JP2016079881A - Thermal energy recovery device - Google Patents

Thermal energy recovery device Download PDF

Info

Publication number
JP2016079881A
JP2016079881A JP2014211629A JP2014211629A JP2016079881A JP 2016079881 A JP2016079881 A JP 2016079881A JP 2014211629 A JP2014211629 A JP 2014211629A JP 2014211629 A JP2014211629 A JP 2014211629A JP 2016079881 A JP2016079881 A JP 2016079881A
Authority
JP
Japan
Prior art keywords
working medium
flow path
unit
thermal energy
expander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014211629A
Other languages
Japanese (ja)
Other versions
JP6433749B2 (en
Inventor
治幸 松田
Haruyuki Matsuda
治幸 松田
宏一郎 橋本
Koichiro Hashimoto
宏一郎 橋本
和真 西村
Kazuma Nishimura
和真 西村
高橋 和雄
Kazuo Takahashi
和雄 高橋
祐治 田中
Yuji Tanaka
祐治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014211629A priority Critical patent/JP6433749B2/en
Publication of JP2016079881A publication Critical patent/JP2016079881A/en
Application granted granted Critical
Publication of JP6433749B2 publication Critical patent/JP6433749B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a thermal energy recovery device capable of setting a temperature of heating medium after heat exchanging with working medium while restricting flowing-in of the working medium under its gas-liquid two phases into an expansion machine within a desired temperature range.SOLUTION: This invention relates to a thermal energy recovery device comprising: a heat exchanging part [10] including pre-heating means [11] and evaporating means [12]; an expansion machine [14]; a power recovery machine [16]; a condensor [18]; a pump [20]; a circulation flow passage [30]; a bypass flow passage [34] bypassing the evaporating means [12] and the expansion machine [14]; and a control part [40] for controlling a flowing-in amount of work medium to the heat exchanging part [10] to cause a temperature of the heating medium flowed out of the heat exchanging part [10] to be set in a specified range and at the same time controlling a flow rate of a work medium divided to flow toward the bypass flow passage [34] of the work medium flowed into the heat exchanging part [10] in such a way that an over-heating degree of the work medium flowed out of the heat exchanging part [10] is set in a reference range.SELECTED DRAWING: Figure 1

Description

本発明は、熱エネルギー回収装置に関するものである。   The present invention relates to a thermal energy recovery device.

従来、工場等の各種設備の排熱から動力を回収する熱エネルギー回収装置が知られている。例えば、特許文献1には、外部の熱源から供給される加熱媒体で作動媒体を加熱することによって当該作動媒体を蒸発させる蒸発器と、蒸発器から流出した作動媒体を膨張させる膨張機と、膨張機に接続された発電機と、膨張機から流出した作動媒体を凝縮させる凝縮器と、凝縮器で凝縮された作動媒体を蒸発器へ送る作動媒体ポンプと、を備えた発電装置(熱エネルギー回収装置)が開示されている。   2. Description of the Related Art Conventionally, a thermal energy recovery device that recovers power from exhaust heat of various facilities such as factories is known. For example, in Patent Document 1, an evaporator that evaporates the working medium by heating the working medium with a heating medium supplied from an external heat source, an expander that expands the working medium that has flowed out of the evaporator, and expansion A generator (thermal energy recovery) comprising: a generator connected to the compressor; a condenser that condenses the working medium flowing out of the expander; and a working medium pump that sends the working medium condensed in the condenser to the evaporator Apparatus).

特開2014−062542号公報JP 2014-062542 A

上記特許文献1に記載されるような熱エネルギー回収装置では、蒸発器から流出した作動媒体の過熱度が所望の範囲内に収まるように制御され、蒸発器から流出する加熱媒体の温度は、特に管理されないことがある。一方、加熱媒体として高温の圧縮ガスが用いられる場合等、加熱媒体の種類次第では、作動媒体と熱交換した後の加熱媒体の温度が管理されること、より具体的には、所望の温度範囲となるまで冷却されることが望まれる場合がある。この場合、蒸発器から流出する加熱媒体の温度が所望の範囲内となるまでこの加熱媒体が蒸発器で冷却されるように、当該蒸発器に十分な量の液相の作動媒体を流入させること、すなわち、ポンプの回転数を上昇させることが考えられる。しかしながら、蒸発器への液相の作動媒体の流入量が多くなり過ぎると、液相の作動媒体が蒸発器で蒸発しきらずに当該蒸発器から気液二相の状態で流出して膨張機に流入するおそれがある。   In the thermal energy recovery apparatus described in Patent Document 1, the degree of superheat of the working medium flowing out from the evaporator is controlled to fall within a desired range, and the temperature of the heating medium flowing out from the evaporator is particularly It may not be managed. On the other hand, depending on the type of heating medium, such as when a high-temperature compressed gas is used as the heating medium, the temperature of the heating medium after heat exchange with the working medium is controlled, more specifically, a desired temperature range. It may be desired to be cooled until In this case, a sufficient amount of liquid phase working medium is allowed to flow into the evaporator so that the heating medium is cooled by the evaporator until the temperature of the heating medium flowing out of the evaporator falls within a desired range. That is, it is conceivable to increase the rotational speed of the pump. However, if the amount of liquid-phase working medium flowing into the evaporator becomes too large, the liquid-phase working medium does not completely evaporate in the evaporator and flows out from the evaporator in a gas-liquid two-phase state to the expander. There is a risk of inflow.

本発明の目的は、作動媒体の気液二相の状態での膨張機への流入を抑制しつつ作動媒体と熱交換した後の加熱媒体の温度を所望の温度範囲内に収めることが可能な熱エネルギー回収装置を提供することである。   The object of the present invention is to allow the temperature of the heating medium after heat exchange with the working medium to be within a desired temperature range while suppressing the inflow of the working medium into the expander in the gas-liquid two-phase state. It is to provide a thermal energy recovery device.

前記課題を解決する手段として、本発明は、外部から供給される加熱媒体と作動媒体とを熱交換させることによって前記作動媒体を加熱する予熱手段及び前記予熱手段から流出した作動媒体と加熱媒体とを熱交換させることによって作動媒体を加熱する蒸発手段を有する熱交換部と、前記熱交換部から流出した作動媒体を膨張させる膨張機と、前記膨張機に接続された動力回収機と、前記膨張機から流出した作動媒体を凝縮させる凝縮器と、前記凝縮器で凝縮された作動媒体を前記熱交換部へ送るポンプと、前記熱交換器、前記膨張機、前記凝縮器及び前記ポンプをこの順に接続する循環流路と、前記蒸発手段及び前記膨張機をバイパスするバイパス流路と、前記熱交換部から流出した加熱媒体の温度が一定の範囲内に収まるように、前記熱交換部への作動媒体の流入量を制御するとともに、前記熱交換部から流出した作動媒体の過熱度が基準範囲内に収まるように、前記熱交換部に流入した作動媒体のうち前記バイパス流路へ分流させる作動媒体の流量を制御する制御部と、を備える、熱エネルギー回収装置を提供する。   As means for solving the problems, the present invention provides a preheating means for heating the working medium by exchanging heat between the heating medium and the working medium supplied from the outside, and the working medium and the heating medium flowing out from the preheating means. A heat exchanging unit having an evaporation means for heating the working medium by exchanging heat, an expander for expanding the working medium flowing out from the heat exchanging part, a power recovery machine connected to the expander, and the expansion A condenser for condensing the working medium flowing out from the machine, a pump for sending the working medium condensed in the condenser to the heat exchange unit, the heat exchanger, the expander, the condenser and the pump in this order. The heat flow so that the circulating flow path to be connected, the bypass flow path that bypasses the evaporation means and the expander, and the temperature of the heating medium that has flowed out of the heat exchange unit fall within a certain range. The bypass flow path of the working medium that has flowed into the heat exchange unit is controlled so that the amount of the working medium flowing into the exchange unit is controlled and the degree of superheat of the working medium that has flowed out of the heat exchange unit is within a reference range. And a control unit that controls the flow rate of the working medium to be diverted to the heat energy recovery device.

本発明では、熱交換部から流出した加熱媒体の温度が一定の範囲内に収まるように当該加熱媒体を冷却することが可能な量の作動媒体が熱交換部に流入し、かつ、熱交換部から流出した作動媒体の過熱度が基準範囲内に収まるように、熱交換部に流入した作動媒体の一部がバイパス流路に分流される。すなわち、本発明では、熱交換部には加熱媒体を十分に冷却可能な量の作動媒体が流入する一方、熱交換部に流入した作動媒体のうち当該熱交換部で加熱媒体に加熱されることによってこの熱交換器から気相の状態で流出することが可能な量を超える余剰分の作動媒体がバイパス流路に分流される。よって、作動媒体の気液二相の状態での膨張機への流入を抑制でき、かつ、作動媒体と熱交換した後の加熱媒体の温度を所望の範囲内に収めることができる。   In the present invention, an amount of working medium capable of cooling the heating medium flows into the heat exchanging part so that the temperature of the heating medium flowing out of the heat exchanging part falls within a certain range, and the heat exchanging part Part of the working medium that has flowed into the heat exchanging portion is diverted to the bypass flow path so that the degree of superheat of the working medium that has flowed out of the heat exchanger falls within the reference range. That is, in the present invention, an amount of the working medium that can sufficiently cool the heating medium flows into the heat exchange unit, while the working medium that has flowed into the heat exchange unit is heated by the heating medium in the heat exchange unit. Therefore, the surplus working medium exceeding the amount capable of flowing out from the heat exchanger in a gas phase is diverted to the bypass flow path. Therefore, inflow of the working medium into the expander in a gas-liquid two-phase state can be suppressed, and the temperature of the heating medium after heat exchange with the working medium can be kept within a desired range.

この場合において、前記バイパス流路の下流側の端部は、前記循環流路のうち前記凝縮器と前記ポンプとの間の部位に接続されていてもよい。   In this case, the downstream end of the bypass flow path may be connected to a portion of the circulation flow path between the condenser and the pump.

この態様では、バイパス流路の下流側の端部が循環流路のうち凝縮器の上流側の部位に接続される場合に比べて、凝縮器を通過する作動媒体の流量が低減するため、凝縮器での圧力損失が低減する。このため、膨張機の上流側と下流側との間の差圧、すなわち、動力回収機での動力の回収量が増加する。   In this aspect, the flow rate of the working medium passing through the condenser is reduced compared to the case where the downstream end of the bypass flow path is connected to the upstream portion of the condenser in the circulation flow path. Pressure loss in the vessel is reduced. For this reason, the differential pressure between the upstream side and the downstream side of the expander, that is, the amount of power recovered by the power recovery machine increases.

あるいは、前記バイパス流路の下流側の端部は、前記循環流路のうち前記膨張機と前記凝縮器との間の部位、又は、前記凝縮器に接続されていてもよい。   Alternatively, the downstream end of the bypass flow path may be connected to a part of the circulation flow path between the expander and the condenser, or to the condenser.

この態様では、ポンプの入口を含むポンプの上流側(低圧側)でのフラッシュガスの発生が抑制される。具体的に、熱交換部で加熱媒体により加熱された高温の作動媒体がバイパス流路を通じてポンプの上流側にバイパスされることによって当該作動媒体中にフラッシュガスが発生し、当該ガスがポンプに流入する場合がある。これに対し、本発明では、バイパス流路を通じてバイパスされる作動媒体が凝縮器により冷却されるので、ポンプの上流側でのフラッシュガスの発生が抑制される。   In this aspect, generation of flash gas on the upstream side (low pressure side) of the pump including the pump inlet is suppressed. Specifically, when a high-temperature working medium heated by the heating medium in the heat exchange unit is bypassed to the upstream side of the pump through the bypass flow path, flash gas is generated in the working medium, and the gas flows into the pump. There is a case. On the other hand, in the present invention, since the working medium bypassed through the bypass flow path is cooled by the condenser, generation of flash gas on the upstream side of the pump is suppressed.

また、本発明において、前記バイパス流路と前記循環流路のうち前記膨張機と前記凝縮器との間の部位とを接続する分岐流路をさらに備え、前記制御部は、前記ポンプに流入する作動媒体の過冷却度が規定範囲内に収まるように前記バイパス流路から前記分岐流路に分流させる作動媒体の流量を制御することが好ましい。   Moreover, in this invention, it is further provided with the branch flow path which connects the site | part between the said expander and the said condenser among the said bypass flow path and the said circulation flow path, The said control part flows in into the said pump. It is preferable to control the flow rate of the working medium to be branched from the bypass flow path to the branch flow path so that the degree of supercooling of the working medium is within a specified range.

このようにすれば、動力回収機での動力の回収量の確保とポンプの上流側でのフラッシュガスの発生の抑制との双方が達成される。具体的に、この態様では、バイパス流路を流れる作動媒体のうちポンプに流入する作動媒体の過冷却度が規定範囲内に収まる量(ポンプの上流側でのフラッシュガスの発生を抑制可能な量)の作動媒体だけが分岐流路に分流される。よって、凝縮器での圧力損失の増加を抑制しつつ、つまり、動力回収機での動力の回収量を確保しつつ、ポンプの上流側でのフラッシュガスの発生を抑制することができる。   In this way, both the securing of the power recovery amount in the power recovery machine and the suppression of the generation of flash gas upstream of the pump are achieved. Specifically, in this aspect, the amount of supercooling of the working medium flowing into the pump among the working medium flowing through the bypass flow path is within a specified range (an amount capable of suppressing the generation of flash gas on the upstream side of the pump). ) Only the working medium is diverted to the branch flow path. Therefore, it is possible to suppress the generation of flash gas on the upstream side of the pump while suppressing an increase in pressure loss in the condenser, that is, ensuring the amount of power recovered by the power recovery machine.

また、本発明において、前記熱交換部は、前記予熱手段及び前記蒸発手段をまとめて取り囲む形状を有する筐体をさらに備えることが好ましい。   Moreover, in this invention, it is preferable that the said heat exchange part is further provided with the housing | casing which has the shape which surrounds the said preheating means and the said evaporation means collectively.

この態様では、筐体が予熱手段及び蒸発手段をまとめて取り囲んでいるので、熱交換部の取り扱いが容易となる。また、予熱手段及び蒸発手段がそれぞれ別個の筐体で取り囲まれる場合(予熱手段及び蒸発手段がそれぞれ別個の熱交換器で構成される場合)に比べ、熱交換部の小型化が可能となる。   In this aspect, since the housing surrounds the preheating unit and the evaporation unit together, the heat exchange unit can be easily handled. In addition, the heat exchange unit can be made smaller than when the preheating unit and the evaporation unit are surrounded by separate housings (when the preheating unit and the evaporation unit are configured by separate heat exchangers), respectively.

以上のように、本発明によれば、作動媒体の気液二相の状態での膨張機への流入を抑制しつつ作動媒体と熱交換した後の加熱媒体の温度を所望の温度範囲内に収めることが可能な熱エネルギー回収装置を提供することができる。   As described above, according to the present invention, the temperature of the heating medium after heat exchange with the working medium is controlled within a desired temperature range while suppressing the inflow of the working medium into the expander in the gas-liquid two-phase state. A thermal energy recovery device that can be accommodated can be provided.

本発明の第1実施形態の熱エネルギー回収装置の構成の概略を示す図である。It is a figure which shows the outline of a structure of the thermal energy recovery apparatus of 1st Embodiment of this invention. 図1の熱エネルギー回収装置の制御部の制御内容を示すフローチャートである。It is a flowchart which shows the control content of the control part of the thermal energy recovery apparatus of FIG. 図1の熱エネルギー回収装置の変形例を示す図である。It is a figure which shows the modification of the thermal energy recovery apparatus of FIG. 図1の熱エネルギー回収装置の変形例を示す図である。It is a figure which shows the modification of the thermal energy recovery apparatus of FIG. 本発明の第2実施形態の熱エネルギー回収装置の構成の概略を示す図である。It is a figure which shows the outline of a structure of the thermal energy recovery apparatus of 2nd Embodiment of this invention. 図5の熱エネルギー回収装置の制御部の制御内容を示すフローチャートである。It is a flowchart which shows the control content of the control part of the thermal energy recovery apparatus of FIG.

本発明の好ましい実施形態について、以下、図面を参照しながら説明する。   Preferred embodiments of the present invention will be described below with reference to the drawings.

(第1実施形態)
本発明の第1実施形態の熱エネルギー回収装置について、図1及び図2を参照しながら説明する。
(First embodiment)
A thermal energy recovery device according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.

図1に示されるように、熱エネルギー回収装置は、熱交換部10と、膨張機14と、動力回収機16と、凝縮器18と、ポンプ20と、循環流路30と、バイパス流路34と、制御部40と、を備えている。   As shown in FIG. 1, the thermal energy recovery apparatus includes a heat exchange unit 10, an expander 14, a power recovery machine 16, a condenser 18, a pump 20, a circulation channel 30, and a bypass channel 34. And a control unit 40.

循環流路30は、熱交換部10、膨張機14、凝縮器18及びポンプ20をこの順に直列に接続している。   The circulation channel 30 connects the heat exchange unit 10, the expander 14, the condenser 18 and the pump 20 in series in this order.

熱交換部10は、外部から供給される加熱媒体と作動媒体とを熱交換させることにより当該作動媒体を蒸発させる。具体的に、熱交換部10は、液相の作動媒体を加熱する予熱手段としての予熱部11と、予熱部11で加熱された作動媒体をさらに加熱する蒸発手段としての蒸発部12と、を有している。熱交換部10に供給される加熱媒体としては、例えば、圧縮機から吐出された高温の圧縮ガスや工場等から排出される温水が挙げられる。また、作動媒体としては、R245faが用いられている。本実施形態では、予熱部11は、単一の熱交換器(予熱器)で構成されており、蒸発部12は、単一の熱交換器(蒸発器)で構成されている。熱交換器として、例えば、いわゆるシェル&チューブ式の熱交換器や、プレート式の熱交換器が用いられる。   The heat exchange unit 10 evaporates the working medium by exchanging heat between the heating medium and the working medium supplied from the outside. Specifically, the heat exchanging unit 10 includes a preheating unit 11 as a preheating unit that heats the liquid-phase working medium, and an evaporation unit 12 as an evaporation unit that further heats the working medium heated by the preheating unit 11. Have. Examples of the heating medium supplied to the heat exchange unit 10 include high-temperature compressed gas discharged from a compressor and hot water discharged from a factory or the like. Further, R245fa is used as the working medium. In this embodiment, the preheating part 11 is comprised with the single heat exchanger (preheater), and the evaporation part 12 is comprised with the single heat exchanger (evaporator). As the heat exchanger, for example, a so-called shell and tube type heat exchanger or a plate type heat exchanger is used.

予熱部11は、加熱媒体とポンプ20から吐出された液相の作動媒体とを熱交換させることによって当該作動媒体を加熱する。予熱部11は、作動媒体が流れる作動媒体流路11aと、加熱媒体が流れる加熱媒体流路11bと、を有している。なお、予熱部11がシェル&チューブ式の熱交換器で構成される場合、当該熱交換器の筐体が取り囲む空間が加熱媒体流路11bを構成し、当該空間内に作動媒体流路11aが配置される。このことは、蒸発部12についても同様である。   The preheating unit 11 heats the working medium by exchanging heat between the heating medium and the liquid-phase working medium discharged from the pump 20. The preheating unit 11 includes a working medium flow path 11a through which the working medium flows and a heating medium flow path 11b through which the heating medium flows. In addition, when the preheating part 11 is comprised with a shell & tube type heat exchanger, the space which the housing | casing of the said heat exchanger encloses comprises the heating-medium flow path 11b, and the working-medium flow path 11a is in the said space. Be placed. The same applies to the evaporation unit 12.

蒸発部12は、循環流路30のうち予熱部11の下流側の部位に設けられている。蒸発部12は、加熱媒体と予熱部11から流出した作動媒体とを熱交換させることによって当該作動媒体を蒸発させる。蒸発部12は、作動媒体が流れる作動媒体流路12aと、加熱媒体が流れる加熱媒体流路12bと、を有している。本実施形態では、蒸発部12の加熱媒体流路12b及び予熱部11の加熱媒体流路11bをこの順に加熱媒体が通過するように、熱交換部10への加熱媒体の供給方向が設定されている。ただし、加熱媒体の供給方向は、これとは逆に設定されてもよい。   The evaporation unit 12 is provided in a portion of the circulation channel 30 on the downstream side of the preheating unit 11. The evaporating unit 12 evaporates the working medium by exchanging heat between the heating medium and the working medium flowing out of the preheating unit 11. The evaporation unit 12 includes a working medium flow path 12a through which the working medium flows and a heating medium flow path 12b through which the heating medium flows. In the present embodiment, the supply direction of the heating medium to the heat exchange unit 10 is set so that the heating medium passes through the heating medium channel 12b of the evaporation unit 12 and the heating medium channel 11b of the preheating unit 11 in this order. Yes. However, the supply direction of the heating medium may be set in the opposite direction.

膨張機14は、循環流路30における蒸発部12の下流側の部位に設けられている。本実施形態では、膨張機14として、蒸発部12から流出したガス状の作動媒体の膨張エネルギーにより回転駆動されるロータを有する容積式のスクリュー膨張機が用いられている。具体的に、膨張機14は、雌雄一対のスクリュロータを有している。   The expander 14 is provided in a portion of the circulation channel 30 on the downstream side of the evaporation unit 12. In the present embodiment, a positive displacement screw expander having a rotor that is rotationally driven by the expansion energy of the gaseous working medium flowing out from the evaporator 12 is used as the expander 14. Specifically, the expander 14 has a pair of male and female screw rotors.

動力回収機16は、膨張機14に接続されている。本実施形態では、動力回収機16として発電機が用いられている。この動力回収機16は、膨張機14の一対のスクリュロータのうちの一方に接続された回転軸を有している。動力回収機16は、前記回転軸が前記スクリュロータの回転に伴って回転することにより電力を発生させる。なお、動力回収機16として、発電機の他、圧縮機等が用いられてもよい。   The power recovery machine 16 is connected to the expander 14. In the present embodiment, a power generator is used as the power recovery machine 16. The power recovery machine 16 has a rotating shaft connected to one of a pair of screw rotors of the expander 14. The power recovery machine 16 generates electric power when the rotating shaft rotates with the rotation of the screw rotor. In addition to the generator, a compressor or the like may be used as the power recovery machine 16.

凝縮器18は、循環流路30における膨張機14の下流側の部位に設けられている。凝縮器18は、膨張機14から流出した作動媒体を外部から供給される冷却媒体(冷却水等)で冷却することにより凝縮(液化)させる。   The condenser 18 is provided in a portion of the circulation channel 30 on the downstream side of the expander 14. The condenser 18 condenses (liquefies) the working medium flowing out from the expander 14 by cooling with a cooling medium (cooling water or the like) supplied from the outside.

ポンプ20は、循環流路30における凝縮器18の下流側の部位(凝縮器18と予熱部11との間の部位)に設けられている。ポンプ20は、液相の作動媒体を所定の圧力まで加圧して予熱部11へ送り出す。ポンプ20としては、インペラをロータとして備える遠心ポンプや、ロータが一対のギアからなるギアポンプ、スクリュポンプ、トロコイドポンプ等が用いられる。   The pump 20 is provided in a portion of the circulation flow path 30 on the downstream side of the condenser 18 (a portion between the condenser 18 and the preheating unit 11). The pump 20 pressurizes the liquid-phase working medium to a predetermined pressure and sends it to the preheating unit 11. As the pump 20, a centrifugal pump having an impeller as a rotor, a gear pump having a rotor composed of a pair of gears, a screw pump, a trochoid pump, or the like is used.

バイパス流路34は、蒸発部12及び膨張機14をバイパスする流路である。つまり、バイパス流路34は、予熱部11と蒸発部12との間の作動媒体の一部を循環流路30のうち膨張機14とポンプ20との間の部位に導く。本実施形態では、バイパス流路34の下流側の端部は、循環流路30のうち凝縮器18とポンプ20との間の部位に接続されている。   The bypass flow path 34 is a flow path that bypasses the evaporator 12 and the expander 14. That is, the bypass channel 34 guides a part of the working medium between the preheating unit 11 and the evaporation unit 12 to a portion of the circulation channel 30 between the expander 14 and the pump 20. In the present embodiment, the downstream end of the bypass flow path 34 is connected to a portion of the circulation flow path 30 between the condenser 18 and the pump 20.

循環流路30における予熱部11と蒸発部12との間の部位のうち当該循環流路30とバイパス流路34の上流側の端部との接続部よりも下流側の部位には、第1開閉弁V1が設けられており、バイパス流路34には第2開閉弁V2が設けられている。各開閉弁V1,V2は、開度の調整が可能な弁であり、流量調整弁として機能する。   Of the part between the preheating unit 11 and the evaporation part 12 in the circulation channel 30, the first part is located on the downstream side of the connection part between the circulation channel 30 and the upstream end of the bypass channel 34. An on-off valve V1 is provided, and a second on-off valve V2 is provided in the bypass flow path 34. Each on-off valve V1, V2 is a valve whose opening degree can be adjusted, and functions as a flow rate adjusting valve.

制御部40は、予熱部11(加熱媒体流路11b)から流出した加熱媒体の温度T1が一定の範囲内に収まるように、予熱部11への液相の作動媒体の流入量を制御するとともに、蒸発部12から流出した気相の作動媒体の過熱度X1が基準範囲内に収まるように、予熱部11に流入した作動媒体のうちバイパス流路34へ分流させる作動媒体の流量を制御する。本実施形態では、予熱部11から流出した加熱媒体の温度T1は、加熱媒体流路11bに接続されており加熱媒体を外部に排出するための加熱媒体排出流路52に設けられた温度センサ41により検出される。予熱部11への液相の作動媒体の流入量の制御は、ポンプ20の回転数の調整により行われる。また、蒸発部12から流出した気相の作動媒体の過熱度X1は、循環流路30のうち蒸発部12と膨張機14との間の部位に設けられた温度センサ42及び圧力センサ43の各検出値に基づいて導出される。バイパス流路34へ分流させる作動媒体の流量(分流量)の制御は、各開閉弁V1,V2の開度の調整により行われる。本実施形態では、制御部40は、前記加熱媒体の温度T1が一定の範囲内における特定値T0となるようにポンプ20の回転数を調整するとともに、前記作動媒体の過熱度X1が基準範囲内における基準値X0となるように各開閉弁V1,V2の開度を調整する。   The control unit 40 controls the inflow amount of the liquid-phase working medium into the preheating unit 11 so that the temperature T1 of the heating medium flowing out from the preheating unit 11 (heating medium channel 11b) is within a certain range. Then, the flow rate of the working medium to be diverted to the bypass flow path 34 among the working medium flowing into the preheating unit 11 is controlled so that the superheat degree X1 of the gaseous working medium flowing out from the evaporation unit 12 falls within the reference range. In the present embodiment, the temperature T1 of the heating medium flowing out from the preheating unit 11 is connected to the heating medium flow path 11b, and the temperature sensor 41 provided in the heating medium discharge flow path 52 for discharging the heating medium to the outside. Is detected. Control of the inflow amount of the liquid-phase working medium into the preheating unit 11 is performed by adjusting the rotational speed of the pump 20. Further, the superheat degree X1 of the gas phase working medium flowing out from the evaporation unit 12 is determined based on each of the temperature sensor 42 and the pressure sensor 43 provided in a portion of the circulation channel 30 between the evaporation unit 12 and the expander 14. Derived based on the detected value. Control of the flow rate (divided flow rate) of the working medium to be diverted to the bypass flow path 34 is performed by adjusting the opening degree of each of the on-off valves V1 and V2. In the present embodiment, the control unit 40 adjusts the rotation speed of the pump 20 so that the temperature T1 of the heating medium becomes a specific value T0 within a certain range, and the superheat degree X1 of the working medium is within a reference range. The opening degree of each on-off valve V1, V2 is adjusted so as to be the reference value X0.

次に、図2を参照しながら、制御部40の具体的な制御内容を説明する。   Next, specific control contents of the control unit 40 will be described with reference to FIG.

まず、ポンプ20が駆動され(ステップS10)、蒸発部12及び予熱部11に外部から加熱媒体が供給される(ステップS11)。   First, the pump 20 is driven (step S10), and a heating medium is supplied from the outside to the evaporation unit 12 and the preheating unit 11 (step S11).

そして、制御部40は、温度センサ41の検出値T1が前記特定値T0以下か否かを判定する(ステップS12)。   And the control part 40 determines whether the detection value T1 of the temperature sensor 41 is below the said specific value T0 (step S12).

この結果、前記検出値T1が特定値T0よりも大きければ(ステップS12でNO)、制御部40は、予熱部11への液相の作動媒体の流入量(予熱部11での加熱媒体の冷却量)を増やすためにポンプ20の回転数を増加させる(ステップS13)。その後、制御部40は、ステップS12に戻り、再び検出値T1が前記特定値T0以上か否かを判定する。一方、前記検出値T1が特定値T0以下であれば(ステップS12でYES)、制御部40は、検出値T1が特定値T0と等しいか否かを判定する(ステップS14)。   As a result, if the detected value T1 is greater than the specific value T0 (NO in step S12), the control unit 40 causes the amount of liquid-phase working medium to flow into the preheating unit 11 (cooling of the heating medium in the preheating unit 11). In order to increase the amount), the rotational speed of the pump 20 is increased (step S13). Thereafter, the control unit 40 returns to step S12 and again determines whether or not the detection value T1 is equal to or greater than the specific value T0. On the other hand, if the detected value T1 is equal to or less than the specific value T0 (YES in step S12), the control unit 40 determines whether or not the detected value T1 is equal to the specific value T0 (step S14).

この結果、検出値T1が特定値T0と等しくなければ、つまり、検出値T1が特定値T0未満であれば(ステップS14でNO)、制御部40は、予熱部11への液相の作動媒体の流入量を減らすためにポンプ20の回転数を減少させる(ステップS15)。その後、制御部40は、ステップS12に戻り、再び検出値T1が前記特定値T0以上か否かを判定する。一方、検出値T1が特定値T0と等しければ(ステップS14でYES)、制御部40は、温度センサ42及び圧力センサ43の各検出値に基づいて導出された過熱度X1が前記基準値X0以下か否かを判定する(ステップS16)。   As a result, if the detected value T1 is not equal to the specific value T0, that is, if the detected value T1 is less than the specific value T0 (NO in step S14), the control unit 40 supplies the liquid-phase working medium to the preheating unit 11. The number of rotations of the pump 20 is decreased in order to reduce the amount of inflow of (step S15). Thereafter, the control unit 40 returns to step S12 and again determines whether or not the detection value T1 is equal to or greater than the specific value T0. On the other hand, if the detected value T1 is equal to the specific value T0 (YES in step S14), the control unit 40 determines that the superheat degree X1 derived based on the detected values of the temperature sensor 42 and the pressure sensor 43 is equal to or less than the reference value X0. Is determined (step S16).

この結果、過熱度X1が基準値X0よりも大きければ(ステップS16でNO)、制御部40は、蒸発部12への作動媒体の流入量を増やす(バイパス流路34への作動媒体の分流量を減らす)ために第1開閉弁V1の開度を上げるとともに第2開閉弁V2の開度を下げる(ステップS17)。その後、制御部40は、ステップS16に戻り、再び過熱度X1が基準値X0以上か否かを判定する。一方、前記過熱度X1が基準値X0以下であれば(ステップS16でYES)、制御部40は、過熱度X1が基準値X0と等しいか否かを判定する(ステップS18)。   As a result, if the degree of superheat X1 is larger than the reference value X0 (NO in step S16), the controller 40 increases the amount of working medium flowing into the evaporator 12 (divided flow rate of working medium into the bypass passage 34). In order to reduce), the opening degree of the first on-off valve V1 is raised and the opening degree of the second on-off valve V2 is lowered (step S17). Then, the control part 40 returns to step S16, and determines again whether the superheat degree X1 is more than the reference value X0. On the other hand, if the degree of superheat X1 is equal to or less than the reference value X0 (YES in step S16), the control unit 40 determines whether or not the degree of superheat X1 is equal to the reference value X0 (step S18).

この結果、過熱度X1が基準値X0と等しくなければ、つまり、過熱度X1が基準値X0未満であれば(ステップS18でNO)、制御部40は、蒸発部12への作動媒体の流入量を減らす(バイパス流路34への作動媒体の分流量を増やす)ために第1開閉弁V1の開度を下げるとともに第2開閉弁V2の開度を上げる(ステップS19)。その後、制御部40は、ステップS16に戻り、再び過熱度X1が基準値X0以上か否かを判定する。一方、過熱度X1が基準値X0と等しければ(ステップS18でYES)、制御部40は、ステップS12に戻り、再び検出値T1が前記特定値T0以上か否かを判定する。   As a result, if the degree of superheat X1 is not equal to the reference value X0, that is, if the degree of superheat X1 is less than the reference value X0 (NO in step S18), the control unit 40 flows the working medium into the evaporation unit 12 In order to reduce (increase the flow rate of the working medium to the bypass passage 34), the opening degree of the first on-off valve V1 is lowered and the opening degree of the second on-off valve V2 is raised (step S19). Then, the control part 40 returns to step S16, and determines again whether the superheat degree X1 is more than the reference value X0. On the other hand, if the degree of superheat X1 is equal to the reference value X0 (YES in step S18), the control unit 40 returns to step S12 and again determines whether or not the detection value T1 is equal to or greater than the specific value T0.

続いて、本熱エネルギー回収装置の動作を説明する。   Then, operation | movement of this thermal energy recovery apparatus is demonstrated.

ポンプ20により予熱部11に送られた液相の作動媒体は、予熱部11で加熱媒体によって加熱された後に蒸発部12において加熱媒体によってさらに加熱され、これにより気相の状態で蒸発部12から流出する。その後、その気相の作動媒体は、膨張機14で膨張することによって当該膨張機14及び動力回収機16を駆動する。膨張機14から流出した作動媒体は、凝縮器18で凝縮する。この凝縮した液相の作動媒体は、ポンプ20により再び予熱部11へ送出される。このように、作動媒体が循環流路30内を循環することにより、動力回収機16において動力(本実施形態では電力)が回収される。   The liquid-phase working medium sent to the preheating unit 11 by the pump 20 is heated by the heating medium in the preheating unit 11 and then further heated by the heating medium in the evaporation unit 12. leak. Thereafter, the working medium in the gas phase is expanded by the expander 14 to drive the expander 14 and the power recovery unit 16. The working medium flowing out from the expander 14 is condensed in the condenser 18. The condensed liquid-phase working medium is sent again to the preheating unit 11 by the pump 20. As described above, the working medium circulates in the circulation flow path 30, so that power (in this embodiment, electric power) is recovered in the power recovery machine 16.

ここで、加熱媒体として高温の圧縮ガスが用いられる場合等、作動媒体と熱交換した後(熱交換部10から流出した後)の加熱媒体の温度が所望の温度範囲となるまで冷却されることが望まれる場合がある。本実施形態では、予熱部11から流出した加熱媒体の温度T1が一定の範囲内に収まるように当該加熱媒体を冷却することが可能な量の作動媒体が予熱部11に流入し、かつ、蒸発部12から流出した作動媒体の過熱度X1が基準範囲内に収まるように予熱部11に流入した作動媒体の一部がバイパス流路34に分流される。すなわち、本実施形態では、予熱部11には加熱媒体を十分に冷却可能な量の作動媒体が流入する一方、予熱部11に流入した作動媒体のうち当該予熱部11及び蒸発部12で加熱媒体に加熱されることによって蒸発部12から気相の状態で流出することが可能な量を超える余剰分の作動媒体がバイパス流路34に分流される。よって、作動媒体の気液二相の状態での膨張機14への流入を抑制でき、かつ、作動媒体と熱交換した後の加熱媒体の温度を所望の範囲内に収めることができる。   Here, when a high-temperature compressed gas is used as a heating medium, the temperature of the heating medium after heat exchange with the working medium (after flowing out of the heat exchanging unit 10) is cooled to a desired temperature range. May be desired. In the present embodiment, an amount of working medium capable of cooling the heating medium flows into the preheating section 11 and evaporates so that the temperature T1 of the heating medium flowing out from the preheating section 11 falls within a certain range. A part of the working medium that has flowed into the preheating section 11 is diverted to the bypass flow path 34 so that the superheat degree X1 of the working medium that has flowed out from the section 12 falls within the reference range. That is, in the present embodiment, an amount of working medium capable of sufficiently cooling the heating medium flows into the preheating unit 11, while the preheating unit 11 and the evaporation unit 12 out of the working medium flowing into the preheating unit 11 have the heating medium. The excess working medium exceeding the amount capable of flowing out in the vapor state from the evaporation section 12 is diverted to the bypass flow path 34 by being heated. Therefore, inflow of the working medium into the expander 14 in a gas-liquid two-phase state can be suppressed, and the temperature of the heating medium after heat exchange with the working medium can be kept within a desired range.

また、本実施形態では、バイパス流路34の下流側の端部は、循環流路30のうち凝縮器18とポンプ20との間の部位に接続されている。この態様では、バイパス流路34の下流側の端部が循環流路30のうち凝縮器18の上流側の部位に接続される場合に比べて、凝縮器18を通過する作動媒体の流量が低減するため、凝縮器18での圧力損失が低減する。このため、膨張機14の上流側と下流側との間の差圧、すなわち、動力回収機16での動力の回収量が増加する。   In the present embodiment, the downstream end of the bypass channel 34 is connected to a portion of the circulation channel 30 between the condenser 18 and the pump 20. In this aspect, the flow rate of the working medium passing through the condenser 18 is reduced as compared with the case where the downstream end of the bypass flow path 34 is connected to the upstream side of the condenser 18 in the circulation flow path 30. Therefore, the pressure loss in the condenser 18 is reduced. For this reason, the differential pressure between the upstream side and the downstream side of the expander 14, that is, the amount of power recovered by the power recovery unit 16 increases.

ただし、バイパス流路34の下流側の端部は、循環流路30における膨張機14と凝縮器18との間の部位(図3を参照)、又は、凝縮器18に接続されてもよい。この態様では、ポンプ20の入口を含むポンプ20の上流側(低圧側)でのフラッシュガスの発生が抑制される。具体的に、予熱部11で加熱媒体により加熱された高温の作動媒体がバイパス流路34を通じてポンプ20の上流側(低圧側)に戻されることによって当該作動媒体中にフラッシュガスが発生し、当該ガスがポンプ20に流入する場合がある。これに対し、この態様では、バイパス流路34を通じて戻される作動媒体が凝縮器18により冷却されるので、ポンプ20の上流側でのフラッシュガスの発生が抑制される。   However, the downstream end of the bypass flow path 34 may be connected to a portion (see FIG. 3) between the expander 14 and the condenser 18 in the circulation flow path 30 or to the condenser 18. In this aspect, generation of flash gas on the upstream side (low pressure side) of the pump 20 including the inlet of the pump 20 is suppressed. Specifically, the high-temperature working medium heated by the heating medium in the preheating unit 11 is returned to the upstream side (low pressure side) of the pump 20 through the bypass flow path 34, thereby generating flash gas in the working medium. Gas may flow into the pump 20. On the other hand, in this aspect, since the working medium returned through the bypass flow path 34 is cooled by the condenser 18, generation of flash gas on the upstream side of the pump 20 is suppressed.

また、図4に示されるように、熱交換部10は、予熱部11及び蒸発部12をまとめて取り囲む形状を有する筐体10aを備えていてもよい。つまり、予熱部11及び蒸発部12が単一の熱交換器により構成されてもよい。この形態では、予熱部11の作動媒体流路11aの下流側の端部及び蒸発部12の作動媒体流路12aの上流側の端部は、それぞれ筐体10aの外部でヘッダ13に接続される。また、バイパス流路34の上流側の端部もヘッダ13に接続される。第1開閉弁V1は、ヘッダ13と筐体10a内に位置する作動媒体流路12aとの間の流路に設けられている。この熱交換部10は、例えばシェル&チューブ式の熱交換器により構成される。この場合、筐体10aにより取り囲まれる空間が各加熱媒体流路11b,12bを構成し、筐体10a内に各作動媒体流路11a,12aが収容される。   Moreover, as FIG. 4 shows, the heat exchange part 10 may be provided with the housing | casing 10a which has the shape which surrounds the preheating part 11 and the evaporation part 12 collectively. That is, the preheating unit 11 and the evaporation unit 12 may be configured by a single heat exchanger. In this embodiment, the downstream end of the working medium flow path 11a of the preheating unit 11 and the upstream end of the working medium flow path 12a of the evaporation unit 12 are connected to the header 13 outside the casing 10a, respectively. . The upstream end of the bypass channel 34 is also connected to the header 13. The first on-off valve V1 is provided in a flow path between the header 13 and the working medium flow path 12a located in the housing 10a. This heat exchange part 10 is comprised by the shell & tube type heat exchanger, for example. In this case, the space surrounded by the casing 10a constitutes the heating medium channels 11b and 12b, and the working medium channels 11a and 12a are accommodated in the casing 10a.

この態様では、筐体10aが予熱部11及び蒸発部12をまとめて取り囲んでいるので、つまり、予熱部11及び蒸発部12が単一の熱交換器により構成されるので、熱交換部10の取り扱いが容易となる。また、予熱部11及び蒸発部12がそれぞれ別個の筐体で取り囲まれる場合(予熱部11及び蒸発部12がそれぞれ別個の熱交換器で構成される場合)に比べ、熱交換部10の小型化が可能となる。   In this aspect, since the housing 10a collectively surrounds the preheating unit 11 and the evaporation unit 12, that is, the preheating unit 11 and the evaporation unit 12 are configured by a single heat exchanger. Handling becomes easy. Further, the heat exchange unit 10 can be downsized as compared with the case where the preheating unit 11 and the evaporation unit 12 are surrounded by separate housings (when the preheating unit 11 and the evaporation unit 12 are configured by separate heat exchangers). Is possible.

さらに、熱交換部10がシェル&チューブ式の熱交換器で構成される場合、筐体10a内の空間が各加熱媒体流路11b,12bを構成するので、熱交換部10の構造が一層簡素化される。   Further, when the heat exchanging unit 10 is configured by a shell and tube type heat exchanger, the space in the housing 10a constitutes the heating medium flow paths 11b and 12b, so that the structure of the heat exchanging unit 10 is further simplified. It becomes.

(第2実施形態)
本発明の第2実施形態の熱エネルギー回収装置について、図5及び図6を参照しながら説明する。なお、第2実施形態では、第1実施形態と異なる部分についてのみ説明を行い、第1実施形態と同じ構造、作用及び効果の説明は省略する。
(Second Embodiment)
A thermal energy recovery apparatus according to a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, only parts different from the first embodiment will be described, and the description of the same structure, operation, and effect as in the first embodiment will be omitted.

本実施形態では、バイパス流路34から分岐する分岐流路36と、この分岐流路36に設けられた第3開閉弁V3と、をさらに備えている。分岐流路36は、バイパス流路34のうち第2開閉弁V2が設けられている部位よりも上流側の部位と循環流路30のうち膨張機14と凝縮器18との間の部位とを接続している。第3開閉弁V3は、開度の調整が可能な弁である。   In the present embodiment, a branch channel 36 branched from the bypass channel 34 and a third on-off valve V3 provided in the branch channel 36 are further provided. The branch flow path 36 includes a part of the bypass flow path 34 on the upstream side of the part where the second opening / closing valve V2 is provided and a part of the circulation flow path 30 between the expander 14 and the condenser 18. Connected. The third on-off valve V3 is a valve whose opening degree can be adjusted.

本実施形態では、制御部40は、ポンプ20に流入する作動媒体の過冷却度Y1が規定範囲内に収まるようにバイパス流路34から分岐流路36に分流させる作動媒体の流量を制御する。具体的に、ポンプ20に流入する作動媒体の過冷却度Y1は、循環流路30のうち当該循環流路30とバイパス流路34の下流側の端部との接続部よりも下流側でかつポンプ20よりも上流側の部位に設けられた温度センサ45及び圧力センサ46の各検出値に基づいて導出される。バイパス流路34から分岐流路36に分流させる作動媒体の流量の制御は、第2開閉弁V2及び第3開閉弁V3の開度の調整により行われる。本実施形態では、制御部40は、前記作動媒体の過冷却度Y1が規定範囲内における規定値Y0となるように各開閉弁V2,V3の開度を調整する。   In the present embodiment, the control unit 40 controls the flow rate of the working medium to be branched from the bypass flow path 34 to the branch flow path 36 so that the degree of supercooling Y1 of the working medium flowing into the pump 20 falls within a specified range. Specifically, the degree of supercooling Y1 of the working medium flowing into the pump 20 is lower than the connection portion between the circulation flow path 30 and the downstream end of the bypass flow path 34 in the circulation flow path 30. It is derived based on the detection values of the temperature sensor 45 and the pressure sensor 46 provided at the upstream side of the pump 20. Control of the flow rate of the working medium to be branched from the bypass flow path 34 to the branch flow path 36 is performed by adjusting the opening degrees of the second on-off valve V2 and the third on-off valve V3. In the present embodiment, the control unit 40 adjusts the opening degree of each of the on-off valves V2, V3 so that the degree of supercooling Y1 of the working medium becomes a specified value Y0 within a specified range.

具体的に、図6を参照しながら、本実施形態の制御部40の具体的な制御内容を説明する。なお、ステップS10〜ステップS19については、第1実施形態と同じである。ただし、本実施形態では、制御部40は、ステップS18でYESの場合、ステップS12に戻るのではなく、過冷却度Y1が前記規定値Y0以上か否かを判定する(ステップS20)。   Specifically, specific control contents of the control unit 40 of the present embodiment will be described with reference to FIG. Steps S10 to S19 are the same as those in the first embodiment. However, in this embodiment, when the answer is YES in Step S18, the control unit 40 does not return to Step S12 but determines whether or not the degree of supercooling Y1 is equal to or greater than the specified value Y0 (Step S20).

この結果、過冷却度Y1が規定値Y0未満であれば(ステップS20でNO)、凝縮器18への作動媒体の流入量を増やすために(分岐流路36への作動媒体の分流量を増やすために)第2開閉弁V2の開度を下げるとともに第3開閉弁V3の開度を上げる(ステップS21)。その後、制御部40は、ステップS20に戻り、再び過冷却度Y1が規定値Y0以上か否かを判定する。一方、過冷却度Y1が規定値Y0以上であれば(ステップS20でYES)、制御部40は、過冷却度Y1が規定値Y0と等しいか否かを判定する(ステップS22)。   As a result, if the degree of supercooling Y1 is less than the prescribed value Y0 (NO in step S20), the flow rate of the working medium to the branch passage 36 is increased in order to increase the amount of working medium flowing into the condenser 18. For this purpose, the opening degree of the second on-off valve V2 is lowered and the opening degree of the third on-off valve V3 is raised (step S21). Thereafter, the control unit 40 returns to step S20 and again determines whether or not the degree of supercooling Y1 is equal to or greater than the specified value Y0. On the other hand, if the degree of supercooling Y1 is equal to or greater than the specified value Y0 (YES in step S20), the control unit 40 determines whether or not the degree of supercooling Y1 is equal to the specified value Y0 (step S22).

この結果、過冷却度Y1が規定値Y0と等しくなければ、つまり、過冷却度Y1が規定値Y0よりも大きければ(ステップS22でNO)、制御部40は、凝縮器18への作動媒体の流入量を減らすために第2開閉弁V2の開度を上げるとともに第3開閉弁V3の開度を下げる(ステップS23)。その後、制御部40は、ステップS20に戻り、再び過冷却度Y1が規定値Y0以上か否かを判定する。一方、過冷却度Y1が規定値Y0と等しければ(ステップS22でYES)、制御部40は、ステップS12に戻り、再び検出値T1が前記特定値T0以上か否かを判定する。   As a result, if the degree of supercooling Y1 is not equal to the prescribed value Y0, that is, if the degree of supercooling Y1 is greater than the prescribed value Y0 (NO in step S22), the control unit 40 causes the working medium to be supplied to the condenser 18. In order to reduce the inflow amount, the opening degree of the second on-off valve V2 is raised and the opening degree of the third on-off valve V3 is lowered (step S23). Thereafter, the control unit 40 returns to step S20 and again determines whether or not the degree of supercooling Y1 is equal to or greater than the specified value Y0. On the other hand, if the degree of supercooling Y1 is equal to the specified value Y0 (YES in step S22), the control unit 40 returns to step S12 and again determines whether or not the detection value T1 is equal to or greater than the specific value T0.

以上に説明した第2実施形態では、動力回収機16での動力の回収量の確保とポンプ20の上流側でのフラッシュガスの発生の抑制との双方が達成される。具体的に、この形態では、バイパス流路34を流れる作動媒体のうちポンプ20に流入する作動媒体の過冷却度が規定範囲内に収まる量(ポンプ20の上流側でのフラッシュガスの発生を抑制可能な量)の作動媒体だけが分岐流路36に分流される。よって、凝縮器18での圧力損失の増加を抑制しつつ、つまり、動力回収機16での動力の回収量を確保しつつ、ポンプの上流側でのフラッシュガスの発生を抑制することができる。   In the second embodiment described above, both the securing of the power recovery amount in the power recovery machine 16 and the suppression of the generation of flash gas on the upstream side of the pump 20 are achieved. Specifically, in this embodiment, the amount of the supercooling degree of the working medium flowing into the pump 20 out of the working medium flowing through the bypass flow path 34 falls within a specified range (suppression of the generation of flash gas upstream of the pump 20 is suppressed. Only a possible amount of working medium is diverted to the branch channel 36. Therefore, it is possible to suppress the generation of flash gas upstream of the pump while suppressing an increase in pressure loss in the condenser 18, that is, while securing a recovery amount of power in the power recovery machine 16.

なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

上記各実施形態では、制御部40は、ポンプ20の回転数を調整することにより予熱部11への液相の作動媒体の流入量を制御する例が示されたが、予熱部11への液相の作動媒体の流入量の制御は、これに限られない。例えば、ポンプ20から吐出された液相の作動媒体をポンプ20の上流に戻す戻し流路及びこの戻し流路に設けられた開閉弁をさらに備え、制御部40は、この開閉弁の開度を調整することによって予熱部11への液相の作動媒体の流入量を制御してもよい。   In each of the above-described embodiments, an example in which the control unit 40 controls the inflow amount of the liquid-phase working medium to the preheating unit 11 by adjusting the number of rotations of the pump 20 has been described. The control of the inflow amount of the phase working medium is not limited to this. For example, the control unit 40 further includes a return flow path for returning the liquid-phase working medium discharged from the pump 20 to the upstream side of the pump 20 and an opening / closing valve provided in the return flow path. The amount of liquid-phase working medium flowing into the preheating unit 11 may be controlled by adjusting.

また、制御部40は、第1開閉弁V1及び第2開閉弁V2の開度を調整することにより蒸発部12への作動媒体の流入量(バイパス流路34への作動媒体の分流量)を制御する例が示されたが、蒸発部12への作動媒体の流入量の制御は、これに限られない。例えば、循環流路30とバイパス流路34の上流側の端部との接続部に開度調整が可能な三方弁が設けられ、制御部40は、この三方弁の開度を調整することにより蒸発部12への作動媒体の流入量(バイパス流路34への作動媒体の分流量)を調整してもよい。同様に、バイパス流路34と分岐流路36との接続部に開度調整が可能な三方弁が設けられ、制御部40は、この三方弁の開度を調整することにより分岐流路36への作動媒体の流入量を調整してもよい。   Further, the control unit 40 adjusts the opening degree of the first on-off valve V1 and the second on-off valve V2, thereby reducing the inflow amount of the working medium to the evaporation unit 12 (divided flow rate of the working medium to the bypass channel 34). Although the example to control was shown, control of the inflow amount of the working medium to the evaporation part 12 is not restricted to this. For example, a three-way valve capable of adjusting the opening degree is provided at a connection portion between the circulation flow path 30 and the upstream end of the bypass flow path 34, and the control unit 40 adjusts the opening degree of the three-way valve. The inflow amount of the working medium to the evaporation unit 12 (divided flow rate of the working medium to the bypass channel 34) may be adjusted. Similarly, a three-way valve capable of adjusting the opening degree is provided at a connection portion between the bypass flow path 34 and the branch flow path 36, and the control unit 40 adjusts the opening degree of the three-way valve to the branch flow path 36. The inflow amount of the working medium may be adjusted.

10 熱交換部
10a 筐体
11 予熱部(予熱手段)
12 蒸発部(蒸発手段)
13 ヘッダ
14 膨張機
16 動力回収機(発電機)
18 凝縮器
20 ポンプ
30 循環流路
34 戻し流路
36 分岐流路
40 制御部
41 温度センサ
42 温度センサ
43 圧力センサ
45 温度センサ
46 圧力センサ
V1 第1開閉弁
V2 第2開閉弁
V3 第3開閉弁
DESCRIPTION OF SYMBOLS 10 Heat exchange part 10a Case 11 Preheating part (preheating means)
12 Evaporation part (evaporation means)
13 Header 14 Expander 16 Power recovery machine (generator)
DESCRIPTION OF SYMBOLS 18 Condenser 20 Pump 30 Circulation flow path 34 Return flow path 36 Branch flow path 40 Control part 41 Temperature sensor 42 Temperature sensor 43 Pressure sensor 45 Temperature sensor 46 Pressure sensor V1 1st on-off valve V2 2nd on-off valve V3 3rd on-off valve

Claims (5)

外部から供給される加熱媒体と作動媒体とを熱交換させることによって前記作動媒体を加熱する予熱手段及び前記予熱手段から流出した作動媒体と加熱媒体とを熱交換させることによって作動媒体を加熱する蒸発手段を有する熱交換部と、
前記熱交換部から流出した作動媒体を膨張させる膨張機と、
前記膨張機に接続された動力回収機と、
前記膨張機から流出した作動媒体を凝縮させる凝縮器と、
前記凝縮器で凝縮された作動媒体を前記熱交換部へ送るポンプと、
前記熱交換器、前記膨張機、前記凝縮器及び前記ポンプをこの順に接続する循環流路と、
前記蒸発手段及び前記膨張機をバイパスするバイパス流路と、
前記熱交換部から流出した加熱媒体の温度が一定の範囲内に収まるように、前記熱交換部への作動媒体の流入量を制御するとともに、前記熱交換部から流出した作動媒体の過熱度が基準範囲内に収まるように、前記熱交換部に流入した作動媒体のうち前記バイパス流路へ分流させる作動媒体の流量を制御する制御部と、を備える、熱エネルギー回収装置。
Preheating means for heating the working medium by exchanging heat between the heating medium and the working medium supplied from the outside, and evaporation for heating the working medium by exchanging heat between the working medium and the heating medium flowing out from the preheating means A heat exchange section having means;
An expander that expands the working medium that has flowed out of the heat exchange unit;
A power recovery machine connected to the expander;
A condenser for condensing the working medium flowing out of the expander;
A pump for sending the working medium condensed in the condenser to the heat exchange unit;
A circulation passage for connecting the heat exchanger, the expander, the condenser and the pump in this order;
A bypass flow path for bypassing the evaporation means and the expander;
The amount of working medium flowing into the heat exchanging unit is controlled so that the temperature of the heating medium flowing out of the heat exchanging unit is within a certain range, and the degree of superheat of the working medium flowing out of the heat exchanging unit is A thermal energy recovery device comprising: a control unit that controls a flow rate of the working medium that is diverted to the bypass flow path among the working medium that has flowed into the heat exchange unit so as to be within a reference range.
請求項1に記載の熱エネルギー回収装置において、
前記バイパス流路の下流側の端部は、前記循環流路のうち前記凝縮器と前記ポンプとの間の部位に接続されている、熱エネルギー回収装置。
The thermal energy recovery device according to claim 1,
The downstream end of the bypass flow path is a thermal energy recovery device connected to a portion of the circulation flow path between the condenser and the pump.
請求項1に記載の熱エネルギー回収装置において、
前記バイパス流路の下流側の端部は、前記循環流路のうち前記膨張機と前記凝縮器との間の部位、又は、前記凝縮器に接続されている、熱エネルギー回収装置。
The thermal energy recovery device according to claim 1,
The downstream end of the bypass flow path is a thermal energy recovery device connected to a part of the circulation flow path between the expander and the condenser or to the condenser.
請求項2に記載の熱エネルギー回収装置において、
前記バイパス流路と前記循環流路のうち前記膨張機と前記凝縮器との間の部位とを接続する分岐流路をさらに備え、
前記制御部は、前記ポンプに流入する作動媒体の過冷却度が規定範囲内に収まるように前記バイパス流路から前記分岐流路に分流させる作動媒体の流量を制御する、熱エネルギー回収装置。
The thermal energy recovery device according to claim 2,
A branch channel that connects the bypass channel and a portion of the circulation channel between the expander and the condenser,
The control unit is a thermal energy recovery device that controls a flow rate of the working medium to be branched from the bypass flow path to the branch flow path so that a degree of supercooling of the working medium flowing into the pump falls within a specified range.
請求項1ないし4のいずれかに記載の熱エネルギー回収装置において、
前記熱交換部は、前記予熱手段及び前記蒸発手段をまとめて取り囲む形状を有する筐体をさらに備える、熱エネルギー回収装置。
In the thermal energy recovery device according to any one of claims 1 to 4,
The heat exchange part further includes a housing having a shape surrounding the preheating unit and the evaporation unit together.
JP2014211629A 2014-10-16 2014-10-16 Thermal energy recovery device Expired - Fee Related JP6433749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014211629A JP6433749B2 (en) 2014-10-16 2014-10-16 Thermal energy recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014211629A JP6433749B2 (en) 2014-10-16 2014-10-16 Thermal energy recovery device

Publications (2)

Publication Number Publication Date
JP2016079881A true JP2016079881A (en) 2016-05-16
JP6433749B2 JP6433749B2 (en) 2018-12-05

Family

ID=55958077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014211629A Expired - Fee Related JP6433749B2 (en) 2014-10-16 2014-10-16 Thermal energy recovery device

Country Status (1)

Country Link
JP (1) JP6433749B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079098A1 (en) * 2016-10-24 2018-05-03 株式会社神戸製鋼所 Thermal energy recovery device and operation method therefor
EP3392590A1 (en) * 2017-03-23 2018-10-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Supercharge air cooling unit
EP3418654A1 (en) 2017-06-21 2018-12-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Impurity recovery method and oil recovery method
JP2019019797A (en) * 2017-07-20 2019-02-07 パナソニック株式会社 Cogeneration system and operation method of the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131806A (en) * 1981-02-09 1982-08-14 Hitachi Ltd Waste heat recycling power generating plant
JPS57135206A (en) * 1981-02-13 1982-08-20 Hitachi Ltd Turbine plant with low boiling point medium
JPS5813112A (en) * 1981-07-17 1983-01-25 Hitachi Ltd Waste-heat recovery power plant
JP2004332626A (en) * 2003-05-08 2004-11-25 Jio Service:Kk Generating set and generating method
JP2009191725A (en) * 2008-02-14 2009-08-27 Sanden Corp Waste heat utilization device
JP2012202269A (en) * 2011-03-24 2012-10-22 Kobe Steel Ltd Binary generator and control method for the same
WO2013031287A1 (en) * 2011-08-31 2013-03-07 株式会社豊田自動織機 Waste heat utilization device
WO2013046853A1 (en) * 2011-09-26 2013-04-04 株式会社豊田自動織機 Waste heat regeneration system
JP2013068137A (en) * 2011-09-21 2013-04-18 Toyota Industries Corp Waste heat utilization device
JP2013181398A (en) * 2012-02-29 2013-09-12 Kobe Steel Ltd Control method of binary power generator, and binary power generator
JP2013185788A (en) * 2012-03-09 2013-09-19 Kobe Steel Ltd Binary generating equipment
JP2014062542A (en) * 2012-08-29 2014-04-10 Kobe Steel Ltd Power generating apparatus and control method for power generating apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131806A (en) * 1981-02-09 1982-08-14 Hitachi Ltd Waste heat recycling power generating plant
JPS57135206A (en) * 1981-02-13 1982-08-20 Hitachi Ltd Turbine plant with low boiling point medium
JPS5813112A (en) * 1981-07-17 1983-01-25 Hitachi Ltd Waste-heat recovery power plant
JP2004332626A (en) * 2003-05-08 2004-11-25 Jio Service:Kk Generating set and generating method
JP2009191725A (en) * 2008-02-14 2009-08-27 Sanden Corp Waste heat utilization device
JP2012202269A (en) * 2011-03-24 2012-10-22 Kobe Steel Ltd Binary generator and control method for the same
WO2013031287A1 (en) * 2011-08-31 2013-03-07 株式会社豊田自動織機 Waste heat utilization device
JP2013068137A (en) * 2011-09-21 2013-04-18 Toyota Industries Corp Waste heat utilization device
WO2013046853A1 (en) * 2011-09-26 2013-04-04 株式会社豊田自動織機 Waste heat regeneration system
JP2013181398A (en) * 2012-02-29 2013-09-12 Kobe Steel Ltd Control method of binary power generator, and binary power generator
JP2013185788A (en) * 2012-03-09 2013-09-19 Kobe Steel Ltd Binary generating equipment
JP2014062542A (en) * 2012-08-29 2014-04-10 Kobe Steel Ltd Power generating apparatus and control method for power generating apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079098A1 (en) * 2016-10-24 2018-05-03 株式会社神戸製鋼所 Thermal energy recovery device and operation method therefor
CN109804141A (en) * 2016-10-24 2019-05-24 株式会社神户制钢所 Heat-energy recovering apparatus and its method of operation
EP3392590A1 (en) * 2017-03-23 2018-10-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Supercharge air cooling unit
EP3418654A1 (en) 2017-06-21 2018-12-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Impurity recovery method and oil recovery method
KR20180138526A (en) 2017-06-21 2018-12-31 가부시키가이샤 고베 세이코쇼 Impurity recovery method and oil recovery method
JP2019019797A (en) * 2017-07-20 2019-02-07 パナソニック株式会社 Cogeneration system and operation method of the same

Also Published As

Publication number Publication date
JP6433749B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6315814B2 (en) Energy recovery device, compression device, and energy recovery method
JP2014505192A (en) System and method for cooling an inflator
JP5596631B2 (en) Binary power generator
JP5621721B2 (en) Rankine cycle
JP6433749B2 (en) Thermal energy recovery device
JP6223886B2 (en) Power generator
KR101501852B1 (en) Rotary machine drive system
WO2012039225A1 (en) Rankine cycle device
JP5871663B2 (en) Control method of binary power generator
JP6060029B2 (en) Rotating machine drive system
JP6342755B2 (en) Compression device
JP2016151191A (en) Power generation system
KR101639535B1 (en) Thermal energy recovery device
EP3118425B1 (en) Thermal energy recovery device and start-up method thereof
JP6190330B2 (en) Thermal energy recovery device
CN109812308B (en) Heat energy recovery system
JP6647922B2 (en) Thermal energy recovery apparatus and start-up method thereof
JP6616235B2 (en) Waste heat recovery system
KR102179759B1 (en) Heat energy recovery device and operation method thereof
JP6776190B2 (en) Thermal energy recovery device and thermal energy recovery method
JP6718802B2 (en) Thermal energy recovery device and start-up operation method thereof
JP2016044663A (en) Engine power generation system
JP2011196229A (en) Waste heat regeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181107

R150 Certificate of patent or registration of utility model

Ref document number: 6433749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees