JP2016077093A - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
JP2016077093A
JP2016077093A JP2014206392A JP2014206392A JP2016077093A JP 2016077093 A JP2016077093 A JP 2016077093A JP 2014206392 A JP2014206392 A JP 2014206392A JP 2014206392 A JP2014206392 A JP 2014206392A JP 2016077093 A JP2016077093 A JP 2016077093A
Authority
JP
Japan
Prior art keywords
motor
air conditioner
magnet
compressor
fan motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014206392A
Other languages
English (en)
Other versions
JP6071972B2 (ja
Inventor
及川 智明
Tomoaki Oikawa
智明 及川
山本 峰雄
Mineo Yamamoto
峰雄 山本
石井 博幸
Hiroyuki Ishii
博幸 石井
洋樹 麻生
Hiroki Aso
洋樹 麻生
隼一郎 尾屋
Junichiro Oya
隼一郎 尾屋
優人 浦辺
Yuto Urabe
優人 浦辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014206392A priority Critical patent/JP6071972B2/ja
Publication of JP2016077093A publication Critical patent/JP2016077093A/ja
Application granted granted Critical
Publication of JP6071972B2 publication Critical patent/JP6071972B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Air Conditioning Control Device (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

【課題】コストの増加を抑制しながら、永久磁石の減磁を抑制可能な空気調和機を得る。【解決手段】ロータにフェライト磁石を用いた永久磁石型モータを備えた空気調和機100であって、永久磁石型モータであるファンモータ20Aおよび圧縮機モータ20Bのステータがアルミ線で高占積巻線され、ファンモータ20Aおよび圧縮機モータ20Bを駆動することなくアルミ線に拘束通電することでフェライト磁石を加熱する。ステータにアルミの巻線が高占積に巻かれることにより、減磁限界電流未満の電流でも発熱が大きくなり磁石温度が所望の温度に達するまでの時間を短縮することができ、熱電導度が銅線よりも低いアルミ線を用いても通電によるジュール熱を効果的にフェライト磁石に伝えることができる。【選択図】図1

Description

本発明は、永久磁石型モータを備えた空気調和機に関する。
永久磁石型モータに用いられるフェライト磁石は、低温になるほど保磁力が下がるため、低温になるほどステータ電流で発生する逆磁界に対する耐力が小さくなり減磁し易くなる。そのためフェライト磁石を用いた永久磁石型モータには、低温時の起動電流と起動後の脱調電流が減磁限界電流値未満になるように過電流保護値が設定される。過電流保護値が設定された永久磁石型モータは、ステータ電流が過電流保護値を超える場合にはステータへの通電を遮断してモータを停止し、またはステータ電流が過電流保護値を超える直前に失速制御がかかることでステータ電流が過電流保護値を超えないよう調整される。
過電流保護値は、通常、空気調和機の使用範囲の低温で起動されたときにも減磁が発生しないよう低い値に設定されるが、実際にステータ電流が最大となるのは温度が高温となる最大出力運転時である。ただし、過電流保護値は、低温時での減磁を踏まえた値に設定されているため、低温時の過電流保護値までしか運転できず、最大出力を小さくするものになっていた。
この対応として下記特許文献1では、過電流保護値を温度によって可変する方法が提案されている。また下記特許文献2では、通電周波数を可変させ、巻線の発熱による銅損に加えて、周波数の変化に伴う鉄損も利用することにより、磁石に熱を伝熱させて磁石を加熱する方法が開示されている。
特開平07−067390号公報 特開2013−179726号公報
しかしながら、上記特許文献1の従来技術では、過電流保護値の可変をソフトウエアで行う場合には瞬時に電流が上昇したときの処理遅延時間が発生するという問題があり、ハードウエアで行う場合には回路を複数持つ必要があるためコストが増加するという課題があった。
一方、上記特許文献2の従来技術では、インダクタンスが大きなモータの場合、高周波の電流が流れにくく鉄損が十分発生しないという課題があった。また、近年では高効率化のニーズから薄肉の電磁鋼板が用いられる傾向にあり、このような電磁鋼板では銅損と鉄損が共に小さいため磁石温度が所望の温度に達するまでに時間がかかるという課題があった。
本発明は、上記に鑑みてなされたものであって、コストの増加を抑制しながら、永久磁石の減磁を抑制可能な空気調和機を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る空気調和機は、ロータにフェライト磁石を用いた永久磁石型モータを備えた空気調和機であって、前記永久磁石型モータのステータは、アルミ線で高占積巻線され、前記永久磁石型モータを駆動することなく前記アルミ線に拘束通電することでフェライト磁石を加熱する。
本発明によれば、コストの増加を抑制しながら、永久磁石の減磁を抑制することができる、という効果を奏する。
本発明の実施の形態に係る空気調和機の構成図 図1に示すファンモータのA−A矢視断面図 圧縮機の拡大図 図3に示す圧縮機モータのB−B矢視断面図 フェライト磁石温度と減磁限界電流値と過電流保護値との関係を示す図
以下に、本発明の実施の形態に係る空気調和機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は本発明の実施の形態に係る空気調和機100の構成図である。空気調和機100は、商用電源70から供給された交流電圧を直流電圧に変換するコンバータ回路部62と、コンバータ回路部62からの直流電圧を圧縮機モータ20Bの駆動可能な交流電圧に変換する圧縮機モータ用インバータ回路部60と、コンバータ回路部62からの直流電圧を永久磁石型のファンモータ20Aの駆動可能な交流電圧に変換するファンモータ用インバータ回路部61と、室内機用のファン41または室外機用のファン43の駆動源である永久磁石型のファンモータ20Aと、冷媒が循環して熱交換を行う室内側熱交換器40と、冷媒が循環して熱交換を行う室外側熱交換器42と、冷房と暖房の流路を切り替えるための四方弁50と、冷媒を膨張する膨張弁52と、冷媒を圧縮する圧縮機30とで構成される。図中、四方弁50の実線は暖房運転時の冷媒の流れ、点線は冷房運転時の冷媒の流れとなる。
圧縮機30、四方弁50、室外側熱交換器42、膨張弁52および室内側熱交換器40は、各々冷媒配管51により接続され冷凍サイクル80を構成する。圧縮機30の密閉容器32内部には、冷媒を圧縮する圧縮機構部31と圧縮機構部31を動作させる圧縮機モータ20Bとが設けられている。圧縮機構部31には、スクロール、ロータリ、またはレシプロといった機構が用いられる。
空気調和機100の動作を説明する。商用電源70から供給された交流電圧は、コンバータ回路部62で直流電圧に変換され、圧縮機モータ用インバータ回路部60において圧縮機モータ20Bで要求される周波数および電圧の交流電圧に変換され、圧縮機モータ20Bに供給される。またコンバータ回路部62で変換された直流電圧は、ファンモータ用インバータ回路部61においてファンモータ20Aで要求される周波数および電圧の交流電圧に変換され、ファンモータ20Aに供給される。
図2は図1に示すファンモータ20AのA−A矢視断面図である。図示例のファンモータ20Aは、ステータ1と、ステータ1の内径側に配置されるロータ2と、ロータ2の中心部に貫通するシャフト4を回転可能に支持する2つの軸受3と、ファンモータ20Aの外郭を構成すると共にステータ1の一端側に配置される軸受3の外輪を取り囲むハウジング13を構成するモールド樹脂9と、ステータ1の他端側に配置される軸受3の外輪を取り囲みモールド樹脂9で形成された開口部の内周面に嵌め込まれるブラケット5とを有して構成される。
ステータ1は、特定形状に打ち抜かれた電磁鋼板を複数枚かしめ、溶接、または接着しながら積層してなるステータコア1aと、ステータコア1aの図示しないティースに巻かれる巻線1bと、絶縁材1cとで構成される。ロータ2は、シャフト4の外周部に設けられた樹脂部2aと、樹脂部2aに配置されるフェライト磁石2bとで構成される。
図3は圧縮機30の拡大図である。図3には圧縮機30の構成要素の一部が示され、図2のファンモータ20Aと同一の構成要素には同一の符号を付している。図3に示す密閉容器32の内周面に圧入、焼き嵌め、または冷し嵌めで固定されるステータコア1aと、ステータコア1aに巻かれた巻線1bと、ステータコア1aの内径側に配置されるロータ2と、圧縮機30の上部と下部に設けた図示しない軸受により回転自在な状態で保持されロータ2に貫通するシャフト4と、シャフト4が接続されロータ2の回転により低温低圧の冷媒ガスを高温高圧の冷媒ガスにして吐き出す圧縮機30とが示されている。図3に示すステータコア1aと巻線1bはステータ1の構成要素の一例であり、またステータ1とロータ2は圧縮機モータ20Bを構成する。
図4は図3に示す圧縮機モータ20BのB−B矢視断面図である。図4に示すようにステータ1は、ステータコア1aと巻線1bの他、巻線間絶縁材1c1とティース被覆用絶縁材1c2から成る絶縁材1cを有する。ステータコア1aは、環状のバックヨーク1a1と、バックヨーク1a1の内径側において回転方向に一定間隔で配置されバックヨーク1a1からステータコア1aの中心の方向に伸びる複数のティース1a2とから成り、ステータコア1aには、バックヨーク1a1とティース1a2とで区画される空間である複数のスロット1a3とが形成される。ステータ1では、ティース被覆用絶縁材1c2で絶縁されたティース1a2に巻線1bが巻かれている。図示例ではステータコア1aに9つのティース1a2が形成されているが、ティース1a2の数はこれに限定されるものではない。
ステータコア1aは、磁束の変化による渦電流を防止するため、表面に絶縁コーティングが塗布された薄板の電磁鋼板を積層して構成されている。絶縁材1cはフィルムまたは樹脂で構成される。フィルムの一例としてはPETポリエチレンテレフタレート、PENポリエチレンナフタレート、PPSポリフェニレンサルファイド、またはTLT(PET/PPS複合フィルム)である。樹脂の一例としては、PBTポリブチレンテレフタレート、PPSポリフェニレンスルフィド、LCP液晶ポリマー、またはBMCバルクモールディングコンパウンドである。
図4に示すステータ1では、各ティース1a2に巻かれた複数の巻線1bの内、隣接する巻線1b間が巻線間絶縁材1c1で絶縁され、巻線1bと巻線間絶縁材1c1が密着している。なお、信頼性が確保できれば巻線間絶縁材1c1を省略し、巻線1bの表面に塗布された絶縁コーティングのみで絶縁性を持たせてもよい。
ロータ2は、特定形状に打ち抜かれた電磁鋼板を複数枚かしめ、溶接、または接着しながら積層してなる円柱状の樹脂部2aと、磁極数に対応して回転方向に一定間隔で設けられた複数の磁石挿入孔2cと、各磁石挿入孔2cの形に対応した形状であり磁石挿入孔2cに挿入されるフェライト磁石2bと、樹脂部2aの径方向中心に形成されるシャフト挿入孔2dとを有する。フェライト磁石2bには焼結磁石またはボンド磁石が用いられる。
ここで、ファンモータ20Aおよび圧縮機モータ20Bに用いられる巻線1bの巻線方式は、大きく分けて集中巻と分布巻に分類され、本実施の形態では一例として集中巻が採用される。
また一般的には抵抗が小さく汎用的な銅線を巻線に使用するが、本実施の形態に係るファンモータ20Aおよび圧縮機モータ20Bでは、抵抗率が銅の1.6倍のアルミの巻線1bが用いられている。
また本実施の形態に係るステータ1は、アルミ線である巻線1bで高占積巻線されている。高占積とはアルミ線が隣接するティースに巻かれたアルミ線に接する、または、アルミ線間、コア間の絶縁のための絶縁材に接することを意味し、高占積巻線によって、熱電導度が銅線の0.57倍のアルミ線においても、通電によるジュール熱を効果的にフェライト磁石2bに伝えることができる。
なお、以下の説明では説明を簡単化するため、特に言及する場合を除き、ファンモータ20Aおよび圧縮機モータ20Bを単に「モータ」と称し、圧縮機モータ用インバータ回路部60およびファンモータ用インバータ回路部61を単に「インバータ回路」と称する。
図5はフェライト磁石2bの温度と減磁限界電流値と過電流保護値との関係を示す図である。横軸はフェライト磁石2bの温度、縦軸はフェライト磁石2bの温度に対応するフェライト磁石2bの減磁限界電流値を表す。
フェライト磁石2bは、低温になるほど保磁力が下がる性質があるため、低温になるほどステータ電流で発生する逆磁界に対する耐力が小さくなり減磁し易くなる。減磁限界電流値は、磁石の初期磁力に対して特性に影響の出る数%の減磁率を招く虞のあるステータ電流を表し、フェライト磁石2bの減磁特性を考慮して、フェライト磁石2bの温度が低い領域では低く、フェライト磁石2bの温度が上昇するに従い高くなる。このような減磁限界電流値を超えるようなステータ電流がステータ1に通電されるとロータ2の磁力低下を招く。そのため、空気調和機100にはステータ電流が減磁限界電流値を超えないよう過電流保護値が設定され、空気調和機100は、ステータ電流が過電流保護値を超えた場合にはステータへの通電を遮断してモータを停止し、またはステータ電流が過電流保護値を超える直前に失速制御をかけることでステータ電流が過電流保護値を超えないように調整する。
T1は、空気調和機100の使用範囲内の下限温度、T3は最大出力時の磁石温度、T2はT1より高くかつT3より低い磁石温度である。P1は、磁石温度がT1のときに流れるステータ電流が減磁限界電流値I1を超えないよう設定された過電流保護値である。P2は、磁石温度がT2のときに流れるステータ電流が減磁限界電流値I2を超えないよう設定された過電流保護値である。P3は、磁石温度がT3のときに流れるステータ電流が減磁限界電流値I3を超えないよう設定された過電流保護値である。
このように過電流保護値は、通常、空気調和機100の使用範囲内の下限温度T1で起動されたときにも減磁が発生しないよう減磁限界電流値I1に設定される。ところが実際にステータ電流が減磁限界付近に近づくのは最大出力時であり、その際の磁石温度はT3に達する。このときの減磁限界電流値はI3であるが、空気調和機100には低温時の減磁を踏まえて減磁限界電流値I1が設定されているため、ステータ電流としては減磁限界電流値I1までしか流せないことになる。
この対策として上記特許文献1では、過電流保護値を温度によって可変する方法が提案されている。ところが、過電流保護値の可変をソフトウエアで行う場合には、瞬時に電流が上昇したときの処理遅延時間が発生し、ハードウエアで行う場合には、回路を複数持つ必要があるコストの増加を招く。そのため、過電流保護値を温度によって可変する方法は一般的に空気調和機100では採用されていない。
他の対策としては、磁石温度が所望の温度になるまで加温してから起動するという方法が考えられる。なお本実施の形態では説明を簡単化するため、図5に示すT2を「所望の温度」と定義する。
磁石温度を上昇させる従来の方法としては、低温ではモータを起動させずにヒータでモータを加熱し、加熱後にモータを起動する方法がある。ただしこの方法ではヒータを搭載する分、コストが課題となる。他の加熱の方法としては、巻線に通電してステータを発熱させることでヒータレスとする方法がある。ところがこの方法では減磁限界電流値未満の電流しか通電できず、磁石温度が所望の温度に達するまでに時間がかかるという課題があった。
磁石温度を上昇させる他の方法として、インバータ回路を構成するスイッチング素子を駆動してロータ2を回転させることなく巻線に通電する拘束通電を行い、IRで表される巻線のジュール熱損を発生させ、この熱を磁石に伝えて磁石を加熱するものがある。Iは電流を表し、Rは巻線抵抗を表す。ジュール熱損は一般的に銅線を用いるため銅損とも呼ばれる。
拘束通電の方法としては、直流通電をする方法、ロータ2の回転が追従しないような高周波の交流電流を通電する方法、または1相を欠相させ2相通電する方法がある。何れの方法でも、インバータ回路を構成するスイッチング素子で電流を生成でき、電流のキャリア周波数は、通電加熱時の騒音として問題となりにくい16kHz以上のスイッチングで生成される。また交流電流を通電の場合、銅損のみならず、電流変化に伴う磁束の変化によってコアで発生する鉄損も熱として利用することができる。しかしながら、これらの拘束通電の方法では、減磁限界電流未満での電流でしか銅損を発生させることができないため、磁石温度が所望の温度に達するまで時間がかかる。
特に小型モータおよび高効率モータで採用されることが多い集中巻の場合、巻線周長が短く巻線抵抗が小さいため、発熱量が小さくなる。また、ティース毎に分割されたタイプのステータコアと、薄肉で連結されコアを広げて巻線を巻くことができるタイプのステータコアとでは、巻線がし易いため高密度に巻線を巻くことができるだけでなく、太い巻線を使用できる。そのためこれらの種類のステータコアに集中巻を採用した場合、より銅損が小さくなり、磁石温度が所望の温度に達するまで更に時間がかかることとなる。
一方、鉄損については、近年、コアを構成する電磁鋼板の低鉄損化によるモータ効率の改善が図られてきているため、発熱量も少なくなってきている。電磁鋼板は低鉄損化のために従来主流であった厚み0.5mmよりも更に薄板化が図られており、0.35mm,0.3mm,0.25mmのように電磁鋼板の厚みを薄くすると、鉄損の中でも高周波に伴う渦電流損が特に低下する。よって、高周波通電による鉄損発熱が小さいものになり、磁石温度が所望の温度に達するまでに時間がかかる要因の一つとなっている。特に集中巻モータは、銅損に対する鉄損の比率が大きいため、その改善として薄肉電磁鋼板、一例としては厚み0.35mm以下のものが用いられることが多く、銅損と鉄損が共に小さく、磁石温度が所望の温度に達するまでに時間がかかる。
そこで本実施の形態に係るファンモータ20Aおよび圧縮機モータ20Bは、ステータ1のスロット1a3にアルミ製の巻線1bが高占積で巻かれ、かつ、巻線1bに拘束通電することで予備加熱を行うよう構成されている。アルミ線の抵抗率は銅線の抵抗率の1.6倍であるため、IRで表されるアルミ線のジュール熱損は、電流値を同一としたときに銅線で発生するジュール熱損の1.6倍となる。そのため、減磁限界電流値未満の通電であっても、磁石温度が所望の温度に達するまでの時間を短縮することができる。圧縮機モータ20Bへの拘束通電の一例としては、圧縮機モータ用インバータ回路部60を構成するスイッチング素子がスイッチング動作することで実現され、ファンモータ20Aへの拘束通電の一例としては、ファンモータ用インバータ回路部61を構成するスイッチング素子がスイッチング動作することで実現される。
ただしアルミ線の熱伝導度は銅線の熱伝導度に対して0.57倍と小さいため、アルミ線で発生した熱を磁石に伝える面では不利になる。アルミ線で発生した熱を磁石へ効率的に伝達するためには、アルミ線同士を密着させてアルミ線同士の間の隙間を小さくし、あるいはアルミ線をティースに密着させてアルミ線とティースとの間の隙間を小さくすることが望ましい。なお、ティースに巻かれたアルミ線は必然的にティースと密着するが、隣接するアルミ線間には隙間が生じる。
そこで本実施の形態では、銅線を用いたモータで採用されることが多い空気絶縁は行わずに、隣接する巻線1b間を巻線間絶縁材1c1で絶縁することにより、少なくとも1ターン分の巻線1bを巻線間絶縁材1c1に密着させている。巻線間絶縁材1c1の一例としては、前述したフィルムまたは樹脂の絶縁材をピース状に成形したものを隣接する巻線1b間に挿入してもよいし、あるいは、隣接する巻線1b間を樹脂で一体モールドさせてもよい。巻線1bの表面に施された絶縁コーティングによって信頼性が十分と判断されれば、隣接する巻線1b同士を密着させてもよい。
本実施の形態に係る空気調和機100では予備加熱が以下のようにして行われる。空気調和機100内に設置された図示しない温度センサーで測定された温度と、巻線抵抗と、拘束通電電流値と、通電電流の周波数と、通電時間とに基づいて、予め実験によってデータベース化されたものから推定した磁石温度が、所望の温度に達するまで予備加熱が行われる。すなわち磁石温度が、ステータ電流が過電流保護値P2を超えたと判断されたときの温度に達するまで予備加熱が行われる。その後、空気調和機100では通常の起動を行う。
なお、巻線1bを銅線からアルミ線に変更することで、通常運転時の巻線1bのジュール熱損も大きくなり、モータ効率が低下するが、モータ効率の低下分は磁石サイズを増加させることで相殺することができる。モータトルクTは、簡易的にT∝n・I・φで表され、磁石サイズを大きくして磁束φを増加させれば、その分電流Iが小さくてもモータトルクTを発生できる。電流が下がることにより、アルミ線化によって増加した通常運転時のジュール熱損を抑制できる。また磁石サイズを大きくすることで減磁に対する耐力を上げることができ、減磁限界電流値が上がり、過電流保護値を上げることが可能となる。過電流保護値が上がることによって拘束通電時では通電電流を増加させることが可能となり、磁石温度が所望の温度に達するまでの時間をさらに縮減できる。
また通電加熱でフェライト磁石2bの低温減磁が緩和されると、高磁力の磁石が使い易くなる。高磁力の磁石の一例としては希土類磁石が挙げられる。磁石では減磁耐力の指標となる保磁力と磁束量の指標となる残留磁束密度とがトレードオフの関係にあり、低めの保磁力の磁石の採用が可能となれば、高磁力化が図れ、より少ない電流でトルクを発生させることができ、効率改善となる。なお、磁石サイズの増加によるコストの増加に関しては、巻線1bを高価な銅線から安価なアルミ線に変更することで、コストの大幅な低減を図ることができる。そのため、磁石サイズは、モータ効率の狙い値も含めて、総合的に適正値が判断される。
なお、アルミ線の線膨張係数は銅線の線膨張係数の1.35倍であるため、巻線を銅線からアルミ線に変更した場合、特に巻線1bとモータ外に出されるリード線との結線部における品質に注意が必要である。モータ外に出されるリード線には、強度の問題から銅線を使用することが多く、アルミ製の巻線1bと銅製のリード線との結線は、銅の金属端子を機械的にかしめる場合がある。その他にも、ヒュージング、超音波振動溶着、半田付け、あるいはろう付けといった結線方法もある。ただし何れの結線方法であっても拘束通電による電流ヒートショックにより、銅とアルミの線膨張係数の違いから結線部を剥離する力が生じる。このような力が働いても必要最小限の密着力が発生していれば結線部での必要接触抵抗を満足できるが、結線部に隙間が生じてその部分に酸素が入ると、酸化し易いアルミの表面に絶縁層である酸化層が生成され、接触不良となる場合がある。よって、この酸化が発生しないよう結線部を酸素から隔離する必要がある。隔離方法としては、結線部をモールドし、または圧縮機30のように外気と遮断された密閉空間内に結線部を配置する必要がある。
通電加熱の目的の1つである磁石の低温減磁対策について述べたが、以下では通電加熱のもう1つの目的である圧縮機30の冷媒寝込み防止に関して説明する。一般に、冷媒配管51を介して室内側熱交換器40と室外側熱交換器42を圧縮機30に接続したヒートポンプ式冷凍装置においては、圧縮機30の運転停止の際、ヒートポンプ式冷凍装置の冷却された部分に冷媒が移動して凝縮する傾向がある。
一例として夜間に暖房運転を停止したとき、室内側熱交換器40の温度は圧縮機30および室外側熱交換器42の温度よりも高いため、圧縮機30および室外側熱交換器42に室内側熱交換器40内の冷媒が移動する。また、圧縮機30の熱容量は室外側熱交換器42よりも大きいため、朝方に外気温度が上昇すると、室外側熱交換器42の温度は圧縮機30の温度よりも早く上昇することから、室外側熱交換器42内の冷媒が、室外側熱交換器42よりも温度が低い圧縮機30側へ移動して凝縮し、圧縮機30の密閉容器32内に設けた油溜め空間の油中に液冷媒が溶け込んで溜まる冷媒寝込み現象が発生する。冷媒寝込みにより、液冷媒が油溜め空間内の油を希釈したり、圧縮機30の再起動を行うとき油溜め空間内の油中に溶け込んだ液冷媒が気泡状になって溶出することによりフォーミング現象が発生したり、あるいは、圧縮機30が液冷媒を直接吸い込むことにより液圧縮が発生して圧縮機30の故障の原因になることがある。
本実施の形態に係る空気調和機100では、圧縮機30が起動する前に圧縮機モータ20Bを拘束通電することにより、圧縮機30内の冷媒を所望の温度に達するまで加温し、液冷媒を気化させて寝込み起動を防止する。圧縮機30の場合、所望の温度はフェライト磁石2bの減磁を緩和する温度と寝込みを防止する温度とを踏まえて適宜決定される。
なお本実施の形態に係る空気調和機100ではファンモータ20Aと圧縮機モータ20Bの両方を用いられているが、空気調和機100にはファンモータ20Aと圧縮機モータ20Bの一方のみを用いてもよい。
また本実施の形態に係るロータ2は、磁石挿入孔2cにフェライト磁石2bを挿入するIPM(Interior Permanent Magnet)型であるが、これに限定されず、樹脂部2aの外周面に磁石を配置するSPM(Surface Permanent Magnet)型であってもよい。
また本実施の形態に係るステータコア1aおよび樹脂部2aは、電磁鋼板を積層したものに限定されず、鋼材を加工した一体型コア、樹脂と鉄粉を混ぜたものを固めた樹脂コア、または磁性粉を加圧成形した圧粉コアでもよく、コアの種類は目的と用途によって使い分けられる。
実施の形態2.
実施の形態2に係る空気調和機100は、ファンモータ20Aと圧縮機モータ20Bの両方を用い、かつ、圧縮機モータ20Bを拘束通電している間にファンモータ20Aも拘束通電する構成である。
圧縮機30はモータの設計によらず、空気調和機100の内部構造に起因して、冷媒が圧縮機30内に液冷媒となって滞留する場合がある。液冷媒の滞留による油の希釈または液圧縮による圧縮機構部31のストレスを防止するため、拘束通電せざるを得ない場合がある。一方、ファンモータ20Aは冷凍回路中に用いられていないため、ファンモータ20Aには液冷媒による影響の心配がなく、フェライト磁石2bの低温減磁のみ懸念されるため、フェライト磁石2bの低温減磁の対策としては、磁石の保磁力を上げるといった拘束通電以外の手段がある。ただし、磁石の保磁力を上げることは、磁束量を落としたりコストの増加を招く結果となるため、性能低下およびコスト増加の抑制を図りながら空気調和機としてのシステムを組むべきである。
そこで実施の形態2に係る空気調和機100では、圧縮機モータ20Bの拘束通電を行う時間を利用してファンモータ20Aも拘束通電する。これによってファンモータ20Aに使用されるフェライト磁石2bの保磁力を上げる対策、すなわち希土類磁石を代表とする高価な磁石を用いることなく低温減磁の対策が可能となり、低コストなファンモータ20Aを実現できる。一般的にファンモータ20Aの方が圧縮機モータ20Bよりも熱容量が小さいため、圧縮機モータ20Bよりも短い時間の拘束通電で十分であり、圧縮機モータ20Bとファンモータ20Aとを同時に拘束通電を行うことで、別々に拘束通電を行う場合よりも空気調和機100全体として、磁石温度が所望の温度に達するまでに時間を短縮できる。
実施の形態3.
実施の形態3に係る空気調和機100は、拘束通電の方式が、圧縮機モータ20Bでは交流通電を主とし、ファンモータ20Aでは直流通電を主とする構成である。
ファンモータ20Aは、モータ負荷トルクが圧縮機モータ20Bの半分以下、使用回転速度が圧縮機モータ20Bの1/3程度であり、出力が小さく、電流値も小さい。一方、ファンモータ20Aは、圧縮機モータ20Bに比べて磁石量が少ないため磁力が小さく、また圧縮機モータ20Bに比べて最大回転速度が小さいことから、巻線1ターンあたりの誘起電圧が小さい。
ここで永久磁石型モータの回路方程式は簡易的にV−E=IZで表される。Vはコンバータ回路部62の母線電圧で決まるインバータ出力最大電圧、EはE=n・dφ/dtで決まる誘起電圧、Iは巻線電流、Zはモータインピーダンス、nは巻線の巻数、φは磁束量、d/dtは時間微分を表す。モータトルクは簡易的にT∝n・I・φで表され、電流を流してトルクを得るため、誘起電圧Eはインバータ出力最大電圧未満になるよう制御されるが、ファンモータ20Aは圧縮機モータ20Bに比較し、最大回転速度と磁束量が小さいため、dΦ/dtが小さく、その分、巻数nを多くすることができる。巻数nが大きくなれば、T∝n・I・φより少ない電流でトルクが発生できるようになり、少ない電流であればその分インバータ回路の素子を小さな容量のものにでき、またインバータ回路の効率の向上を図ることができる。
しかしながら巻数nが多くなるとインダクタンスも大きくなり、高周波交流の振幅が小さくなる。ここで拘束通電の方式と合わせて考えてみると、直流通電の場合は巻線によるジュール熱損が主で、直流に重畳された高周波成分による鉄損発熱は小さい。交流通電は、交流で発生する磁束の変化でコアに鉄損を生じさせるので、交流通電による拘束通電では鉄損による発熱が主となる。
ファンモータ20Aでは巻数nが多くインダクタンスLが大きいため、特にインバータ回路のキャリア周波数fが高い場合、インダクタンスと周波数で定まるインピーダンス(=2πfL)が大きくなり、交流電流振幅が大きく取れず、鉄損発熱が小さいものとなってしまう。キャリア周波数fは、通電加熱時の騒音として問題となりにくい16kHz以上の値である。
そこでファンモータ20Aに対する拘束通電の方式としては、鉄損よりも巻線ジュール熱損が大きくできる直流通電を主とすることが望ましい。直流通電を主とするとは、拘束通電時の電流に交流成分が重畳してもよいが、拘束通電時の電流に対する直流成分の割合が拘束通電時の電流に対する交流成分の割合より大きい電流を通電すること、または拘束通電時における直流通電時間が交流通電時間よりも長いことを示す。
一方、圧縮機モータ20Bでは、インダクタンスが小さいため、電流振幅をファンモータ20Aより大きく取れるので、圧縮機モータ20Bに対する拘束通電の方式としては、鉄損と巻線ジュール熱損との両方で発熱が可能な交流通電を主とすることが望ましい。交流通電が主とは、拘束通電時の電流に直流成分が重畳してもよいが、拘束通電時の電流に対する交流成分の割合が拘束通電時の電流に対する直流成分の割合より大きい電流を通電すること、または拘束通電時における交流通電時間が直流通電時間よりも長いことを示す。
なお、ファンモータ20Aは圧縮機モータ20Bよりもインダクタンスが大きいと述べたが、その理由は、ファンモータ用インバータ回路部61の最大出力電圧が、圧縮機モータ用インバータ回路部60の最大出力電圧よりも小さい場合、一般的な空気調和機では、共通のコンバータ回路部62の母線電圧をファンモータ用インバータ回路部61と圧縮機モータ用インバータ回路部60に分岐し、要求最大回転速度がファンモータ20Aの方が低いためである。
実施の形態4.
実施の形態4に係る空気調和機100では、モータを駆動するインバータ回路を構成するスイッチング素子がワイドバンドギャップ半導体で構成されている。拘束通電時の印加電圧および電流を生成するインバータ回路のスイッチング素子にはSiケイ素を材料とするSi系半導体を用いるのが一般的であるが、SiC炭化ケイ素、GaN窒化ガリウム、Cダイヤモンドといった材料を用いたワイドバンドギャップ半導体は、スイッチングの電力損失が小さいため、インバータ回路を構成するスイッチング素子をワイドバンドギャップ半導体で構成することにより、拘束通電時における電力損失を抑制することができる。
以上に説明したように本実施の形態に係る空気調和機100は、永久磁石型モータであるファンモータ20Aおよび圧縮機モータ20Bのステータ1がアルミ線で高占積巻線され、ファンモータ20Aおよび圧縮機モータ20Bを駆動することなくアルミ線に拘束通電することでフェライト磁石2bを加熱する。ステータ1にアルミの巻線1bが高占積で巻かれることにより、減磁限界電流未満の電流でも発熱が大きくなり磁石温度が所望の温度に達するまでの時間を短縮することができ、熱電導度が銅線よりも低いアルミ線を用いても通電によるジュール熱を効果的にフェライト磁石2bに伝えることができる。従って、実施の形態1から4に係る空気調和機100では、電流保護値の可変をソフトウエアで行うことによる処理遅延時間を生じることなく、かつ、電流保護値の可変をハードウエアで行うことによるコストの増加を招くことなく、永久磁石の減磁を抑制することができる。
また本実施の形態に係る空気調和機100ではアルミ線が集中巻でステータ1に巻かれている。集中巻では分布巻に比べて巻線周長が短いため巻線での通電発熱であるジュール熱が小さい。一方、磁束が分布巻に対してアンバランスになることから鉄損は大きめになる。アルミの巻線1bと組み合わせることにより、巻線1bの抵抗によるジュール熱損と鉄損を利用して、磁石温度が所望の温度に達するまでの時間を短縮することができる。
また本実施の形態に係る空気調和機100のステータ1は、空気調和機100に搭載される圧縮機30を駆動する圧縮機モータ20Bと、空気調和機100に搭載されるファン41およびファン43を駆動するファンモータ20Aとに用いられ、圧縮機モータ20Bを拘束通電している間にファンモータ20Aも拘束通電する。これによって圧縮機モータ20Bとファンモータ20Aとを別々に拘束通電を行う場合よりも空気調和機100全体として磁石温度が所望の温度に達するまでに時間を短縮できる。
また本実施の形態に係る空気調和機100は、拘束通電が圧縮機モータ20Bでは交流通電を主とし、ファンモータ20Aでは直流通電を主とする。鉄損と巻線ジュール熱損との両方で発熱が可能な圧縮機モータ20Bでは交流通電を主とし、鉄損よりも巻線1bによるジュール熱損が支配的なファンモータ20Aでは直流通電を主とすることで、磁石温度が所望の温度に達するまでに時間をより短縮することができる。
また本実施の形態に係る空気調和機100は、圧縮機モータ20Bを駆動する圧縮機モータ用インバータ回路部60を有し、圧縮機モータ用インバータ回路部60を構成するスイッチング素子が、ワイドバンドギャップ半導体で構成されている。また本実施の形態に係る空気調和機100は、ファンモータ20Aを駆動するファンモータ用インバータ回路部61を有し、ファンモータ用インバータ回路部61を構成するスイッチング素子が、ワイドバンドギャップ半導体で構成されている。これにより拘束通電時における電力損失を抑制することができる。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 ステータ、1a ステータコア、1a1 バックヨーク、1a2 ティース、1a3 スロット、1b 巻線、1c 絶縁材、1c1 巻線間絶縁材、1c2 ティース被覆用絶縁材、2 ロータ、2a 樹脂部、2b フェライト磁石、2c 磁石挿入孔、2d シャフト挿入孔、3 軸受、4 シャフト、5 ブラケット、9 モールド樹脂、13 ハウジング、20A ファンモータ、20B 圧縮機モータ、30 圧縮機、31 圧縮機構部、32 密閉容器、40 室内側熱交換器、41 ファン、42 室外側熱交換器、43 ファン、50 四方弁、51 冷媒配管、52 膨張弁、60 圧縮機モータ用インバータ回路部、61 ファンモータ用インバータ回路部、62 コンバータ回路部、70 商用電源、80 冷凍サイクル、100 空気調和機。

Claims (6)

  1. ロータにフェライト磁石を用いた永久磁石型モータを備えた空気調和機であって、
    前記永久磁石型モータのステータは、アルミ線で高占積巻線され、
    前記永久磁石型モータを駆動することなく前記アルミ線に拘束通電することでフェライト磁石を加熱する空気調和機。
  2. 前記アルミ線は集中巻で前記ステータに巻かれている請求項1に記載の空気調和機。
  3. 前記ステータは、前記空気調和機に搭載される圧縮機を駆動する圧縮機モータと、前記空気調和機に搭載されるファンを駆動するファンモータとに用いられ、
    前記圧縮機モータを拘束通電している間に前記ファンモータも拘束通電する請求項1または請求項2に記載の空気調和機。
  4. 前記拘束通電は、前記圧縮機モータでは交流通電を主とし、前記ファンモータでは直流通電を主とする請求項3に記載の空気調和機。
  5. 前記圧縮機モータを駆動する圧縮機モータ用インバータ回路部を有し、
    前記圧縮機モータ用インバータ回路部を構成するスイッチング素子が、ワイドバンドギャップ半導体で構成されている請求項3または請求項4に記載の空気調和機。
  6. 前記ファンモータを駆動するファンモータ用インバータ回路部を有し、
    前記ファンモータ用インバータ回路部を構成するスイッチング素子が、ワイドバンドギャップ半導体で構成されている請求項3または請求項4に記載の空気調和機。
JP2014206392A 2014-10-07 2014-10-07 空気調和機 Active JP6071972B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014206392A JP6071972B2 (ja) 2014-10-07 2014-10-07 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014206392A JP6071972B2 (ja) 2014-10-07 2014-10-07 空気調和機

Publications (2)

Publication Number Publication Date
JP2016077093A true JP2016077093A (ja) 2016-05-12
JP6071972B2 JP6071972B2 (ja) 2017-02-01

Family

ID=55950108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014206392A Active JP6071972B2 (ja) 2014-10-07 2014-10-07 空気調和機

Country Status (1)

Country Link
JP (1) JP6071972B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066084A1 (ja) * 2016-10-05 2018-04-12 三菱電機株式会社 電動機および空気調和装置
CN110785618A (zh) * 2017-07-03 2020-02-11 宁波吉利汽车研究开发有限公司 用于控制热泵系统的方法
CN113007857A (zh) * 2021-04-19 2021-06-22 宁波奥克斯电气股份有限公司 空调电加热器运行控制方法、装置、空调器和计算机可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767390A (ja) * 1993-08-23 1995-03-10 Matsushita Electric Ind Co Ltd 磁石モータの保護装置
JP2003184775A (ja) * 2001-09-10 2003-07-03 Hitachi Ltd アンモニア系冷媒用スクロール圧縮機及び冷凍装置
JP2009207217A (ja) * 2008-02-26 2009-09-10 Daikin Ind Ltd 電機子用磁芯、電機子、回転電機及び圧縮機
EP2602916A1 (en) * 2011-12-06 2013-06-12 Hamilton Sundstrand Space Systems International, Inc. Cooling of permanent magnet electric machine
JP2013179726A (ja) * 2012-02-28 2013-09-09 Hitachi Appliances Inc 永久磁石モータの制御装置、永久磁石モータ、及び圧縮機
JP2013207837A (ja) * 2012-03-27 2013-10-07 Mitsubishi Electric Corp 空気調和装置
WO2014102950A1 (ja) * 2012-12-27 2014-07-03 株式会社 日立製作所 回転電機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767390A (ja) * 1993-08-23 1995-03-10 Matsushita Electric Ind Co Ltd 磁石モータの保護装置
JP2003184775A (ja) * 2001-09-10 2003-07-03 Hitachi Ltd アンモニア系冷媒用スクロール圧縮機及び冷凍装置
JP2009207217A (ja) * 2008-02-26 2009-09-10 Daikin Ind Ltd 電機子用磁芯、電機子、回転電機及び圧縮機
EP2602916A1 (en) * 2011-12-06 2013-06-12 Hamilton Sundstrand Space Systems International, Inc. Cooling of permanent magnet electric machine
JP2013179726A (ja) * 2012-02-28 2013-09-09 Hitachi Appliances Inc 永久磁石モータの制御装置、永久磁石モータ、及び圧縮機
JP2013207837A (ja) * 2012-03-27 2013-10-07 Mitsubishi Electric Corp 空気調和装置
WO2014102950A1 (ja) * 2012-12-27 2014-07-03 株式会社 日立製作所 回転電機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066084A1 (ja) * 2016-10-05 2018-04-12 三菱電機株式会社 電動機および空気調和装置
US10784733B2 (en) 2016-10-05 2020-09-22 Mitsubishi Electric Corporation Motor and air conditioning apparatus
CN110785618A (zh) * 2017-07-03 2020-02-11 宁波吉利汽车研究开发有限公司 用于控制热泵系统的方法
CN110785618B (zh) * 2017-07-03 2021-12-31 宁波吉利汽车研究开发有限公司 用于控制热泵系统的方法
US11384968B2 (en) 2017-07-03 2022-07-12 Ningbo Geely Automobile Research & Development Co. Ltd. Method for controlling a heat pump system
CN113007857A (zh) * 2021-04-19 2021-06-22 宁波奥克斯电气股份有限公司 空调电加热器运行控制方法、装置、空调器和计算机可读存储介质
CN113007857B (zh) * 2021-04-19 2022-03-29 宁波奥克斯电气股份有限公司 空调电加热器运行控制方法、装置、空调器和计算机可读存储介质

Also Published As

Publication number Publication date
JP6071972B2 (ja) 2017-02-01

Similar Documents

Publication Publication Date Title
JP5468215B2 (ja) 空気調和機及び空気調和機の製造方法
JP6431483B2 (ja) 永久磁石埋込型電動機の製造方法、圧縮機の製造方法、および冷凍空調装置の製造方法
WO2003007457A1 (fr) Moteur electrique
JPWO2013042486A1 (ja) 機電一体型モジュール
JP5318050B2 (ja) 永久磁石型モータの駆動装置及び圧縮機
JP2011041379A (ja) 自己始動型永久磁石同期電動機、及び、これを用いた圧縮機と冷凍サイクル
US10763717B2 (en) Stator core, stator, electric motor, drive device, compressor, air conditioner, and a method of manufacturing a stator core
JP2012055117A (ja) 永久磁石型モータ及び圧縮機
JP6071972B2 (ja) 空気調和機
JP6914346B2 (ja) 固定子、電動機、圧縮機、空気調和装置および固定子の製造方法
JP6779304B2 (ja) ステータ、電動機、駆動装置、圧縮機、及び冷凍空調装置、並びにステータの製造方法
JP2023174745A (ja) 電動機
JP6545385B2 (ja) モータ及び空気調和機
JP2024009926A (ja) 圧縮機及び空気調和機
JP6903168B2 (ja) 電動機、圧縮機および空気調和装置
JP7286019B2 (ja) 固定子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置
JP7038891B2 (ja) モータ、圧縮機および空気調和装置
JP2012055118A (ja) 永久磁石型モータの駆動装置及び圧縮機
JP2005192264A (ja) 電動機
JP2015211610A (ja) ブラシレスモータ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161227

R150 Certificate of patent or registration of utility model

Ref document number: 6071972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250