment state of the second current sensor 8 in FIG. 4, the number of determinations in step S12 and step S13 may be increased. In one example, the determination unit 22 repeats the determination process of step S12 a plurality of times, and when all the determination results are the same, shifts to the next process (step S13 or step S16). The determination unit 22 repeats the determination process of step S13 a plurality of times, and when all the determination results are the same, shifts to the next process (step S14 or step S15). According to this configuration, it is possible to reduce the influence of an accidental determination result due to disturbance or the like.
 ・第2実施形態における図9の第2電流センサ8の取り付け状態及び第2電流センサ9の取り付け状態の判定処理において、ステップS22及びステップS23の判定回数を上記変形例と同様に増やしてもよい。 In the determination process of the mounting state of the second current sensor 8 and the mounting state of the second current sensor 9 in FIG. 9 in the second embodiment, the number of determinations in step S22 and step S23 may be increased as in the above-described modification. .
 ・第2実施形態における図9の判定処理において、ステップS31及びステップS32の判定回数を上記変形例と同様に増やしてもよい。この構成によれば、外乱等による偶然の判定結果による影響を低減できるため、第2電流センサ9の取り付け状態の誤判定の発生を低減できる。 In the determination process of FIG. 9 in the second embodiment, the number of determinations in steps S31 and S32 may be increased as in the above-described modification. According to this configuration, it is possible to reduce the influence of an accidental determination result due to disturbance or the like, so that it is possible to reduce the occurrence of erroneous determination of the mounting state of the second current sensor 9.
 ・各実施形態において、制御装置20の構成は任意に変更可能である。一例では、制御部21と判定部22とが一体化されてもよい。
 ・各実施形態において、判定部22は、DSP24に代えてアナログ処理によって第2電流センサ8の取り付け状態及び第2電流センサ9の取り付け状態をそれぞれ判定してもよい。
-In each embodiment, the configuration of the control device 20 can be arbitrarily changed. In one example, the control unit 21 and the determination unit 22 may be integrated.
In each embodiment, the determination unit 22 may determine the attachment state of the second current sensor 8 and the attachment state of the second current sensor 9 by analog processing instead of the DSP 24.
 ・各実施形態において、電力管理システム1から太陽光発電装置2等の発電装置を省略してもよい。この場合、パワーコンディショナ10からPVコンバータ11が省略される。蓄電装置3に接続された電力変換装置14は、高圧直流バス15を介してインバータ部12に接続される。 In each embodiment, a power generation device such as the solar power generation device 2 may be omitted from the power management system 1. In this case, the PV converter 11 is omitted from the power conditioner 10. Power conversion device 14 connected to power storage device 3 is connected to inverter unit 12 via high-voltage DC bus 15.
 ・各実施形態において、電力管理システム1から蓄電装置3を省略してもよい。この場合、パワーコンディショナ10から電力変換装置14が省略される。このような構成では、太陽光発電装置2等の発電装置が直流電源装置に相当し、PVコンバータ11が変換器に相当する。 In each embodiment, the power storage device 3 may be omitted from the power management system 1. In this case, the power converter 14 is omitted from the power conditioner 10. In such a configuration, a power generation device such as the solar power generation device 2 corresponds to a DC power supply device, and the PV converter 11 corresponds to a converter.
 ・各実施形態では、通常動作中であっても第2電流センサ8,9の取り付け状態を判定するため、インバータ部12の出力電力があることを前提に説明したが、例えば起動時の短時間のみ、第2電流センサ8,9の取り付け状態を判定するのであれば、インバータ部12の出力電力を無効電力のみとしても実現可能である。すなわち、見かけ上、電力系統5から買電電力のみで負荷6,6A,6Bの駆動電力をまかない、インバータ部12からの出力電力が、第1電流センサ16により検出した第1の電流値TA1が電圧値TVの位相に対して90°ずれた電流(無効電流)になるように制御することで、第2電流センサ8,9により検出した第2の電流値TA2に変化を起こすことができる。この第2の電流値TA2の変化に基づいて第2電流センサ8,9の取り付け状態を判定できる。 In each of the embodiments, the description has been made on the assumption that the output power of the inverter unit 12 is present in order to determine the mounting state of the second current sensors 8 and 9 even during the normal operation. Only when the attachment state of the second current sensors 8 and 9 is determined, the output power of the inverter unit 12 can be realized only with the reactive power. That is, apparently, the output power from the inverter unit 12 covers the drive power of the loads 6, 6A, 6B only with the purchased power from the power system 5, and the first current value TA1 detected by the first current sensor 16 is By controlling so that the current (reactive current) is shifted by 90 ° from the phase of the voltage value TV, the second current value TA2 detected by the second current sensors 8 and 9 can be changed. The attachment state of the second current sensors 8, 9 can be determined based on the change in the second current value TA2.
 ・本開示は、前述した実施形態で説明した機能、方法、または構成を実現するように構成されたコンピュータ実行可能命令を格納した非一時的コンピュータ可読記録媒体を含む。当該コンピュータ可読記録媒体は、一または複数のコンピュータプロセッサがアクセスできる任意の媒体であってよく、例えば、RAM、ROM、EEPROM、CD-ROMまたは他の光ディスクストレージ、磁気ディスクストレージまたは他の磁気記憶装置、及びそれらの任意の組合わせを含むことができる。 The present disclosure includes a non-transitory computer-readable storage medium storing computer-executable instructions configured to implement the functions, methods, or configurations described in the above embodiments. The computer-readable storage medium may be any medium that can be accessed by one or more computer processors, such as a RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage device , And any combination thereof.
3…蓄電装置(直流電源装置)
4A…第1の電線
4B…第2の電線
4C…第3の電線
5…電力系統
8…第2電流センサ
9…第2電流センサ
10,10A,10B…パワーコンディショナ
12…インバータ部
14…電力変換装置(変換部)
16…第1電流センサ
22…判定部
23…A/Dコンバータ
24…DSP
3. Power storage device (DC power supply device)
4A 1st electric wire 4B 2nd electric wire 4C 3rd electric wire 5 electric power system 8 2nd electric current sensor 9 2nd electric current sensor 10, 10A, 10B ... power conditioner 12 ... inverter part 14 ... electric power Converter (converter)
16 first current sensor 22 determination unit 23 A / D converter 24 DSP

Claims (9)

  1.  第1の電線と、第2の電線とを含む単相二線式の電力系統に連系するパワーコンディショナであって、
     直流電源装置が出力する電力を所定の直流電力に変換可能な変換部と、
     前記直流電力を交流電力に変換して出力可能なインバータ部と、
     前記インバータ部の出力電流を検出するための第1電流センサと、
     前記第1電流センサにより検出する第1の電流値と、前記第1の電線に取り付けられる第2電流センサにより検出する第2の電流値とに基づいて、前記第2電流センサの取り付け状態を判定する判定部と、を有する
     パワーコンディショナ。
    A power conditioner interconnected to a single-phase two-wire power system including a first electric wire and a second electric wire,
    A conversion unit that can convert the power output by the DC power supply into predetermined DC power,
    An inverter unit capable of converting the DC power into AC power and outputting the converted power;
    A first current sensor for detecting an output current of the inverter unit;
    The state of attachment of the second current sensor is determined based on a first current value detected by the first current sensor and a second current value detected by a second current sensor attached to the first electric wire. And a determining unit for performing the determination.
  2.  第1の電線と、第2の電線と、中性線となる第3の電線とを含む単相三線式の電力系統に連系するパワーコンディショナであって、
     直流電源装置が出力する電力を所定の直流電力に変換可能な変換部と、
     前記直流電力を交流電力に変換して出力可能なインバータ部と、
     前記インバータ部の出力電流を検出するための第1電流センサと、
     前記第1電流センサにより検出する第1の電流値と、前記第1の電線と前記第2の電線とにそれぞれ取り付けられる第2電流センサにより検出する第2の電流値とに基づいて、前記第2電流センサの取り付け状態を判定する判定部と、を有する
     パワーコンディショナ。
    A power conditioner interconnected to a single-phase three-wire power system including a first wire, a second wire, and a third wire serving as a neutral wire,
    A conversion unit that can convert the power output by the DC power supply into predetermined DC power,
    An inverter unit capable of converting the DC power into AC power and outputting the converted power;
    A first current sensor for detecting an output current of the inverter unit;
    Based on a first current value detected by the first current sensor and a second current value detected by a second current sensor attached to each of the first electric wire and the second electric wire, (2) A power conditioner comprising: a determination unit configured to determine a mounting state of the current sensor.
  3.  前記判定部は、前記第1の電流値の単位時間当たりの変動量が予め規定された所定値以上のときの前記第2の電流値の前記単位時間当たりの変動量に基づいて、前記第2電流センサが外れているか否かを判定する
     請求項1又は2に記載のパワーコンディショナ。
    The determination unit is configured to determine the second current value based on the amount of change in the second current value per unit time when the amount of change in the first current value per unit time is equal to or greater than a predetermined value. The power conditioner according to claim 1, wherein it is determined whether the current sensor is disconnected.
  4.  前記判定部は、前記第1の電流値の単位時間当たりの変動量が前記所定値以上のときの前記第2の電流値の前記単位時間当たりの変動量と変動方向とに基づいて、前記第2電流センサの取り付け状態を判定する
     請求項3に記載のパワーコンディショナ。
    The determination unit is configured to determine the second current value based on a variation amount per unit time and a variation direction of the second current value when the variation amount of the first current value per unit time is equal to or greater than the predetermined value. The power conditioner according to claim 3, wherein the state of attachment of the two current sensors is determined.
  5.  前記判定部は、前記第1の電流値の単位時間当たりの変動量が前記所定値以上のときに前記第2の電流値が前記単位時間当たりで変動しない場合、前記第2電流センサが外れていると判定する
     請求項3又は4に記載のパワーコンディショナ。
    The determination unit is configured to disconnect the second current sensor when the second current value does not fluctuate per unit time when the variation amount of the first current value per unit time is equal to or more than the predetermined value. The power conditioner according to claim 3, wherein the power conditioner is determined to be present.
  6.  前記判定部は、前記第1の電流値の単位時間当たりの変動量が前記所定値以上のときの前記第1の電流値の前記単位時間当たりの変動方向と前記第2の電流値の前記単位時間当たりの変動方向とに基づいて、前記第2電流センサの取り付け方向が正しいか否かを判定する
     請求項4に記載のパワーコンディショナ。
    The determination unit is configured to determine a direction in which the first current value varies per unit time when the variation amount of the first current value per unit time is equal to or greater than the predetermined value, and the unit of the second current value. 5. The power conditioner according to claim 4, wherein it is determined whether or not the mounting direction of the second current sensor is correct based on a fluctuation direction per unit time.
  7.  前記判定部は、前記第2電流センサが前記第1の電線に取り付けられている場合、前記第1の電流値の単位時間当たりの変動量が前記所定値以上のときに前記第1の電流値の前記単位時間当たりの変動方向と前記第2の電流値の前記単位時間当たりの変動方向とが異なる場合、前記第2電流センサの取り付け方向が正常であると判定する
     請求項6に記載のパワーコンディショナ。
    When the second current sensor is attached to the first electric wire, the determination unit is configured to output the first current value when a variation amount of the first current value per unit time is equal to or more than the predetermined value. 7. The power according to claim 6, wherein when the direction of fluctuation per unit time of the second current value is different from the direction of fluctuation of the second current value per unit time, it is determined that the mounting direction of the second current sensor is normal. Conditioner.
  8.  前記判定部は、前記第2電流センサが前記第2の電線に取り付けられている場合、前記第1の電流値の単位時間当たりの変動量が前記所定値以上のときに前記第1の電流値の前記単位時間当たりの変動方向と前記第2の電流値の前記単位時間当たりの変動方向とが同じ場合、前記第2電流センサの取り付け方向が正常であると判定する
     請求項6に記載のパワーコンディショナ。
    When the second current sensor is attached to the second electric wire, the determination unit is configured to output the first current value when a variation amount of the first current value per unit time is equal to or more than the predetermined value. 7. The power according to claim 6, wherein when the direction of change per unit time is the same as the direction of change of the second current value per unit time, it is determined that the mounting direction of the second current sensor is normal. Conditioner.
  9.  前記判定部は、前記第1電流センサ及び前記第2電流センサの出力信号を前記第1の電流値及び前記第2の電流値に変換するA/Dコンバータと、前記第1の電流値及び前記第2の電流値に基づいて前記第2電流センサの取り付け状態を判定するDSP(Digital Signal Processor)とを有する
     請求項1~8のいずれか一項に記載のパワーコンディショナ。
    An A / D converter configured to convert output signals of the first current sensor and the second current sensor into the first current value and the second current value; The power conditioner according to any one of claims 1 to 8, further comprising: a DSP (Digital Signal Processor) for determining a mounting state of the second current sensor based on a second current value.
PCT/JP2019/028361 2018-07-26 2019-07-18 Power conditioner WO2020022194A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020532346A JP6901048B2 (en) 2018-07-26 2019-07-18 Power conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-140733 2018-07-26
JP2018140733 2018-07-26

Publications (1)

Publication Number Publication Date
WO2020022194A1 true WO2020022194A1 (en) 2020-01-30

Family

ID=69181416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028361 WO2020022194A1 (en) 2018-07-26 2019-07-18 Power conditioner

Country Status (2)

Country Link
JP (1) JP6901048B2 (en)
WO (1) WO2020022194A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022158380A (en) * 2021-04-02 2022-10-17 株式会社 ソーラージャパン Ac power control method and ac power control device system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089144A (en) * 2013-10-28 2015-05-07 株式会社ノーリツ Power Conditioner
JP2018113732A (en) * 2017-01-06 2018-07-19 株式会社村田製作所 Power Conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089144A (en) * 2013-10-28 2015-05-07 株式会社ノーリツ Power Conditioner
JP2018113732A (en) * 2017-01-06 2018-07-19 株式会社村田製作所 Power Conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022158380A (en) * 2021-04-02 2022-10-17 株式会社 ソーラージャパン Ac power control method and ac power control device system
JP7264519B2 (en) 2021-04-02 2023-04-25 株式会社 ソーラージャパン AC POWER CONTROL METHOD AND AC POWER CONTROL DEVICE SYSTEM

Also Published As

Publication number Publication date
JPWO2020022194A1 (en) 2021-04-08
JP6901048B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
JP6579117B2 (en) Inverter
JP6384336B2 (en) Isolated operation detection device, control device, power conditioner, power supply system, and isolated operation detection method
JP4353114B2 (en) Inverter
JP4835587B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP5546507B2 (en) Failure diagnosis device, power conversion device, and failure diagnosis method
JP4661856B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP6287062B2 (en) Inverter
JP5050723B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP5734010B2 (en) Power converter and control method thereof
US11018571B2 (en) Regulation of an electronic voltage adapter module
JP6901048B2 (en) Power conditioner
JP2013099058A (en) Power conditioner
US11201470B2 (en) Power-source power factor control system, phase modifying apparatus, and active filter apparatus
US11579577B2 (en) Methods and apparatus for grid connectivity control
JP7034872B2 (en) Power conditioner, power system and judgment method
JP2020092532A (en) Power storage system and abnormality determination method of current sensor
JP7034871B2 (en) Power conditioner, power system and judgment method
JP7034873B2 (en) Power conditioner, power system and judgment method
JP2012213283A (en) Power generation system
US20240128751A1 (en) Extended duration ac battery
US20240128573A1 (en) Stackable frame design for pouch cell battery packs
JP6415201B2 (en) Inverter
JP2022183808A (en) Power conversion device, electric apparatus, and method for detecting unbalanced state in three-phase ac power source
JP2019146400A (en) Single operation detector
KR20150040168A (en) Power conditioning system and Energy storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020532346

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840321

Country of ref document: EP

Kind code of ref document: A1