JP2016080991A - Carrier core material, carrier for electrophotographic development using the same, and electrophotographic developer - Google Patents

Carrier core material, carrier for electrophotographic development using the same, and electrophotographic developer Download PDF

Info

Publication number
JP2016080991A
JP2016080991A JP2014214857A JP2014214857A JP2016080991A JP 2016080991 A JP2016080991 A JP 2016080991A JP 2014214857 A JP2014214857 A JP 2014214857A JP 2014214857 A JP2014214857 A JP 2014214857A JP 2016080991 A JP2016080991 A JP 2016080991A
Authority
JP
Japan
Prior art keywords
particles
core material
carrier core
carrier
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014214857A
Other languages
Japanese (ja)
Other versions
JP5726360B1 (en
Inventor
石川 洋平
Yohei Ishikawa
洋平 石川
佐々木 信也
Shinya Sasaki
信也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53278013&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2016080991(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dowa Electronics Materials Co Ltd, Dowa IP Creation Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2014214857A priority Critical patent/JP5726360B1/en
Application granted granted Critical
Publication of JP5726360B1 publication Critical patent/JP5726360B1/en
Publication of JP2016080991A publication Critical patent/JP2016080991A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carrier core material that can increase the amount of toner supplied to a developing area and prevent the surface of a photoreceptor from being damaged with a magnetic brush.SOLUTION: There are provided ferrite particles containing 5 number% to 20 number% of coupled particles in which two to five spherical particles are coupled to each other, where the coupled particles are particles each having a base particle having the largest particle diameter and one to four child particles having smaller particle diameters than that of the base particle coupled to each other, and at least one of the child particles has a particle diameter larger than half the particle diameter of the base particle. It is preferable that the maximum depth from the peak to the valley Rz on the surfaces of normal particles other than the coupled particles be 1.5 μm or more.SELECTED DRAWING: Figure 1

Description

本発明は、キャリア芯材並びにこれを用いた電子写真現像用キャリア及び電子写真用現像剤に関するものである。   The present invention relates to a carrier core material, an electrophotographic developer carrier and an electrophotographic developer using the same.

例えば、電子写真方式を用いたファクシミリやプリンター、複写機などの画像形成装置では、感光体の表面に形成された静電潜像にトナーを付着させて可視像化し、この可視像を用紙等に転写した後、加熱・加圧して定着させている。高画質化やカラー化の観点から、現像剤としては、キャリアとトナーとを含むいわゆる二成分現像剤が広く使用されている。   For example, in an image forming apparatus such as a facsimile, printer, or copier using an electrophotographic method, a toner is attached to an electrostatic latent image formed on the surface of a photosensitive member to make a visible image, and the visible image is formed on paper. After being transferred to, etc., it is fixed by heating and pressing. A so-called two-component developer including a carrier and a toner is widely used as a developer from the viewpoint of high image quality and colorization.

二成分現像剤を用いた現像方式では、キャリアとトナーとを現像装置内で撹拌混合し、摩擦によってトナーを所定量まで帯電させる。そして、回転する現像ローラに現像剤を供給し、現像ローラ上で磁気ブラシを形成させて、磁気ブラシを介して感光体へトナーを電気的に移動させて感光体上の静電潜像を可視像化する。トナー移動後のキャリアは現像ローラ上に残留し、現像装置内で再びトナーと混合される。このため、キャリアの特性として、磁気ブラシを形成する磁気特性及び所望の電荷をトナーに付与する帯電特性が要求される。このようなキャリアとしては、マグネタイトや各種フェライト等からなるキャリア芯材の表面を樹脂で被覆した、いわゆるコーティングキャリアがこれまで多く用いられていた。また、コーティングキャリアに用いられていたこれまでのキャリア芯材は真球状であった。   In the developing method using a two-component developer, the carrier and the toner are stirred and mixed in the developing device, and the toner is charged to a predetermined amount by friction. Then, a developer is supplied to the rotating developing roller, a magnetic brush is formed on the developing roller, and the toner is electrically moved to the photosensitive member via the magnetic brush, so that an electrostatic latent image on the photosensitive member can be formed. Visualize. The carrier after the toner movement remains on the developing roller and is mixed with the toner again in the developing device. For this reason, as a characteristic of the carrier, a magnetic characteristic for forming a magnetic brush and a charging characteristic for imparting a desired charge to the toner are required. As such a carrier, a so-called coating carrier in which the surface of a carrier core material made of magnetite, various ferrites or the like is coated with a resin has been widely used. Further, the carrier core material used so far for the coating carrier has a spherical shape.

近年、画像形成装置における画像形成速度の高速化という市場要求に対応するため、現像ローラの回転速度を速めて、現像領域への現像剤の単位時間当たりの供給量を増加させる傾向にある。   In recent years, in order to meet the market demand for higher image forming speed in image forming apparatuses, the rotation speed of the developing roller tends to be increased to increase the amount of developer supplied per unit time to the developing area.

ところが、真球状のキャリア芯材を用いたコーティングキャリアでは、現像領域へのトナー供給が不十分となり画像濃度が低下する不具合があった。例えば、現像ローラの1周前の画像の影響を受けて画像濃度が低下する「現像メモリー」と呼ばれる不具合があった。   However, the coating carrier using the spherical carrier core material has a problem that the toner density to the developing area is insufficient and the image density is lowered. For example, there has been a problem called “development memory” in which the image density decreases due to the influence of the image one round before the developing roller.

そこで、キャリア芯材の表面を凹凸形状としたり、キャリア芯材の形状を異形化することで、感光体表面との摩擦抵抗及びキャリア同士の摩擦抵抗を大きくし、現像領域へのトナー供給量を増加させる技術が提案されている(例えば、特許文献1,2など)。   Therefore, by making the surface of the carrier core material uneven, or by making the shape of the carrier core material irregular, the frictional resistance with the surface of the photoreceptor and the frictional resistance between the carriers are increased, and the amount of toner supplied to the development area is increased. Techniques for increasing the number have been proposed (for example, Patent Documents 1 and 2).

特開2013−25204号公報JP 2013-25204 A 特開2007−148452号公報JP 2007-148452 A

しかしながら、キャリア芯材表面を凹凸形状にしただけでは、キャリア化した際に凹部にコート樹脂が厚く成膜されるため、キャリア化後の表面凹凸が不十分となるためトナー保持性が十分でない。また異形キャリアとして、不等多角形状や塊状のキャリアが提案されているが、球形状を逸脱した極端な異形化により、粒子同士の引っかかりなどが強くなって磁気ブラシが硬くなり、磁気ブラシで感光体表面が摺擦されることによって感光体表面が傷つけられるおそれがある。   However, if the surface of the carrier core material is made uneven, the coating resin is thickly formed in the recesses when the carrier is formed, so that the surface unevenness after forming the carrier becomes insufficient and the toner retention is not sufficient. In addition, unequal polygonal and massive carriers have been proposed as irregularly shaped carriers. However, due to extreme irregularities that deviate from the spherical shape, the magnetic brushes become harder and harder, and the magnetic brush becomes photosensitive. The surface of the photoconductor may be damaged by rubbing the surface of the photoconductor.

そこで、本発明の目的は、現像領域へのトナー供給量を増加させることができ、しかも磁気ブラシによって感光体表面が傷つけられることのないキャリア芯材を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a carrier core material that can increase the amount of toner supplied to the development area and that does not damage the surface of the photoreceptor by a magnetic brush.

また本発明の他の目的は、長期間の使用においても安定して良好な画質画像を形成することができる電子写真現像用キャリア及び電子写真用現像剤を提供することにある。   Another object of the present invention is to provide an electrophotographic developer carrier and an electrophotographic developer capable of stably forming a good image quality even after long-term use.

本発明によれば、球形粒子が2個〜5個の結合した結合粒子が5個数%〜20個数%含まれ、前記結合粒子は、粒径の最も大きい母粒子と、前記母粒子よりも粒径の小さい1個〜4個の子粒子とが結合した粒子であり、前記子粒子の少なくとも1つの子粒子の粒径は、前記母粒子の粒径の1/2よりも大きいことを特徴とするフェライト粒子からなるキャリア芯材が提供される。   According to the present invention, 5% by number to 20% by number of bonded particles in which 2 to 5 spherical particles are bonded are included, and the bonded particles include a mother particle having the largest particle size and particles larger than the mother particles. It is a particle in which 1 to 4 child particles having a small diameter are combined, and the particle size of at least one child particle of the child particle is larger than ½ of the particle size of the mother particle, A carrier core material made of ferrite particles is provided.

なお、結合粒子では母粒子と子粒子とが結合部分を共有した形態で存在しているので、本明細書における母粒子及び子粒子の粒径は、キャリア芯材の形状を走査電子顕微鏡(日本電子社製:JSM−6510LA)を用いて倍率250倍で撮影した画像において、結合粒子の結合部分を除いた領域から粒子を球形近似することによりそれぞれ算出した。   In the binding particles, since the mother particles and the child particles are present in a form in which the bonding portions are shared, the particle sizes of the mother particles and the child particles in this specification are determined by scanning electron microscope (Japan) In an image photographed at a magnification of 250 times using JSM-6510LA (manufactured by Denki Co., Ltd.), each particle was calculated by approximating the sphere to a spherical shape from an area excluding the binding portion of the binding particle.

また、前記結合粒子以外の通常粒子の表面の最大山谷深さRzは1.5μm以上であるのが好ましい。なお、キャリア芯材の最大山谷深さRzの測定方法は、後述する実施例で説明する。   Moreover, it is preferable that the maximum peak-valley depth Rz of the surface of normal particles other than the said binding particle is 1.5 micrometers or more. In addition, the measuring method of the maximum mountain valley depth Rz of a carrier core material is demonstrated in the Example mentioned later.

本発明に係るキャリア芯材の体積平均粒径(以下、単に「平均粒径」と記すことがある)は25μm以上50μm未満であるのが好ましい。   The carrier core material according to the present invention preferably has a volume average particle diameter (hereinafter sometimes simply referred to as “average particle diameter”) of 25 μm or more and less than 50 μm.

また、本発明によれば、前記記載のキャリア芯材の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリアが提供される。   In addition, according to the present invention, there is provided an electrophotographic developing carrier characterized in that the surface of the carrier core material described above is coated with a resin.

さらに、本発明によれば、前記記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤が提供される。   Furthermore, according to the present invention, there is provided an electrophotographic developer comprising the electrophotographic developer carrier described above and a toner.

本発明に係るキャリア芯材によれば、現像領域へのトナー供給量を増加させることができ「現像メモリー」の発生を抑制できる。また、磁気ブラシによって感光体表面は傷つけられることもない。これにより、本発明に係るキャリア芯材を含む現像剤を用いれば、長期間の使用においても安定して良好な画質画像を形成することができる。   According to the carrier core material of the present invention, the amount of toner supplied to the development area can be increased, and the occurrence of “development memory” can be suppressed. Further, the surface of the photoreceptor is not damaged by the magnetic brush. Thereby, if the developer containing the carrier core material according to the present invention is used, a good image quality can be stably formed even for a long period of use.

実施例1のキャリア芯材のSEM写真である。2 is a SEM photograph of the carrier core material of Example 1. 実施例2のキャリア芯材のSEM写真である。4 is a SEM photograph of the carrier core material of Example 2. 実施例3のキャリア芯材のSEM写真である。4 is a SEM photograph of the carrier core material of Example 3. 比較例1のキャリア芯材のSEM写真である。4 is a SEM photograph of a carrier core material of Comparative Example 1. 比較例2のキャリア芯材のSEM写真である。4 is a SEM photograph of a carrier core material of Comparative Example 2. 実施例4のキャリア芯材のSEM写真である。4 is a SEM photograph of a carrier core material of Example 4. 実施例5のキャリア芯材のSEM写真である。6 is a SEM photograph of the carrier core material of Example 5. 実施例6のキャリア芯材のSEM写真である。6 is a SEM photograph of a carrier core material of Example 6. 比較例3のキャリア芯材のSEM写真である。4 is a SEM photograph of a carrier core material of Comparative Example 3. 本発明に係るキャリアを用いた現像装置の一例を示す概説図である。It is a schematic diagram showing an example of a developing device using a carrier according to the present invention.

本発明者等は、磁気ブラシによって感光体表面を傷つけることなく、現像領域へのトナー供給量を増加できないか鋭意検討を重ねた結果、数個のフェライト球形粒子が結合した結合粒子を、キャリア芯材中に所定の個数割合含有させればよいことを見出し、本発明を成すに至った。すなわち、本発明に係るフェライト粒子からなるキャリア芯材は、球形粒子が2個〜5個の結合した結合粒子が5個数%〜20個数%含まれ、前記結合粒子は、粒径の最も大きい母粒子と、前記母粒子よりも粒径の小さい1個〜4個の子粒子とが結合した粒子であり、前記子粒子の少なくとも1つの子粒子の粒径は、前記母粒子の粒径の1/2よりも大きいことを特徴とする。なお、キャリア芯材は、フェライト粒子からなる紛体であり、ここでは、本発明にかかる結合粒子以外のフェライト粒子を通常粒子とする。   As a result of intensive studies on whether or not the toner supply amount to the development area can be increased without damaging the surface of the photoconductor with a magnetic brush, the present inventors have determined that the bonded particles, in which several ferrite spherical particles are bonded, are bonded to the carrier core. It has been found that a predetermined number ratio may be contained in the material, and the present invention has been achieved. That is, the carrier core material made of the ferrite particles according to the present invention includes 5 to 20% by number of bonded particles in which 2 to 5 spherical particles are bonded, and the bonded particles have the largest particle size. A particle and 1 to 4 child particles having a particle diameter smaller than that of the mother particle, and the particle diameter of at least one child particle of the child particle is 1 of the particle diameter of the mother particle. It is characterized by being larger than / 2. The carrier core material is a powder made of ferrite particles. Here, ferrite particles other than the binding particles according to the present invention are used as normal particles.

母粒子と子粒子とが結合した、球形から大きく外れた異形な結合粒子がキャリア芯材中に所定の個数割合で含まれていると、通常の球形粒子と結合粒子との間にトナーが取り込まれる空間が生じ得る。そして、通常の球形粒子と結合粒子との間の空間に取り込まれたトナーは、現像ローラの回転によって現像領域に搬送されると共に、前記空間に取り込まれていたトナーが磁気ブラシの表面に現れ現像に寄与する。加えて、従来の不等多角形状や塊状のキャリアと異なって、本発明で使用する結合粒子は、球形粒子同士が結合した粒子であるため角部がない。このため、感光体表面を磁気ブラシで摺擦しても粒子の角部で感光体表面が傷つくことはない。また、少なくとも1つの子粒子の粒径が母粒子の粒径に対して1/2より大きいため、トナーが取り込まれ得る通常の球形粒子と結合粒子との間の空間及び結合粒子同士の空間が大きい。これにより、より多くのトナーが現像領域に搬送され、「現像メモリー」の発生が効果的に抑制されるようになる。   If the carrier core contains a predetermined number of irregularly bonded particles that are largely deviated from the spherical shape, in which the mother particles and the child particles are bonded, the toner is taken in between the normal spherical particles and the bonded particles. Space can occur. The toner taken into the space between the normal spherical particles and the binding particles is conveyed to the developing area by the rotation of the developing roller, and the toner taken into the space appears on the surface of the magnetic brush and develops. Contribute to. In addition, unlike conventional unequal polygonal shapes or massive carriers, the bonded particles used in the present invention are particles in which spherical particles are bonded to each other, and thus have no corners. For this reason, even if the surface of the photoreceptor is rubbed with a magnetic brush, the surface of the photoreceptor is not damaged at the corners of the particles. In addition, since the particle size of at least one child particle is larger than 1/2 of the particle size of the mother particle, the space between the normal spherical particle and the binding particle into which the toner can be taken in and the space between the binding particles are increased. large. As a result, more toner is transported to the development area, and the occurrence of “development memory” is effectively suppressed.

本発明で使用する結合粒子において、母粒子と子粒子の組成は、同じであってもよいし異なっていてもよい。   In the bonded particles used in the present invention, the composition of the mother particles and the child particles may be the same or different.

このような結合粒子は、例えば、後述するキャリア芯材の製造工程において、焼成温度での保持時間を長くしたり、焼成後の解粒操作を調整することにより得ることができる。この方法によれば、キャリア芯材中の結合粒子の含有割合を容易に調整することでき、   Such a binding particle can be obtained, for example, by increasing the holding time at the firing temperature or adjusting the pulverization operation after firing in the carrier core manufacturing process described later. According to this method, the content ratio of the binding particles in the carrier core material can be easily adjusted,

キャリア芯材における結合粒子の含有割合は5個数%〜20個数%である。結合粒子の含有割合が5個数%未満であると、現像領域へのトナー供給量が不十分となることがある一方、結合粒子の含有割合が20個数%を超えると、キャリア芯材の流動性が悪くなりすぎて磁気ブラシ内でのキャリアの循環移動が十分に行われず、画像形成速度が速くなった場合に十分な画像濃度が得られない。より好ましい結合粒子の含有割合は10個数%〜20個数%の範囲である。   The content ratio of the binding particles in the carrier core material is 5% to 20% by number. When the content ratio of the binding particles is less than 5% by number, the amount of toner supplied to the developing region may be insufficient. On the other hand, when the content ratio of the binding particles exceeds 20% by number, the fluidity of the carrier core material However, when the image formation speed is increased, sufficient image density cannot be obtained when the carrier is not sufficiently circulated and moved within the magnetic brush. A more preferable content ratio of the binding particles is in the range of 10% by number to 20% by number.

本発明のキャリア芯材における前記結合粒子以外の通常粒子の表面の最大山谷深さRzは1.5μm以上であるのが好ましい。通常粒子表面の最大山谷深さRzが1.5μm以上であると、通常粒子同士の間に形成される空間も大きくなり、より多くのトナーがこの空間に取り込まれて現像領域へのトナー搬送量が増え、「現像メモリー」などの画像不具合が一層抑制される。粒子表面の最大山谷深さRzの好ましい上限値は2.5μmであり、より好ましくは2.0μmである。   In the carrier core material of the present invention, the maximum peak / valley depth Rz on the surface of normal particles other than the binding particles is preferably 1.5 μm or more. If the maximum peak / valley depth Rz of the normal particle surface is 1.5 μm or more, the space formed between the normal particles also increases, and more toner is taken into this space and the amount of toner transported to the development area And image defects such as “development memory” are further suppressed. A preferable upper limit value of the maximum valley depth Rz on the particle surface is 2.5 μm, and more preferably 2.0 μm.

本発明のキャリア芯材の体積平均粒径としては、25μm以上50μm未満の範囲が好ましく、より好ましくは30μm以上40μm以下の範囲である。   The volume average particle size of the carrier core material of the present invention is preferably in the range of 25 μm or more and less than 50 μm, more preferably in the range of 30 μm or more and 40 μm or less.

本発明のキャリア芯材を構成するフェライト粒子の組成に特に限定はなく、組成式MFe3−X(但し、Mは、Mg,Mn,Ca,Ti,Sr,Cu,Zn,Niからなる群より選択される少なくとも1種の金属元素、0≦X≦1)で表されるものが例示される。これらの中でも、一般式(MnO)x(MgO)y(Fe)zで表され、x,y,zがそれぞれ45mol%〜55mol%,0〜20mol%,30mol%〜50mol%であり、MnO及び/又はMgOの一部をSrOで0.15mol%〜1.0mol%置換したものが好ましい。 The composition of the ferrite particles constituting the carrier core material of the present invention is not particularly limited, and the composition formula M X Fe 3 -X O 4 (where M is Mg, Mn, Ca, Ti, Sr, Cu, Zn, Ni) And at least one metal element selected from the group consisting of: 0 ≦ X ≦ 1). Among these, the general formula (MnO) x (MgO) y (Fe 2 O 3) is represented by z, x, y, z is 45mol% ~55mol% respectively, 0 to 20 mol%, a 30 mol% 50 mol% , MnO and / or MgO is preferably substituted by 0.15 mol% to 1.0 mol% with SrO.

本発明のキャリア芯材の製造方法に特に限定はないが、以下に説明する製造方法が好適である。   Although there is no limitation in particular in the manufacturing method of the carrier core material of this invention, the manufacturing method demonstrated below is suitable.

まず、Fe成分原料、M成分原料を秤量する。なお、MはMg、Mn、Ca、Ti、Cu、Sr、Zn、Ni等の2価の価数をとり得る金属元素から選ばれる少なくとも1種の金属元素である。Fe成分原料としては、Fe等が好適に使用される。M成分原料としては、MnであればMnCO、Mn等が使用でき、MgであればMgO、Mg(OH)、MgCOが好適に使用できる。また、Ca成分原料としては、CaO、Ca(OH)、CaCO等から選択される少なくとも1種の化合物が好適に使用される。Sr成分原料としては、SrCO、Sr(NOなどが好適に使用される。 First, the Fe component raw material and the M component raw material are weighed. M is at least one metal element selected from divalent metal elements such as Mg, Mn, Ca, Ti, Cu, Sr, Zn, and Ni. As the Fe component material, Fe 2 O 3 or the like is preferably used. As the M component raw material, MnCO 3 , Mn 3 O 4 and the like can be used for Mn, and MgO, Mg (OH) 2 and MgCO 3 can be suitably used for Mg. As the Ca component raw material, at least one compound selected from CaO, Ca (OH) 2 , CaCO 3 and the like is preferably used. As the Sr component raw material, SrCO 3 , Sr (NO 3 ) 2 or the like is preferably used.

次いで、原料を分散媒中に投入しスラリーを作製する。本発明で使用する分散媒としては水が好適である。分散媒には、前記仮焼成原料の他、必要によりバインダー、分散剤等を配合してもよい。バインダーとしては、例えば、ポリビニルアルコールが好適に使用できる。バインダーの配合量としてはスラリー中の濃度が0.5質量%〜2質量%程度とするのが好ましい。また、分散剤としては、例えば、ポリカルボン酸アンモニウム等が好適に使用できる。分散剤の配合量としてはスラリー中の濃度が0.5質量%〜2質量%程度とするのが好ましい。その他、潤滑剤や焼結促進剤等を配合してもよい。スラリーの固形分濃度は50質量%〜90質量%の範囲が望ましい。より好ましくは60質量%〜80質量%である。60質量%以上であれば、造粒品中に粒子内細孔が少なく、焼成時の焼結不足を防ぐことができる   Next, the raw material is charged into a dispersion medium to prepare a slurry. Water is preferred as the dispersion medium used in the present invention. In addition to the calcined raw material, a binder, a dispersant and the like may be blended in the dispersion medium as necessary. For example, polyvinyl alcohol can be suitably used as the binder. As a compounding quantity of a binder, it is preferable that the density | concentration in a slurry shall be about 0.5 mass%-2 mass%. Moreover, as a dispersing agent, polycarboxylate ammonium etc. can be used conveniently, for example. The blending amount of the dispersing agent is preferably about 0.5% by mass to 2% by mass in the slurry. In addition, you may mix | blend a lubricant, a sintering accelerator, etc. The solid content concentration of the slurry is desirably in the range of 50 mass% to 90 mass%. More preferably, it is 60 mass%-80 mass%. If it is 60% by mass or more, there are few intra-particle pores in the granulated product, and insufficient sintering during firing can be prevented.

なお、秤量した原料を混合し仮焼成し解粒した後、分散媒に投入しスラリーを作製してもよい。仮焼成の温度としては750℃〜900℃の範囲が好ましい。750℃以上であれば、仮焼による一部フェライト化が進み、焼成時のガス発生量が少なく、固体間反応が十分に進むため、好ましい。一方、900℃以下であれば、仮焼による焼結が弱く、後のスラリー粉砕工程で原料を十分に粉砕できるので好ましい。また、仮焼成時の雰囲気としては大気雰囲気が好ましい。   In addition, after mixing the weighed raw materials, pre-baking and pulverizing, it may be put into a dispersion medium to produce a slurry. The pre-baking temperature is preferably in the range of 750 ° C to 900 ° C. If it is 750 degreeC or more, since part ferrite-ization by calcination advances, the amount of gas generation at the time of baking is small, and reaction between solids fully advances, it is preferable. On the other hand, if it is 900 degrees C or less, since sintering by calcination is weak and a raw material can fully be grind | pulverized at a later slurry grinding | pulverization process, it is preferable. Moreover, an air atmosphere is preferable as the atmosphere at the time of temporary firing.

次に、以上のようにして作製されたスラリーを湿式粉砕する。例えば、ボールミルや振動ミルを用いて所定時間湿式粉砕する。粉砕後の原材料の平均粒径は5μm以下が好ましく、より好ましくは1μm以下である。振動ミルやボールミルには、所定粒径のメディアを内在させるのがよい。メディアの材質としては、鉄系のクロム鋼や酸化物系のジルコニア、チタニア、アルミナなどが挙げられる。粉砕工程の形態としては連続式及び回分式のいずれであってもよい。粉砕物の粒径は、粉砕時間や回転速度、使用するメディアの材質・粒径などによって調整される。   Next, the slurry produced as described above is wet pulverized. For example, wet grinding is performed for a predetermined time using a ball mill or a vibration mill. The average particle diameter of the raw material after pulverization is preferably 5 μm or less, more preferably 1 μm or less. The vibration mill or ball mill preferably contains a medium having a predetermined particle diameter. Examples of the material of the media include iron-based chromium steel and oxide-based zirconia, titania, and alumina. As a form of a grinding | pulverization process, any of a continuous type and a batch type may be sufficient. The particle size of the pulverized product is adjusted depending on the pulverization time and rotation speed, the material and particle size of the media used, and the like.

そして、粉砕されたスラリーを噴霧乾燥させて造粒する。具体的には、スプレードライヤーなどの噴霧乾燥機にスラリーを導入し、雰囲気中へ噴霧することによって球状に造粒する。噴霧乾燥時の雰囲気温度は100℃〜300℃の範囲が好ましい。これにより、粒径10μm〜75μmの球状の造粒物が得られる。次いで、得られた造粒物を振動ふるいを用いて分級し所定の粒径範囲の造粒物を作製する。   Then, the pulverized slurry is spray-dried and granulated. Specifically, the slurry is introduced into a spray dryer such as a spray dryer, and granulated into a spherical shape by spraying into the atmosphere. The atmospheric temperature during spray drying is preferably in the range of 100 ° C to 300 ° C. Thereby, a spherical granulated product having a particle size of 10 μm to 75 μm is obtained. Next, the obtained granulated product is classified using a vibration sieve to produce a granulated product having a predetermined particle size range.

次に、前記の造粒物を所定温度に加熱した炉に投入して、フェライト粒子を合成するための一般的な手法で焼成することにより、フェライト粒子を生成させる。焼成温度としては1100℃〜1300℃の範囲が好ましい。焼成温度が1100℃以下であると、相変態が起こりにくくなるとともに焼結も進みにくくなる。また、焼成温度が1300℃を超えると、過剰焼結による過大グレインの発生がするおそれがある。結合粒子の含有割合は、焼成温度での保持時間によっても調整することができ、通常、保持時間を長くすると結合粒子の含有割合は増える。保持時間としては6時間以上が好ましく、8時間以上がより好ましい。前記焼成温度に至るまでの昇温速度としては250℃/h〜500℃/hの範囲が好ましい。焼成工程における酸素濃度は0.05%〜5%の範囲に制御するのが好ましい。   Next, the granulated material is put into a furnace heated to a predetermined temperature and fired by a general method for synthesizing ferrite particles, thereby generating ferrite particles. The firing temperature is preferably in the range of 1100 ° C to 1300 ° C. When the firing temperature is 1100 ° C. or lower, the phase transformation is less likely to occur and the sintering is less likely to proceed. On the other hand, if the firing temperature exceeds 1300 ° C., excessive grains may be generated due to excessive sintering. The content ratio of the binding particles can also be adjusted by the holding time at the firing temperature. Usually, when the holding time is increased, the content ratio of the binding particles increases. The holding time is preferably 6 hours or more, and more preferably 8 hours or more. The rate of temperature increase up to the firing temperature is preferably in the range of 250 ° C / h to 500 ° C / h. The oxygen concentration in the firing step is preferably controlled in the range of 0.05% to 5%.

このようにして得られた焼成物を解粒する。具体的には、例えば、ハンマーミル等によって焼成物を解粒する。解粒工程の形態としては連続式及び回分式のいずれであってもよい。この解粒処理によっても、結合粒子の含有割合を調整することができる。すなわち、焼成物に与える衝撃力を強く、長くするほど、結合粒子の結合が解消され結合粒子の含有割合は減少する。   The fired product thus obtained is pulverized. Specifically, for example, the fired product is pulverized by a hammer mill or the like. The form of the granulation step may be either a continuous type or a batch type. Also by this pulverization treatment, the content ratio of the binding particles can be adjusted. That is, the stronger the impact force applied to the fired product is, the longer the binding of the binding particles is eliminated and the content ratio of the binding particles decreases.

解粒処理後、必要により、粒径を所定範囲に揃えるため分級を行ってもよい。分級方法としては、風力分級や篩分級など従来公知の方法を用いることができる。また、風力分級機で1次分級した後、振動篩や超音波篩で粒径を所定範囲に揃えるようにしてもよい。さらに、分級工程後に、磁場選鉱機によって非磁性粒子を除去するようにしてもよい。フェライト粒子の粒径としては25μm以上50μm未満が好ましい。   After the pulverization treatment, classification may be performed, if necessary, in order to align the particle size within a predetermined range. As a classification method, a conventionally known method such as air classification or sieve classification can be used. In addition, after primary classification with an air classifier, the particle size may be aligned within a predetermined range with a vibration sieve or an ultrasonic sieve. Furthermore, you may make it remove a nonmagnetic particle with a magnetic field separator after a classification process. The particle diameter of the ferrite particles is preferably 25 μm or more and less than 50 μm.

その後、必要に応じて、分級後のフェライト粒子を酸化性雰囲気中で加熱して、粒子表面に酸化被膜を形成してフェライト粒子の高抵抗化を図ってもよい(高抵抗化処理)。酸化性雰囲気としては大気雰囲気又は酸素と窒素の混合雰囲気のいずれでもよい。また、加熱温度は、200℃〜800℃の範囲が好ましく、250℃〜600℃の範囲がさらに好ましい。加熱時間は0.5時間〜5時間の範囲が好ましい。   Thereafter, if necessary, the ferrite particles after classification may be heated in an oxidizing atmosphere to form an oxide film on the particle surface to increase the resistance of the ferrite particles (high resistance treatment). The oxidizing atmosphere may be either an air atmosphere or a mixed atmosphere of oxygen and nitrogen. The heating temperature is preferably in the range of 200 ° C to 800 ° C, and more preferably in the range of 250 ° C to 600 ° C. The heating time is preferably in the range of 0.5 hours to 5 hours.

以上のようにして作製したフェライト粒子を本発明のキャリア芯材として用いる。そして、所望の帯電性等を得るために、キャリア芯材の外周を樹脂で被覆して電子写真現像用キャリアとする。   The ferrite particles produced as described above are used as the carrier core material of the present invention. Then, in order to obtain desired chargeability and the like, the outer periphery of the carrier core material is coated with a resin to obtain an electrophotographic developing carrier.

キャリア芯材の表面を被覆する樹脂としては、従来公知のものが使用でき、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ−4−メチルペンテン−1、ポリ塩化ビニリデン、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、ポリスチレン、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、並びにポリ塩化ビニル系やポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系等の熱可塑性エストラマー、フッ素シリコーン系樹脂などが挙げられる。   As the resin for coating the surface of the carrier core material, conventionally known resins can be used, for example, polyethylene, polypropylene, polyvinyl chloride, poly-4-methylpentene-1, polyvinylidene chloride, ABS (acrylonitrile-butadiene-styrene). ) Resin, polystyrene, (meth) acrylic resin, polyvinyl alcohol resin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene, and other thermoplastic elastomers, and fluorosilicone resins.

キャリア芯材の表面を樹脂で被覆するには、樹脂の溶液又は分散液をキャリア芯材に施せばよい。塗布溶液用の溶媒としては、トルエン、キシレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン、ジオキサン等の環状エーテル類溶媒;エタノール、プロパノール、ブタノール等のアルコール系溶媒;エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒などの1種又は2種以上を用いることができる。塗布溶液中の樹脂成分濃度は、一般に0.001質量%〜30質量%、特に0.001質量%〜2質量%の範囲内にあるのがよい。   In order to coat the surface of the carrier core material with the resin, a resin solution or dispersion may be applied to the carrier core material. Solvents for the coating solution include aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cyclic ether solvents such as tetrahydrofuran and dioxane; ethanol, propanol, and butanol Alcohol solvents such as ethyl cellosolve, cellosolve solvents such as butyl cellosolve; ester solvents such as ethyl acetate and butyl acetate; amide solvents such as dimethylformamide and dimethylacetamide, etc. . The resin component concentration in the coating solution should generally be in the range of 0.001% to 30% by weight, particularly 0.001% to 2% by weight.

キャリア芯材への樹脂の被覆方法としては、例えばスプレードライ法や流動床法あるいは流動床を用いたスプレードライ法、浸漬法等を用いることができる。これらの中でも、少ない樹脂量で効率的に塗布できる点で流動床法が特に好ましい。樹脂被覆量は、例えば流動床法の場合には吹き付ける樹脂溶液量や吹き付け時間によって調整することができる。   As a method of coating the resin on the carrier core material, for example, a spray drying method, a fluidized bed method, a spray drying method using a fluidized bed, an immersion method, or the like can be used. Among these, the fluidized bed method is particularly preferable in that it can be efficiently applied with a small amount of resin. For example, in the case of the fluidized bed method, the resin coating amount can be adjusted by the amount of resin solution sprayed and the spraying time.

キャリアの粒子径は、一般に、体積平均粒子径で25μm以上50μm未満の範囲、特に30μm以上40μm以下の範囲が好ましい。   The particle diameter of the carrier is generally preferably in the range of 25 μm or more and less than 50 μm, particularly in the range of 30 μm or more and 40 μm or less in terms of volume average particle diameter.

本発明に係る電子写真用現像剤は、以上のようにして作製したキャリアとトナーとを混合してなる。キャリアとトナーとの混合比に特に限定はなく、使用する現像装置の現像条件などから適宜決定すればよい。一般に現像剤中のトナー濃度は1質量%〜15質量%の範囲が好ましい。トナー濃度が1質量%未満の場合、画像濃度が薄くなりすぎ、他方トナー濃度が15質量%を超える場合、現像装置内でトナー飛散が発生し機内汚れや転写紙などの背景部分にトナーが付着する不具合が生じるおそれがあるからである。より好ましいトナー濃度は3質量%〜10質量%の範囲である。   The electrophotographic developer according to the present invention is obtained by mixing the carrier prepared as described above and a toner. The mixing ratio of the carrier and the toner is not particularly limited, and may be determined as appropriate based on the developing conditions of the developing device to be used. Generally, the toner concentration in the developer is preferably in the range of 1% by mass to 15% by mass. When the toner density is less than 1% by mass, the image density becomes too low, while when the toner density exceeds 15% by mass, toner scattering occurs in the developing device, and the toner adheres to the background portion such as internal dirt or transfer paper. This is because there is a risk of malfunction. A more preferable toner concentration is in the range of 3% by mass to 10% by mass.

トナーとしては、重合法、粉砕分級法、溶融造粒法、スプレー造粒法など従来公知の方法で製造したものが使用できる。具体的には、熱可塑性樹脂を主成分とする結着樹脂中に、着色剤、離型剤、帯電制御剤等を含有させたものが好適に使用できる。   As the toner, toner produced by a conventionally known method such as a polymerization method, a pulverization classification method, a melt granulation method, or a spray granulation method can be used. Specifically, a binder resin containing a thermoplastic resin as a main component and containing a colorant, a release agent, a charge control agent and the like can be suitably used.

トナーの粒径は、一般に、コールターカウンターによる体積平均粒径で5μm〜15μmの範囲が好ましく、7μm〜12μmの範囲がより好ましい。   In general, the particle diameter of the toner is preferably in the range of 5 μm to 15 μm, more preferably in the range of 7 μm to 12 μm, as a volume average particle diameter measured by a Coulter counter.

トナー表面には、必要により、改質剤を添加してもよい。改質剤としては、例えば、シリカ、アルミナ、酸化亜鉛、酸化チタン、酸化マグネシウム、ポリメチルメタクリレート等が挙げられる。これらの1種又は2種以上を組み合わせて使用できる。   If necessary, a modifier may be added to the toner surface. Examples of the modifier include silica, alumina, zinc oxide, titanium oxide, magnesium oxide, polymethyl methacrylate and the like. These 1 type (s) or 2 or more types can be used in combination.

キャリアとトナーとの混合は、従来公知の混合装置を用いることができる。例えばヘンシェルミキサー、V型混合機、タンブラーミキサー、ハイブリタイザー等を用いることができる。   A known mixing device can be used for mixing the carrier and the toner. For example, a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer, or the like can be used.

本発明の現像剤を用いた現像方法に特に限定はないが、磁気ブラシ現像法が好適である。図10に、磁気ブラシ現像を行う現像装置の一例を示す概説図を示す。図10に示す現像装置は、複数の磁極を内蔵した回転自在の現像ローラ3と、現像部へ搬送される現像ローラ3上の現像剤量を規制する規制ブレード6と、水平方向に平行に配置され、互いに逆向きに現像剤を撹拌搬送する2本のスクリュー1,2と、2本のスクリュー1,2の間に形成され、両スクリューの両端部において、一方のスクリューから他方のスクリューに現像剤の移動を可能とし、両端部以外での現像剤の移動を防ぐ仕切板4とを備える。   The developing method using the developer of the present invention is not particularly limited, but a magnetic brush developing method is preferable. FIG. 10 is a schematic diagram showing an example of a developing device that performs magnetic brush development. The developing device shown in FIG. 10 is arranged in parallel to the horizontal direction, and a rotatable developing roller 3 incorporating a plurality of magnetic poles, a regulating blade 6 for regulating the amount of developer on the developing roller 3 conveyed to the developing unit. Formed between the two screws 1 and 2 that stir and convey the developer in opposite directions and the two screws 1 and 2, and develops from one screw to the other at both ends of both screws. And a partition plate 4 that allows the developer to move and prevents the developer from moving except at both ends.

2本のスクリュー1,2は、螺旋状の羽根13,23が同じ傾斜角で軸部11,21に形成されたものであって、不図示の駆動機構によって同方向に回転し、現像剤を互いに逆方向に搬送する。そして、スクリュー1,2の両端部において一方のスクリューから他方のスクリューに現像剤が移動する。これによりトナーとキャリアからなる現像剤は装置内を常に循環し撹拌されることになる。   The two screws 1 and 2 have spiral blades 13 and 23 formed on the shaft portions 11 and 21 at the same inclination angle, and are rotated in the same direction by a drive mechanism (not shown) to remove the developer. Transport in opposite directions. The developer moves from one screw to the other screw at both ends of the screws 1 and 2. As a result, the developer composed of toner and carrier is constantly circulated and stirred in the apparatus.

一方、現像ローラ3は、表面に数μmの凹凸を付けた金属製の筒状体の内部に、磁極発生手段として、現像磁極N、搬送磁極S、剥離磁極N、汲み上げ磁極N、ブレード磁極Sの5つの磁極を順に配置した固定磁石を有してなる。現像ローラ3が矢印方向に回転すると、汲み上げ磁極Nの磁力によって、スクリュー1から現像ローラ3へ現像剤が汲み上げられる。現像ローラ3の表面に担持された現像剤は、規制ブレード6により層規制された後、現像領域へ搬送される。 On the other hand, the developing roller 3 has, as a magnetic pole generating means, a developing magnetic pole N 1 , a transporting magnetic pole S 1 , a peeling magnetic pole N 2 , and a pumping magnetic pole N 3 inside a metal cylindrical body having a surface with a few μm unevenness. , comprising a fixed magnet disposed five pole blade pole S 2 in order. When the development roller 3 is rotated in the arrow direction, by the magnetic force of the magnetic pole N 3, the developer is pumped from the screw 1 to the developing roller 3. The developer carried on the surface of the developing roller 3 is regulated by the regulating blade 6 and then conveyed to the developing area.

現像領域では、直流電圧に交流電圧を重畳したバイアス電圧が転写電圧電源8から現像ローラ3に印加される。バイアス電圧の直流電圧成分は、感光体ドラム5表面の背景部電位と画像部電位との間の電位とされる。また、背景部電位と画像部電位とは、バイアス電圧の最大値と最小値との間の電位とされる。バイアス電圧のピーク間電圧は0.5〜5kVの範囲が好ましく、周波数は1〜10kHzの範囲が好ましい。またバイアス電圧の波形は矩形波、サイン波、三角波などいずれであってもよい。これによって、現像領域においてトナー及びキャリアが振動し、トナーが感光体ドラム5上の静電潜像に付着して現像がなされる。   In the developing region, a bias voltage obtained by superimposing an AC voltage on a DC voltage is applied from the transfer voltage power supply 8 to the developing roller 3. The DC voltage component of the bias voltage is a potential between the background portion potential on the surface of the photosensitive drum 5 and the image portion potential. Further, the background portion potential and the image portion potential are set to a potential between the maximum value and the minimum value of the bias voltage. The peak-to-peak voltage of the bias voltage is preferably in the range of 0.5 to 5 kV, and the frequency is preferably in the range of 1 to 10 kHz. The waveform of the bias voltage may be any of a rectangular wave, a sine wave, a triangular wave, and the like. As a result, the toner and the carrier vibrate in the development area, and the toner adheres to the electrostatic latent image on the photosensitive drum 5 and development is performed.

その後現像ローラ3上の現像剤は、搬送磁極Sによって装置内部に搬送され、剥離電極Nによって現像ローラ3から剥離して、スクリュー1,2によって装置内を再び循環搬送され、現像に供していない現像剤と混合撹拌される。そして汲み上げ極Nによって、新たに現像剤がスクリュー1から現像ローラ3へ供給される。 Thereafter, the developer on the developing roller 3 is conveyed to the inside of the apparatus by the conveying magnetic pole S 1 , peeled off from the developing roller 3 by the peeling electrode N 2 , and circulated and conveyed again inside the apparatus by the screws 1 and 2 for development. Mix and stir with undeveloped developer. Then, the developer is newly supplied from the screw 1 to the developing roller 3 by the pumping pole N 3 .

なお、図10に示した実施形態では現像ローラ3に内蔵された磁極は5つであったが、現像剤の現像領域での移動量を一層大きくしたり、汲み上げ性等を一層向上させるために、磁極を8極や10極、12極と増やしてももちろん構わない。   In the embodiment shown in FIG. 10, the number of magnetic poles built in the developing roller 3 is five. However, in order to further increase the moving amount of the developer in the developing region, and to further improve the pumping property and the like. Of course, the number of magnetic poles may be increased to 8 poles, 10 poles or 12 poles.

以下、本発明を実施例によりさらに詳しく説明するが本発明はこれらの例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these examples at all.

実施例1
Fe(平均粒径:0.6μm)7.985kg、Mn(平均粒径:0.9μm)3.814kg、SrCO(平均粒径:0.6μm)0.112kgを純水5.58kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を30g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約130℃の熱風中に噴霧し、粒径10μm〜75μmの乾燥造粒物を得た。この造粒物から粒径50μmを超える粗粒は篩を用いて除去した。
この造粒物を、電気炉に投入し1170℃まで4.5時間かけて昇温した。その後、1170℃で10時間保持することにより焼成を行った。その後8時間かけて室温まで冷却した。この間、電気炉内の酸素濃度は15000ppmとなるよう、酸素と窒素とを混合したガスを炉内に供給した。
得られた焼成物をハンマーミル(三庄インダストリー社製「ハンマークラッシャーNH−34S」,スクリーン目開き:0.3mm)で1回解粒した後、パルベライザー(DOWAテクノエンジ社製)でさらに2回解粒し、平均粒径34.0μmのキャリア芯材を得た。得られたキャリア芯材の組成、物性、最大山谷深さRz、結合粒子の直径比、結合粒子割合、現像剤特性などを後述の方法で測定した。測定結果を表2に示す。また、図1に、実施例1のキャリア芯材のSEM写真を示す。
Example 1
Fe 2 O 3 (average particle size: 0.6 μm) 7.985 kg, Mn 3 O 4 (average particle size: 0.9 μm) 3.814 kg, SrCO 3 (average particle size: 0.6 μm) 0.112 kg is pure Dispersed in 5.58 kg of water, 30 g of ammonium polycarboxylate dispersant was added as a dispersant to obtain a mixture. This mixture was pulverized by a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air of about 130 ° C. with a spray dryer to obtain a dry granulated product having a particle size of 10 μm to 75 μm. Coarse particles having a particle size exceeding 50 μm were removed from the granulated product using a sieve.
This granulated product was put into an electric furnace and heated to 1170 ° C. over 4.5 hours. Then, it baked by hold | maintaining at 1170 degreeC for 10 hours. Thereafter, it was cooled to room temperature over 8 hours. During this time, a gas in which oxygen and nitrogen were mixed was supplied into the furnace so that the oxygen concentration in the electric furnace was 15000 ppm.
The fired product obtained was pulverized once with a hammer mill (“Hammer Crusher NH-34S” manufactured by Sansho Industry Co., Ltd., screen opening: 0.3 mm) and then further twice with a pulverizer (manufactured by DOWA Techno Engineering). By pulverization, a carrier core material having an average particle diameter of 34.0 μm was obtained. The composition, physical properties, maximum ridge / valley depth Rz, combined particle diameter ratio, combined particle ratio, developer characteristics, and the like of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 2. FIG. 1 shows an SEM photograph of the carrier core material of Example 1.

実施例2
実施例1において焼成温度1170℃での保持時間を8時間とし、パルベライザーによる解粒処理を1回とした以外は、実施例1と同様にして平均粒径35.0μmのキャリア芯材を得た。得られたキャリア芯材の組成、物性、最大山谷深さRz、結合粒子の直径比、結合粒子割合、現像剤特性などを後述の方法で測定した。測定結果を表2に示す。また、図2に、実施例2のキャリア芯材のSEM写真を示す。
Example 2
A carrier core material having an average particle diameter of 35.0 μm was obtained in the same manner as in Example 1 except that the holding time at a firing temperature of 1170 ° C. in Example 1 was 8 hours and the pulverization with the pulverizer was performed once. . The composition, physical properties, maximum ridge / valley depth Rz, combined particle diameter ratio, combined particle ratio, developer characteristics, and the like of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 2. FIG. 2 shows an SEM photograph of the carrier core material of Example 2.

実施例3
実施例1において焼成温度1170℃での保持時間を8時間とし、パルベライザーによる解粒処理を行わなかった以外は、実施例1と同様にして平均粒径34.9μmのキャリア芯材を得た。得られたキャリア芯材の組成、物性、最大山谷深さRz、結合粒子の直径比、結合粒子割合、現像剤特性などを後述の方法で測定した。測定結果を表2に示す。また、図3に、実施例3のキャリア芯材のSEM写真を示す。
Example 3
A carrier core material having an average particle diameter of 34.9 μm was obtained in the same manner as in Example 1 except that the holding time at a firing temperature of 1170 ° C. in Example 1 was 8 hours, and the granulation treatment with a pulverizer was not performed. The composition, physical properties, maximum ridge / valley depth Rz, combined particle diameter ratio, combined particle ratio, developer characteristics, and the like of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 2. FIG. 3 shows an SEM photograph of the carrier core material of Example 3.

比較例1
原料として、Fe(平均粒径:0.6μm)7.985kg、Mn(平均粒径:0.9μm)3.120gを用い、焼成温度1170℃での保持時間を3時間とし、ハンマーミル(スクリーン目開き:1.5mm)で1回解粒した後、パルベライザーによる解粒処理を行わなかった以外は、実施例1と同様にして平均粒径34.8μmのキャリア芯材を得た。得られたキャリア芯材の組成、物性、最大山谷深さRz、結合粒子の直径比、結合粒子割合、現像剤特性などを後述の方法で測定した。測定結果を表2に示す。また、図4に、比較例1のキャリア芯材のSEM写真を示す。
Comparative Example 1
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 7.985 kg and Mn 3 O 4 (average particle size: 0.9 μm) 3.120 g were used, and the holding time at a firing temperature of 1170 ° C. was 3 hours. And a carrier core material having an average particle diameter of 34.8 μm in the same manner as in Example 1 except that after granulating once with a hammer mill (screen opening: 1.5 mm), the granulating process with a pulverizer was not performed. Got. The composition, physical properties, maximum ridge / valley depth Rz, combined particle diameter ratio, combined particle ratio, developer characteristics, and the like of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 2. FIG. 4 shows an SEM photograph of the carrier core material of Comparative Example 1.

比較例2
原料として、Fe(平均粒径:0.6μm)7.985kg、Mn(平均粒径:0.9μm)3.814g、SrCO(平均粒径:0.6μm)0.073kgを用い、焼成温度1170℃での保持時間を3時間とし、ハンマーミル(スクリーン目開き:1.5mm)で1回解粒した後、パルベライザーによる解粒処理を行わなかった以外は、実施例1と同様にして平均粒径32.7μmのキャリア芯材を得た。得られたキャリア芯材の組成、物性、最大山谷深さRz、結合粒子の直径比、結合粒子割合、現像剤特性などを後述の方法で測定した。測定結果を表2に示す。また、図5に、比較例2のキャリア芯材のSEM写真を示す。
Comparative Example 2
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 7.985 kg, Mn 3 O 4 (average particle size: 0.9 μm) 3.814 g, SrCO 3 (average particle size: 0.6 μm) 0. Example except that 073 kg was used, the holding time at a firing temperature of 1170 ° C. was 3 hours, the granulation was performed once with a hammer mill (screen opening: 1.5 mm), and then the granulation treatment with a pulverizer was not performed. In the same manner as in Example 1, a carrier core material having an average particle diameter of 32.7 μm was obtained. The composition, physical properties, maximum ridge / valley depth Rz, combined particle diameter ratio, combined particle ratio, developer characteristics, and the like of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 2. FIG. 5 shows an SEM photograph of the carrier core material of Comparative Example 2.

実施例4
Fe(平均粒径:0.6μm)7.985kg、MgO(平均粒径:0.8μm)0.183kg、Mn(平均粒径:0.9μm)2.773kg、SrCO(平均粒径:0.6μm)0.013kgを純水5.58kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を30g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約130℃の熱風中に噴霧し、粒径10μm〜75μmの乾燥造粒物を得た。この造粒物から粒径50μmを超える粗粒は篩を用いて除去した。
この造粒物を、電気炉に投入し1300℃まで4.5時間かけて昇温した。その後、1300℃で6時間保持することにより焼成を行った。その後8時間かけて室温まで冷却した。この間、電気炉内の酸素濃度は15000ppmとなるよう、酸素と窒素とを混合したガスを炉内に供給した。
得られた焼成物をハンマーミル(スクリーン目開き:0.3mm)で1回解粒した後、パルベライザーで1回解粒し、平均粒径33.5μmのキャリア芯材を得た。得られたキャリア芯材の組成、物性、最大山谷深さRz、結合粒子の直径比、結合粒子割合、現像剤特性などを後述の方法で測定した。測定結果を表2に示す。また、図6に、実施例4のキャリア芯材のSEM写真を示す。
Example 4
Fe 2 O 3 (average particle size: 0.6 μm) 7.985 kg, MgO (average particle size: 0.8 μm) 0.183 kg, Mn 3 O 4 (average particle size: 0.9 μm) 2.773 kg, SrCO 3 0.013 kg (average particle size: 0.6 μm) was dispersed in 5.58 kg of pure water, and 30 g of an ammonium polycarboxylate dispersant was added as a dispersant to obtain a mixture. This mixture was pulverized by a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air of about 130 ° C. with a spray dryer to obtain a dry granulated product having a particle size of 10 μm to 75 μm. Coarse particles having a particle size exceeding 50 μm were removed from the granulated product using a sieve.
This granulated product was put into an electric furnace and heated to 1300 ° C. over 4.5 hours. Then, it baked by hold | maintaining at 1300 degreeC for 6 hours. Thereafter, it was cooled to room temperature over 8 hours. During this time, a gas in which oxygen and nitrogen were mixed was supplied into the furnace so that the oxygen concentration in the electric furnace was 15000 ppm.
The obtained fired product was pulverized once with a hammer mill (screen opening: 0.3 mm) and then pulverized once with a pulverizer to obtain a carrier core material having an average particle diameter of 33.5 μm. The composition, physical properties, maximum ridge / valley depth Rz, combined particle diameter ratio, combined particle ratio, developer characteristics, and the like of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 2. FIG. 6 shows an SEM photograph of the carrier core material of Example 4.

実施例5
原料として、Fe(平均粒径:0.6μm)7.985kg、MgO(平均粒径:0.8μm)0.403kg、Mn(平均粒径:0.9μm)3.051kg、SrCO(平均粒径:0.6μm)0.097kgを用い、焼成温度1300℃での保持時間を8時間とし、パルベライザーによる解粒処理を行わなかった以外は、実施例4と同様にして平均粒径36.5μmのキャリア芯材を得た。得られたキャリア芯材の組成、物性、最大山谷深さRz、結合粒子の直径比、結合粒子割合、現像剤特性などを後述の方法で測定した。測定結果を表2に示す。また、図7に、実施例5のキャリア芯材のSEM写真を示す。
Example 5
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 7.985 kg, MgO (average particle size: 0.8 μm) 0.403 kg, Mn 3 O 4 (average particle size: 0.9 μm) 3.051 kg , SrCO 3 (average particle size: 0.6 μm) 0.097 kg, holding time at a firing temperature of 1300 ° C. was set to 8 hours, and pulverization was not performed by a pulverizer, as in Example 4. A carrier core material having an average particle size of 36.5 μm was obtained. The composition, physical properties, maximum ridge / valley depth Rz, combined particle diameter ratio, combined particle ratio, developer characteristics, and the like of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 2. FIG. 7 shows an SEM photograph of the carrier core material of Example 5.

実施例6
原料として、Fe(平均粒径:0.6μm)7.985kg、MgO(平均粒径:0.8μm)0.605kg、Mn(平均粒径:0.9μm)2.669kg、SrCO(平均粒径:0.6μm)0.067kgを用い、焼成温度1300℃での保持時間を8時間とした以外は、実施例4と同様にして平均粒径36.3μmのキャリア芯材を得た。得られたキャリア芯材の組成、物性、最大山谷深さRz、結合粒子の直径比、結合粒子割合、現像剤特性などを後述の方法で測定した。測定結果を表2に示す。また、図8に、実施例6のキャリア芯材のSEM写真を示す。
Example 6
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 7.985 kg, MgO (average particle size: 0.8 μm) 0.605 kg, Mn 3 O 4 (average particle size: 0.9 μm) 2.669 kg , SrCO 3 (average particle size: 0.6 μm) 0.067 kg and a carrier core having an average particle size of 36.3 μm in the same manner as in Example 4 except that the holding time at a firing temperature of 1300 ° C. was 8 hours. The material was obtained. The composition, physical properties, maximum ridge / valley depth Rz, combined particle diameter ratio, combined particle ratio, developer characteristics, and the like of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 2. FIG. 8 shows an SEM photograph of the carrier core material of Example 6.

比較例3
Fe(平均粒径:0.6μm)7.985kg、MgO(平均粒径:0.8μm)0.605kg、Mn(平均粒径:0.9μm)2.669kgを純水5.58kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を30g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約130℃の熱風中に噴霧し、粒径10μm〜75μmの乾燥造粒物を得た。この造粒物から粒径50μmを超える粗粒は篩を用いて除去した。
この造粒物を、電気炉に投入し1200℃まで4.5時間かけて昇温した。その後、1200℃で3時間保持することにより焼成を行った。その後8時間かけて室温まで冷却した。この間、電気炉内の酸素濃度は15000ppmとなるよう、酸素と窒素とを混合したガスを炉内に供給した。
得られた焼成物をハンマーミル(スクリーン目開き:1.5mm)で1回解粒し、平均粒径33.6μmのキャリア芯材を得た。得られたキャリア芯材の組成、物性、最大山谷深さRz、結合粒子の直径比、結合粒子割合、現像剤特性などを後述の方法で測定した。測定結果を表2に示す。また、図9に、比較例3のキャリア芯材のSEM写真を示す。
Comparative Example 3
Fe 2 O 3 (average particle size: 0.6 μm) 7.985 kg, MgO (average particle size: 0.8 μm) 0.605 kg, Mn 3 O 4 (average particle size: 0.9 μm) 2.669 kg pure water Dispersed in 5.58 kg, 30 g of ammonium polycarboxylate dispersant was added as a dispersant to obtain a mixture. This mixture was pulverized by a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air of about 130 ° C. with a spray dryer to obtain a dry granulated product having a particle size of 10 μm to 75 μm. Coarse particles having a particle size exceeding 50 μm were removed from the granulated product using a sieve.
This granulated product was put into an electric furnace and heated to 1200 ° C. over 4.5 hours. Then, it baked by hold | maintaining at 1200 degreeC for 3 hours. Thereafter, it was cooled to room temperature over 8 hours. During this time, a gas in which oxygen and nitrogen were mixed was supplied into the furnace so that the oxygen concentration in the electric furnace was 15000 ppm.
The fired product obtained was pulverized once with a hammer mill (screen opening: 1.5 mm) to obtain a carrier core material having an average particle size of 33.6 μm. The composition, physical properties, maximum ridge / valley depth Rz, combined particle diameter ratio, combined particle ratio, developer characteristics, and the like of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 2. FIG. 9 shows an SEM photograph of the carrier core material of Comparative Example 3.

(組成分析)
(Feの分析)
鉄元素を含むキャリア芯材を秤量し、塩酸と硝酸の混酸水に溶解させた。この溶液を蒸発乾固させた後、硫酸水を添加して再溶解し過剰な塩酸と硝酸とを揮発させる。この溶液に固体Alを添加して液中のFe3+を全てFe2+に還元する。続いて、この溶液中のFe2+イオンの量を過マンガン酸カリウム溶液で電位差滴定することにより定量分析し、Fe(Fe2+)の滴定量を求めた。
(Mnの分析)
キャリア芯材のMn含有量は、JIS G1311−1987記載のフェロマンガン分析方法(電位差滴定法)に準拠して定量分析を行った。本願発明に記載したキャリア芯材のMn含有量は、このフェロマンガン分析方法(電位差滴定法)で定量分析し得られたMn量である。
(Mgの分析)
キャリア芯材のMg含有量は、以下の方法で分析を行った。本願発明に係るキャリア芯材を酸溶液中で溶解し、ICPにて定量分析を行った。本願発明に記載したキャリア芯材のMg含有量は、このICPによる定量分析で得られたMg量である。
(Srの分析)
キャリア芯材のSr含有量は、Mgの分析同様にICPによる定量分析で行った。
(Composition analysis)
(Analysis of Fe)
The carrier core material containing iron element was weighed and dissolved in a mixed acid water of hydrochloric acid and nitric acid. After evaporating this solution to dryness, sulfuric acid water is added and redissolved to volatilize excess hydrochloric acid and nitric acid. Solid Al is added to this solution to reduce all Fe 3+ in the solution to Fe 2+ . Subsequently, the amount of Fe 2+ ions in the solution was quantitatively analyzed by potentiometric titration with a potassium permanganate solution to obtain a titer of Fe (Fe 2+ ).
(Analysis of Mn)
The Mn content of the carrier core material was quantitatively analyzed according to the ferromanganese analysis method (potentiometric titration method) described in JIS G1311-1987. The Mn content of the carrier core material described in the present invention is the amount of Mn obtained by quantitative analysis by this ferromanganese analysis method (potentiometric titration method).
(Analysis of Mg)
The Mg content of the carrier core material was analyzed by the following method. The carrier core material according to the present invention was dissolved in an acid solution, and quantitative analysis was performed by ICP. The Mg content of the carrier core material described in the present invention is the amount of Mg obtained by this quantitative analysis by ICP.
(Sr analysis)
The Sr content of the carrier core material was determined by ICP quantitative analysis as in the case of Mg analysis.

(結合粒子の含有率及び粒径)
キャリア芯材の形状を走査電子顕微鏡(日本電子社製:JSM−6510LA)を用いて倍率250倍で撮影した。撮影した画像より任意の400粒子を選択し、その中で結合粒子の数をカウントし、上記400粒子中に含まれる結合粒子の個数割合を結合粒子含有率とした。
なお、結合粒子は、粒径の最も大きい母粒子と、前記母粒子よりも粒径の小さい1個〜4個の子粒子とが結合した粒子であり、前記子粒子の少なくとも1つの子粒子の粒径は、前記母粒子の粒径の1/2よりも大きいものとした。そして、結合粒子では母粒子と子粒子とが結合部分を共有した形態で存在しているので、母粒子及び子粒子の粒径は、キャリア芯材の形状を走査電子顕微鏡(日本電子社製:JSM−6510LA)を用いて倍率250倍で撮影した画像において、結合粒子の結合部分を除いた領域から粒子を球形近似することによりそれぞれ算出した。
(Content of bound particles and particle size)
The shape of the carrier core material was photographed at a magnification of 250 times using a scanning electron microscope (manufactured by JEOL Ltd .: JSM-6510LA). Arbitrary 400 particles were selected from the photographed image, the number of binding particles was counted, and the ratio of the number of binding particles contained in the 400 particles was defined as the binding particle content rate.
The bonded particles are particles in which a mother particle having the largest particle size and 1 to 4 child particles having a smaller particle size than the mother particle are bonded, and at least one child particle of the child particles The particle size was larger than ½ of the particle size of the mother particles. And since the base particles and the child particles are present in a form in which the binding particles share the binding portion in the binding particles, the particle size of the base particles and the child particles is determined by scanning electron microscope (manufactured by JEOL Ltd .: JSM-6510LA) was used to calculate each of the particles by spherical approximation from the region excluding the binding portion of the binding particles in an image taken at a magnification of 250 times.

(見掛密度)
キャリア芯材の見掛け密度はJIS Z 2504に準拠して測定した。
(Apparent density)
The apparent density of the carrier core material was measured in accordance with JIS Z 2504.

(流動度)
キャリア芯材の流動度はJIS Z 2502に準拠して測定した。
(Fluidity)
The fluidity of the carrier core material was measured according to JIS Z 2502.

(平均粒径)
キャリア芯材の平均粒径は、レーザー回折式粒度分布測定装置(日機装社製「マイクロトラックModel9320-X100」)を用いて測定した。
(Average particle size)
The average particle size of the carrier core material was measured using a laser diffraction particle size distribution measuring device (“Microtrack Model 9320-X100” manufactured by Nikkiso Co., Ltd.).

(磁気特性)
室温専用振動試料型磁力計(VSM)(東英工業社製「VSM−P7」)を用いて、外部磁場を0〜79.58×10A/m(10000エルステッド)の範囲で1サイクル連続的に印加して、飽和磁化、残留磁化、保磁力及び79.58×10A/m(1000エルステッド)の磁場における磁化σ1k(Am/kg)をそれぞれ測定した。
(Magnetic properties)
Using a vibration sample type magnetometer (VSM) dedicated to room temperature (“VSM-P7” manufactured by Toei Kogyo Co., Ltd.), the external magnetic field ranges from 0 to 79.58 × 10 4 A / m (10000 Oersted) for one cycle. And magnetization σ 1k (Am 2 / kg) in a magnetic field of 79.58 × 10 3 A / m (1000 Oersted) was measured.

(最大山谷深さRz)
超深度カラー3D形状測定顕微鏡(「VK−X100」株式会社キーエンス製)を用い、100倍対物レンズで表面を観察して求めた。具体的には、まず、表面の平坦な粘着テープにフェライト粒子を固定し、100倍対物レンズで測定視野を決定した後、オートフォーカス機能を用いて焦点を粘着テープ面に調整した。フェライト粒子を固定した平坦な粘着テープ面に対し、垂直方向(Z方向)からレーザー光線を照射し、面のX方向Y方向に走査した。また、表面からの反射光の強度が最大となった時のレンズの高さ位置をつなぎ合わせることでZ方向のデータを取得した。これらX、YおよびZ方向の位置データをつなぎ合わせフェライト粒子表面の3次元形状を得た。なお、フェライト粒子表面の3次元形状の取り込みにはオート撮影機能を用いた。
各パラメータの測定には、粒子粗さ検査ソフトウェア(三谷商事製)を用いて行った。まず、前処理として、得られたフェライト粒子表面の3次元形状の粒子認識と形状選別を行った。粒子認識は以下の方法で行った。撮影によって得られた3次元形状のうち、Z方向の最大値を100%、最小値を0%として最大値から最小値までの間を100等分する。この100〜35%にあたる領域を抽出し、独立した領域の輪郭を粒子輪郭として認識した。次に形状選別で粗大、微小、会合などの粒子を除外した。この形状選別を行うことで以降に行う極率補正時の誤差を小さくすることができる。具体的には面積相当径28μm以下、38μm以上、針状比1.15以上に該当する粒子を除外した。ここで針状比とは粒子の最大長/対角幅の比から算出したパラメータであり、対角幅とは最大長に平行な2本の直線で粒子を挟んだときの2直線の最短距離を表す。
つぎに表面の3次元形状から解析に用いる部分の取り出しを行った。まず上記の方法で認識した粒子輪郭から求められる重心を中心として15.0μmの正方形を描く。描いた正方形の中に21本の平行線を引き、その線分上にあたる粗さ曲線を21本分取り出した。
(Maximum valley depth Rz)
Using an ultra-deep color 3D shape measurement microscope (“VK-X100” manufactured by Keyence Corporation), the surface was observed with a 100 × objective lens. Specifically, first, ferrite particles were fixed to an adhesive tape having a flat surface, a measurement field of view was determined with a 100 × objective lens, and then the focus was adjusted to the adhesive tape surface using an autofocus function. The flat adhesive tape surface on which the ferrite particles were fixed was irradiated with a laser beam from the vertical direction (Z direction) and scanned in the X direction and Y direction of the surface. Also, data in the Z direction was acquired by connecting the height positions of the lenses when the intensity of the reflected light from the surface was maximized. These X, Y, and Z direction position data were connected to obtain a three-dimensional shape of the ferrite particle surface. Note that an auto photographing function was used to capture the three-dimensional shape of the ferrite particle surface.
The measurement of each parameter was performed using particle roughness inspection software (manufactured by Mitani Corporation). First, as pretreatment, three-dimensional shape particle recognition and shape selection on the surface of the obtained ferrite particles were performed. Particle recognition was performed by the following method. Of the three-dimensional shape obtained by photographing, the maximum value in the Z direction is set to 100% and the minimum value is set to 0%. The region corresponding to 100 to 35% was extracted, and the contour of the independent region was recognized as the particle contour. Next, coarse, fine, and association particles were excluded by shape selection. By performing this shape selection, it is possible to reduce an error at the time of correcting the polarities thereafter. Specifically, particles corresponding to an area equivalent diameter of 28 μm or less, 38 μm or more, and an acicular ratio of 1.15 or more were excluded. Here, the acicular ratio is a parameter calculated from the ratio of the maximum length / diagonal width of the particle, and the diagonal width is the shortest distance between the two straight lines when the particle is sandwiched between two straight lines parallel to the maximum length. Represents.
Next, the part used for analysis was extracted from the three-dimensional shape of the surface. First, a 15.0 μm square is drawn around the center of gravity obtained from the particle contour recognized by the above method. 21 parallel lines were drawn in the drawn square, and 21 roughness curves corresponding to the line segment were taken out.

フェライト粒子は略球形状であるため、取り出した粗さ曲線は、バックグラウンドとして一定の曲率を持っている。このため、バックグラウンドの補正として、最適な二次曲線をフィッティングし、粗さ曲線から差し引く補正を行った。この場合、ローパスフィルタを1.5μmの強度で適用し、カットオフ値λを80μmとした。   Since the ferrite particles are substantially spherical, the extracted roughness curve has a certain curvature as the background. For this reason, as a background correction, an optimal quadratic curve was fitted and correction subtracted from the roughness curve was performed. In this case, a low-pass filter was applied with an intensity of 1.5 μm, and the cut-off value λ was 80 μm.

最大山谷深さRzは、粗さ曲線の中で最も高い山の高さと最も深い谷の深さの和として求めた。以上説明した最大高さRzの測定は、JIS B0601(2001年度版)に準拠して行われるものである。最大高さRzの算出には、各パラメータの平均値として、30粒子の平均値を用いることとした。   The maximum mountain valley depth Rz was obtained as the sum of the highest mountain height and the deepest valley depth in the roughness curve. The measurement of the maximum height Rz described above is performed in accordance with JIS B0601 (2001 version). In calculating the maximum height Rz, an average value of 30 particles was used as an average value of each parameter.

(画像メモリー)
得られたキャリア芯材の表面を樹脂で被覆してキャリアを作製した。具体的には、シリコーン樹脂450重量部と、(2−アミノエチル)アミノプロピルトリメトキシシラン9重量部とを、溶媒としてのトルエン450重量部に溶解してコート溶液を作製した。このコート溶液を、流動床型コーティング装置を用いてキャリア芯材50000重量部に塗布し、温度300℃の電気炉で加熱してキャリアを得た。以下、全ての実施例、比較例についても同様にしてキャリアを得た。
(Image memory)
The surface of the obtained carrier core material was coated with a resin to prepare a carrier. Specifically, 450 parts by weight of a silicone resin and 9 parts by weight of (2-aminoethyl) aminopropyltrimethoxysilane were dissolved in 450 parts by weight of toluene as a solvent to prepare a coating solution. This coating solution was applied to 50000 parts by weight of a carrier core material using a fluid bed type coating apparatus and heated in an electric furnace at a temperature of 300 ° C. to obtain a carrier. Hereinafter, carriers were obtained in the same manner for all of the examples and comparative examples.

得られたキャリアと平均粒径5.0μm程度のトナーとを、ポットミルを用いて所定時間混合し、二成分系の電子写真現像剤を得た。この場合、キャリアとトナーとをトナーの重量/(トナーおよびキャリアの重量)=5/100となるように調整した。以下、全ての実施例、比較例についても同様にして現像剤を得た。得られた現像剤を、図10に示す構造の現像装置(現像スリーブの周速度Vs:406mm/sec,感光体ドラムの周速度Vp:205mm/sec,感光体ドラム−現像スリーブ間距離:0.3mm)に投入し、感光体ドラムの長手方向にベタ画像部と非画像部とが隣り合い、その後は広い面積の中間調が続く画像を初期と20万枚画像形成後に取得し、現像ローラ2周目の現像ローラ1周目のベタ画像が現像された領域とそうでない領域との画像濃度を反射濃度計(東京電色社製の型番TC−6D)を用いて測定し、その差を求め下記基準で評価した。結果を表2に合わせて示す。
「◎」:0.003未満
「○」:0.003以上0.006未満
「△」:0.006以上0.020未満
「×」:0.020以上
The obtained carrier and a toner having an average particle diameter of about 5.0 μm were mixed for a predetermined time using a pot mill to obtain a two-component electrophotographic developer. In this case, the carrier and the toner were adjusted so that the weight of toner / (weight of toner and carrier) = 5/100. Hereinafter, developers were obtained in the same manner for all of the Examples and Comparative Examples. The developer thus obtained was developed into a developing device having the structure shown in FIG. 10 (developing sleeve peripheral speed Vs: 406 mm / sec, photosensitive drum peripheral speed Vp: 205 mm / sec, photosensitive drum-developing sleeve distance: 0. 3 mm), an image in which a solid image portion and a non-image portion are adjacent to each other in the longitudinal direction of the photosensitive drum, and a halftone of a wide area thereafter is obtained after the initial and 200,000 sheets are formed, and the developing roller 2 Measure the image density between the area where the solid image on the first development roller of the circumference is developed and the area where it is not, using a reflection densitometer (Model No. TC-6D manufactured by Tokyo Denshoku Co., Ltd.), and determine the difference. Evaluation was made according to the following criteria. The results are shown in Table 2.
“◎”: Less than 0.003 “O”: 0.003 or more and less than 0.006 “Δ”: 0.006 or more and less than 0.020 “X”: 0.020 or more

表2から明らかなように、本発明で規定する結合粒子の含有割合を満たす実施例1〜6のキャリア芯材を用いた現像剤では、「現像メモリー」の発生は抑制されていた。   As is apparent from Table 2, in the developers using the carrier core materials of Examples 1 to 6 that satisfy the content ratio of the binding particles defined in the present invention, the occurrence of “development memory” was suppressed.

これに対して、結合粒子の含有割合が4.2個数%以下の比較例1〜3のキャリア芯材を用いた現像剤では、「現像メモリー」の発生が見られた。   On the other hand, in the developer using the carrier core material of Comparative Examples 1 to 3 having a binding particle content of 4.2% by number or less, “development memory” was observed.

本発明に係るキャリア芯材によれば、現像領域へのトナー供給量を増加させることができ、また、磁気ブラシによって感光体表面は傷つけられることもなく有用である。   According to the carrier core material of the present invention, the amount of toner supplied to the development area can be increased, and the surface of the photoconductor is not damaged by the magnetic brush and is useful.

3 現像ローラ
5 感光体ドラム
C キャリア
3 Developing roller 5 Photosensitive drum C Carrier

本発明によれば、球形粒子が2個〜5個の結合した結合粒子が5個数%〜20個数%含まれ、前記結合粒子以外の通常粒子は球形で、前記結合粒子は、粒径の最も大きい母粒子と、前記母粒子よりも粒径の小さい1個〜4個の子粒子とが結合した粒子であり、前記子粒子の少なくとも1つの子粒子の粒径は、前記母粒子の粒径の1/2よりも大きいことを特徴とするフェライト粒子からなるキャリア芯材が提供される。 According to the present invention, 5 to 20% by number of bonded particles having 2 to 5 spherical particles bonded together are included, the normal particles other than the bonded particles are spherical, and the bonded particles have the largest particle size. It is a particle in which a large mother particle and 1 to 4 child particles having a particle diameter smaller than that of the mother particle are combined, and the particle size of at least one child particle of the child particle is the particle size of the mother particle. A carrier core material composed of ferrite particles characterized by being larger than 1/2 of the above is provided.

本発明者等は、磁気ブラシによって感光体表面を傷つけることなく、現像領域へのトナー供給量を増加できないか鋭意検討を重ねた結果、数個のフェライト球形粒子が結合した結合粒子を、キャリア芯材中に所定の個数割合含有させればよいことを見出し、本発明を成すに至った。すなわち、本発明に係るフェライト粒子からなるキャリア芯材は、球形粒子が2個〜5個の結合した結合粒子が5個数%〜20個数%含まれ、前記結合粒子は、粒径の最も大きい母粒子と、前記母粒子よりも粒径の小さい1個〜4個の子粒子とが結合した粒子であり、前記子粒子の少なくとも1つの子粒子の粒径は、前記母粒子の粒径の1/2よりも大きいことを特徴とする。なお、キャリア芯材は、フェライト粒子からなる体であり、ここでは、本発明にかかる結合粒子以外のフェライト粒子を通常粒子とする。 As a result of intensive studies on whether or not the toner supply amount to the development area can be increased without damaging the surface of the photoconductor with a magnetic brush, the present inventors have determined that the bonded particles, in which several ferrite spherical particles are bonded, are bonded to the carrier core. It has been found that a predetermined number ratio may be contained in the material, and the present invention has been achieved. That is, the carrier core material made of the ferrite particles according to the present invention includes 5 to 20% by number of bonded particles in which 2 to 5 spherical particles are bonded, and the bonded particles have the largest particle size. A particle and 1 to 4 child particles having a particle diameter smaller than that of the mother particle, and the particle diameter of at least one child particle of the child particle is 1 of the particle diameter of the mother particle. It is characterized by being larger than / 2. The carrier core material is a powder made of ferrite particles, and here, ferrite particles other than the binding particles according to the present invention are used as normal particles.

このような結合粒子は、例えば、後述するキャリア芯材の製造工程において、焼成温度での保持時間を長くしたり、焼成後の解粒操作を調整することにより得ることができる。この方法によれば、キャリア芯材中の結合粒子の含有割合を容易に調整することできる。 Such a binding particle can be obtained, for example, by increasing the holding time at the firing temperature or adjusting the pulverization operation after firing in the carrier core manufacturing process described later. According to this method, Ru can adjust the content of binding particles in the carrier core easily.

Claims (5)

球形粒子が2個〜5個の結合した結合粒子が5個数%〜20個数%含まれ、
前記結合粒子は、粒径の最も大きい母粒子と、前記母粒子よりも粒径の小さい1個〜4個の子粒子とが結合した粒子であり、
前記子粒子の少なくとも1つの子粒子の粒径は、前記母粒子の粒径の1/2よりも大きい
ことを特徴とするフェライト粒子からなるキャリア芯材。
5 to 20% by number of bonded particles in which 2 to 5 spherical particles are combined are included,
The bonded particles are particles in which a mother particle having the largest particle size and 1 to 4 child particles having a smaller particle size than the mother particle are bonded,
A carrier core material comprising ferrite particles, wherein a particle diameter of at least one child particle of the child particles is larger than ½ of a particle diameter of the mother particle.
前記結合粒子以外の通常粒子の表面の最大山谷深さRzが1.5μm以上である請求項記載のキャリア芯材。   The carrier core material according to claim 1, wherein the maximum peak-valley depth Rz on the surface of normal particles other than the binding particles is 1.5 µm or more. 体積平均粒径が25μm以上50μm未満である請求項1又は2記載のキャリア芯材。   The carrier core material according to claim 1, wherein the volume average particle diameter is 25 μm or more and less than 50 μm. 請求項1〜3のいずれかに記載のキャリア芯材の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリア。   A carrier for electrophotographic development, wherein the surface of the carrier core material according to claim 1 is coated with a resin. 請求項4記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤。   An electrophotographic developer comprising the carrier for electrophotographic development according to claim 4 and a toner.
JP2014214857A 2014-10-21 2014-10-21 Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same Active JP5726360B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014214857A JP5726360B1 (en) 2014-10-21 2014-10-21 Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014214857A JP5726360B1 (en) 2014-10-21 2014-10-21 Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same

Publications (2)

Publication Number Publication Date
JP5726360B1 JP5726360B1 (en) 2015-05-27
JP2016080991A true JP2016080991A (en) 2016-05-16

Family

ID=53278013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014214857A Active JP5726360B1 (en) 2014-10-21 2014-10-21 Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same

Country Status (1)

Country Link
JP (1) JP5726360B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106015A (en) * 2016-12-27 2018-07-05 Dowaエレクトロニクス株式会社 Carrier core material and carrier for electrophotographic development, and electrophotographic developer
JP2018128619A (en) * 2017-02-10 2018-08-16 Dowaエレクトロニクス株式会社 Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same
JP2018155826A (en) * 2017-03-16 2018-10-04 Dowaエレクトロニクス株式会社 Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same
JP2018155827A (en) * 2017-03-16 2018-10-04 Dowaエレクトロニクス株式会社 Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same
JP2021081514A (en) * 2019-11-15 2021-05-27 株式会社リコー Carrier for electrophotographic image formation, developer for electrophotographic image formation, electrophotographic image forming method, electrophotographic image forming apparatus, and process cartridge

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0895311A (en) * 1994-09-22 1996-04-12 Konica Corp Electrostatic charge image developing carrier, developer and image forming method
JP2000089518A (en) * 1998-09-14 2000-03-31 Fuji Xerox Co Ltd Coated carrier for developing electrostatic latent image, electrostatic latent image developer and image forming method
JP2002268381A (en) * 2001-03-07 2002-09-18 Ricoh Co Ltd Method for developing electrostatic latent image
JP2005140910A (en) * 2003-11-05 2005-06-02 Canon Inc Carrier and two-component-based developer
JP5084375B2 (en) * 2007-07-10 2012-11-28 キヤノン株式会社 Two-component developer
JP2013190493A (en) * 2012-03-12 2013-09-26 Fuji Xerox Co Ltd Electrostatic charge image developer, process cartridge, image forming apparatus, and image forming method
JP5790941B2 (en) * 2012-03-30 2015-10-07 戸田工業株式会社 Magnetic carrier for electrophotographic developer and two-component developer
JP2014149464A (en) * 2013-02-02 2014-08-21 Dowa Electronics Materials Co Ltd Carrier particle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106015A (en) * 2016-12-27 2018-07-05 Dowaエレクトロニクス株式会社 Carrier core material and carrier for electrophotographic development, and electrophotographic developer
JP2018128619A (en) * 2017-02-10 2018-08-16 Dowaエレクトロニクス株式会社 Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same
JP2018155826A (en) * 2017-03-16 2018-10-04 Dowaエレクトロニクス株式会社 Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same
JP2018155827A (en) * 2017-03-16 2018-10-04 Dowaエレクトロニクス株式会社 Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same
JP2021081514A (en) * 2019-11-15 2021-05-27 株式会社リコー Carrier for electrophotographic image formation, developer for electrophotographic image formation, electrophotographic image forming method, electrophotographic image forming apparatus, and process cartridge
JP7404799B2 (en) 2019-11-15 2023-12-26 株式会社リコー Carrier for electrophotographic image formation, developer for electrophotographic image formation, electrophotographic image forming method, electrophotographic image forming apparatus, and process cartridge

Also Published As

Publication number Publication date
JP5726360B1 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5751688B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6929086B2 (en) Carrier core material
JP5822415B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP5726360B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6450621B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP5957623B1 (en) Carrier core
JP6248142B2 (en) Carrier core
JP6633898B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP5828569B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6494453B2 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP7099902B2 (en) Carrier core material
JP2018025702A (en) Carrier core material
JP2018106015A (en) Carrier core material and carrier for electrophotographic development, and electrophotographic developer
JP6511320B2 (en) Carrier core material and method for manufacturing the same
JP7257732B2 (en) Carrier core material, electrophotographic development carrier and electrophotographic developer using the same
JP7116530B2 (en) Carrier core material, electrophotographic development carrier and electrophotographic developer using the same
JP6924885B1 (en) Carrier core material
JP7075913B2 (en) Carrier core material
JP7116529B2 (en) Carrier core material, electrophotographic development carrier and electrophotographic developer using the same
JP7481159B2 (en) Ferrite carrier core material, and electrophotographic development carrier and electrophotographic developer using the same
JP6916727B2 (en) Carrier core material
JP7486889B2 (en) Ferrite carrier core material, and electrophotographic development carrier and electrophotographic developer using the same
JP2022143658A (en) Carrier core material, carrier for electrophotographic development using the same, and developer for electrophotography
JP2023020082A (en) Carrier core
JP2022090791A (en) Carrier core material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150331

R150 Certificate of patent or registration of utility model

Ref document number: 5726360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250