JPH01268815A - Vacuum degassing treatment of molten steel - Google Patents

Vacuum degassing treatment of molten steel

Info

Publication number
JPH01268815A
JPH01268815A JP9349788A JP9349788A JPH01268815A JP H01268815 A JPH01268815 A JP H01268815A JP 9349788 A JP9349788 A JP 9349788A JP 9349788 A JP9349788 A JP 9349788A JP H01268815 A JPH01268815 A JP H01268815A
Authority
JP
Japan
Prior art keywords
vacuum degassing
gas
molten steel
blowing
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9349788A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takahashi
清志 高橋
Nobumoto Takashiba
高柴 信元
Shinji Kojima
小島 信司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9349788A priority Critical patent/JPH01268815A/en
Publication of JPH01268815A publication Critical patent/JPH01268815A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the purity of steel and to reduce the amt. of a material having an undesirable compsn. by separately controlling the blowing pressures of systems for blowing reflux gas into upper and lower gas feeding nozzles fitted to a riser. CONSTITUTION:Plural gas feeding nozzles 8 are fitted to a riser 2a. The moment that vacuum degassing treatment is started the blowing pressures of systems 8a', 8b' for blowing reflux gas into the upper and lower gas feeding nozzles 8a, 8b are separately controlled. For example, the pressure of reflux gas blown into the upper nozzle 8a is made lower and that blown into the lower nozzle 8b is made higher. The purity of steel is increased and the amt. of a material having the undesirable compsn. can be reduced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は溶鋼の真空脱ガス処理方法、特にRH環流式脱
ガス装置による溶鋼の真空脱ガス処理方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for vacuum degassing treatment of molten steel, particularly to a method for vacuum degassing treatment of molten steel using an RH circulation type degassing device.

〈従来の技術〉 高純度鋼等の純度の高い鋼の需要増加に伴い浸漬管より
真空脱ガス槽内に溶鋼を吸い上げて脱ガス処理を行うい
わゆる真空脱ガス装置の重要性は高まる一方であり、そ
の能力向上が強く望まれている。
<Conventional technology> With the increasing demand for high-purity steel such as high-purity steel, the importance of so-called vacuum degassing equipment, which sucks up molten steel from an immersion tube into a vacuum degassing tank and degass it, is increasing. There is a strong desire to improve this ability.

なかでも2本の浸漬管すなわち上昇管および下降管を有
し、上昇管よりアルゴンガスなどの不活性ガスを吹込ん
で溶鋼を循環させるRH環流式脱ガス装置については、
その能力向上を達成することが大きな課題になっている
Among these, RH circulation degassing equipment has two immersion pipes, that is, a rising pipe and a descending pipe, and circulates molten steel by blowing inert gas such as argon gas from the rising pipe.
Achieving this capacity improvement has become a major challenge.

従来のRH環流式真空脱ガス装置は第5図に示すように
上昇管2aおよび下降管2bを取鍋4内の溶w43に浸
漬して真空脱ガス槽1内を減圧することにより溶鋼3を
吸い上げ環流用のガス吹込口8より不活性ガスを吹込ん
でそのガス浮上刃を利用して溶鋼3を真空脱ガス槽1内
に導き、下降管2bより下降させて溶鋼を循環、脱ガス
処理を行うものである。5は真空脱ガス槽1の鉄皮、6
は飛散溶鋼、8′はガス吹込み系統を示している。
As shown in FIG. 5, the conventional RH circulation type vacuum degassing apparatus depressurizes the inside of the vacuum degassing tank 1 by immersing the rising pipe 2a and the descending pipe 2b in the molten w43 in the ladle 4, thereby removing the molten steel 3. Inert gas is blown into the gas inlet 8 for suction and circulation, and the molten steel 3 is guided into the vacuum degassing tank 1 using the gas flotation blade, and is lowered through the downcomer pipe 2b to circulate and degas the molten steel. It is something to do. 5 is the iron skin of the vacuum degassing tank 1, 6
8 indicates the scattered molten steel, and 8' indicates the gas injection system.

上記のようなRH環流式脱ガス装置についてはその能力
向上を達成するため数多くの提案がなされているが、そ
れらの提案は下記の2つに大別することができる。
Many proposals have been made to improve the performance of the RH reflux degasser as described above, but these proposals can be broadly classified into the following two types.

■真空槽内を通過する温調流量(以下環流量という)を
増大させて脱ガス処理の向上を図るもの。
■Those that aim to improve degassing processing by increasing the temperature-controlled flow rate (hereinafter referred to as the recirculation flow rate) that passes through the vacuum chamber.

■真空槽内での溶鋼脱ガス反応を促進させて脱ガス処理
効率の向上を図るもの。
■Promotes the degassing reaction of molten steel in a vacuum chamber to improve degassing efficiency.

環流量を増大する■の従来例としては、浸漬管の内径を
拡大する手段や上昇管下端部の水平断面中心近傍に設け
た吹込み口より環流ガスを吹込む手段(特開昭51−6
103号公報参照)が提案されている。
Conventional examples of (1) increasing the recirculation amount include means for enlarging the inner diameter of the immersion pipe and means for blowing recirculation gas through an inlet provided near the center of the horizontal section at the lower end of the riser pipe (Japanese Patent Laid-Open No. 51-6).
103) has been proposed.

また溶鋼脱ガス反応を促進させる■の従来例としては真
空脱ガス槽の壁面に設けた攪拌用ガス吹込み管から不活
性ガスを吹込む手段(特開昭58−73716号公報参
照)が提案されている。
Furthermore, as a conventional example of (2) promoting the molten steel degassing reaction, a method has been proposed in which inert gas is injected from a stirring gas blowing pipe provided on the wall of the vacuum degassing tank (see Japanese Patent Application Laid-Open No. 73716/1983). has been done.

〈発明が解決しようとする課題〉 しかしながら上記のような従来例では脱ガス処理能力の
向上を十分達成することは困難である。
<Problems to be Solved by the Invention> However, in the conventional examples as described above, it is difficult to sufficiently improve the degassing processing ability.

すなわち上記従来例のうち浸漬管の内径を拡大する手段
は他の関連設備の取合いなどの制約をうけ、設備の大改
造を必要とする割には脱ガス反応の促進が不十分である
That is, among the conventional methods described above, the means for enlarging the inner diameter of the immersion tube is limited by the arrangement of other related equipment, and the promotion of the degassing reaction is insufficient even though it requires major remodeling of the equipment.

また特開昭51−6103号に提案されている手段は吹
込み管が溶鋼中に浸漬されるため寿命が短く、吹込管の
交換頻度が多くなり、稼動率が低下するという問題点が
ある。
Furthermore, the method proposed in Japanese Patent Application Laid-Open No. 51-6103 has the problem that the blowing pipe is immersed in molten steel, so the service life is short, the blowing pipe must be replaced more frequently, and the operating rate is lowered.

さらに特開昭58−73716号に開示されている手段
は真空脱ガス槽の壁面にガス吹込口を設けているため脱
ガス槽内溶鋼の流れに対し十分に攪拌が及ばないという
問題点があった。
Furthermore, the method disclosed in JP-A-58-73716 has a problem in that the gas inlet is provided on the wall of the vacuum degassing tank, and therefore the flow of molten steel in the degassing tank is not sufficiently agitated. Ta.

真空脱ガス処理中における溶鋼ガス成分の推移状況の1
例として200tの未脱酸鋼の真空脱炭処理する場合の
鋼中炭素濃度の推移を第6図に示している。第6図に示
すように一般的に脱ガス処理開始から処理中期までは真
空脱ガス槽内の脱ガス反応が活発であるため脱ガス速度
は環流量に支配されるが、中期以降、特に処理末”期に
は真空脱ガス槽内での脱ガス反応は沈滞するために脱ガ
ス速度は環流量よりはむしろ脱ガス反応の大小に支配さ
れるようになる。
1. Changes in molten steel gas components during vacuum degassing treatment
As an example, FIG. 6 shows the change in carbon concentration in steel when 200 tons of undeoxidized steel is vacuum decarburized. As shown in Figure 6, the degassing reaction in the vacuum degassing tank is generally active from the start of the degassing process to the middle stage of the process, so the degassing rate is controlled by the recirculation flow rate. At the final stage, the degassing reaction in the vacuum degassing tank stagnates, so the degassing rate comes to be controlled by the magnitude of the degassing reaction rather than the recirculation amount.

すなわち、上記従来技術のうち環流量を増大する■は脱
ガス処理開始から処理中期に有効な手段であり、また溶
鋼脱ガス反応を促進させる■は脱ガス処理中期から末期
までに有効な手段であり、各単独に施した場合には比較
的その効果が少ない。
In other words, among the conventional techniques mentioned above, (2) which increases the recirculation amount is an effective means from the start of degassing treatment to the middle stage of the process, and (2) which promotes the molten steel degassing reaction is an effective means from the middle stage to the end of degassing treatment. However, when applied individually, the effect is relatively small.

本発明は上記従来の問題点を解決し、既設設備の間車な
改良で真空脱ガス処理開始から処理終了までの全処理期
間に亘って環流量を増大すると共に溶鋼脱ガス反応を促
進し得る溶鋼の真空脱ガス方法を提供することを目的と
するものである。
The present invention solves the above-mentioned conventional problems, and makes it possible to increase the recirculation flow rate and promote the molten steel degassing reaction over the entire treatment period from the start of vacuum degassing treatment to the end of the treatment by making occasional improvements to existing equipment. The object of the present invention is to provide a method for vacuum degassing of molten steel.

〈課題を解決するための手段〉 上記目的を達成するため環流量の増大手段として本出願
人が先に出願した特願昭62−159699号のRH式
脱ガス装置のガス吹込方法すなわち上昇管、下降管を備
え、上昇管に複数個の溶鋼環流ガス吹込口を有する溶鋼
の環流式脱ガス装置において、上昇管に少なくとも2系
統の環流用ガス吹込み系統を有しその各々の吹込圧力を
個別に制御する手段を採用すると共に真空脱ガス槽内の
脱ガス反応を更に促進する手段について種々実験を重ね
た結果、本発明を完成するに至ったものである。
<Means for Solving the Problems> In order to achieve the above object, a method for blowing gas into an RH type degassing device, that is, a riser pipe, as disclosed in Japanese Patent Application No. 159699/1987, which the present applicant previously filed, as a means for increasing the recirculation amount. In a molten steel recirculation degassing device equipped with a downcomer pipe and a plurality of molten steel recirculation gas injection ports in the riser pipe, the riser pipe has at least two reflux gas injection systems, each of which has its own injection pressure. The present invention was completed as a result of repeated experiments on means for controlling the degassing reaction in the vacuum degassing tank and further promoting the degassing reaction in the vacuum degassing tank.

以下、本発明を実施例に対応する第1図および第2図に
基づいて説明する。
EMBODIMENT OF THE INVENTION Hereinafter, the present invention will be explained based on FIGS. 1 and 2, which correspond to embodiments.

第1図に示すものにおいては真空脱ガス装置の上昇管2
aに溶鋼環流用のガス吹込口8を複数個設けると共に上
記ガス吹込口8へのガス吹込み系統を少なくとも2系統
とし、真空脱ガス処理開始と共に上記各々のガス吹込み
系統の吹込み圧力を個別に制御しつつ上記ガス供給口8
から不活性ガスを吹込むことによって取鍋4中の溶鋼3
を上昇管2aを介して真空脱ガス槽1内に導き下降管2
bを介して上記取鍋4に環流して真空脱ガス処理し、上
記真空脱ガス処理による脱ガス反応が沈滞して来た段階
で上記ガス吹込口8からの不活性ガス吹込みに加えて上
記真空脱ガス槽1の底部中央近傍に設けたガス吹込み用
の浸漬ノズル10から上記真空脱ガス槽1内溶綱3中へ
の不活性ガス吹込みを開始して真空脱ガス処理すること
を特徴とするものである。
In the one shown in Fig. 1, the riser pipe 2 of the vacuum degassing device
A plurality of gas blowing ports 8 for molten steel circulation are provided in a, and at least two gas blowing systems are provided to the gas blowing ports 8, and the blowing pressure of each of the gas blowing systems is adjusted at the start of the vacuum degassing process. The above gas supply port 8 is controlled individually.
Molten steel 3 in ladle 4 is removed by blowing inert gas from
is guided into the vacuum degassing tank 1 via the riser pipe 2a and the descender pipe 2
b to the ladle 4 for vacuum degassing treatment, and at the stage when the degassing reaction due to the vacuum degassing treatment has stagnated, in addition to blowing inert gas from the gas blowing port 8. Start blowing an inert gas into the molten steel 3 in the vacuum degassing tank 1 from a gas blowing immersion nozzle 10 provided near the center of the bottom of the vacuum degassing tank 1 to perform vacuum degassing treatment. It is characterized by:

また第2図に示すものにおいては、真空脱ガス処理によ
る脱ガス反応が沈滞して来た段階で第1図に示す真空脱
ガス槽1の底部中央近傍に設けたガス吹込用の浸漬ノズ
ル10に代えて真空脱ガス槽1内に設置したガス吹込用
のランス11から上記真空脱ガス槽1内溶ll113の
表面への不活性ガス吹付けを開始して真空脱ガス処理す
ることを特徴としている。
In addition, in the case shown in FIG. 2, when the degassing reaction due to the vacuum degassing treatment has stagnated, the submerged nozzle 10 for gas injection provided near the center of the bottom of the vacuum degassing tank 1 shown in FIG. Instead, the vacuum degassing process is performed by starting blowing an inert gas onto the surface of the melt 113 in the vacuum degassing tank 1 from a gas blowing lance 11 installed in the vacuum degassing tank 1. There is.

〈作 用〉 次に作用を第1図および第2図について説明する。第1
図および第2図に示すように真空脱ガス処理開始と同時
に上昇管2aに設けた複数個のガス供給口8のうち上側
のガス供給口8aへの環流ガス吹込み系統8a’および
下側のガス吹込口8bへの環流ガス吹込み系統8b’の
吹込圧力を個別に制御する。
<Function> Next, the function will be explained with reference to FIGS. 1 and 2. 1st
As shown in FIG. 2 and FIG. 2, at the same time as the start of the vacuum degassing process, the reflux gas blowing system 8a' to the upper gas supply port 8a of the plurality of gas supply ports 8 provided in the riser pipe 2a and the lower gas supply port 8a' The blowing pressure of the recirculation gas blowing system 8b' to the gas blowing port 8b is individually controlled.

例えば上側のガス吹込口8aの圧力を低くそして下側の
ガス吹込口8bの圧力を高くすることによって上昇管2
a内の水平断面内における溶鋼中への吹込不活性ガスの
到達距離をそれぞれ調整し気泡を全体として上昇管2a
内の溶鋼中に均一に分布させ、これによフて気泡の上昇
による溶jlI3の環流量を増大させる。
For example, by lowering the pressure at the upper gas inlet 8a and increasing the pressure at the lower gas inlet 8b, the riser pipe 2
The reach distance of the inert gas blown into the molten steel in the horizontal cross section in a is adjusted respectively, and the bubbles are combined as a whole into the riser pipe 2a.
This increases the flow rate of the molten steel due to the rise of bubbles.

そして第1図に示すものにあっては、真空脱ガス処理に
よる脱ガス反応が沈滞して来た段階で真空脱ガス槽lの
底部中央近傍に設けた浸漬ノズル10から真空脱ガス槽
1内の溶鋼3中への不活性ガスの吹込みを開始して真空
脱ガス槽1内の溶鋼3の脱ガス反応を促進するものであ
る。7は浸漬ノズル10へのガス吹込系統を示している
In the case shown in FIG. 1, when the degassing reaction due to the vacuum degassing treatment has stagnated, the inside of the vacuum degassing tank 1 is injected from the immersion nozzle 10 installed near the center of the bottom of the vacuum degassing tank 1. The purpose is to start blowing inert gas into the molten steel 3 to promote the degassing reaction of the molten steel 3 in the vacuum degassing tank 1. 7 shows a gas blowing system to the immersion nozzle 10.

また第2図に示すものにあっては真空脱ガス処理による
脱ガス反応が沈滞して来た段階で真空脱ガス槽1内に設
置したガス吹込用のランス11から上記真空脱ガス槽1
内の溶鋼3への不活性ガス吹付けを開始して脱ガス反応
を促進するものである。
In addition, in the case shown in FIG. 2, when the degassing reaction due to the vacuum degassing treatment has stagnated, the gas injection lance 11 installed in the vacuum degassing tank 1 is connected to the vacuum degassing tank 1.
The purpose is to start spraying an inert gas onto the molten steel 3 inside to promote the degassing reaction.

9はランス11へのガス供給系統、12はランス11の
シール部を示している。
Reference numeral 9 indicates a gas supply system to the lance 11, and 12 indicates a sealing portion of the lance 11.

〈実施例〉 以下に、本発明の好適な実施例を図面に基づいて説明す
る。
<Example> Below, a preferred example of the present invention will be described based on the drawings.

工l亘上 第1図に示すように上昇管2aには圧力を個別に制御す
る上側のガス吹込口8aおよび下側のガス吹込口8bの
2系統が設けてあり、それぞれには吹込み元圧をO〜9
.9 kg/cdの範囲で制御できる環流用ガス吹込系
統8a’と吹込み元圧を30〜50kg/dの範囲で制
御できる環流用ガス吹込系統8bとが連結されている。
As shown in Figure 1, the riser pipe 2a is provided with two systems, an upper gas inlet 8a and a lower gas inlet 8b, each of which controls the pressure individually. Pressure from O to 9
.. A recirculation gas blowing system 8a' which can be controlled within a range of 9 kg/cd and a recirculation gas blowing system 8b whose source pressure can be controlled within a range of 30 to 50 kg/d are connected.

また真空脱ガス槽1の底部中央近傍にけ浸漬ノズルとし
てポーラスプラグ10が2本設置しである。
Further, two porous plugs 10 are installed near the center of the bottom of the vacuum degassing tank 1 as immersion nozzles.

真空脱ガス処理には200tの未脱酸溶鋼を供して実験
を行った。真空脱ガス処理開始と共にアルゴンガスを上
側のガス吹込口8aから1500 Ml / m 。
An experiment was conducted using 200 tons of undeoxidized molten steel for vacuum degassing treatment. At the start of the vacuum degassing process, argon gas is supplied at 1500 Ml/m from the upper gas inlet 8a.

下側のガス吹込口8bから100ONZ/mを吹込み真
空脱ガス処理を行うた。
A vacuum degassing process was performed by blowing 100 ONZ/m from the lower gas blowing port 8b.

そして上記真空脱ガス処理による脱炭反応が沈滞して来
た段階の脱ガス中期以降すなわち真空脱ガス処理開始か
ら7分以降の脱炭処理末期には真空脱ガス槽1の底部中
央近傍に設けた2本のポーラスプラグ10から総量10
0ONZ/mのアルゴンガスを吹込んで真空脱ガス処理
した。
Then, after the middle stage of decarburization when the decarburization reaction due to the vacuum degassing process has stagnated, that is, in the final stage of the decarburization process after 7 minutes from the start of the vacuum degassing process, it is installed near the center of the bottom of the vacuum degassing tank 1. total amount of 10 from the two porous plugs 10
Vacuum degassing treatment was performed by blowing argon gas at a rate of 0ONZ/m.

上記本発明法の真空脱ガス処理による鋼中炭素濃度の推
移結果を本発明法1として、第5図に示す従来法による
ものおよび上昇管へのガス吹込み系統を2系統として個
別に圧力制御するだけの比較法を併せて第3図に示して
いる。第3図から明らかなように、本発明法によれば従
来法は勿論のこと比較法に比べて格段に脱炭速度が向上
しており全期間を通じた脱炭速度の向上が達成できる。
The transition results of the carbon concentration in steel due to the vacuum degassing treatment of the above-mentioned method of the present invention are referred to as the method 1 of the present invention, and the conventional method shown in Fig. 5 and the gas injection system to the riser pipe are 2 systems and the pressure is controlled individually. Figure 3 also shows a comparative method that only requires As is clear from FIG. 3, according to the method of the present invention, the decarburization rate is significantly improved compared to the conventional method as well as the comparative method, and the decarburization rate can be improved throughout the entire period.

なお環流用ガスの吹込み系統は2系統に限る必要はなく
3系統以上として更にきめ細かく圧力制御してもよく、
圧力制御範囲も上記の範囲に限る必要はなく、その真空
脱ガス装置の上昇管内径に応じて定めればよい、また真
空脱ガス槽内に設置する浸漬ノズルについてもポーラス
プラグに限定するものではな(、細管集合ノズル、単な
るパイプであっても使用に耐え得る物であればその種類
並びに使用本数は適宜に選択できる。
Note that the number of blowing systems for the recirculation gas is not limited to two, and three or more systems may be used to more precisely control the pressure.
The pressure control range does not need to be limited to the above range, and can be determined according to the internal diameter of the riser pipe of the vacuum degassing device.Also, the immersion nozzle installed in the vacuum degassing tank is not limited to porous plugs. (The type and number of thin tube collection nozzles can be selected as appropriate, even if it is just a pipe, as long as it can withstand use.)

11■1 第2図に示すように真空脱ガス槽1の溶鋼浴面にガスを
吹付けるランス11を設置し、上昇管1には第1図に示
すものと全く同様にガス吹込口8aおよび8bが設けて
あり、それぞれには吹込み元圧をθ〜9.9 kg/c
dの範囲で制御できる環流用ガス吹込み系統8a′と吹
込元圧を30〜50kg/cdの範囲で制御できる環流
用ガス吹込み系統8b’とが連結されている。
11■1 As shown in Fig. 2, a lance 11 for spraying gas onto the molten steel bath surface of the vacuum degassing tank 1 is installed, and a gas blowing port 8a and a 8b is provided, and each has a blowing source pressure of θ to 9.9 kg/c.
A recirculation gas blowing system 8a' that can control the blowing source pressure within a range of 30 to 50 kg/cd is connected to a recirculating gas blowing system 8b' that can control the blowing source pressure within a range of 30 to 50 kg/cd.

真空脱ガス処理には200tの未脱酸溶鋼を供して実験
を行った。真空脱ガス処理開始と共にアルゴンガスをガ
ス吹込口8aから1500 Ml / m 、ガス吹込
口8bからは100ONZ/am吹込み真空脱ガス処理
を行った。
An experiment was conducted using 200 tons of undeoxidized molten steel for vacuum degassing treatment. At the same time as the start of the vacuum degassing process, argon gas was blown at 1500 Ml/m from the gas inlet 8a and 100 ONZ/am from the gas inlet 8b to perform the vacuum degassing process.

そして処理開始から7分以降には真空槽1内溶!143
の表面から1.5mの位置に離間して設置したランス1
1から初速580m/sで約36ONrrf/hrのア
ルゴンガスを吹付けて真空脱ガス処理を行った。
Then, after 7 minutes from the start of processing, it melts inside the vacuum chamber 1! 143
Lance 1 installed at a distance of 1.5 m from the surface of
Vacuum degassing treatment was carried out by blowing argon gas at an initial velocity of 580 m/s at a rate of about 36 ONrrf/hr.

上記本発明法の真空脱ガス処理による鋼中炭素濃度の推
移結果を本発明法2として従来法によるものおよび上昇
管へのガス吹込み系統を2系統として個別に制御するだ
けの比較法を併せて第4図に示している。
The results of the change in carbon concentration in steel due to the vacuum degassing treatment of the method of the present invention are summarized as Method 2 of the present invention, which combines the conventional method and a comparative method in which the gas injection system into the riser pipe is controlled individually as two systems. This is shown in Figure 4.

第4図から明らかなように本発明法2によっても脱ガス
処理全期間を通じて脱ガス速度を向上させることがわか
る。なお本実施例2ではスロート径が10φのラバール
ノズルランスを用いた。このように真空槽1内鋼浴面を
攪拌し飛散溶t!A6を多くするためには、浴面上での
流速が大きい方が効果的であり、ランスノズルとしては
初速を音速以上にできるラバールノズルを使用するのが
望ましい。
As is clear from FIG. 4, method 2 of the present invention also improves the degassing rate throughout the entire degassing treatment period. In Example 2, a Laval nozzle lance with a throat diameter of 10φ was used. In this way, the steel bath surface inside the vacuum chamber 1 is stirred and the melt is scattered! In order to increase A6, it is more effective to increase the flow velocity on the bath surface, and as a lance nozzle, it is desirable to use a Laval nozzle whose initial velocity can be higher than the speed of sound.

〈発明の効果〉 以上説明したように、本発明によれば真空脱ガス処理中
の全期間にわたつて脱ガス速度を向上させることができ
、真空脱ガス処理時間の短縮、a中ガス成分の低下を図
ることができる。
<Effects of the Invention> As explained above, according to the present invention, the degassing rate can be improved over the entire period of vacuum degassing treatment, the vacuum degassing treatment time can be shortened, and the gas components in a can be reduced. It is possible to reduce the

また真空脱ガス処理時間の短縮に伴い転炉出鋼温度の低
下による転炉、取鍋の耐火物寿命向上、生産性向上が図
れ、更には鋼中ガス成分を短時間で低下させることによ
り、鋼の高純化、処理後成分のバラツキ低減による成分
不良材の低減、を図ることができ、産業上の有用性は非
常に大きい。
In addition, by shortening the vacuum degassing treatment time and lowering the steel tapping temperature in the converter, the life of the refractories in the converter and ladle can be extended, and productivity can be improved.Furthermore, by reducing the gas content in the steel in a short time, It is possible to improve the purity of steel and reduce the number of materials with defective components by reducing the variation in the components after treatment, so it has great industrial utility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に係る真空脱ガス装置を示
す断面図、第2図は本発明の第2実施例に係る真空脱ガ
ス装置を示す断面図、第3図および第4図は脱ガス処理
中の鋼中炭素濃度(ppm)の推移を示すグラフ、第5
図は従来の真空脱ガス装置を示す断面図、第6図は従来
法による脱ガス処理中の鋼中炭素濃度(ppm )の推
移を示すグラフである。 1・・・真空脱ガス槽、 2a・・・上昇管、 2b・・・下降管、 3・・・溶 鋼、 4・・・取 鍋、 8a、8b・・・ガス供給口、 8a’、8b’・・・ガス吹込系統、 10・・・ガス吹込用浸漬ノズル、 11・・・ガス吹付用ランス。 特許出願人   川崎製鉄株式会社 第1図 第2図 第3図 第4図 脱ガス処理時間(分) 第5図 第6図 脱力゛入処理時間(分)
FIG. 1 is a sectional view showing a vacuum degassing apparatus according to a first embodiment of the present invention, FIG. 2 is a sectional view showing a vacuum degassing apparatus according to a second embodiment of the present invention, and FIGS. The figure is a graph showing the change in carbon concentration (ppm) in steel during degassing treatment.
The figure is a sectional view showing a conventional vacuum degassing apparatus, and FIG. 6 is a graph showing the change in carbon concentration (ppm) in steel during degassing treatment by the conventional method. DESCRIPTION OF SYMBOLS 1... Vacuum degassing tank, 2a... Ascending pipe, 2b... Descending pipe, 3... Molten steel, 4... Ladle, 8a, 8b... Gas supply port, 8a', 8b'...Gas blowing system, 10...Immersed nozzle for gas blowing, 11...Lance for gas blowing. Patent applicant Kawasaki Steel Corporation Figure 1 Figure 2 Figure 3 Figure 4 Degassing treatment time (minutes) Figure 5 Figure 6 De-gassing treatment time (minutes)

Claims (1)

【特許請求の範囲】 1、真空脱ガス装置の上昇管に溶鋼環流用のガス吹込口
を複数個設けると共に上記ガス吹込口へのガス吹込み系
統を少なくとも2系統とし、真空脱ガス処理開始と共に
上記各々のガス吹込み系統の吹込み圧力を個別に制御し
つつ上記ガス吹込口から不活性ガスを吹込むことによっ
て取鍋中の溶鋼を上昇管を介して真空脱ガス槽内に導き
下降管を介して上記取鍋に環流して真空脱ガス処理し、
上記真空脱ガス処理による脱ガス反応が沈滞して来た段
階で上記ガス吹込口からの不活性ガス吹込みに加えて上
記真空脱ガス槽の底部中央近傍に設けたガス吹込み用の
浸漬ノズルから上記真空脱ガス槽内溶鋼中への不活性ガ
ス吹込みを開始して真空脱ガス処理することを特徴とす
る溶鋼の真空脱ガス処理方法。 2、真空脱ガス槽の底部中央近傍に設けたガス吹込用の
浸漬ノズルに代えて真空脱ガス槽内に設置したガス吹込
用のランスから上記真空脱ガス槽内溶鋼面への不活性ガ
ス吹付けを開始して真空脱ガス処理することを特徴とす
る請求項1記載の溶鋼の真空脱ガス処理方法。
[Claims] 1. A plurality of gas injection ports for molten steel circulation are provided in the riser pipe of the vacuum degassing device, and at least two gas injection systems are provided to the gas injection ports, and as soon as the vacuum degassing process starts, The molten steel in the ladle is guided into the vacuum degassing tank via the riser pipe by blowing inert gas through the gas blowing port while individually controlling the blowing pressure of each of the gas blowing systems mentioned above. reflux into the ladle through a vacuum degassing treatment,
At the stage when the degassing reaction due to the vacuum degassing treatment has stagnated, in addition to the inert gas injection from the gas injection port, a submerged nozzle for gas injection installed near the center of the bottom of the vacuum degassing tank is used. A method for vacuum degassing treatment of molten steel, characterized in that the vacuum degassing treatment is performed by starting the injection of an inert gas into the molten steel in the vacuum degassing tank. 2. Inert gas is blown onto the molten steel surface in the vacuum degassing tank from a gas blowing lance installed inside the vacuum degassing tank instead of the immersed nozzle for gas blowing installed near the center of the bottom of the vacuum degassing tank. 2. The method for vacuum degassing treatment of molten steel according to claim 1, wherein the vacuum degassing treatment is carried out after starting the deposition.
JP9349788A 1988-04-18 1988-04-18 Vacuum degassing treatment of molten steel Pending JPH01268815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9349788A JPH01268815A (en) 1988-04-18 1988-04-18 Vacuum degassing treatment of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9349788A JPH01268815A (en) 1988-04-18 1988-04-18 Vacuum degassing treatment of molten steel

Publications (1)

Publication Number Publication Date
JPH01268815A true JPH01268815A (en) 1989-10-26

Family

ID=14083984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9349788A Pending JPH01268815A (en) 1988-04-18 1988-04-18 Vacuum degassing treatment of molten steel

Country Status (1)

Country Link
JP (1) JPH01268815A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031820A (en) * 2005-07-29 2007-02-08 Jfe Steel Kk Vacuum-degassing treating method for molten steel
JP2016079469A (en) * 2014-10-17 2016-05-16 新日鐵住金株式会社 Desulfurization method for molten steel
KR20190013314A (en) * 2017-08-01 2019-02-11 주식회사 포스코 Apparatus for in vacuum degassing vessel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031820A (en) * 2005-07-29 2007-02-08 Jfe Steel Kk Vacuum-degassing treating method for molten steel
JP2016079469A (en) * 2014-10-17 2016-05-16 新日鐵住金株式会社 Desulfurization method for molten steel
KR20190013314A (en) * 2017-08-01 2019-02-11 주식회사 포스코 Apparatus for in vacuum degassing vessel

Similar Documents

Publication Publication Date Title
JPH01268815A (en) Vacuum degassing treatment of molten steel
KR101159928B1 (en) Vaccum refining method of ultra low carbon steel
JPH05239534A (en) Method for melting non-oriented electric steel sheet
EP1757706B1 (en) Method for refining molten steel
JP2988737B2 (en) Manufacturing method of ultra-low carbon steel
JPH04131316A (en) Method and device for vacuum degassing of extra-low-carbon steel
JP3118606B2 (en) Manufacturing method of ultra-low carbon steel
JP3025042B2 (en) Manufacturing method of ultra-low carbon steel
JPH028316A (en) Method and device for vacuum circulating degasification
JP2991519B2 (en) Manufacturing method of ultra-low carbon steel
JPH0254714A (en) Method for adding oxygen in rh vacuum refining
JP2002180124A (en) Method for refining molten metal
JP2998039B2 (en) Manufacturing method of ultra-low carbon steel
JP2998038B2 (en) Manufacturing method of ultra-low carbon steel
RU2092272C1 (en) Method of steel treatment in course of continuous casting
JP3296249B2 (en) Manufacturing method of ultra low nitrogen steel
RU2034678C1 (en) Method to work metal in the process of continuous casting
JP3742534B2 (en) Vacuum refining apparatus and method for melting low carbon steel using the same
RU2048246C1 (en) Method for in-line evacuation of metal in the process of continuous casting
RU2037367C1 (en) Method and device for continuous vacuumizing of continuously-cast metal
RU2325448C2 (en) Method of steel ladle metallurgy
JP2000178636A (en) Production of clean steel in rh vacuum-degassing apparatus
JPH06145763A (en) Reduced pressure and vacuum degassing method of molten steel
JPH036317A (en) Method and device for ladle refining
JPH0617114A (en) Method and device for treating vacuum degassing of molten steel