JP2016080624A - Adsorption removal system and adsorption removal method - Google Patents

Adsorption removal system and adsorption removal method Download PDF

Info

Publication number
JP2016080624A
JP2016080624A JP2014214485A JP2014214485A JP2016080624A JP 2016080624 A JP2016080624 A JP 2016080624A JP 2014214485 A JP2014214485 A JP 2014214485A JP 2014214485 A JP2014214485 A JP 2014214485A JP 2016080624 A JP2016080624 A JP 2016080624A
Authority
JP
Japan
Prior art keywords
adsorption
adsorption tower
water
fresh water
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014214485A
Other languages
Japanese (ja)
Other versions
JP6348402B2 (en
Inventor
文夫 高橋
Fumio Takahashi
文夫 高橋
祐子 可児
Yuko Kani
祐子 可児
透 川嵜
Toru Kawasaki
透 川嵜
隆 浅野
Takashi Asano
隆 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2014214485A priority Critical patent/JP6348402B2/en
Publication of JP2016080624A publication Critical patent/JP2016080624A/en
Application granted granted Critical
Publication of JP6348402B2 publication Critical patent/JP6348402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adsorption removal system capable of increasing the amount of adsorption of all nuclides when decontaminating simultaneously plural kinds of radionuclides.SOLUTION: The adsorption removal system includes: an adsorption tower 3 which has an ion exchange type adsorbent which is capable of adsorbing plural kinds of radionuclides from radioactive contaminated water including sea water; a feed pipe 11 for feeding polluted water including sea water to the adsorption tower 3; a fresh water generation section 5 that generates fresh water from polluted water which has passed through the adsorption tower 3 and includes the sea water; and a dilution pipe 15 which is connected to the feed pipe 11 for allowing the generated fresh water to flow into the feed pipe 11 to dilute the polluted water which includes the sea water in the feed pipe 11.SELECTED DRAWING: Figure 1

Description

本発明は、吸着除去装置および吸着除去方法に関する。   The present invention relates to an adsorption removal apparatus and an adsorption removal method.

海水を含む放射性汚染水からCs、Srを個別に除去し、その後、海水から塩分除去を行う放射性核種除染システムが提案されている(例えば、特許文献1を参照)。当該システムでは、塩分除去装置で生成された淡水を原子炉に戻すように構成されている。   A radionuclide decontamination system that individually removes Cs and Sr from radioactively contaminated water including seawater and then removes salt from seawater has been proposed (see, for example, Patent Document 1). The system is configured to return fresh water generated by the salt removal device to the nuclear reactor.

特開2014−001952号公報JP 2014-001952 A 特許第5285183号公報Japanese Patent No. 5285183

ところで、廃棄される吸着材の低減を図るため、複数の放射性核種を同時除染する吸着材が提案されている(例えば、特許文献2を参照)。しかし、一般に複数の放射性核種を同時除染するとき、分配係数の小さい多価イオンから破過が開始してしまい、複数の放射性核種を十分に除染することができない。   By the way, in order to reduce the adsorbent to be discarded, an adsorbent that simultaneously decontaminates a plurality of radionuclides has been proposed (see, for example, Patent Document 2). However, generally, when simultaneously decontaminating a plurality of radionuclides, breakthrough starts from multivalent ions having a small distribution coefficient, and the plurality of radionuclides cannot be sufficiently decontaminated.

そこで、本発明の目的は、複数の放射性核種を同時除染する場合に、全ての核種の吸着量を増加させことが可能な技術を提供することである。   Then, the objective of this invention is providing the technique which can increase the adsorption amount of all the nuclide, when decontaminating several radionuclide simultaneously.

上記課題を解決するために、吸着除去装置は、イオン交換型であり海水を含む放射性汚染水から複数種の放射性核種を吸着可能な吸着材を有する吸着塔と、前記吸着塔に前記海水を含む放射性汚染水を供給する供給管と、前記吸着塔を通過した前記海水を含む放射性汚染水から淡水を生成する淡水生成部と、前記供給管に接続され、生成した前記淡水を前記供給管へ流入させ、前記供給管内の前記海水を含む放射性汚染水を希釈する希釈管とを備える。   In order to solve the above-mentioned problem, an adsorption removal apparatus is an ion exchange type and includes an adsorption tower having an adsorbent capable of adsorbing multiple types of radionuclides from radioactively contaminated water containing seawater, and the adsorption tower contains the seawater. A supply pipe that supplies radioactive contaminated water, a fresh water generating unit that generates fresh water from the radioactive contaminated water including the seawater that has passed through the adsorption tower, and the fresh water that is connected to the supply pipe and flows into the supply pipe And a dilution pipe for diluting radioactive contaminated water including the seawater in the supply pipe.

本発明によれば、複数の放射性核種を同時除染する場合に、全ての核種の吸着量を増加させことが可能な技術を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, when decontaminating several radionuclide simultaneously, the technique which can increase the adsorption amount of all the nuclide can be provided.

本発明の第1の実施形態に係る吸着除去装置の構成図を示す。The block diagram of the adsorption removal apparatus which concerns on the 1st Embodiment of this invention is shown. 本発明の第2の実施形態に係る吸着除去装置の構成図を示す。The block diagram of the adsorption removal apparatus which concerns on the 2nd Embodiment of this invention is shown. 本発明の第3の実施形態に係る吸着除去装置の構成図を示す。The block diagram of the adsorption removal apparatus which concerns on the 3rd Embodiment of this invention is shown.

本発明の第1の実施形態に係る吸着除去装置に関し、図面を参照して説明する。   A suction removal apparatus according to a first embodiment of the present invention will be described with reference to the drawings.

図1は、第1の実施形態に係る吸着除去装置1の構成図を示す。吸着除去装置1は、送水ポンプ2と、吸着塔3と、高圧ポンプ4と、淡水生成部5と、導入管10と、供給管11、排出管12と、複数の連結管13、14と、希釈管15とを備える。   FIG. 1 is a configuration diagram of an adsorption removal apparatus 1 according to the first embodiment. The adsorption removal apparatus 1 includes a water pump 2, an adsorption tower 3, a high-pressure pump 4, a fresh water generation unit 5, an introduction pipe 10, a supply pipe 11, a discharge pipe 12, and a plurality of connection pipes 13, 14. And a dilution tube 15.

送水ポンプ2は、導入管10からの海水を含む汚染水Pを吸着塔3へ供給する。   The water pump 2 supplies the contaminated water P including seawater from the introduction pipe 10 to the adsorption tower 3.

吸着塔3は、放射性核種であるストロンチウム(以下では、Srと記載する。)およびセシウム(以下ではCsと記載する。)を吸着可能な吸着材が充填され、当該充填剤によりSr、Csを除去する。この吸着塔3sが除去された処理水Tに変換される。   The adsorption tower 3 is filled with an adsorbent capable of adsorbing radionuclide strontium (hereinafter referred to as Sr) and cesium (hereinafter referred to as Cs), and Sr and Cs are removed by the filler. To do. It is converted into treated water T from which this adsorption tower 3s has been removed.

なお、吸着材は、イオン交換型の吸着材であり、CsとSrとを同時吸着できる単一の吸着材が使用される。CsとSrとを同時吸着する吸着材としては、例えば、チタンケイ酸塩化合物(例えば、CST)を苛性処理することにより得られた吸着材が挙げられる。   The adsorbent is an ion exchange type adsorbent, and a single adsorbent capable of simultaneously adsorbing Cs and Sr is used. Examples of the adsorbent that simultaneously adsorbs Cs and Sr include an adsorbent obtained by caustic treatment of a titanium silicate compound (for example, CST).

高圧ポンプ4は、吸着塔3からの汚染水Pを加圧して逆浸透膜5へ供給する。   The high pressure pump 4 pressurizes the contaminated water P from the adsorption tower 3 and supplies it to the reverse osmosis membrane 5.

淡水生成部5は、逆浸透膜を備え、海水を含む汚染水Pから淡水を生成する。逆浸透膜の構造としては、スパイラル型、中空糸型等が挙げられる。また、逆浸透膜5の素材としては、セルロース、ポリアミド等が挙げられる。   The fresh water production | generation part 5 is equipped with a reverse osmosis membrane, and produces | generates fresh water from the contaminated water P containing seawater. Examples of the structure of the reverse osmosis membrane include a spiral type and a hollow fiber type. Examples of the material for the reverse osmosis membrane 5 include cellulose and polyamide.

次に、吸着除去装置1による海水を含む汚染水PからSr、Csを吸着する処理について説明する。   Next, a process for adsorbing Sr and Cs from the contaminated water P including seawater by the adsorption removal apparatus 1 will be described.

まず、導入管10により導入された海水を含む汚染水Pが、送水ポンプ2により供給管11を介して吸着塔3に供給される。吸着塔3を通過した汚染水Pは、連結管13を通過し、高圧ポンプ4により加圧されて連結管14を介して淡水生成部5へ供給される。淡水生成部5において、海水を含む汚染水Pが逆浸透膜を通過することにより淡水Fが生成され、生成された淡水Fは希釈管15を介して供給管11に流入する。   First, the contaminated water P including seawater introduced through the introduction pipe 10 is supplied to the adsorption tower 3 through the supply pipe 11 by the water pump 2. The contaminated water P that has passed through the adsorption tower 3 passes through the connecting pipe 13, is pressurized by the high-pressure pump 4, and is supplied to the fresh water generator 5 through the connecting pipe 14. In the fresh water generation unit 5, fresh water F is generated by passing the contaminated water P including seawater through the reverse osmosis membrane, and the generated fresh water F flows into the supply pipe 11 through the dilution pipe 15.

供給管11に流入した淡水Fは、導入管10から導入された汚染水Pと混ざり、汚染水Pが希釈される。すなわち、汚染水Pの海水濃度が低減される。そして、海水濃度が低減された汚染水が吸着塔3に流入して、吸着材にSr、Csが吸着される。その後、吸着塔3を通過し核種濃度が低減された汚染水Pは、処理水Tとして、淡水生成部5に接続された排出管12から排出される。なお、導入される汚染水Pの海水濃度と排出される処理水Tの海水濃度とは等しくなる。   The fresh water F flowing into the supply pipe 11 is mixed with the contaminated water P introduced from the introduction pipe 10, and the contaminated water P is diluted. That is, the seawater concentration of the contaminated water P is reduced. Then, the contaminated water having a reduced seawater concentration flows into the adsorption tower 3, and Sr and Cs are adsorbed by the adsorbent. Thereafter, the contaminated water P that has passed through the adsorption tower 3 and whose nuclide concentration has been reduced is discharged as treated water T from a discharge pipe 12 connected to the fresh water generation unit 5. The seawater concentration of the introduced contaminated water P and the seawater concentration of the discharged treated water T are equal.

以上のように、本実施形態の吸着除去装置1において、吸着塔3は、イオン交換型の吸着材を有し、海水を含む汚染水からセシウムおよびストロンチウムを吸着除去する。淡水生成部5は、吸着塔3を通過した海水を含む汚染水Pから淡水Fを生成し、生成した淡水Fを供給管11へ流入させ、供給管11内の海水を含む汚染水Pを希釈する。   As described above, in the adsorption removal apparatus 1 of the present embodiment, the adsorption tower 3 has an ion exchange type adsorbent, and adsorbs and removes cesium and strontium from contaminated water including seawater. The fresh water generation unit 5 generates fresh water F from the contaminated water P including seawater that has passed through the adsorption tower 3, and flows the generated fresh water F into the supply pipe 11, thereby diluting the contaminated water P including seawater in the supply pipe 11. To do.

これにより、吸着塔3へ供給される汚染水Pの海水濃度が低減される。そして、Teresia Moller:"Ion exchange of 85Sr, 134Cs and 57Co in sodium titanosilicate and the effect of crystallinity on selectivity", Separation and Purification Technology 28 (2002) 13‐23に記載のように、放射性核種の分配係数は海水濃度のイオン価数乗に反比例する。よって、例えば、淡水Fにより汚染水Pを2倍希釈した場合、海水濃度は1/2となり2価イオンであるSrの分配係数は4倍となる。汚染水Pを2倍希釈したことにより、汚染水P中のSrの濃度は1/2となるが、分配係数が4倍となるので、理論上、Srの吸着量を2倍にすることができる。このように、吸着塔3へ供給される汚染水Pの海水濃度が低減することにより、2価イオン(多価イオン)であるSrの吸着材に対する吸着量を増加させることができる。   Thereby, the seawater concentration of the contaminated water P supplied to the adsorption tower 3 is reduced. And as described in Teresia Moller: "Ion exchange of 85Sr, 134Cs and 57Co in sodium titanosilicate and the effect of crystallinity on selectivity", Separation and Purification Technology 28 (2002) 13-23, the distribution coefficient of radionuclides is It is inversely proportional to the ionic valence power of the concentration. Therefore, for example, when the contaminated water P is diluted twice with the fresh water F, the seawater concentration is halved and the distribution coefficient of Sr, which is a divalent ion, is four times. By diluting the contaminated water P twice, the concentration of Sr in the contaminated water P is halved, but the distribution coefficient is quadrupled. Therefore, theoretically, the adsorption amount of Sr can be doubled. it can. Thus, when the seawater concentration of the contaminated water P supplied to the adsorption tower 3 is reduced, it is possible to increase the amount of adsorption of Sr, which is a divalent ion (multivalent ion), on the adsorbent.

なお、1価イオンであるCsについては、分配係数は増えるが、濃度が減少するため、吸着材に対する吸着量は変化しない。すなわち、汚染水Pを2倍希釈したことにより、分配係数が2倍となるのが、汚染水P中のCsの濃度は1/2となるので、吸着量は変化しない。   For Cs, which is a monovalent ion, the distribution coefficient increases, but the concentration decreases, so the amount of adsorption on the adsorbent does not change. That is, by diluting the contaminated water P twice, the distribution coefficient is doubled. However, since the concentration of Cs in the contaminated water P is halved, the adsorption amount does not change.

また、淡水生成部5は、吸着塔3を通過した海水を含む汚染水Pから淡水Fを生成し、生成した淡水Fを供給管11へ流入させ、供給管11内の海水を含む汚染水Pを希釈する。このように、淡水を外部から注入するのではなく、汚染水Pから生成しているので、汚染水Pの総量を増加させることなく、海水を含む汚染水Pから多価イオン(Sr)の吸着材に対する吸着量を増加させることができる。   In addition, the fresh water generation unit 5 generates fresh water F from the contaminated water P including seawater that has passed through the adsorption tower 3, causes the generated fresh water F to flow into the supply pipe 11, and the contaminated water P including seawater in the supply pipe 11. Dilute. Thus, since fresh water is not injected from the outside but generated from the contaminated water P, adsorption of multiply charged ions (Sr) from the contaminated water P including seawater without increasing the total amount of the contaminated water P. The amount of adsorption to the material can be increased.

また、SrとCsとでは、Srの方が分配係数が小さく、Srの方から破過が開始するが、上記のように構成により、Srの破過開始を遅らせることができる。その結果Csの吸着量を増加させることができる。よって、汚染水Pの総量を増加させることなく、全ての放射性核種(Sr、Cs)の除染量を増加させることができる。   Further, in Sr and Cs, Sr has a smaller distribution coefficient, and breakthrough starts from Sr. However, the start of breakthrough of Sr can be delayed by the configuration as described above. As a result, the adsorption amount of Cs can be increased. Therefore, the decontamination amount of all the radionuclides (Sr, Cs) can be increased without increasing the total amount of the contaminated water P.

吸着塔3に充填された吸着材は、複数種の放射性核種(Sr、Cs)を同時吸着可能な吸着材であるので、廃棄される吸着材を低減させることができる。   Since the adsorbent packed in the adsorption tower 3 is an adsorbent capable of simultaneously adsorbing a plurality of types of radionuclides (Sr, Cs), the adsorbent to be discarded can be reduced.

次に、本発明の第2の実施形態に係る吸着除去装置101に関し、図面を参照して説明する。なお、第1の実施形態に係る吸着除去装置1と同一の構成については同一の参照番号を付して説明を省略し異なる部分についてのみ説明を行う。   Next, a suction removal apparatus 101 according to a second embodiment of the present invention will be described with reference to the drawings. In addition, about the same structure as the adsorption removal apparatus 1 which concerns on 1st Embodiment, the same reference number is attached | subjected and description is abbreviate | omitted and only a different part is demonstrated.

図2は、第1の実施形態に係る吸着除去装置101の構成図を示す。吸着除去装置101は、多塔システムの吸着除去装置101であり、送水ポンプ2と、5塔の吸着塔3と、高圧ポンプ4と、淡水生成部5と、導入管10と、供給管11、排出管12と、複数の連結管13〜19とを備える。   FIG. 2 is a configuration diagram of the adsorption removal apparatus 101 according to the first embodiment. The adsorption / removal device 101 is an adsorption / removal device 101 of a multi-tower system, and includes a water supply pump 2, a 5-column adsorption tower 3, a high-pressure pump 4, a fresh water generation unit 5, an introduction pipe 10, a supply pipe 11, A discharge pipe 12 and a plurality of connection pipes 13 to 19 are provided.

吸着除去装置101では、2段目の吸着塔3から連結管16を介して、淡水生成部5へ汚染水Pが供給されて淡水Fが生成され、生成された淡水Fは希釈管15を介して供給管11に流入する。また、淡水生成部5において、淡水化されない残りの汚染水Pは、濃縮されて、導入管10における汚染水Pの海水濃度に戻り、後段の3塔の吸着塔3においてさらに除染される。   In the adsorption removal apparatus 101, the contaminated water P is supplied from the second-stage adsorption tower 3 to the fresh water generation unit 5 via the connection pipe 16 to generate fresh water F. The generated fresh water F passes through the dilution pipe 15. Flow into the supply pipe 11. Further, the remaining contaminated water P that has not been desalinated is concentrated in the fresh water generation unit 5, returned to the seawater concentration of the contaminated water P in the introduction pipe 10, and further decontaminated in the adsorption tower 3 of the subsequent three towers.

本実施形態の吸着除去装置101においても、第1の実施形態の吸着除去装置1と同様の効果を奏する。さらに、多塔システムの吸着除去装置101であるので、放射性核種(Sr、Cs)の吸着量(除染量)を増加させることができる。   Also in the adsorption removal apparatus 101 of this embodiment, there exists an effect similar to the adsorption removal apparatus 1 of 1st Embodiment. Furthermore, since it is the adsorption removal apparatus 101 of a multi-tower system, the adsorption amount (decontamination amount) of the radionuclide (Sr, Cs) can be increased.

次に、本発明の第3の実施形態に係る吸着除去装置201に関し、図面を参照して説明する。なお、第2の実施形態に係る吸着除去装置101と同一の構成については同一の参照番号を付して説明を省略し異なる部分についてのみ説明を行う。   Next, a suction removal apparatus 201 according to a third embodiment of the present invention will be described with reference to the drawings. In addition, about the same structure as the adsorption removal apparatus 101 which concerns on 2nd Embodiment, the same reference number is attached | subjected and description is abbreviate | omitted and only a different part is demonstrated.

吸着除去装置201では、送水ポンプ2と、高圧ポンプ4と、淡水生成部5と、導入管10と、供給管11と、連結管14、17と、希釈管15とが複合モジュール20として構成されている。そして、吸着除去装置201では、メリーゴーランド方式での運用が行われる。図3は、吸着除去装置201をメリーゴーランド方式で運用する方法を説明するための図である。なお、図3においては、吸着塔3を円形で表し、1段目となる吸着塔3は、太線で示している。   In the adsorption removal apparatus 201, the water pump 2, the high-pressure pump 4, the fresh water generator 5, the introduction pipe 10, the supply pipe 11, the connection pipes 14 and 17, and the dilution pipe 15 are configured as a composite module 20. ing. In the adsorption removal apparatus 201, the merry-go-round method is used. FIG. 3 is a diagram for explaining a method of operating the adsorption removal apparatus 201 by the merry-go-round method. In FIG. 3, the adsorption tower 3 is represented by a circle, and the first adsorption tower 3 is represented by a thick line.

メリーゴーランド方式とは、複数の吸着塔3を直列に接続して前段の吸着塔3から後段の吸着塔3に向かって順次除染を行い、1段目の吸着塔3で十分に核種の吸着が行われると、1段目の吸着塔3の吸着材を未使用の吸着材に交換すると共に、2段目の吸着塔3を1段目の吸着塔3とし、吸着材を交換した吸着塔3を最後段の吸着塔3として除染を行い、これを順次繰り返し行う方法である。   In the merry-go-round method, a plurality of adsorption towers 3 are connected in series and decontamination is sequentially performed from the preceding adsorption tower 3 toward the latter adsorption tower 3, and the first adsorption tower 3 can sufficiently absorb the nuclides. When performed, the adsorbent of the first stage adsorption tower 3 is replaced with an unused adsorbent, and the second stage adsorption tower 3 is changed to the first stage adsorption tower 3, and the adsorption tower 3 is replaced with the adsorbent. Is a method of performing decontamination as the last-stage adsorption tower 3 and repeating this sequentially.

本実施形態では、図3(a)に示すように、5塔の吸着塔3のうち、最も左側に位置する吸着塔3を1段目、最も右側に位置する吸着塔3を最後段とする。1、2段目の2塔の吸着塔3において、複合モジュール20により、汚染水Pを希釈し海水濃度を低減させた汚染水Pから放射性核種(Cs、Sr)の除染を行う。3〜5段目の吸着塔3では、元の汚染水Pの海水濃度に戻された汚染水Pの除染が行われる。そして、1段目の吸着塔3において放射性核種の吸着量が所定量となると、通水を中止し、当該吸着塔3の吸着材を未使用のものに交換する。そして、図3(b)に示すように、2段目(左から2番目)であった吸着塔3を1段目の吸着塔3とし、1段目(最も左側)であった吸着塔3を最後段の吸着塔3として、汚染水Pの除染を行う。図3(a)と同様に、1、2段目の2塔の吸着塔3において、複合モジュール20により、汚染水Pを希釈し海水濃度を低減させた汚染水Pから放射性核種(Cs、Sr)の除染を行う。3〜5段目の吸着塔3では、元の汚染水Pの海水濃度に戻された汚染水Pの除染が行われる。   In this embodiment, as shown in FIG. 3 (a), among the five adsorption towers 3, the leftmost adsorption tower 3 is the first stage, and the rightmost adsorption tower 3 is the last stage. . In the first and second two-stage adsorption towers 3, the composite module 20 decontaminates the radionuclides (Cs, Sr) from the contaminated water P diluted with the contaminated water P to reduce the seawater concentration. In the 3rd to 5th stage adsorption tower 3, the decontamination of the contaminated water P returned to the seawater concentration of the original contaminated water P is performed. When the adsorption amount of the radionuclide reaches a predetermined amount in the first-stage adsorption tower 3, the water flow is stopped and the adsorbent of the adsorption tower 3 is replaced with an unused one. Then, as shown in FIG. 3B, the adsorption tower 3 in the second stage (second from the left) is designated as the first adsorption tower 3, and the adsorption tower 3 in the first stage (leftmost). Is used as the last adsorption tower 3 to decontaminate the contaminated water P. As in FIG. 3A, in the two-stage adsorption tower 3 of the first and second stages, the radionuclide (Cs, Sr) is obtained from the contaminated water P diluted with the composite module 20 to reduce the concentration of seawater. ) Decontamination. In the 3rd to 5th stage adsorption tower 3, the decontamination of the contaminated water P returned to the seawater concentration of the original contaminated water P is performed.

図3(b)において、1段目の吸着塔3で放射性核種の吸着量が所定吸着量になると、当該吸着塔3の吸着材を未使用のものに交換する。そして、図3(c)に示すように、2段目(左から3番目)であった吸着塔3を1段目の吸着塔3とし、1段目(左から2番目)であった吸着塔3を最後段の吸着塔3として、汚染水Pの除染を行う。図3(b)と同様に、1、2段目の2塔の吸着塔3において、海水濃度を低減させた汚染水Pから放射性核種(Cs、Sr)の除染を行い、3〜5段目の吸着塔3において、元の汚染水Pの海水濃度に戻された汚染水Pの除染を行う。なお、所定吸着量は、1段目の吸着塔3でSrの破過を開始するまでに吸着されるSrの吸着量であっても良いし、汚染水Pの流速および時間に基づいて決定しても良い。   In FIG. 3 (b), when the adsorption amount of the radionuclide reaches a predetermined adsorption amount in the first stage adsorption tower 3, the adsorbent of the adsorption tower 3 is replaced with an unused one. Then, as shown in FIG. 3 (c), the adsorption tower 3 in the second stage (third from the left) is designated as the first adsorption tower 3, and the adsorption in the first stage (second from the left). Contaminated water P is decontaminated using the tower 3 as the last adsorption tower 3. Similarly to FIG. 3 (b), the radionuclide (Cs, Sr) is decontaminated from the contaminated water P with reduced seawater concentration in the first and second adsorption towers 3 in the first and second stages. In the eye adsorption tower 3, the contaminated water P returned to the seawater concentration of the original contaminated water P is decontaminated. The predetermined adsorption amount may be the adsorption amount of Sr that is adsorbed before the first stage adsorption tower 3 starts to break through Sr, and is determined based on the flow rate and time of the contaminated water P. May be.

このように、メリーゴーランド方式で汚染水Pの除染を行うことにより、効率的に放射性核種を吸着除去することができる。また、処理水Tの水質を安定させることができる。また、送水ポンプ2と、高圧ポンプ4と、淡水生成部5と、導入管10と、供給管11と、連結管14、17、希釈管15とが複合モジュール20としてモジュール化されている。よって、メリーゴーランド方式で、接続する吸着塔3を変更する際の作業が容易となる。また、本実施形態の吸着除去装置201においても、第2の実施形態の吸着除去装置101と同様の効果を奏する。   Thus, by decontaminating the contaminated water P by the merry-go-round method, the radionuclide can be efficiently adsorbed and removed. Moreover, the water quality of the treated water T can be stabilized. Further, the water pump 2, the high-pressure pump 4, the fresh water generator 5, the introduction pipe 10, the supply pipe 11, the connection pipes 14 and 17, and the dilution pipe 15 are modularized as a composite module 20. Therefore, the operation | work at the time of changing the adsorption tower 3 to connect by a merry-go-round system becomes easy. Also, the adsorption removal apparatus 201 of the present embodiment has the same effects as the adsorption removal apparatus 101 of the second embodiment.

なお、本発明は、上述した実施例に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。   In addition, this invention is not limited to the Example mentioned above. A person skilled in the art can make various additions and changes within the scope of the present invention.

例えば、第2の実施形態において、海水濃度が低減された汚染水Pの処理をする吸着塔3の数は、2塔であったが、1塔であっても良いし、3塔以上であっても良い。また、複数の吸着塔3の数は、5塔であったが、吸着塔3の数はこれに限られない。   For example, in the second embodiment, the number of adsorption towers 3 for treating the contaminated water P with reduced seawater concentration was two, but it may be one or more than three. May be. Moreover, although the number of the some adsorption tower 3 was five towers, the number of the adsorption towers 3 is not restricted to this.

また、淡水生成部5は、逆浸透膜を備えてこれにより淡水を生成したが、多段フラッシュにより、海水を含む汚染水Pを蒸留して淡水を生成しても良い。また、上記の実施形態では、複数の放射性核種としてSrおよびCsを吸着する場合について説明したが、他の放射性核種であっても良い。   Moreover, although the fresh water production | generation part 5 was equipped with the reverse osmosis membrane and produced | generated fresh water by this, you may produce | generate fresh water by distilling the contaminated water P containing seawater with a multistage flash. In the above embodiment, the case where Sr and Cs are adsorbed as a plurality of radionuclides has been described, but other radionuclides may be used.

1、101、201:吸着除去装置、3:吸着塔、5:淡水生成部、11:供給管、15:希釈管 DESCRIPTION OF SYMBOLS 1, 101, 201: Adsorption removal apparatus, 3: Adsorption tower, 5: Fresh water production | generation part, 11: Supply pipe, 15: Dilution pipe

Claims (5)

イオン交換型であり海水を含む放射性汚染水から複数種の放射性核種を吸着可能な吸着材を有する吸着塔と、
前記吸着塔に前記海水を含む放射性汚染水を供給する供給管と、
前記吸着塔を通過した前記海水を含む放射性汚染水から淡水を生成する淡水生成部と、
前記供給管に接続され、生成した前記淡水を前記供給管へ流入させ、前記供給管内の前記海水を含む放射性汚染水を希釈する希釈管と、を備える吸着除去装置。
An adsorption tower having an adsorbent that is capable of adsorbing multiple types of radionuclides from radioactively contaminated water that is ion-exchanged and includes seawater;
A supply pipe for supplying radioactive contaminated water containing the seawater to the adsorption tower;
A fresh water generating unit that generates fresh water from the radioactively contaminated water containing the seawater that has passed through the adsorption tower;
An adsorption / removal device comprising: a dilution pipe connected to the supply pipe and allowing the generated fresh water to flow into the supply pipe and diluting radioactive contaminated water including the seawater in the supply pipe.
前記放射性核種は、SrおよびCsを含み、
前記吸着材は、SrおよびCsを同時に吸着する吸着材である請求項1に記載の吸着除去装置。
The radionuclide includes Sr and Cs;
The adsorption removal apparatus according to claim 1, wherein the adsorbent is an adsorbent that adsorbs Sr and Cs simultaneously.
前記吸着塔は、直列で接続される複数の吸着塔から構成され、
前記供給管は、前記複数の吸着塔のうちの1段目の吸着塔に接続され、
前記淡水生成部は、前記複数の吸着塔のうちの少なくとも前記1段目の吸着塔を通過した海水を含む放射性汚染水から淡水を生成し、生成した前記淡水を前記希釈管を介して前記供給管へ流入させる請求項1または請求項2に記載の吸着除去装置。
The adsorption tower is composed of a plurality of adsorption towers connected in series,
The supply pipe is connected to a first stage adsorption tower among the plurality of adsorption towers,
The fresh water generation unit generates fresh water from radioactive contaminated water including seawater that has passed through at least the first adsorption tower of the plurality of adsorption towers, and supplies the generated fresh water through the dilution pipe. The adsorption / removal device according to claim 1 or 2, wherein the adsorption / removal device is caused to flow into the pipe.
請求項3に記載の吸着除去装置において実行される吸着除去方法であって、
1段目の吸着塔から順に前記放射性汚染水を通水し、前記1段目の吸着塔の放射性核種の吸着量が所定吸着量となった場合、通水を中止し、前記1段目の吸着塔の前記吸着材を未使用の吸着材に交換すると共に、2段目の吸着塔を1段目の吸着塔とし、前記吸着材を交換した吸着塔を最後段の吸着塔として前記放射性汚染水を通水する工程を順次繰り返すメリーゴーランド方式で放射性核種の吸着除去を行う吸着除去方法。
An adsorption removal method executed in the adsorption removal apparatus according to claim 3,
When the radioactive polluted water is passed in order from the first stage adsorption tower and the adsorption amount of the radionuclide of the first stage adsorption tower reaches a predetermined adsorption quantity, the water flow is stopped and the first stage adsorption tower The adsorbent in the adsorption tower is replaced with an unused adsorbent, and the second stage adsorption tower is used as the first stage adsorption tower, and the adsorption tower in which the adsorbent is exchanged is used as the last stage adsorption tower. An adsorption removal method that performs adsorption removal of radionuclides by a merry-go-round system that repeats the process of passing water sequentially.
前記供給管と前記淡水生成部と前記希釈管とがモジュール化されている請求項4に記載の吸着除去方法。
The adsorption removal method according to claim 4, wherein the supply pipe, the fresh water generation unit, and the dilution pipe are modularized.
JP2014214485A 2014-10-21 2014-10-21 Adsorption removal apparatus and adsorption removal method Active JP6348402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014214485A JP6348402B2 (en) 2014-10-21 2014-10-21 Adsorption removal apparatus and adsorption removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014214485A JP6348402B2 (en) 2014-10-21 2014-10-21 Adsorption removal apparatus and adsorption removal method

Publications (2)

Publication Number Publication Date
JP2016080624A true JP2016080624A (en) 2016-05-16
JP6348402B2 JP6348402B2 (en) 2018-06-27

Family

ID=55958518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014214485A Active JP6348402B2 (en) 2014-10-21 2014-10-21 Adsorption removal apparatus and adsorption removal method

Country Status (1)

Country Link
JP (1) JP6348402B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100020915A1 (en) * 2006-12-11 2010-01-28 Diversified Technologies Services, Inc. Method of rendering a radioactive and aqueous heat transfer liquid in a nuclear reactor to a reduced radwaste quantitative state and returning the remaining waste water volumes to an environmental release point for liquid effluents
JP2014001952A (en) * 2012-06-15 2014-01-09 Kaken:Kk Radionuclide decontamination system and radionuclide decontamination method
JP2014122806A (en) * 2012-12-20 2014-07-03 Hitachi-Ge Nuclear Energy Ltd Method for manufacturing radionuclide adsorbent, apparatus for manufacturing the same, and radionuclide adsorbent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100020915A1 (en) * 2006-12-11 2010-01-28 Diversified Technologies Services, Inc. Method of rendering a radioactive and aqueous heat transfer liquid in a nuclear reactor to a reduced radwaste quantitative state and returning the remaining waste water volumes to an environmental release point for liquid effluents
JP2014001952A (en) * 2012-06-15 2014-01-09 Kaken:Kk Radionuclide decontamination system and radionuclide decontamination method
JP2014122806A (en) * 2012-12-20 2014-07-03 Hitachi-Ge Nuclear Energy Ltd Method for manufacturing radionuclide adsorbent, apparatus for manufacturing the same, and radionuclide adsorbent

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"RO濃縮水のリスク低減に向けた取組", 廃炉・汚染水対策チーム会合、第6回事務局会議資料, JPN6017026375, 29 May 2014 (2014-05-29), ISSN: 0003804087 *
有馬由紀 他: "福島第一原子力発電所の汚染水処理システムと東芝の取組み", 東芝レビュー, vol. 67, no. 11, JPN6017026377, 2012, JP, pages 54 - 58, ISSN: 0003804088 *

Also Published As

Publication number Publication date
JP6348402B2 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
JP6046582B2 (en) Method for treating radioactive liquid waste and apparatus for treating radioactive liquid waste
US11912601B2 (en) Method and system for water injection into an oil and/or gas containing subterranean formation
JP2017205703A (en) Water treatment method and equipment, and method for regenerating ion exchange resin
WO2019208645A1 (en) Water treatment device
CN103496806A (en) System and method for manufacturing demineralized water
US7651618B2 (en) Method and apparatus for treatment of an effluent containing radioactive materials
JP6348402B2 (en) Adsorption removal apparatus and adsorption removal method
JP6587973B2 (en) Apparatus and method for treating radioactive liquid waste
JP5829931B2 (en) Radioactive waste liquid treatment method and radioactive waste liquid treatment apparatus
JP2015064221A (en) Radioactive nuclide removal system and radioactive nuclide removal method
KR20160008434A (en) Apparatus for treating radioactive waste with multi-membrane
JP6620066B2 (en) Adsorption removal apparatus and adsorption removal method
US20200289734A1 (en) Sorbent Processing of Dialysate to Increase Solute Removal During Hemodialysis
JP6879791B2 (en) Radioactive contaminated water treatment equipment, radioactive contaminated water treatment system
JP6125960B2 (en) Method for treating radioactive liquid waste and apparatus for treating radioactive liquid waste
JP6692385B2 (en) Radioactive waste liquid treatment system
JP2009109318A (en) Method for decreasing radiation dose in turbine system and nuclear power plant
JP6534752B1 (en) Radioactive waste liquid treatment system
UA114204C2 (en) REACTOR FOR OXIDATION OF LIQUID RADIOACTIVE WASTE
WO2012165026A1 (en) Method for decontaminating drinking water contaminated by radioactive substance, drinking water purification device, and internally cleansing drinking water
JP2004279227A (en) Method and device for condensate demineralization
JPH06296993A (en) Treatment of washing waste water
WO2020071075A1 (en) Dialysis solution production device
JP6299421B2 (en) Method and apparatus for treating fluorine-containing water
JP2024036140A (en) Ultrapure water production device, and ultrapure water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180531

R150 Certificate of patent or registration of utility model

Ref document number: 6348402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150