JP2016079469A - Desulfurization method for molten steel - Google Patents

Desulfurization method for molten steel Download PDF

Info

Publication number
JP2016079469A
JP2016079469A JP2014212917A JP2014212917A JP2016079469A JP 2016079469 A JP2016079469 A JP 2016079469A JP 2014212917 A JP2014212917 A JP 2014212917A JP 2014212917 A JP2014212917 A JP 2014212917A JP 2016079469 A JP2016079469 A JP 2016079469A
Authority
JP
Japan
Prior art keywords
molten steel
desulfurization
flow rate
tuyere
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014212917A
Other languages
Japanese (ja)
Other versions
JP6358039B2 (en
Inventor
秀平 笠原
Shuhei Kasahara
秀平 笠原
隆之 西
Takayuki Nishi
隆之 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014212917A priority Critical patent/JP6358039B2/en
Publication of JP2016079469A publication Critical patent/JP2016079469A/en
Application granted granted Critical
Publication of JP6358039B2 publication Critical patent/JP6358039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a desulfurization method for molten steel capable of improving a desulfurization reaction efficiency by warping up-blown desulfurization flux into molten steel without using CaFor injection.SOLUTION: Provided is a desulfurization method for molten steel where, using an RH type vacuum degassing treatment apparatus having a vacuum tank, a molten steel increasing immersion tube and a molten steel lowering immersion tube, desulfurizer powder is up-blown from a lance installed at the upper part at the inside of the vacuum tank, in a recycling gas blown into the molten steel increasing immersion tube, the total flow rate (G(Nl/t min)) of the recycling gas introduced from a recycling gas blowing tuyere provided at the side face on the side of the molten steel lowering immersion tube of the molten steel increasing immersion tube and the total flow rate (G(Nl/t min)) of the recycling gas introduced from the recycling gas blowing tuyere provided at the side face on the side opposite to the molten steel lowering immersion tube side of the molten steel increasing immersion tube are controlled to the ranges of formula (1): 1.2≤G/G≤3.2(1).SELECTED DRAWING: Figure 2

Description

本発明は、鉄鋼精錬における溶鋼処理において、RH式真空脱ガス処理装置を用い、真空槽内の上方に設置したランスから脱硫フラックスを溶鋼に吹き付け添加して溶鋼の脱硫処理を施すに際し、従来よりも脱硫効率を向上させて脱硫フラックスの使用量を低減することができる溶鋼の脱硫方法に関する。   In the present invention, the present invention relates to the treatment of molten steel in steel refining by using a RH-type vacuum degassing treatment device and spraying and adding desulfurization flux to the molten steel from a lance installed above in the vacuum tank. The present invention also relates to a desulfurization method for molten steel that can improve the desulfurization efficiency and reduce the amount of desulfurization flux used.

鋼材中の硫黄(S)は耐食性や、溶接性などといった鋼材の多数の特性に影響を与える。ラインパイプやガスタンクなどに用いられる鋼材ではS濃度をより低減することが求められている。特に、S濃度として0.0010%以下が要求される極低硫鋼では、転炉処理後の二次精錬工程における溶鋼脱硫が必要である。ここで、二次精錬ではRH式真空脱ガス処理が主に行われており、RH式真空脱ガス処理における脱硫効率を向上させることが有効である。   Sulfur (S) in the steel material affects many properties of the steel material such as corrosion resistance and weldability. In steel materials used for line pipes and gas tanks, it is required to further reduce the S concentration. In particular, in an extremely low sulfur steel that requires an S concentration of 0.0010% or less, molten steel desulfurization is required in the secondary refining process after the converter treatment. Here, in secondary refining, RH vacuum degassing is mainly performed, and it is effective to improve desulfurization efficiency in RH vacuum degassing.

RH式真空脱ガス処理における脱硫方法は、合金添加孔から真空槽内への脱硫フラックスの添加、真空槽内上方に設置したランスからの脱硫フラックス吹き付け添加、上昇管下方や上昇管中または真空槽内へ脱硫フラックスをインジェクション添加する方法が挙げられる。いずれの方法であっても、脱硫効率を向上させるためには、脱硫フラックスを溶鋼中に巻き込ませることで、脱硫フラックスと溶鋼間の反応界面積を増大させ、さらに反応時間も増加させることが有効である。   The desulfurization method in the RH type vacuum degassing process includes the addition of desulfurization flux from the alloy addition hole into the vacuum tank, the addition of desulfurization flux from the lance installed in the upper part of the vacuum tank, the riser lower part, the riser pipe, or the vacuum tank A method of injecting desulfurized flux into the inside is mentioned. In any method, in order to improve the desulfurization efficiency, it is effective to increase the reaction interfacial area between the desulfurization flux and the molten steel and further increase the reaction time by entraining the desulfurization flux in the molten steel. It is.

特許文献1では、CaOおよびCaFを主成分とする組成からなり、75μm以下の粒度の原料粒子の体積配合率が70%以上である脱硫フラックスを、フラックスの吹込み速度(kg/min)/溶鋼環流量(t/min)の値が3kg/t以下の条件で吹き込む脱硫方法が提示されている。この方法を用いると、溶鋼とほとんど濡れないCaOがCaFにより溶融されることで溶鋼と濡れ、溶鋼中に巻き込まれやすくなるため、脱硫反応効率は向上する。また、巻き込みが生じやすい粒径や、巻き込まれてから後の脱硫フラックス粒子の凝集による反応界面積減少が抑制できる吹き込み速度までが提示されている。しかし、この方法ではCaFを用いる必要があり、環境負荷からRH式真空脱ガス処理後のスラグは路盤材等に有効活用できない。また、CaFによって耐火物の溶損が激しくなり、耐火物補修に必要な費用が増加してしまう。 In Patent Document 1, a desulfurization flux having a composition containing CaO and CaF 2 as main components and having a volume ratio of raw material particles having a particle size of 75 μm or less is 70% or more is used as a flux blowing rate (kg / min) / A desulfurization method is proposed in which a molten steel ring flow rate (t / min) is blown under a condition of 3 kg / t or less. When this method is used, the molten steel and CaO that hardly wets are melted by CaF 2, so that the molten steel gets wet and is easily caught in the molten steel, so that the desulfurization reaction efficiency is improved. Moreover, the particle diameter which is easy to generate | occur | produce, and the blowing speed | rate which can suppress the reduction | decrease of the reaction interface area by aggregation of the desulfurization flux particle | grains after being included are proposed. However, this method requires the use of CaF 2, and the slag after the RH vacuum degassing treatment cannot be effectively used for roadbed materials or the like due to environmental load. In addition, CaF 2 causes refractory melts to become violent, increasing costs required for refractory repair.

特許文献2では、溶鋼の上昇流を導く浸漬管の下方中央に開口させた脱硫剤の吹込みランスから微粉状脱硫剤をキャリアガスと共に溶鋼の上昇流中に吹込む方法が提示されている。この方法を用いると、直接溶鋼中に脱硫フラックス粒子を吹き込み巻き込ませるため、脱硫が促進される。しかし、この方法では溶鋼中に脱硫フラックスを吹込むランスを浸漬せねばならず、ランスの溶損が生じてしまうことに加え、ランスを浸漬させるスペースが必要であることから、使用条件が制約される。   Patent Document 2 proposes a method in which a fine powder desulfurizing agent is blown into a molten steel ascending flow together with a carrier gas from a desulfurizing agent blowing lance opened at a lower center of a dip pipe that guides the ascending flow of molten steel. When this method is used, the desulfurization flux particles are directly blown into the molten steel so that desulfurization is promoted. However, in this method, the lance for blowing the desulfurization flux into the molten steel must be immersed, and in addition to causing lance melting, a space for immersing the lance is required. The

特開平8−269533号公報JP-A-8-269533 特開昭58−037112号公報JP 58-037112

このように、脱硫フラックスを溶鋼中に巻き込ませれば脱硫反応の効率が向上することは従来から知られている。しかし、巻き込ませる方法として、特許文献1に記載のようにフラックス中にCaFを混合し、溶鋼と濡れやすいフラックス組成とするか、または特許文献2に記載のように溶鋼中に直接インジェクションするような方法が必要である。ただし、CaFは環境への悪影響からその使用が制限されている。また、インジェクションを行う場合、インジェクション設備が必要となることに加え、耐火物溶損や飛散方向が制御されていないスプラッシュの増加による鉄ロスが引き起こされる。 Thus, it is conventionally known that the efficiency of the desulfurization reaction is improved if the desulfurization flux is entrained in the molten steel. However, as a method of entrainment, CaF 2 is mixed in the flux as described in Patent Document 1 to make the flux composition easy to get wet with the molten steel, or directly injected into the molten steel as described in Patent Document 2. Is necessary. However, the use of CaF 2 is restricted due to adverse effects on the environment. Moreover, when performing injection, in addition to requiring an injection facility, refractory melts and iron loss due to an increase in splash in which the scattering direction is not controlled is caused.

そこで、本発明では、CaFの使用またはインジェクションを使用することなく、上吹きした脱硫フラックスを溶鋼中に巻き込ませることで、脱硫反応効率を向上させることができる溶鋼の脱硫方法を提供することを課題とする。 Therefore, the present invention provides a molten steel desulfurization method that can improve the desulfurization reaction efficiency by entraining the desulfurized flux blown up in the molten steel without using CaF 2 or injection. Let it be an issue.

RH式真空脱ガス処理において、真空槽内溶鋼に上吹き添加された脱硫フラックスは、大部分が溶鋼表面に着地した後、RHの環流により溶鋼表面上を流れ、下降管の直上へ運ばれる。脱硫反応促進のためには、この脱硫フラックスを溶鋼中に巻き込ませることが必要である。   In the RH-type vacuum degassing treatment, most of the desulfurization flux blown and added to the molten steel in the vacuum chamber is landed on the surface of the molten steel, then flows on the surface of the molten steel by RH recirculation, and is carried directly above the downcomer. In order to accelerate the desulfurization reaction, it is necessary to entrain this desulfurization flux in the molten steel.

脱硫フラックスを溶鋼中に巻き込ませるためには、溶鋼表面に着地した脱硫フラックスの上部から溶鋼を被せるとよい。しかし、RH真空槽内において溶鋼を粉体に被せるために、溶鋼を機械的に散布することは、非常に困難である。   In order to entrain the desulfurization flux in the molten steel, it is preferable to cover the molten steel from above the desulfurization flux that has landed on the surface of the molten steel. However, in order to cover the molten steel with powder in the RH vacuum chamber, it is very difficult to mechanically spray the molten steel.

そこで、上昇管直上の溶鋼表面の盛り上がり形状を制御して、表面から飛散するスプラッシュを粉体に被せることを検討した。スプラッシュを効率的に粉体に被せるためには、真空槽中心側に飛散するスプラッシュの比率を増大させる必要がある。そのためには、図1に示すように、上昇管に設けられた全ての羽口の中で、下降管側の側面に設けられた羽口から導入する環流ガスの総流量(以降ではG)を、下降管側とは反対側の側面に設けられた羽口から導入する環流ガス総流量(以降ではG)よりも高流量とすれば、真空槽内の上昇管直上に形成される溶鋼の盛り上がりの頂点が真空槽中心側へと偏倚し、中心方向に飛散するスプラッシュ量が増加すると考えられる。しかし、GとGの流量比が1に近い場合では、中心方向に飛散するスプラッシュ量が大きくなく脱硫反応効率向上効果は小さいと考えられる。また、GとGの流量比が過度に大きい場合では、上昇管内での環流ガス気泡が偏在してしまい、環流量が低下し、脱硫反応効率も低下してしまうと考えられる。 Therefore, we studied the control of the swelled shape of the surface of the molten steel directly above the riser, and covering the powder with splash splashed from the surface. In order to efficiently cover the powder with the splash, it is necessary to increase the ratio of the splash scattered toward the center of the vacuum chamber. For this purpose, as shown in FIG. 1, the total flow rate of the reflux gas introduced from the tuyere provided on the side surface on the downcomer pipe side among all tuyere provided on the riser pipe (hereinafter referred to as G D ). the, if the downcomer side (and later G N) opposite freewheeling introduced through tuyeres provided in the side surface of the total gas flow rate and high flow than molten steel to be formed immediately above the riser in the vacuum chamber It is thought that the top of the swell rises toward the center of the vacuum chamber, and the amount of splash splashed toward the center increases. However, when the flow rate ratio of G D and G N is close to 1, the desulfurization reaction efficiency improvement without amount splash large scattered toward the center is considered to be small. Further, in the case where the flow rate ratio of G D and G N is too large, will be unevenly distributed recirculated gas bubbles in the riser, recirculation flow is reduced, the desulfurization reaction efficiency also considered degraded.

このように、GとGの流量比には適正な範囲があると考え、流量比を試験により明らかにした。その結果、本発明の要旨を次のように纏めることができる。 Thus, considered in the flow rate of G D and G N is an appropriate range, revealed by the test flow rate ratio. As a result, the gist of the present invention can be summarized as follows.

(1)真空槽、溶鋼上昇浸漬管および溶鋼下降浸漬管を有するRH式真空脱ガス処理装置を用い、前記真空槽内上方に設置したランスから脱硫フラックスを上吹きする溶鋼の脱硫方法であって、前記溶鋼上昇浸漬管に吹き込む環流ガスを、前記溶鋼上昇浸漬管の前記溶鋼下降浸漬管側の側面に設けられた還流ガス吹込み羽口から導入される環流ガスの総流量(G(Nl/(t・min)))と、前記溶鋼上昇浸漬管の前記溶鋼下降浸漬管側とは反対側の側面に設けられた還流ガス吹込み羽口から導入される環流ガスの総流量(G(Nl/(t・min)))を、(1)式の範囲とすることを特徴とする溶鋼の脱硫方法。 (1) A desulfurization method for molten steel using a RH-type vacuum degassing apparatus having a vacuum tank, a molten steel ascending dip pipe and a molten steel descending dip pipe, and blowing desulfurization flux upward from a lance installed in the upper part of the vacuum tank. the recirculated gas blown into the molten steel increases dip tube, the total flow rate (G D (Nl of recirculated gas that is introduced from the recirculating gas blowing tuyere provided on the side surface of the molten steel falling dip tube side of the molten steel increases immersion tube / (T · min))) and the total flow rate of the reflux gas introduced from the reflux gas blowing tuyere provided on the side of the molten steel rising dip tube opposite to the molten steel descending dip tube side ( GN (Nl / (t · min))) is in the range of the formula (1).

1.2≦G/G≦3.2・・・(1)
(2)環流ガス吹き込み羽口から導入する環流ガス流量を独立に変更することによって、前記Gと前記Gを前記(1)式の範囲とすることを特徴とする上記(1)に記載の溶鋼の脱硫方法。
1.2 ≦ G D / G N ≦ 3.2 (1)
(2) by changing the recirculated gas flow rate to be introduced from the circulating gas blowing tuyere independently wherein said G D and the G N in the above (1), characterized in that the range of the equation (1) Desulfurization method for molten steel.

(3)いずれの環流ガス吹き込み羽口に導入する環流ガス流量を同一とし、前記溶鋼上昇浸漬管の前記溶鋼下降浸漬管側の側面に設けられた還流ガス吹込み羽口の羽口数と、前記溶鋼上昇浸漬管の前記溶鋼下降浸漬管側とは反対側の側面に設けられた還流ガス吹込み羽口の羽口数の比率を1.2〜3.2とすることで、前記Gと前記Gを前記(1)式の範囲とすることを特徴とする上記(1)に記載の溶鋼の脱硫方法。 (3) The number of the recirculation gas blowing tuyere provided on the side of the molten steel descending dip tube side of the molten steel rising dip tube is the same as the reflux gas flow rate introduced into any of the circulating gas blowing tuyere, the ratio of blade number of units of the recirculation gas blowing tuyere provided on the side surface opposite to the molten steel falling dip tube side of the molten steel increases the dip tube by a 1.2 to 3.2, the said G D GN is made into the range of said (1) Formula, The desulfurization method of the molten steel as described in said (1) characterized by the above-mentioned.

本発明を用いることで、脱硫フラックスにCaFを使用することなく、またインジェクションによる溶鋼への直接吹き込みをすることなく、脱硫フラックスを溶鋼中に効率的に巻き込むことができる。その結果として、脱硫フラックスの脱硫反応効率が飛躍的に向上し、脱硫フラックスの添加量を低減することができる。これにより、RH式真空脱ガス処理時間の短縮による生産性向上を図ることができ、またスラグ排出量も低減するため環境負荷の低減を図ることができる。 By using the present invention, without the use of CaF 2 in the desulfurization flux, also without blowing directly to the molten steel by injection, it is possible to involve efficiently in the molten steel desulfurization flux. As a result, the desulfurization reaction efficiency of the desulfurization flux is dramatically improved, and the addition amount of the desulfurization flux can be reduced. As a result, productivity can be improved by shortening the RH type vacuum degassing processing time, and the environmental load can be reduced because the slag discharge amount is also reduced.

図1はRH式真空脱ガス装置を浸漬管側から見た模式図である。FIG. 1 is a schematic view of an RH vacuum degassing apparatus viewed from the dip tube side. 図2は脱硫フラックス添加後のS濃度に及ぼすGとGの流量比の影響を示す図である。Figure 2 is a diagram showing the effect of flow ratio of G D and G N on the S concentration after desulfurization flux addition.

本発明を実施するための形態を説明する。本発明は転炉処理後にRH式真空脱ガス処理を行う場合を例として挙げるが、転炉処理とRH式真空脱ガス処理の間に、合金成分調整やスラグ改質を目的とした、大気圧下での不活性ガス吹き込みによる取鍋精錬処理を行っても良い。   A mode for carrying out the present invention will be described. In the present invention, the case where RH vacuum degassing is performed after the converter treatment is taken as an example, but the atmospheric pressure is used for the purpose of adjusting the alloy components and slag reforming between the converter treatment and the RH vacuum degassing treatment. You may perform the ladle refining process by the inert gas blowing below.

(1)真空脱ガス処理
転炉処理後に溶鋼を取鍋に出鋼する。取鍋をRH式真空脱ガス処理装置へ搬送し、真空処理を開始する。
(1) Vacuum degassing process After the converter process, the molten steel is put into a ladle. The ladle is transferred to the RH type vacuum degassing apparatus, and vacuum processing is started.

本発明で用いるRH式還流型脱ガス装置を、図1を用いて説明する。図1はRH式真空脱ガス装置1を浸漬管側から見た模式図である。本発明で用いるRH式還流型脱ガス装置1は、例えば図1に示すように、真空槽2、溶鋼上昇浸漬管(以下、「上昇管」という。)3および溶鋼下降浸漬管(以下、「下降管」という。)4を有する。上昇管3および下降管4は真空槽2と連設されている。上昇管3および下降管4の一部は取鍋内の溶鋼に浸漬されている。上昇管3の側面には還流ガス吹込み羽口(以下、「羽口」という。)3cが設けられている。上昇管3の側面は、下降管4側の側面(以下、「下降管側側面」という。)3a、および上昇管3の下降管4側とは反対側の側面(以下、「反対側側面」という。)3bで構成される。図1では、一例として、4つの羽口3cを等間隔に設けた図を示しているが、本発明はこれに限定されるものではない。このようなRH式還流型脱ガス装置1を用いると、取鍋内の溶鋼は、真空槽1内が所定の真空度で真空にされるとともに羽口3cから還流ガスが吹込まれることにより上昇管3を上昇する。そして、真空槽1内で真空処理された後、下降管4を下降して取鍋に戻される。   The RH reflux degassing apparatus used in the present invention will be described with reference to FIG. FIG. 1 is a schematic view of the RH vacuum degassing apparatus 1 as viewed from the dip tube side. The RH reflux degassing apparatus 1 used in the present invention includes, for example, as shown in FIG. 1, a vacuum chamber 2, a molten steel ascending pipe (hereinafter referred to as “rising pipe”) 3, and a molten steel descending dip pipe (hereinafter referred to as “ 4). The ascending pipe 3 and the descending pipe 4 are connected to the vacuum chamber 2. A part of the ascending pipe 3 and the descending pipe 4 is immersed in the molten steel in the ladle. A reflux gas blowing tuyere (hereinafter referred to as “tuyere”) 3 c is provided on a side surface of the ascending pipe 3. The side surface of the ascending pipe 3 includes a side surface on the downcomer pipe 4 side (hereinafter referred to as “downcomer side surface”) 3a and a side surface of the ascending pipe 3 opposite to the downcomer tube 4 side (hereinafter referred to as “opposite side surface”). It is composed of 3b. Although FIG. 1 shows a diagram in which four tuyere 3c are provided at equal intervals as an example, the present invention is not limited to this. When such an RH-type reflux degassing apparatus 1 is used, the molten steel in the ladle rises when the vacuum chamber 1 is evacuated at a predetermined degree of vacuum and the reflux gas is blown from the tuyere 3c. The tube 3 is raised. Then, after vacuum processing in the vacuum chamber 1, the downcomer 4 is lowered and returned to the ladle.

なお、本発明において、「溶鋼上昇浸漬管の溶鋼下降浸漬管側の側面」(下降管側側面)3aとは、図1に示すように、RH式還流脱ガス装置1を上昇管3側から見たときに、上昇管3の中心3dと下降管4の中心4aとを結ぶ線(以下、「中心線」という。)5に直角に交わる分離線(以下、「分離線」という。)3eで上昇管3横断面の外周を分離したうちの、下降管4側の外周で表される側面をいう。また、本発明において、「溶鋼上昇浸漬管の溶鋼下降浸漬管側とは反対側の側面」(反対側側面)3bとは、図1に示すように、RH式還流脱ガス装置1を上昇管3側から見たときに、上昇管3の中心3dと下降管4の中心4aとを結ぶ線(以下、「中心線」という。)5に直角に交わる分離線(以下、「分離線」という。)3eで上昇管3横断面の外周を分離したうちの、下降管4側とは反対側の外周で表される側面をいう。   In the present invention, the “side surface of the molten steel ascending dip tube on the molten steel descending dip tube side” (down tube side surface) 3a means that the RH reflux degassing apparatus 1 is connected from the ascending tube 3 side as shown in FIG. When viewed, a separation line (hereinafter referred to as “separation line”) 3e that intersects the line 3 (hereinafter referred to as “center line”) 5 perpendicularly to the center 3d of the ascending pipe 3 and the center 4a of the downfall pipe 4 is shown. The side surface represented by the outer periphery on the downcomer pipe 4 side of the outer periphery of the cross section of the ascending pipe 3 is separated. In the present invention, the “side surface of the molten steel ascending dip tube opposite to the molten steel descending dip tube side” (opposite side surface) 3b is an RH type reflux degassing apparatus 1 as shown in FIG. When viewed from the side 3, the separation line (hereinafter referred to as "separation line") that intersects the line 3 (hereinafter referred to as "center line") 5 perpendicularly connecting the center 3d of the ascending pipe 3 and the center 4a of the descending pipe 4 is referred to as "separation line". .) Of the separation of the outer periphery of the cross section of the riser tube 3 in 3e, the side surface represented by the outer periphery on the side opposite to the downcomer tube 4 side.

RH式真空脱ガス処理装置1では、上吹きによる脱硫に加え、合金添加による成分調整も行ってもよい。さらに、O上吹きによる溶鋼の昇温、脱炭といった精錬処理が行われるが、その処理順については固定する必要はない。 In the RH type vacuum degassing apparatus 1, in addition to desulfurization by top blowing, component adjustment by alloy addition may be performed. Furthermore, although the refining process such as the temperature rise and decarburization of the molten steel by blowing on O 2 is performed, it is not necessary to fix the order of the processes.

以下に、本発明で規定する各要件について詳述する。
(2)G/G比と脱硫処理後[S]との関係
真空処理の際、脱硫フラックスは、ランスから真空槽中心部に向けて吹き付けられる。本発明では、脱硫フラックスにスプラッシュを被せて脱硫効率を高めるためには真空槽中心側に飛散するスプラッシュの比率を増大させる必要がある。これを実現するため、下降管側側面3aに設けられた羽口3cから導入する環流ガスの総流量Gが、反対側側面3bに設けられた羽口3cから導入する環流ガス総流量Gよりも高流量であれば、真空槽2内の上昇管3直上に形成される溶鋼の盛り上がりの頂点が真空槽2中心側へと偏倚し、真空槽2の中心方向に飛散するスプラッシュ量が増加すると考えられる。これにより、本発明では、スプラッシュにより飛散した溶鋼を、主に真空槽2中心部に供給される脱硫フラックスに被せることができ、脱硫の効率化を図ることが可能となる。しかし、GとGの流量比が1に近い場合では、中心方向に飛散するスプラッシュ量が大きくなく脱硫反応効率向上効果は小さいと考えられる。また、GとGの流量比が過度に大きい場合では、上昇管内での環流ガス気泡が偏在してしまい、環流量が低下し、脱硫反応効率も低下してしまうと考えられる。本発明者らは最適なGとGの流量比を得るために以下の試験を行った。
Below, each requirement prescribed | regulated by this invention is explained in full detail.
(2) When the relationship vacuum treatment with G D / G N ratio and after the desulfurization treatment [S], the desulfurization flux is blown toward the vacuum chamber from central lance. In the present invention, in order to increase the desulfurization efficiency by applying the splash to the desulfurization flux, it is necessary to increase the ratio of the splash scattered to the center side of the vacuum chamber. To achieve this, the total flow rate G D of recirculated gas to be introduced from the tuyere 3c provided on the downcomer side face 3a is recirculated gas total flow introduced from the tuyere 3c provided on the opposite side surface 3b G N If the flow rate is higher than that, the top of the swell of the molten steel formed immediately above the riser 3 in the vacuum chamber 2 is biased toward the center of the vacuum chamber 2, and the amount of splash scattered toward the center of the vacuum chamber 2 increases. I think that. Thereby, in this invention, the molten steel scattered by the splash can be put on the desulfurization flux mainly supplied to the vacuum tank 2 center part, and it becomes possible to aim at the efficiency of desulfurization. However, when the flow rate ratio of G D and G N is close to 1, the desulfurization reaction efficiency improvement without amount splash large scattered toward the center is considered to be small. Further, in the case where the flow rate ratio of G D and G N is too large, will be unevenly distributed recirculated gas bubbles in the riser, recirculation flow is reduced, the desulfurization reaction efficiency also considered degraded. The present inventors performed the following tests in order to obtain a flow rate optimum G D and G N.

試験方法は以下のとおりである。C濃度が0.010〜0.30%、Si濃度が0.020〜0.50%、Mn濃度が0.20〜1.50%、Al濃度が0.020〜0.16%、S濃度が0.0028〜0.0032%である溶鋼300トンを、RH式真空脱ガス処理装置1を用い精錬処理するに際し、処理の途中において真空槽2内上方に設置した上吹きランスからCaOを主体とする脱硫フラックスを真空槽2内の溶鋼表面に吹き付け添加した。脱硫フラックスの添加量は溶鋼1トン当たり5kg/tに統一した。脱硫フラックスの吹き付け添加速度は溶鋼1トン当たり0.3〜1.1kg/(t・min)とした。ここで言うCaOを主体とする脱硫フラックスとは、最大粒子径が2.85mm以下であり、フラックス中のCaO濃度が90%以上の粉体である。   The test method is as follows. C concentration is 0.010 to 0.30%, Si concentration is 0.020 to 0.50%, Mn concentration is 0.20 to 1.50%, Al concentration is 0.020 to 0.16%, S concentration When refining 300 tons of molten steel with 0.0028 to 0.0032% using the RH type vacuum degassing apparatus 1, the main component is CaO from the upper blow lance installed in the upper part of the vacuum chamber 2 during the process. The desulfurizing flux was added to the surface of the molten steel in the vacuum chamber 2 by spraying. The amount of desulfurization flux added was standardized at 5 kg / t per ton of molten steel. The desulfurization flux spraying rate was 0.3 to 1.1 kg / (t · min) per ton of molten steel. The desulfurization flux mainly composed of CaO referred to here is a powder having a maximum particle diameter of 2.85 mm or less and a CaO concentration in the flux of 90% or more.

このような脱硫フラックスの吹付け条件で、約10分間にわたって脱硫フラックスをArガスとともに連続的に溶鋼に吹き付けた。その吹き付けが完了した後、さらに5分間の溶鋼環流を施してから溶鋼のサンプルを採取し、その含有S濃度を分析して本発明に係る処理後のS%とした。なお、本願明細書において濃度を表す単位の%は、特に断りが無い限り質量%の意味で用いる。   Under such desulfurization flux spraying conditions, the desulfurization flux was continuously sprayed onto the molten steel together with Ar gas for about 10 minutes. After the spraying was completed, a molten steel reflux was further applied for 5 minutes, a molten steel sample was taken, and the contained S concentration was analyzed to obtain S% after the treatment according to the present invention. In the present specification, “%” of the unit representing the concentration is used in the meaning of “% by mass” unless otherwise specified.

とGの流量比を得るための試験は、このような前提条件の上、さらにガス流量変更条件と羽口数変更条件で行われた。ガス流量変更条件は、上昇管3内の環流ガス吹き込み羽口3cを、上昇管3の横断面外周に対し等間隔で設置し、下降管側側面3aに設けられた6個の羽口3cから導入する環流ガスと、反対側側面3bに設けられた6個の羽口3cから導入する環流ガスとを、下降管側側面3aの羽口3cと反対側側面3bの羽口3cとで独立に制御することによって、GとGの流量比をG/G=0.73〜4.0の範囲で変更させる条件である。 Test for obtaining the flow rate of G D and G N are on such assumptions, it was further carried out at a gas flow rate change condition and feather talkative change condition. The gas flow rate changing condition is that the circulating gas blowing tuyere 3c in the ascending pipe 3 is installed at equal intervals with respect to the outer periphery of the cross section of the ascending pipe 3, and from the six tuyere 3c provided on the down pipe side surface 3a. The recirculating gas to be introduced and the recirculating gas introduced from the six tuyere 3c provided on the opposite side surface 3b are independently produced by the tuyere 3c on the downcomer side surface 3a and the tuyere 3c on the opposite side surface 3b. by controlling a condition for changing the flow ratio of G D and G N in the range of G D / G N = 0.73~4.0.

羽口数変更条件は、全ての羽口の羽口径を同一にすることにより導入する環流ガス流量を等しくし、下降管側側面3aに設けられた羽口3cの羽口数と反対側側面3bに設けられた羽口3cの羽口数をG/G=0.71〜5.0となる範囲で変更させた条件である。つまり、この流量比は羽口個数の比であり、具体的には、(下降管側側面3aの羽口個数)/(反対側側面3bの羽口個数)で5個/7個〜10個/2個に相当する。 The conditions for changing the tuyere number are the same for all the tuyere tuyere diameters, the flow gas flow rate to be introduced is made equal, and the number of tuyere provided on the downcomer side surface 3a is set on the side surface 3b opposite to the tuyere number. This is a condition in which the number of tuyere of the tuyere 3c is changed within a range of G D / G N = 0.71 to 5.0. In other words, this flow rate ratio is the ratio of the number of tuyere, specifically, 5/7/7 to 10 (number of tuyere on downcomer side surface 3a) / (number of tuyere on opposite side surface 3b). / Equivalent to two pieces.

図2に脱硫フラックスの吹き付け添加後におけるS濃度に及ぼすGとGの流量比の関係を示す。ガス流量変更条件では0.73から、羽口数変更条件では0.71から、G/Gが増加するにつれて脱硫処理後[S]が急激に減少し、G/Gが1.2のときに脱硫処理後[S]が0.001%に低減した。そして、G/Gが1.4のときに脱硫処理後[S]が0.0006%と0.0005%にまで低減し、G/Gが3.0まで脱硫処理後[S]が0.0007%以下を維持した。その後、G/Gが3.2で脱硫処理後[S]が0.001%となり、G/Gがさらに増加するにつれて脱硫効率が悪化した。 Shows the relationship between the flow rate ratio of G D and G N on S concentration in Figure 2 after the addition spraying desulfurization flux. From 0.73 at a gas flow rate change condition, from 0.71 feathers talkative change condition, G after the desulfurization treatment as D / G N is increased [S] is rapidly decreased, G D / G N 1.2 In this case, [S] was reduced to 0.001% after the desulfurization treatment. Then, G D / G N is after the desulfurization treatment at 1.4 [S] is reduced to 0.0006% and 0.0005%, after the desulfurization treatment to G D / G N is 3.0 [S ] Was maintained at 0.0007% or less. Then, next to 0.001% after desulfurization [S] at G D / G N is 3.2, the desulfurization efficiency was worse as G D / G N further increases.

このように、GとGの流量比がG/G=1.2〜3.2の範囲において、脱硫フラックス添加後のS濃度が0.0010%以下の低濃度まで脱硫反応が進行した。GとGの流量比がG/G=1.4〜3.0の範囲において、脱硫フラックス添加後のS濃度が0.0007%以下の低濃度まで更に脱硫反応が進行した。これは、ランスから吹き付け添加された脱硫フラックスに、上昇管直上の溶鋼盛り上がり部で発生したスプラッシュが効率良く被さったためである。G/Gが1.2未満では脱硫処理後のS濃度が0.0010%を超えて高濃度になったが、これは上昇管直上にできる溶鋼盛り上がり部の頂点の位置が上昇管の中心近傍となり、真空槽中心に飛散するスプラッシュ量が増加しなかったためである。G/Gが3.2を超えて大きくなると、脱硫処理後のS濃度は0.0010%を超えて高濃度になったが、これは上昇管内の環流ガス気泡が偏在してしまい、RHの環流量が低位になってしまったためである。 Thus, to the extent the flow rate ratio of G D / G N = 1.2~3.2 of G D and G N, S concentration after desulfurization flux addition desulfurization reaction to a low concentration of 0.0010% or less Progressed. To the extent the flow rate ratio of G D / G N = 1.4~3.0 of G D and G N, S concentration after desulfurization flux addition further desulfurization reaction proceeded to low concentrations of less 0.0007%. This is because the desulfurization flux sprayed and added from the lance was efficiently covered with the splash generated at the molten steel bulge just above the riser pipe. Although G D / G N is S concentration after the desulfurization treatment is less than 1.2 becomes a high concentration exceeding 0.0010%, which is the position of the vertex of the molten steel raised part can be directly above riser riser This is because the amount of splash scattered near the center and scattered in the center of the vacuum chamber did not increase. When G D / G N exceeds 3.2, the S concentration after desulfurization treatment increased to a high concentration exceeding 0.0010%, but this caused uneven circulation gas bubbles in the ascending pipe, This is because the ring flow rate of RH has become low.

このように、本発明では、羽口から導出する還流ガス流量を、羽口から導入する還流ガス流量の変更もしくは羽口数の変更により(1)式を満たすように制御することによって、効率的な脱硫を実現することがわかった。   As described above, in the present invention, the recirculation gas flow rate derived from the tuyere is controlled so as to satisfy the expression (1) by changing the recirculation gas flow rate introduced from the tuyere or by changing the number of tuyere. It was found that desulfurization was realized.

(3)羽口位置
図1に示すように、羽口3cは下降管側側面3aおよび反対側側面3bに設けられる。
(3) Tuyere position As shown in FIG. 1, the tuyere 3c is provided on the downcomer side surface 3a and the opposite side surface 3b.

羽口から導入される還流ガス流量を変更して(1)式を満たすようにする場合、羽口位置の好ましい態様としては、羽口3cを上昇管3横断面の外周上に等間隔で配置することが挙げられる。これにより、還流ガス流量の調整が容易になるとともに真空槽の中心方向に飛散するスプラッシュ量を増加させることができる。   When the flow rate of the recirculation gas introduced from the tuyere is changed to satisfy the formula (1), the tuyere position is preferably arranged on the outer periphery of the cross section of the rising pipe 3 at equal intervals. To do. As a result, the flow rate of the reflux gas can be easily adjusted and the amount of splash scattered in the central direction of the vacuum chamber can be increased.

また、羽口の個数を変更して(1)式を満たすようにする場合、羽口位置の好ましい態様としては、図1に示すように、1.下降管側側面3aが(2)式で表される中心角αである扇形の円弧で示される部分であること、2.中心角αの2等分線が中心線5であること、の2つの条件を満たすようにする。これらを満たすように羽口3cが配置される場合には、羽口が中心線5から大きく離れることなく配置されるため、羽口が等間隔でなくても、スプラッシュを真空槽1の中心側に飛散させることが可能となる。さらに好ましい態様としては、羽口が前記円弧上に等間隔に配置されるようにする。   Further, when the number of tuyere is changed to satisfy the formula (1), as a preferred mode of the tuyere position, as shown in FIG. 1. The downcomer side surface 3a is a portion indicated by a fan-shaped arc having a central angle α expressed by the equation (2). The two conditions that the bisector of the center angle α is the center line 5 are satisfied. When the tuyere 3c is arranged so as to satisfy these conditions, the tuyere is arranged without being greatly separated from the center line 5, so that even if the tuyere are not equally spaced, the splash is placed on the center side of the vacuum chamber 1. It becomes possible to scatter. As a more preferable aspect, the tuyere is arranged at equal intervals on the arc.

α(°)=180×(n/(n+1))・・・(2)
(2)式中、nは下降管側側面3aに設けられた羽口数である。
α (°) = 180 × (n / (n + 1)) (2)
In the formula (2), n is the number of tuyere provided on the downcomer side surface 3a.

(4)還流ガス流量の制御形態
(4−1)羽口から導入される還流ガス流量の制御
本発明では、羽口から導入される還流ガス流量を独立に制御することによって、G/G=1.2〜3.2の範囲となるように制御してもよい。例えば、下降管側側面3aのすべての羽口3c、および反対側側面3bのすべての羽口3cの2系統で各々独立に還流ガス流量を制御されてもよく、すべての羽口が独立の系統で還流ガス流量を制御してもよい。
(4) Control mode of recirculation gas flow rate (4-1) Control of recirculation gas flow rate introduced from tuyere In the present invention, G D / G is controlled by independently controlling the recirculation gas flow rate introduced from the tuyere. You may control so that it may become the range of N = 1.2-3.2. For example, the flow rate of the reflux gas may be controlled independently by two systems of all tuyere 3c on the downcomer side surface 3a and all tuyere 3c on the opposite side surface 3b, and all tuyere are independent systems. The reflux gas flow rate may be controlled by

なお、環流ガス流量は総流量として溶鋼1トン当たり4.5〜14.0Nl/(t・min)とすることが望ましい。環流ガス流量が過度に低流量では、環流量が低下してしまい、合金添加に伴う成分調整、脱ガス、清浄化といった脱硫反応以外への悪影響が強くなる場合がある。環流ガス流量が過度に高流量では、溶鋼中に吹き込まれた環流ガスの気泡同士が衝突、合体してしまう、いわゆる吹き抜けが発生してしまい、環流量増大の効果が得られなくなる場合がある。   In addition, it is desirable that the reflux gas flow rate is 4.5 to 14.0 Nl / (t · min) per ton of molten steel as a total flow rate. When the reflux gas flow rate is excessively low, the circulation flow rate is decreased, and adverse effects other than the desulfurization reaction such as component adjustment, degassing, and purification may be increased. If the reflux gas flow rate is excessively high, bubbles of the reflux gas blown into the molten steel may collide and coalesce, so-called blow-through may occur, and the effect of increasing the circulation flow rate may not be obtained.

環流ガス吹き込み羽口の総数は4〜25個とすることが望ましい。羽口数が過度に少ない場合、溶鋼中に吹き込まれた環流ガス気泡が上昇管内で偏在しやすく、環流量が低下してしまう場合がある。羽口数が過度に多い場合、気泡が上昇管の中心に達する前に、隣接する羽口から吹き込まれた気泡と衝突、合体し、吹き抜けが発生してしまい、環流量増大の効果が得られなくなる場合がある。好ましくは8〜16個である。   The total number of recirculating gas blowing tuyere is preferably 4-25. When the number of tuyere is excessively small, the circulating gas bubbles blown into the molten steel are likely to be unevenly distributed in the riser pipe, and the circulating flow rate may be reduced. When the number of tuyere is excessively large, before the bubble reaches the center of the riser, it collides with and merges with the bubble blown from the adjacent tuyere, resulting in an increase in the ring flow rate. There is a case. The number is preferably 8-16.

なお、羽口から導入される還流ガス流量を制御する場合、下降管側側面3aの羽口個数と反対側側面3bの羽口個数の比率は特に制限されない。下降管側側面3aの羽口個数が反対側側面3bの羽口個数より少ない場合であっても、下降管側側面3aの羽口から導入される還流ガス流量が多ければ本発明の効果を発揮できる。   When the flow rate of the reflux gas introduced from the tuyere is controlled, the ratio of the number of tuyere on the downcomer side surface 3a and the number of tuyere on the opposite side surface 3b is not particularly limited. Even when the number of tuyeres on the downcomer side surface 3a is smaller than the number of tuyeres on the opposite side surface 3b, the effect of the present invention is exhibited as long as the reflux gas flow rate introduced from the tuyeres on the downcomer side surface 3a is large. it can.

(4−2)羽口数による還流ガス流量の制御
本発明では、羽口径を揃えてすべての羽口から導出される還流ガス流量を同一とし、下降管側側面の羽口数と反対側側面の羽口数の比を1.2〜3.2とすることにより、(1)式を満たすようにしてもよい。つまり、(下降管側側面の羽口数)/(反対側側面の羽口数)=3/2、4/3など〜19/6などであればよいことになる。好ましくは羽口数の比を1.4〜3.0の範囲にすれば良く、例えば6/4、7/5〜12/4などとするのが良い。
(4-2) Control of recirculation gas flow rate by the number of tuyere In the present invention, the recirculation gas flow rate derived from all tuyere with the same tuyere diameter is made the same, and the number of tuyere on the downcomer side is opposite to that on the side opposite to the downcomer. By setting the numerical ratio to 1.2 to 3.2, the expression (1) may be satisfied. That is, (the number of tuyere on the downcomer side surface) / (number of tuyere on the opposite side surface) = 3/2, 4/3, etc. to 19/6. Preferably, the ratio of the number of tuyere may be in the range of 1.4 to 3.0, for example, 6/4, 7/5 to 12/4, etc.

このように制御する場合の還流ガス流量の総流量は(4−1)の場合と同様である。羽口個数は、好ましくは5〜25個であり、より好ましくは10〜16個である。   The total flow rate of the reflux gas flow in the case of such control is the same as in the case of (4-1). The number of tuyere is preferably 5 to 25, and more preferably 10 to 16.

(5)真空槽内圧力
真空槽内の圧力は67〜13300Paが望ましい。さらには133〜6670Paが望ましい。圧力が低すぎると環流量が増加する一方で、環流ガスとして吹き込まれた気泡の破裂時のスプラッシュが激しくなり、耐火物溶損といった悪影響の度合いが強くなる場合がある。圧力が高すぎると、環流量が低下してしまい、合金添加に伴う成分調整、脱ガス、清浄化といった脱硫反応以外への悪影響が強くなる場合がある。
(5) Pressure in the vacuum chamber The pressure in the vacuum chamber is preferably 67 to 13300 Pa. Furthermore, 133-6670 Pa is desirable. If the pressure is too low, the flow rate of the ring increases, while the splash at the time of bursting of the bubbles blown as the reflux gas becomes intense, and the degree of adverse effects such as refractory erosion may increase. If the pressure is too high, the flow rate of the ring decreases, and adverse effects other than the desulfurization reaction such as component adjustment, degassing, and purification accompanying the addition of the alloy may become strong.

(6)脱硫フラックス
脱硫フラックスの組成は、CaOを主体とする。ここでいうCaOを主体とするフラックスとは、CaO純分の濃度が80%以上であり、残部はフラックスの融点を低下させるためにAlやMgOといった酸化物を含んでもよく、また脱酸のためにCaSiといった合金粉末を含んでもよい。さらに不可避的に混入する不純物成分を含有してもよい。CaO純分の濃度が80%未満の場合、フラックスの精錬反応効率が低下する場合がある。
(6) Desulfurization flux The composition of the desulfurization flux is mainly CaO. The flux mainly composed of CaO here has a concentration of pure CaO of 80% or more, and the balance may contain oxides such as Al 2 O 3 and MgO in order to lower the melting point of the flux. An alloy powder such as CaSi may be included for the acid. Furthermore, an impurity component inevitably mixed may be contained. When the concentration of pure CaO is less than 80%, the flux refining reaction efficiency may be reduced.

脱硫フラックスの最大粒径は、溶鋼と脱硫フラックス粒子との界面面積を広くするために2.85mm以下が好ましく、脱硫効率を更に高めるため、より好ましくは1.0mm以下、特に好ましくは0.15mm以下である。   The maximum particle size of the desulfurization flux is preferably 2.85 mm or less in order to widen the interface area between the molten steel and the desulfurization flux particles, and more preferably 1.0 mm or less, particularly preferably 0.15 mm in order to further increase the desulfurization efficiency. It is as follows.

脱硫フラックスの添加量は溶鋼1トン当たり1.0〜11.0kg/tが好ましい。1.0kg/t未満では脱硫フラックス量が少な過ぎ、脱硫フラックス添加後のS濃度が目標とする濃度まで低減できない場合がある。11.0kg/tを超えて大きくなると、脱硫の効果は飽和してしまうことに加え、溶鋼中に巻き込まれたフラックス粒子がRH式真空脱ガス処理後にも溶鋼中に残留してしまい、製品の鋼材中にも残留することで、鋼材特性を悪化させる場合がある。   The amount of desulfurization flux added is preferably 1.0 to 11.0 kg / t per ton of molten steel. If it is less than 1.0 kg / t, the amount of the desulfurization flux is too small, and the S concentration after the addition of the desulfurization flux may not be reduced to the target concentration. If it exceeds 11.0 kg / t, the effect of desulfurization will be saturated, and the flux particles entrained in the molten steel will remain in the molten steel even after the RH vacuum degassing treatment. By remaining in the steel material, the steel material characteristics may be deteriorated.

脱硫フラックスの供給速度は溶鋼1トン当たり0.20〜1.20kg/(t・min)が好ましい。0.20kg/(t・min)未満では脱硫フラックスの供給時間が長時間化してしまう場合がある。1.20kg/(t・min)を超えて大きくなると、上吹きノズルから噴出されるフラックス粒子の流速が十分に大きくならず、真空排気の集塵ロスにより溶鋼への到達率が低位となる場合がある。   The feed rate of the desulfurization flux is preferably 0.20 to 1.20 kg / (t · min) per ton of molten steel. If it is less than 0.20 kg / (t · min), the supply time of the desulfurization flux may be prolonged. When the flow rate exceeds 1.20 kg / (t · min), the flow rate of the flux particles ejected from the top blowing nozzle does not increase sufficiently, and the arrival rate to the molten steel becomes low due to dust collection loss in vacuum exhaust. There is.

(7)ランス形状
脱硫フラックスを上吹きするランスノズルの形状は、ラバールでもスパイクでもストレートでもよいが、フラックスの真空排気による集塵ロスを低減するためにはラバールやスパイクといった超音速ジェットが得られるノズルが望ましい。
(7) Lance shape The shape of the lance nozzle that blows up the desulfurization flux may be laval, spike, or straight, but supersonic jets such as laval and spike can be obtained to reduce dust collection loss due to vacuum evacuation of the flux. A nozzle is desirable.

(8)溶鋼中Al濃度
脱硫フラックスを添加する際、溶鋼中Al濃度は0.020%〜0.20%が望ましい。Alは強脱酸元素であり、脱硫フラックスと平衡するS濃度を低減する効果がある。そのため、Al濃度が0.020%未満ではフラックス添加により到達するS濃度が0.0010%未満まで達しない場合がある。Al濃度が0.20%を超えて高濃度になると、Alによる脱酸効果が飽和してしまい、フラックスと平衡するS濃度低減効果も飽和してしまう。
(8) Al concentration in molten steel When adding desulfurization flux, the Al concentration in molten steel is desirably 0.020% to 0.20%. Al is a strong deoxidizing element and has the effect of reducing the S concentration in equilibrium with the desulfurization flux. Therefore, when the Al concentration is less than 0.020%, the S concentration reached by the flux addition may not reach less than 0.0010%. If the Al concentration exceeds 0.20% and becomes high, the deoxidation effect due to Al will be saturated, and the S concentration reducing effect balanced with the flux will also be saturated.

転炉で脱炭処理した溶鋼300トンを取鍋に出鋼した。出鋼時に、取鍋ごと溶鋼をRH式真空脱ガス処理装置まで搬送した後、真空処理を開始した。真空槽内の圧力は133〜4000Paとした。   300 tons of molten steel decarburized in a converter was put into a ladle. At the time of steel removal, the molten steel was transferred to the RH vacuum degassing apparatus together with the ladle, and then the vacuum treatment was started. The pressure in the vacuum chamber was 133 to 4000 Pa.

処理開始後に金属Alを添加し、Al濃度を0.035〜0.14%に調整した。Al濃度を調整した後、真空槽内の上方に設置したランスから脱硫フラックスを溶鋼1トン当たり0.6〜1.0kg/(t・min)の供給速度で合計6.0kg/tを真空槽内溶鋼に吹き付け添加した。   Metal Al was added after the start of processing, and the Al concentration was adjusted to 0.035 to 0.14%. After adjusting the Al concentration, a total of 6.0 kg / t of vacuum desulfurization flux is supplied from the lance installed above the vacuum tank at a supply rate of 0.6 to 1.0 kg / (t · min) per ton of molten steel. It was sprayed and added to the inner molten steel.

表1に脱硫フラックス添加前後のS濃度と処理条件を示す。表1に示すように本発明が規定するG/Gの範囲に制御することで、脱硫フラックス添加後のS濃度が0.0004〜0.0007%まで低減した。G/Gの制御方法として、それぞれの領域に属する羽口に導入する環流ガス流量を変化させても、またはそれぞれの領域に属する羽口の数を変化させても、いずれであっても同様に脱硫反応を促進することができている。 Table 1 shows the S concentration before and after the addition of the desulfurization flux and the treatment conditions. By controlling the range of G D / G N where, as shown in Table 1 the present invention is defined, S concentration after desulfurization flux addition was reduced to 0.0004 to 0.0007%. As a control method of G D / G N , either the flow rate of the reflux gas introduced into the tuyere belonging to each region or the number of tuyere belonging to each region is changed. Similarly, the desulfurization reaction can be promoted.

一方、試験No.5ではG/Gが1.2を下回り真空槽中央部へのスプラッシュ量が不十分であったため、S濃度を低減することができなかった。また、試験番号6〜8ではG/Gが3.2を上回り、上昇管内の環流ガス気泡が偏在してRHの環流量が低位になってしまったため、S濃度を低減することができなかった。 On the other hand, test no. Since 5, G D / G N splash of the vacuum chamber central portion below the 1.2 was insufficient, it was not possible to reduce the S concentration. Further, in Test No. 6~8 G D / G N exceeds 3.2, since the ring flow RH unevenly recirculated gas bubbles rise tract has become the low, it is possible to reduce the S concentration There wasn't.

Figure 2016079469
Figure 2016079469

1 RH式真空脱ガス装置、2 真空槽、3 上昇管、3a 上昇管の下降管側の側面(下降管側側面)、3b 上昇管の下降管側とは反対側の側面(反対側側面)、3c 還流ガス吹込み羽口(羽口)、3d 上昇管の中心、3e 上昇管の横断面外周における中央分離仮想線(仮想線)、4 下降管、4a 下降管の中心、5 上昇管の中心と下降管の中心とを結ぶ線(中心線)   DESCRIPTION OF SYMBOLS 1 RH-type vacuum degassing apparatus, 2 vacuum tank, 3 riser pipe, 3a Side face on the downcomer pipe side of the riser pipe (downcomer pipe side face), 3b Side face on the opposite side of the downcomer pipe side of the riser pipe (opposite side face) 3c Reflux gas injection tuyere (tuyere), 3d center of riser, 3e center separation imaginary line (imaginary line) at the outer periphery of the cross section of riser, 4 downcomer, 4a center of downcomer, 5 of riser A line (center line) connecting the center and the center of the downcomer

Claims (3)

真空槽、溶鋼上昇浸漬管および溶鋼下降浸漬管を有するRH式真空脱ガス処理装置を用い、前記真空槽内上方に設置したランスから脱硫フラックスを上吹きする溶鋼の脱硫方法であって、
前記溶鋼上昇浸漬管に吹き込む環流ガスを、前記溶鋼上昇浸漬管の前記溶鋼下降浸漬管側の側面に設けられた還流ガス吹込み羽口から導入される環流ガスの総流量(G(Nl/(t・min)))と、前記溶鋼上昇浸漬管の前記溶鋼下降浸漬管側とは反対側の側面に設けられた還流ガス吹込み羽口から導入される環流ガスの総流量(G(Nl/(t・min)))を、(1)式の範囲とすることを特徴とする溶鋼の脱硫方法。
1.2≦G/G≦3.2・・・(1)
A desulfurization method for molten steel using a RH-type vacuum degassing apparatus having a vacuum tank, a molten steel ascending dip pipe, and a molten steel descending dip pipe, wherein the desulfurization flux is blown up from a lance installed above the vacuum tank,
The total flow rate of the reflux gas introduced from the reflux gas blowing tuyere provided on the side surface of the molten steel ascending dip tube on the molten steel descending dip tube side (G D (Nl / (T · min))) and the total flow rate of the reflux gas introduced from the reflux gas blowing tuyere provided on the side of the molten steel rising dip tube opposite to the molten steel descending dip tube side (G N ( Nl / (t · min))) is in the range of the formula (1).
1.2 ≦ G D / G N ≦ 3.2 (1)
環流ガス吹き込み羽口から導入する環流ガス流量を独立に変更することによって、前記Gと前記Gを前記(1)式の範囲とすることを特徴とする請求項1に記載の溶鋼の脱硫方法。 By changing the recirculated gas flow rate to be introduced from the circulating gas blowing tuyere independently, desulfurization of the molten steel according to claim 1, characterized in that said G D in the range of the said G N (1) formula Method. いずれの環流ガス吹き込み羽口に導入する環流ガス流量を同一とし、前記溶鋼上昇浸漬管の前記溶鋼下降浸漬管側の側面に設けられた還流ガス吹込み羽口の羽口数と、前記溶鋼上昇浸漬管の前記溶鋼下降浸漬管側とは反対側の側面に設けられた還流ガス吹込み羽口の羽口数の比率を1.2〜3.2とすることで、前記Gと前記Gを前記(1)式の範囲とすることを特徴とする請求項1に記載の溶鋼の脱硫方法。 The reflux gas flow rate introduced into any of the reflux gas blowing tuyere is the same, the number of tuyere of reflux gas blowing tuyere provided on the side of the molten steel descending dip tube side of the molten steel descending dip tube, and the molten steel rising dip the ratio of blade number of units of the recirculation gas blowing tuyere provided on the side surface opposite to the molten steel falling dip tube side of the tube by a 1.2 to 3.2, the G D and the G N 2. The molten steel desulfurization method according to claim 1, wherein the range is within the range of the formula (1).
JP2014212917A 2014-10-17 2014-10-17 Desulfurization method for molten steel Active JP6358039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014212917A JP6358039B2 (en) 2014-10-17 2014-10-17 Desulfurization method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014212917A JP6358039B2 (en) 2014-10-17 2014-10-17 Desulfurization method for molten steel

Publications (2)

Publication Number Publication Date
JP2016079469A true JP2016079469A (en) 2016-05-16
JP6358039B2 JP6358039B2 (en) 2018-07-18

Family

ID=55957758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014212917A Active JP6358039B2 (en) 2014-10-17 2014-10-17 Desulfurization method for molten steel

Country Status (1)

Country Link
JP (1) JP6358039B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112111625B (en) * 2020-09-07 2021-08-03 钢铁研究总院 RH vacuum powder injection refining device and powder injection method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635714A (en) * 1979-08-31 1981-04-08 Nippon Steel Corp Operating method of continuous type molten steel degassing equipment
JPS6479317A (en) * 1987-06-29 1989-03-24 Kawasaki Steel Co Gas blowing method of reflux type degassing device
JPH01132715A (en) * 1987-11-19 1989-05-25 Kawasaki Steel Corp Method for blowing inert gas in rh type degassing apparatus
JPH01268815A (en) * 1988-04-18 1989-10-26 Kawasaki Steel Corp Vacuum degassing treatment of molten steel
JPH0748619A (en) * 1993-08-03 1995-02-21 Kawasaki Steel Corp Method for refining extremely low sulfur steel using circulating flow type vacuum degassing apparatus
JPH0860226A (en) * 1994-08-15 1996-03-05 Sumitomo Metal Ind Ltd Production of extra-low sulfur steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635714A (en) * 1979-08-31 1981-04-08 Nippon Steel Corp Operating method of continuous type molten steel degassing equipment
JPS6479317A (en) * 1987-06-29 1989-03-24 Kawasaki Steel Co Gas blowing method of reflux type degassing device
JPH01132715A (en) * 1987-11-19 1989-05-25 Kawasaki Steel Corp Method for blowing inert gas in rh type degassing apparatus
JPH01268815A (en) * 1988-04-18 1989-10-26 Kawasaki Steel Corp Vacuum degassing treatment of molten steel
JPH0748619A (en) * 1993-08-03 1995-02-21 Kawasaki Steel Corp Method for refining extremely low sulfur steel using circulating flow type vacuum degassing apparatus
JPH0860226A (en) * 1994-08-15 1996-03-05 Sumitomo Metal Ind Ltd Production of extra-low sulfur steel

Also Published As

Publication number Publication date
JP6358039B2 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
RU2433189C2 (en) Method for obtaining steel for steel pipes with excellent resistance in acid medium
JP5904237B2 (en) Melting method of high nitrogen steel
JP6838419B2 (en) Melting method of high nitrogen and low oxygen steel
JP2010189705A (en) Apparatus for refining molten steel
JP6358039B2 (en) Desulfurization method for molten steel
JP7265136B2 (en) Melting method of ultra-low nitrogen steel
JP5855477B2 (en) Hot metal refining method
JP6372540B2 (en) Vacuum degassing apparatus and vacuum degassing treatment method
JP4360270B2 (en) Method for refining molten steel
JP2007270178A (en) Method for manufacturing extra-low sulfur steel
JP2018100427A (en) Method for producing low sulfur steel
JP6769428B2 (en) Method of adding auxiliary materials in RH vacuum degassing equipment
JP2017206719A (en) Desulfurization method of molten steel
JP2016183378A (en) Desulfurization method for molten steel
JP2007092159A (en) Method for producing extremely low carbon steel excellent in cleanliness
JP6354472B2 (en) Desulfurization treatment method for molten steel
JP2019090078A (en) Immersion lance for blowing and refining method of molten iron
JP6416634B2 (en) Desiliconization and desulfurization methods in hot metal ladle
JP2018109213A (en) Method and apparatus for desulfurizing molten steel
JP2013159811A (en) Method for producing ultra-low sulfur and ultra-low nitrogen steel
JPH0665625A (en) Desulphurization method for molten steel
JP2019073780A (en) Method for refining molten steel
JP6638538B2 (en) RH type vacuum degassing equipment
JP6888492B2 (en) Molten steel refining equipment and molten steel refining method
JP7163780B2 (en) Molten steel refining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R151 Written notification of patent or utility model registration

Ref document number: 6358039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350