JP2016081635A - All-solid battery - Google Patents

All-solid battery Download PDF

Info

Publication number
JP2016081635A
JP2016081635A JP2014209890A JP2014209890A JP2016081635A JP 2016081635 A JP2016081635 A JP 2016081635A JP 2014209890 A JP2014209890 A JP 2014209890A JP 2014209890 A JP2014209890 A JP 2014209890A JP 2016081635 A JP2016081635 A JP 2016081635A
Authority
JP
Japan
Prior art keywords
solid
layer
positive electrode
active material
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014209890A
Other languages
Japanese (ja)
Other versions
JP6248888B2 (en
Inventor
曜 ▲辻▼子
曜 ▲辻▼子
Akira Tsujiko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014209890A priority Critical patent/JP6248888B2/en
Publication of JP2016081635A publication Critical patent/JP2016081635A/en
Application granted granted Critical
Publication of JP6248888B2 publication Critical patent/JP6248888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an all-solid battery arranged so that the rise in battery temperature can be prevented by efficiently isolating between a positive electrode and a negative electrode active material layer when the all-solid battery is raised in temperature.SOLUTION: An all-solid battery 100 of the present invention comprises a laminate including a positive electrode current collector layer, a positive electrode active material layer, a separator layer, a negative electrode active material layer, and a negative electrode current collector layer. In the all-solid battery, the separator layer has solid electrolyte particles, and a polymer binder binding between the solid electrolyte particles. The all-solid battery 100 has a peripheral edge member 210 disposed on its peripheral edge. The polymer binder is larger, in thermal expansion coefficient, than the peripheral edge member 210.SELECTED DRAWING: Figure 2

Description

本発明は、正極集電体層、正極活物質層、セパレーター層、負極活物質層、及び負極集電体層が積層されている全固体電池に関する。さらに詳しくは、本発明は、全固体電池が昇温した際に、正極及び負極活物質層の間を効率的に絶縁し、電池の昇温を防止することができる、全固体電池に関する。   The present invention relates to an all-solid battery in which a positive electrode current collector layer, a positive electrode active material layer, a separator layer, a negative electrode active material layer, and a negative electrode current collector layer are laminated. More specifically, the present invention relates to an all solid state battery that can efficiently insulate between a positive electrode and a negative electrode active material layer and prevent the temperature rise of the battery when the temperature rises.

近年、電解液を固体電解質に置換した全固体電池が注目されている。電解液を用いる二次電池と比較して、全固体電池は、電解液を用いないことから、過充電に起因する電解液の分解等を生じることなく、更に、高いサイクル耐久性及びエネルギー密度を有している。   In recent years, all-solid-state batteries in which the electrolytic solution is replaced with a solid electrolyte have attracted attention. Compared to a secondary battery using an electrolytic solution, an all-solid battery does not use an electrolytic solution, so that it does not cause decomposition of the electrolytic solution due to overcharge, and further has high cycle durability and energy density. Have.

しかしながら、全固体電池の過充電又は放電等による自己発熱により、全固体電池のサイクル耐久性の劣化、並びに全固体電池及びその周辺部材の劣化が促進されてしまう問題がある。そのため、かかる課題の解決が望まれていた。   However, there is a problem that deterioration of cycle durability of the all solid state battery and deterioration of the all solid state battery and its peripheral members are promoted by self-heating due to overcharge or discharge of the all solid state battery. Therefore, it has been desired to solve this problem.

特許文献1の電気化学デバイスは、正極又は負極と固体電解質層との間に、シャットダウン機構を備えたセパレーター層を有するとされている。   The electrochemical device of Patent Document 1 is supposed to have a separator layer having a shutdown mechanism between a positive electrode or a negative electrode and a solid electrolyte layer.

特許文献2の二次電池は、正極、電解質層、及び負極を含む電極体の周縁部を絶縁材料で被覆することにより、電解質層の面方向への拡大を規制するとされている。   The secondary battery of Patent Document 2 is supposed to restrict the expansion of the electrolyte layer in the surface direction by covering the peripheral portion of the electrode body including the positive electrode, the electrolyte layer, and the negative electrode with an insulating material.

特許文献3の電極体は、少なくとも正極及び負極活物質層の周縁部を絶縁材料で被覆することにより、周縁部における活物質層の変形や脱落等の発生を抑制するとされている。   In the electrode body of Patent Document 3, it is said that at least the peripheral portions of the positive electrode and the negative electrode active material layer are covered with an insulating material, thereby suppressing the occurrence of deformation or dropping of the active material layer in the peripheral portion.

特許文献4の電池は、正極と無機固体電解質との間に多孔質材料を有することにより、無機固体電解質の劣化を抑制し、電池性能の低下を防止するとされている。   The battery of Patent Document 4 is said to have a porous material between the positive electrode and the inorganic solid electrolyte, thereby suppressing deterioration of the inorganic solid electrolyte and preventing a decrease in battery performance.

特開2003−92141号公報JP 2003-92141 A 特開2008−84851号公報JP 2008-84851 A 特開2012−38425号公報JP 2012-38425 A 特開2009−224296号公報JP 2009-224296 A

本発明は、全固体電池が昇温した際に、正極及び負極活物質層の間を効率的に絶縁し、電池の昇温を防止することができる、全固体電池を提供することを目的とする。   An object of the present invention is to provide an all-solid battery that can efficiently insulate between the positive electrode and the negative electrode active material layer and prevent the battery from rising when the all-solid battery is heated. To do.

本発明は、下記のとおりである。
〈1〉正極集電体層、正極活物質層、セパレーター層、負極活物質層、及び負極集電体層が積層されている全固体電池であって、
前記セパレーター層が、固体電解質粒子と、前記固体電解質粒子同士を結着しているポリマーバインダーとを有し、
前記全固体電池の周縁に配置されている周縁部材を有し、
前記ポリマーバインダーの熱膨張率が、前記周縁部材の熱膨張率よりも大きい、
全固体電池。
The present invention is as follows.
<1> An all-solid battery in which a positive electrode current collector layer, a positive electrode active material layer, a separator layer, a negative electrode active material layer, and a negative electrode current collector layer are laminated,
The separator layer has solid electrolyte particles and a polymer binder that binds the solid electrolyte particles,
A peripheral member disposed at a peripheral edge of the all solid state battery;
The thermal expansion coefficient of the polymer binder is larger than the thermal expansion coefficient of the peripheral member,
All solid battery.

本発明の全固体電池によれば、全固体電池が昇温してセパレーター層が膨張した際に、周縁部材がセパレーター層の面方向の膨張を抑制し、結果として、セパレーター層を積層方向に大きく膨張させることによって、正極及び負極活物質層の間を効率的に絶縁し、電池の昇温を防止することができる。   According to the all solid state battery of the present invention, when the all solid state battery is heated and the separator layer expands, the peripheral member suppresses the expansion in the surface direction of the separator layer, and as a result, the separator layer becomes larger in the stacking direction. By expanding, it is possible to efficiently insulate between the positive electrode and the negative electrode active material layer and prevent the battery from being heated.

図1は、正極集電体層、正極活物質層、セパレーター層、負極活物質層、及び負極集電体層を有する本発明の全固体電池の概略斜視図である。FIG. 1 is a schematic perspective view of an all-solid battery of the present invention having a positive electrode current collector layer, a positive electrode active material layer, a separator layer, a negative electrode active material layer, and a negative electrode current collector layer. 図2は、図1で示す全固体電池の周縁に周縁部材を配置した状態の概略正面図である。FIG. 2 is a schematic front view of a state in which a peripheral member is disposed on the periphery of the all solid state battery shown in FIG. 図3は、ポリマーバインダーの熱膨張率(A)を周縁部材の熱膨張率(B)で除した値(A/B)と、全固体電池の自己発熱による温度の変化量(ΔT/℃)との関係を示すプロット図である。FIG. 3 shows the value (A / B) obtained by dividing the thermal expansion coefficient (A) of the polymer binder by the thermal expansion coefficient (B) of the peripheral member, and the change in temperature due to self-heating of the all-solid battery (ΔT / ° C.). FIG.

以下、本発明の実施形態について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨の範囲内で種々変形して実施できる。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。   Hereinafter, embodiments of the present invention will be described in detail. Note that the present invention is not limited to the following embodiments, and can be implemented with various modifications within the scope of the gist of the present invention. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.

〈全固体電池〉
本発明の全固体電池では、正極集電体層、正極活物質層、セパレーター層、負極活物質層、及び負極集電体層が積層されている。
<All-solid battery>
In the all solid state battery of the present invention, a positive electrode current collector layer, a positive electrode active material layer, a separator layer, a negative electrode active material layer, and a negative electrode current collector layer are laminated.

そして、本発明の全固体電池のセパレーター層は、固体電解質粒子と、固体電解質粒子同士を結着しているポリマーバインダーとを有している。また、本発明の全固体電池は、全固体電池の周縁に配置されている周縁部材を有し、セパレーター層のポリマーバインダーの熱膨張率は、周縁部材の熱膨張率よりも大きい。   And the separator layer of the all-solid-state battery of this invention has a solid electrolyte particle and the polymer binder which has bound solid electrolyte particle. Moreover, the all-solid-state battery of this invention has the peripheral member arrange | positioned at the periphery of an all-solid-state battery, and the thermal expansion coefficient of the polymer binder of a separator layer is larger than the thermal expansion coefficient of a peripheral member.

セパレーター層が、ポリマーバインダーを有していることにより、全固体電池が昇温した際に、セパレーター層又は少なくともセパレーター層のポリマーバインダーが膨張することができる。これによって、セパレーター層内の固体電解質粒子の間の固固界面の接触が断裂し、又は接触面積が小さくなり、イオン伝導抵抗が上昇する。このように、正極及び負極活物質層の間のイオン伝導が、セパレーター層で絶縁されるため、全固体電池の昇温を防止することができる。   When the separator layer has a polymer binder, the separator layer or at least the polymer binder of the separator layer can expand when the all-solid battery is heated. Thereby, the contact at the solid-solid interface between the solid electrolyte particles in the separator layer is broken, or the contact area is reduced, and the ion conduction resistance is increased. Thus, since the ionic conduction between the positive electrode and the negative electrode active material layer is insulated by the separator layer, the temperature rise of the all-solid battery can be prevented.

また、周縁部材が全固体電池の周縁に配置されていることにより、全固体電池が昇温した際に、セパレーター層の面方向への膨張を周縁部材が抑制し、結果として、セパレーター層を積層方向に大きく膨張させることが可能となり、正極及び負極活物質層の間を効率的に絶縁し、全固体電池の昇温を防止することができる。   Further, since the peripheral member is arranged at the peripheral edge of the all solid state battery, when the all solid state battery is heated, the peripheral member suppresses the expansion in the surface direction of the separator layer, and as a result, the separator layer is laminated. Thus, the positive electrode and the negative electrode active material layer can be efficiently insulated from each other, and the temperature rise of the all solid state battery can be prevented.

さらに、セパレーター層のポリマーバインダー及び周縁部材は、セパレーター層のポリマーバインダーの熱膨張率が、周縁部材の熱膨張率よりも大きくなるように選択される。したがって、全固体電池が昇温した際に、セパレーター層のポリマーバインダーは、周縁部材よりも大きく膨張するため、セパレーター層を積層方向へ確実に膨張させることができる。   Furthermore, the polymer binder and peripheral member of the separator layer are selected such that the thermal expansion coefficient of the polymer binder of the separator layer is greater than the thermal expansion coefficient of the peripheral member. Therefore, when the temperature of the all-solid-state battery is raised, the polymer binder of the separator layer expands more than the peripheral member, so that the separator layer can be reliably expanded in the stacking direction.

また、複数の全固体電池が積層されているとき、そのうちの一部の全固体電池が昇温した場合でも、昇温した一部の全固体電池のみが効率的に絶縁されるため、他の全固体電池は通常どおり作動することができる。   In addition, when a plurality of all solid state batteries are stacked, even if some of the all solid state batteries are heated, only some of the all solid state batteries that are heated are efficiently insulated, All solid state batteries can operate normally.

なお、周縁部材は、単一の全固体電池の周縁に配置してもよいが、これに限定されることなく、例えば、
(1)周縁部材を配置した単一の全固体電池を複数個で積層してよく;
(2)積層されている複数の全固体電池の周縁全体に周縁部材を配置してよく:又は
(3)積層されている複数の全固体電池のうちの一部の全固体電池の周縁、例えば、熱が溜まり易い積層方向中心部の全固体電池の周縁に周縁部材を配置してもよい。
In addition, although a peripheral member may be arrange | positioned in the periphery of a single all-solid-state battery, it is not limited to this, For example,
(1) A plurality of single all-solid-state batteries on which peripheral members are arranged may be stacked;
(2) Peripheral members may be arranged around the entire periphery of a plurality of stacked all solid state batteries: or (3) The periphery of some all solid state batteries of the plurality of stacked all solid state batteries, for example A peripheral member may be disposed on the periphery of the all solid state battery in the central portion in the stacking direction where heat is likely to accumulate.

図1及び図2を参照して、本発明の全固体電池を説明する。図1は、それぞれ、正極集電体層110、正極活物質層120、セパレーター層130、負極活物質層140、及び負極集電体層150を有する本発明の全固体電池100の概略斜視図である。図2は、図1で示す全固体電池100の周縁に周縁部材210を配置した状態の概略正面図である。全固体電池100の正極集電体層110及び負極集電体層150の端部には、それぞれ、正極集電タブ160及び負極集電タブ170が設けられている。   With reference to FIG.1 and FIG.2, the all-solid-state battery of this invention is demonstrated. FIG. 1 is a schematic perspective view of an all-solid battery 100 of the present invention having a positive electrode current collector layer 110, a positive electrode active material layer 120, a separator layer 130, a negative electrode active material layer 140, and a negative electrode current collector layer 150, respectively. is there. FIG. 2 is a schematic front view showing a state in which the peripheral member 210 is arranged on the periphery of the all solid state battery 100 shown in FIG. A positive electrode current collector tab 160 and a negative electrode current collector tab 170 are provided at the ends of the positive electrode current collector layer 110 and the negative electrode current collector layer 150 of the all solid state battery 100, respectively.

(周縁部材)
周縁部材の構成材料としては、セパレーター層のポリマーバインダーの熱膨張率よりも小さい熱膨張率を有する任意の構成材料を用いることができる。このような構成材料としては、セラミックス材料、又はポリマー材料、例えば、ポリエチレンテレフタレート(PET)、ポリアセタール(POM)、ポリカーボネイト、ポリメチルペンテン(PMP)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、ポリエチレン(PE)、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)、ポリプロピレン(PP)、塩素化ポリプロピレン、飽和ポリエステル、エポキシ樹脂(EP)、エチレン−アクリル酸共重合体(EAA)、エチレン−メタクリル酸共重合体(EMAA)、エチレン−エチルアクリレート共重合体(EEA)、エチレン−メチルアクリレート共重合体(EMA)、アイオノマー、カルボン酸変性ポリエチレン、カルボン酸変性ポリプロピレン、カルボン酸変性エチレンビニルアセテート共重合体、ポリ塩化ビニル(PVC)、若しくはポリスチレン(PS)又はこれらの組み合わせを挙げることができるが、これに限定されない。
(Peripheral member)
As a constituent material of the peripheral member, any constituent material having a thermal expansion coefficient smaller than that of the polymer binder of the separator layer can be used. Such constituent materials include ceramic materials or polymer materials such as polyethylene terephthalate (PET), polyacetal (POM), polycarbonate, polymethylpentene (PMP), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE). ), Styrene butadiene rubber (SBR), butadiene rubber (BR), polyethylene (PE), low density polyethylene (LDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), polypropylene (PP), chlorine Polypropylene, saturated polyester, epoxy resin (EP), ethylene-acrylic acid copolymer (EAA), ethylene-methacrylic acid copolymer (EMAA), ethylene-ethyl acrylate copolymer (EEA), ethyl -Methyl acrylate copolymer (EMA), ionomer, carboxylic acid modified polyethylene, carboxylic acid modified polypropylene, carboxylic acid modified ethylene vinyl acetate copolymer, polyvinyl chloride (PVC), polystyrene (PS) or combinations thereof However, the present invention is not limited to this.

周縁部材を全固体電池の周縁に形成する方法としては、周縁部材がポリマー材料で構成されている場合、ポリマー材料について一般に採用されている成形方法を任意に用いてよく、例えば、モールド成形などの射出成形法、超高速射出成形法、射出圧縮成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形、インサート成形、又はプレス成形法等を挙げることができる。ポリマー材料で構成されている周縁部材を全固体電池の周縁に形成する方法としては、上記の中でも特に、モールド成形が好ましい。   As a method of forming the peripheral member on the periphery of the all-solid-state battery, when the peripheral member is made of a polymer material, a molding method generally employed for the polymer material may be arbitrarily used. Injection molding method, ultra-high speed injection molding method, injection compression molding method, molding method using heat insulation mold, molding method using rapid heating mold, foam molding, insert molding, press molding method, etc. . As a method of forming the peripheral member made of the polymer material on the peripheral edge of the all solid state battery, molding is particularly preferable among the above methods.

(正極及び負極集電体層)
正極又は負極集電体層としては、任意の集電体層を用いることができ、例えば、銀、銅、金、アルミニウム、ニッケル、鉄、ステンレス鋼、又はチタン等の各種金属の集電体層を用いることができる。
(Positive electrode and negative electrode current collector layer)
As the positive electrode or the negative electrode current collector layer, any current collector layer can be used. For example, a current collector layer of various metals such as silver, copper, gold, aluminum, nickel, iron, stainless steel, or titanium. Can be used.

(正極活物質層)
正極活物質層は、正極活物質、並びに随意に導電助剤、バインダー、及び固体電解質粒子を含有している。
(Positive electrode active material layer)
The positive electrode active material layer contains a positive electrode active material, and optionally a conductive additive, a binder, and solid electrolyte particles.

正極活物質としては、マンガン、コバルト、ニッケル及びチタンから選ばれる少なくとも1種の遷移金属及びリチウムを含む金属酸化物、例えばコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、及びニッケルコバルトマンガン酸リチウム(Li1+xNi1/3Co1/3Mn1/3)等を挙げることができる。 As the positive electrode active material, at least one transition metal selected from manganese, cobalt, nickel and titanium and a metal oxide containing lithium, such as lithium cobaltate (Li x CoO 2 ), lithium nickelate (Li x NiO 2 ) And nickel cobalt lithium manganate (Li 1 + x Ni 1/3 Co 1/3 Mn 1/3 O 2 ).

なお、正極活物質は、任意選択的な緩衝膜を有してもよい。緩衝膜は、正極活物質と固体電解質との間の化学反応によって生じる電気抵抗が大きい金属硫化物の生成を抑制し、又はリチウムイオン欠乏層(空間電荷層)の成長を抑制し、全固体電池の出力を向上させることができる。緩衝膜は、電子絶縁性及びイオン伝導性を示し、且つカチオン拘束力が強いアニオン種を有することが好ましい。緩衝膜としては、例えば、ニオブ酸リチウム(LiNbO)等の酸化物固体電解質粒子が挙げられるが、これに限定されない。 Note that the positive electrode active material may have an optional buffer film. The buffer film suppresses the formation of a metal sulfide having a large electrical resistance caused by a chemical reaction between the positive electrode active material and the solid electrolyte, or suppresses the growth of a lithium ion deficient layer (space charge layer), and is an all solid state battery Output can be improved. The buffer film preferably has an anionic species that exhibits electronic insulation and ionic conductivity and has a strong cation binding force. Examples of the buffer film include, but are not limited to, oxide solid electrolyte particles such as lithium niobate (LiNbO 3 ).

導電助剤としては、VGCF(気相成長法炭素繊維、Vapor Grown Carbon Fiber)、カーボンブラック、ケッチェンブラック、カーボンナノチューブ及びカーボンナノ繊維等の炭素材並びに金属材等を挙げることができる。   Examples of the conductive aid include VGCF (vapor grown carbon fiber), carbon materials such as carbon black, ketjen black, carbon nanotubes, and carbon nanofibers, and metal materials.

バインダーとしては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリイミド(PI)、ポリアミド(PA)、ポリアミドイミド(PAI)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、ニトリル−ブタジエンゴム(NBR)、スチレン−エチレン−ブチレン−スチレンブロック共重合体(SEBS)、若しくはカルボキシメチルセルロース(CMC)等の材料又はこれらの組み合わせを挙げることができるが、これに限定されない。高温耐久性の観点から、バインダーは、ポリイミド、ポリアミド、ポリアミドイミド、ポリアクリル、又はカルボキシメチルセルロース等が好ましい。   As the binder, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyimide (PI), polyamide (PA), polyamideimide (PAI), butadiene rubber (BR), styrene butadiene rubber (SBR), nitrile- Examples thereof include, but are not limited to, materials such as butadiene rubber (NBR), styrene-ethylene-butylene-styrene block copolymer (SEBS), or carboxymethylcellulose (CMC), or combinations thereof. From the viewpoint of high temperature durability, the binder is preferably polyimide, polyamide, polyamideimide, polyacryl, carboxymethylcellulose, or the like.

固体電解質粒子としては、全固体電池の固体電解質として利用可能な材料を用いることができる。例えば、8LiO・67LiS・25P、LiS、P、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P若しくはLiI−LiS−B等の硫化物系非晶質固体電解質粒子、LiO−B−P若しくはLiO−SiO等の酸化物系非晶質固体電解質粒子、又はLi1.3Al0.3Ti0.7(PO若しくはLi1+x+yTi2−xSi3−y12(Aは、Al又はGa、0≦x≦0.4、0<y≦0.6)等の結晶質酸化物等を用いることができる。硫化物系非晶質固体電解質粒子が、優れたリチウムイオン伝導性を有する点で好ましく用いられる。 As the solid electrolyte particles, a material that can be used as a solid electrolyte of an all-solid battery can be used. For example, 8Li 2 O · 67Li 2 S · 25P 2 S 5, Li 2 S, P 2 S 5, Li 2 S-SiS 2, LiI-Li 2 S-SiS 2, LiI-Li 2 S-P 2 S 5 Alternatively, sulfide-based amorphous solid electrolyte particles such as LiI-Li 2 S—B 2 S 3 , oxide-based amorphous materials such as Li 2 O—B 2 O 3 —P 2 O 5 or Li 2 O—SiO 2 quality solid electrolyte particles, or Li 1.3 Al 0.3 Ti 0.7 (PO 4) 3 or Li 1 + x + y A x Ti 2-x Si y P 3-y O 12 (A is, Al or Ga, 0 ≦ Crystalline oxides such as x ≦ 0.4 and 0 <y ≦ 0.6) can be used. Sulfide-based amorphous solid electrolyte particles are preferably used in that they have excellent lithium ion conductivity.

(セパレーター層)
セパレーター層は、固体電解質粒子及び固体電解質粒子同士を結着しているポリマーバインダーを含有している。一般に、ポリマーバインダーは、固体電解質粒子よりも大きい熱膨張率を有する。固体電解質粒子及びポリマーバインダーの配合は、セパレーター層を膨張させる観点から、好ましくは1:99〜99:1の質量比で、更に好ましくは50:50〜99:1の質量比で、特に好ましくは80:20〜99:1の質量比でよい。
(Separator layer)
The separator layer contains solid electrolyte particles and a polymer binder that binds the solid electrolyte particles. In general, the polymer binder has a higher coefficient of thermal expansion than the solid electrolyte particles. From the viewpoint of expanding the separator layer, the blending of the solid electrolyte particles and the polymer binder is preferably a mass ratio of 1:99 to 99: 1, more preferably a mass ratio of 50:50 to 99: 1, and particularly preferably. The mass ratio may be 80:20 to 99: 1.

セパレーター層の固体電解質粒子としては、正極活物質層に関して挙げた材料を用いることができる。   As the solid electrolyte particles of the separator layer, the materials mentioned for the positive electrode active material layer can be used.

ポリマーバインダーとしては、周縁部材の熱膨張率よりも大きい熱膨張率を有する任意の材料を用いることができる。このような材料としては、周縁部材に関して挙げた材料を用いることができる。   As the polymer binder, any material having a thermal expansion coefficient larger than that of the peripheral member can be used. As such a material, the material quoted regarding the peripheral member can be used.

(負極活物質層)
負極活物質層は、負極活物質、並びに随意に導電助剤、バインダー、及び固体電解質粒子を含有している。
(Negative electrode active material layer)
The negative electrode active material layer contains a negative electrode active material, and optionally a conductive additive, a binder, and solid electrolyte particles.

負極活物質としては、リチウムイオン等の金属イオンを吸蔵・放出可能であれば特に限定されないが、例えば、Li、Sn、Si若しくはIn等の金属、リチウムとチタン、マグネシウム若しくはアルミニウムとの合金、又はハードカーボン、ソフトカーボン若しくはグラファイト等の炭素材料等を挙げることができる。   The negative electrode active material is not particularly limited as long as it can occlude / release metal ions such as lithium ions. For example, a metal such as Li, Sn, Si or In, an alloy of lithium and titanium, magnesium or aluminum, or Examples thereof include carbon materials such as hard carbon, soft carbon, and graphite.

負極活物質層の導電助剤、バインダー、及び固体電解質粒子としては、正極活物質層に関して挙げた材料を用いることができる。   As the conductive additive, binder, and solid electrolyte particles of the negative electrode active material layer, the materials mentioned for the positive electrode active material layer can be used.

以下に示す実施例を参照して本発明をさらに詳しく説明するが、本発明の範囲は、これらの実施例によって限定されるものでないことは言うまでもない。   The present invention will be described in more detail with reference to the following examples, but it goes without saying that the scope of the present invention is not limited by these examples.

〈正極集電体層及び正極活物質層の作製〉
正極活物質としてのニッケルコバルトマンガン酸リチウム粒子(LiNi1/3Co1/3Mn1/3)、固体電解質粒子としての硫化物系非晶質粒子(8LiO・67LiS・25P)、及びバインダーとしてのブタジエンゴム(BR)を65:30:5の質量比で混合し、そこにヘプタンを溶媒として添加して正極合材スラリーを得た。このスラリーを正極集電体層としてのアルミ箔上に塗布して正極活物質層を作製した。なお、正極活物質としてのニッケルコバルトマンガン酸リチウム粒子は、前もってニオブ酸リチウムで表面処理を施して7nmの緩衝膜で被覆した。
<Preparation of positive electrode current collector layer and positive electrode active material layer>
Nickel cobalt lithium manganate particles (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) as a positive electrode active material, sulfide-based amorphous particles (8Li 2 O · 67Li 2 S · 25P) as solid electrolyte particles 2 S 5 ) and butadiene rubber (BR) as a binder were mixed at a mass ratio of 65: 30: 5, and heptane was added thereto as a solvent to obtain a positive electrode mixture slurry. This slurry was applied on an aluminum foil as a positive electrode current collector layer to prepare a positive electrode active material layer. The nickel cobalt lithium manganate particles as the positive electrode active material were previously surface-treated with lithium niobate and covered with a 7 nm buffer film.

〈負極集電体層及び負極活物質層の作製〉
負極活物質としてのカーボン、上記の固体電解質粒子、及び上記のバインダーを65:30:5の質量比で混合し、そこにヘプタンを溶媒として添加して負極合剤スラリーを得た。このスラリーを負極集電体層としての銅箔上に塗布して負極活物質層を作製した。
<Preparation of negative electrode current collector layer and negative electrode active material layer>
Carbon as a negative electrode active material, the above solid electrolyte particles, and the above binder were mixed at a mass ratio of 65: 30: 5, and heptane was added thereto as a solvent to obtain a negative electrode mixture slurry. This slurry was applied on a copper foil as a negative electrode current collector layer to prepare a negative electrode active material layer.

〈セパレーター層の作製〉
上記の固体電解質粒子及びポリマーバインダーを90:10の質量比で混合し、そこにヘプタンを溶媒として添加することにより、セパレーター層用のスラリーを得た。このスラリーをアルミ箔上に塗布することにより、セパレーター層を作製した。
<Preparation of separator layer>
The solid electrolyte particles and the polymer binder were mixed at a mass ratio of 90:10, and heptane was added thereto as a solvent to obtain a slurry for a separator layer. By applying this slurry on an aluminum foil, a separator layer was produced.

なお、ポリマーバインダーとしては、低密度ポリエチレン(LDPE)(実施例1)、ポリエチレン(PE)(実施例2)、ポリフッ化ビニリデン(PVDF)(実施例3及び5、並びに比較例3)、ポリエチレンテレフタレート(PET)(実施例4)、高密度ポリエチレン(HDPE)(比較例1)、及びポリプロピレン(PP)(比較例2)を用いた。   Examples of the polymer binder include low density polyethylene (LDPE) (Example 1), polyethylene (PE) (Example 2), polyvinylidene fluoride (PVDF) (Examples 3 and 5, and Comparative Example 3), polyethylene terephthalate. (PET) (Example 4), high density polyethylene (HDPE) (Comparative Example 1), and polypropylene (PP) (Comparative Example 2) were used.

〈全固体電池の作製〉
上記の正極集電体層、正極活物質層、セパレーター層、負極活物質層、及び負極集電体層をこの順で積層させ、複数の全固体単電池を作製した。さらに、これら複数の全固体単電池の正極集電体層同士及び負極集電体同士が重なるようにして、全固体単電池を20個積層させた。このとき、正極集電体層を、超音波接合により厚さ200μmの集電タブと接合させ、負極集電体層にも同様の処理を施した。そして、この積層されている全固体単電池の周縁に、ポリマー材料を用いてモールド成形することにより、周縁部材を形成して、全固体電池(50×50×3mm)を作製した。
<Preparation of all-solid battery>
The positive electrode current collector layer, the positive electrode active material layer, the separator layer, the negative electrode active material layer, and the negative electrode current collector layer were laminated in this order to produce a plurality of all solid unit cells. Further, 20 all-solid unit cells were stacked so that the positive electrode current collector layers and the negative electrode current collectors of the plurality of all-solid unit cells overlap each other. At this time, the positive electrode current collector layer was bonded to a current collecting tab having a thickness of 200 μm by ultrasonic bonding, and the negative electrode current collector layer was subjected to the same treatment. Then, the peripheral edge of the all-solid-state battery cells that are the laminated, by molding with a polymeric material, to form a peripheral member was produced all-solid-state cell (50 × 50 × 3mm 3) .

なお、周縁部材のためのポリマー材料としては、高密度ポリエチレン(HDPE)(実施例1)、ポリスチレン(PS)(実施例2及び3)、ポリプロピレン(PP)(実施例4)、エポキシ樹脂(EP)(実施例5)、低密度ポリエチレン(LDPE)(比較例1)、及びポリエチレンテレフタレート(PET)(比較例2)を用いた。   In addition, as a polymer material for the peripheral member, high density polyethylene (HDPE) (Example 1), polystyrene (PS) (Examples 2 and 3), polypropylene (PP) (Example 4), epoxy resin (EP) ) (Example 5), low density polyethylene (LDPE) (Comparative Example 1), and polyethylene terephthalate (PET) (Comparative Example 2).

〈評価条件〉
上記の全固体電池を4.1Vで満充電し、この電池に既存の手法でARC測定(Accelerating Rate Calorimeter)を行い、250℃付近における全固体電池の自己発熱による温度変化量(ΔT/℃)を読み取った。なお、ARC測定は、断熱状態で全固体電池の周辺環境の温度を段階的に上昇させることにより、全固体電池を自己発熱させ、その温度変化を測定する方法である。
<Evaluation conditions>
The above all-solid-state battery is fully charged at 4.1 V, and ARC measurement (Accelerating Rate Calorimeter) is performed on this battery by an existing method, and the amount of temperature change due to self-heating of the all-solid-state battery near 250 ° C. (ΔT / ° C.) I read. The ARC measurement is a method in which the temperature of the surrounding environment of the all solid state battery is raised stepwise in a heat-insulated state to cause the all solid state battery to self-heat, and its temperature change is measured.

〈結果〉
実施例及び比較例の条件の概要を下記の表1に示す。なお、表1において「A/B」はポリマー部材の熱膨張率(A)を周縁部材の熱膨張率(B)で除した値である。また、「A/B」と温度変化量(ΔT/℃)との関係を図3に示す。
<result>
A summary of the conditions of the examples and comparative examples is shown in Table 1 below. In Table 1, “A / B” is a value obtained by dividing the thermal expansion coefficient (A) of the polymer member by the thermal expansion coefficient (B) of the peripheral member. FIG. 3 shows the relationship between “A / B” and the temperature change amount (ΔT / ° C.).

Figure 2016081635
Figure 2016081635

上記の表1において、「A/B」が1超であることは、セパレーター層のポリマーバインダーの熱膨張率が、周縁部材の熱膨張率よりも大きいことを意味し、また、この値が1未満であることは、セパレーター層のポリマーバインダーの熱膨張率が、周縁部材の熱膨張率よりも小さいことを意味する。   In Table 1 above, “A / B” exceeding 1 means that the thermal expansion coefficient of the polymer binder of the separator layer is larger than the thermal expansion coefficient of the peripheral member, and this value is 1 Less than that means that the thermal expansion coefficient of the polymer binder of the separator layer is smaller than the thermal expansion coefficient of the peripheral member.

表1及び図3からは、「A/B」が1未満である比較例1〜3と比較して、「A/B」が1超である実施例1〜5では、温度変化量(ΔT/℃)が小さいことが分かる。これは、実施例1〜5では、ARC測定時に、周縁部材がセパレーター層の面方向への膨張を抑制することにより、セパレーター層の積層方向への膨張を促進し、ひいては、正極及び負極活物質層の間を効率的に絶縁して、電池の昇温を防止したことによると考えられる。   From Table 1 and FIG. 3, compared with Comparative Examples 1 to 3 in which “A / B” is less than 1, in Examples 1 to 5 in which “A / B” exceeds 1, the amount of temperature change (ΔT / ° C) is small. In Examples 1 to 5, in the ARC measurement, the peripheral member promotes the expansion of the separator layer in the stacking direction by suppressing the expansion of the separator layer in the plane direction. This is considered to be due to the efficient insulation between the layers to prevent the battery from rising in temperature.

本発明の好ましい実施形態を詳細に記載したが、特許請求の範囲から逸脱することなく、本発明で使用される全固体電池、セパレーター層、ポリマーバインダー、及び周縁部材の配置及びタイプについて変更が可能であることを当業者は理解する。   Although preferred embodiments of the present invention have been described in detail, changes can be made to the arrangement and type of all solid state batteries, separator layers, polymer binders, and peripheral members used in the present invention without departing from the scope of the claims. Those skilled in the art understand that.

100 全固体電池
110 正極集電体層
120 正極活物質層
130 セパレーター層
140 負極活物質層
150 負極集電体層
160 正極集電タブ
170 負極集電タブ
200 周縁部材が配置された全固体電池
210 周縁部材
DESCRIPTION OF SYMBOLS 100 All-solid-state battery 110 Positive electrode current collector layer 120 Positive electrode active material layer 130 Separator layer 140 Negative electrode active material layer 150 Negative electrode current collector layer 160 Positive electrode current collection tab 170 Negative electrode current collection tab 200 All solid state battery in which peripheral member is arranged 210 Peripheral member

Claims (1)

正極集電体層、正極活物質層、セパレーター層、負極活物質層、及び負極集電体層が積層されている全固体電池であって、
前記セパレーター層が、固体電解質粒子と、前記固体電解質粒子同士を結着しているポリマーバインダーとを有し、
前記全固体電池の周縁に配置されている周縁部材を有し、
前記ポリマーバインダーの熱膨張率が、前記周縁部材の熱膨張率よりも大きい、
全固体電池。
An all-solid battery in which a positive electrode current collector layer, a positive electrode active material layer, a separator layer, a negative electrode active material layer, and a negative electrode current collector layer are laminated,
The separator layer has solid electrolyte particles and a polymer binder that binds the solid electrolyte particles,
A peripheral member disposed at a peripheral edge of the all solid state battery;
The thermal expansion coefficient of the polymer binder is larger than the thermal expansion coefficient of the peripheral member,
All solid battery.
JP2014209890A 2014-10-14 2014-10-14 All solid battery Active JP6248888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014209890A JP6248888B2 (en) 2014-10-14 2014-10-14 All solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014209890A JP6248888B2 (en) 2014-10-14 2014-10-14 All solid battery

Publications (2)

Publication Number Publication Date
JP2016081635A true JP2016081635A (en) 2016-05-16
JP6248888B2 JP6248888B2 (en) 2017-12-20

Family

ID=55958833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014209890A Active JP6248888B2 (en) 2014-10-14 2014-10-14 All solid battery

Country Status (1)

Country Link
JP (1) JP6248888B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006051A (en) * 2016-06-29 2018-01-11 トヨタ自動車株式会社 Sulfide solid battery
CN108011152A (en) * 2016-10-31 2018-05-08 丰田自动车株式会社 Sulfide All-Solid-State Battery
CN111244382A (en) * 2020-01-17 2020-06-05 哈尔滨工业大学 Solid-state battery with overheat self-protection function
JP2020140830A (en) * 2019-02-27 2020-09-03 現代自動車株式会社Hyundai Motor Company All-solid battery
WO2020241691A1 (en) 2019-05-28 2020-12-03 株式会社クレハ All-solid-state battery and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317965A (en) * 1989-06-14 1991-01-25 Matsushita Electric Ind Co Ltd Manufacture of solid-electrolyte sheet and solid-electrolyte secondary battery
JP2009080999A (en) * 2007-09-25 2009-04-16 Seiko Epson Corp Electrochemical element
JP2009266589A (en) * 2008-04-24 2009-11-12 Toyota Motor Corp Solid lithium secondary battery and method of manufacturing the same
JP2012038425A (en) * 2010-08-03 2012-02-23 Toyota Motor Corp Method of manufacturing electrode body, and electrode body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317965A (en) * 1989-06-14 1991-01-25 Matsushita Electric Ind Co Ltd Manufacture of solid-electrolyte sheet and solid-electrolyte secondary battery
JP2009080999A (en) * 2007-09-25 2009-04-16 Seiko Epson Corp Electrochemical element
JP2009266589A (en) * 2008-04-24 2009-11-12 Toyota Motor Corp Solid lithium secondary battery and method of manufacturing the same
JP2012038425A (en) * 2010-08-03 2012-02-23 Toyota Motor Corp Method of manufacturing electrode body, and electrode body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
今村 健夫, プラスチック・データブック, vol. 第1版, JPN6017029457, 1 December 1999 (1999-12-01), JP, pages 54 - 55, ISSN: 0003614088 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006051A (en) * 2016-06-29 2018-01-11 トヨタ自動車株式会社 Sulfide solid battery
CN108011152A (en) * 2016-10-31 2018-05-08 丰田自动车株式会社 Sulfide All-Solid-State Battery
JP2018073665A (en) * 2016-10-31 2018-05-10 トヨタ自動車株式会社 Sulphide all-solid battery
US11682803B2 (en) 2016-10-31 2023-06-20 Toyota Jidosha Kabushiki Kaisha Sulfide all-solid-state battery
JP2020140830A (en) * 2019-02-27 2020-09-03 現代自動車株式会社Hyundai Motor Company All-solid battery
JP7319060B2 (en) 2019-02-27 2023-08-01 現代自動車株式会社 All-solid battery
WO2020241691A1 (en) 2019-05-28 2020-12-03 株式会社クレハ All-solid-state battery and method for producing same
KR20220008907A (en) 2019-05-28 2022-01-21 가부시끼가이샤 구레하 All-solid-state battery and manufacturing method thereof
CN111244382A (en) * 2020-01-17 2020-06-05 哈尔滨工业大学 Solid-state battery with overheat self-protection function

Also Published As

Publication number Publication date
JP6248888B2 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP6729410B2 (en) All solid state battery
JP6885309B2 (en) Series stacked all-solid-state battery
JP6248888B2 (en) All solid battery
JP5328034B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
JP2017130283A (en) All-solid battery
US10658704B2 (en) Method of manufacturing electrode laminate and method of manufacturing all-solid-state battery
JP5880956B2 (en) SECONDARY BATTERY ELECTRODE, MANUFACTURING METHOD THEREOF, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY HAVING THE SECONDARY BATTERY ELEMENT
CN106560948B (en) All-solid-state battery
CN106415914B (en) Secondary cell stacked laminator and secondary cell laminating method
CN107887559A (en) Battery, electronic installation, electric vehicle, electrical storage device and power system
JP2011023186A (en) Separator for electrochemical element, and electrochemical element and method of manufacturing the same
JP6296030B2 (en) Electrode laminate and method for producing all solid state battery
CN108140890A (en) Battery, battery pack, electronic equipment, electric vehicle, electrical storage device and electric system
JP2014137869A (en) All-solid-state battery and manufacturing method therefor
JP2012227107A (en) Electrode body for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2016139482A (en) Solid electrolyte sheet and all-solid secondary battery
CN101714655A (en) Lithium-ion secondary battery
JP2015046218A (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2012164571A (en) Negative electrode body and lithium ion battery
JP5702873B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
JPWO2015015883A1 (en) Lithium secondary battery and electrolyte for lithium secondary battery
JP2015118815A (en) All solid secondary battery
JP6977554B2 (en) All solid state battery
JP2016219368A (en) Laminate type secondary battery
JP2018152236A (en) Packaged positive electrode plate, laminated electrode body, and electric storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171106

R151 Written notification of patent or utility model registration

Ref document number: 6248888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151