JP2016074556A - 光学ガラス及び光学素子 - Google Patents

光学ガラス及び光学素子 Download PDF

Info

Publication number
JP2016074556A
JP2016074556A JP2014205977A JP2014205977A JP2016074556A JP 2016074556 A JP2016074556 A JP 2016074556A JP 2014205977 A JP2014205977 A JP 2014205977A JP 2014205977 A JP2014205977 A JP 2014205977A JP 2016074556 A JP2016074556 A JP 2016074556A
Authority
JP
Japan
Prior art keywords
component
glass
optical glass
less
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014205977A
Other languages
English (en)
Inventor
道子 荻野
Michiko Ogino
道子 荻野
浄行 桃野
Kiyoyuki Momono
浄行 桃野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2014205977A priority Critical patent/JP2016074556A/ja
Publication of JP2016074556A publication Critical patent/JP2016074556A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

【課題】高屈折率を有しながらも十分に清澄されており、高い可視光透過率を有し、且つ内部品質が優れた光学ガラスと、これを用いたプリフォーム及び光学素子を提供する。【解決手段】光学ガラスは、質量%でB2O3成分を5.0〜40.0%、Ln2O3成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)を合計で25.0%以上75.0%以下含有し、硫黄成分及びハロゲン成分より選ばれる1種以上からなる揮発成分を合計で0.01%以上15.00%以下含有し、1350℃まで昇温したときの熱重量減率が0.01%以上5.00%以下である。【選択図】なし

Description

本発明は、光学ガラス及び光学素子に関する。
近年、光学系を使用する機器のデジタル化や高精細化が急速に進んでおり、デジタルカメラやビデオカメラ等の撮影機器や、プロジェクタやプロジェクションテレビ等の画像再生(投影)機器等の各種光学機器の分野では、光学系で用いられるレンズやプリズム等の光学素子の枚数を削減し、光学系全体を軽量化及び小型化する要求が強まっている。
光学素子を作製する光学ガラスの中でも特に、光学系全体の軽量化及び小型化を図ることが可能な、1.70以上の屈折率(n)を有し、20以上60以下のアッベ数(ν)を有する高屈折率ガラスの需要が非常に高まっている。このような高屈折率ガラスとして、特許文献1〜6に代表されるようなガラス組成物が知られている。
特開2002−249337号公報 特開2003−201143号公報 特開2001−348244号公報 特開2006−016293号公報 特開2009−102215号公報 特開2009−203083号公報
しかしながら、特許文献1〜6で開示されたガラスをはじめ、B成分及びLn成分を含有する高屈折率ガラスでは、特に産業ベースで大量生産を行った場合に、清澄温度を極めて高くしないと熔解したガラス原料を十分に脱泡させることが困難になるため、十分に清澄されたガラスを得るのが困難になり、生産性も低下する問題点があった。
これに対し、脱泡剤としてSb成分やAs成分を添加する手法が知られている。しかし、Sb成分をガラス原料に添加すると、特に高屈折率のガラスを得る場合にはガラスが着色し易くなるため、可視光について透過率の高い光学ガラスを得ることが困難であった。また、As成分は、環境上の規制等の観点から使用することが困難であった。
特に、レンズやプリズム等の光学素子の用途に適した光学ガラスを得るには、脈理をはじめとした内部品質を高める必要がある。
本発明は、上記問題点に鑑みてなされたものであって、その目的とするところは、高屈折率を有しながらも十分に清澄されており、高い可視光透過率を有し、且つ内部品質が優れた光学ガラスと、これを用いたプリフォーム及び光学素子を提供することにある。
本発明者は、上記課題を解決するために、鋭意試験研究を重ねた結果、B成分及びLn成分を含有するガラスにおいて、硫黄成分を含有させながらも、昇温したときの熱重量減率を低減させることにより、可視光透過率を高めながらも、脈理をはじめとした内部品質の低下を抑えられることを見出し、本発明を完成するに至った。
具体的には、本発明は、以下に述べる光学ガラスを提供するものである。
(1) 質量%でB成分を5.0〜40.0%、Ln成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)を合計で25.0%以上75.0%以下含有し、硫黄成分及びハロゲン成分より選ばれる1種以上からなる揮発成分を合計で0.01%以上15.00%以下含有し、1350℃まで昇温したときの熱重量減率が0.01%以上5.00%以下である光学ガラス。
(2) 前記揮発成分として、硫黄成分をSO換算で0.01質量%以上1.0質量%以下含有する(1)記載の光学ガラス。
(3) 前記揮発成分として、酸化物基準の質量に対する外割り質量%で
F成分 0〜15.0質量%
Cl成分 0〜5.0質量%
Br成分 0〜5.0質量%
I成分 0〜5.0質量%
である(1)又は(2)記載の光学ガラス。
(4) 日本光学硝子工業会規格JOGIS12−1994「光学ガラスの泡の測定方法」に基づくガラス中の泡評価が1〜3級のいずれかである(1)から(3)のいずれか記載の光学ガラス。
(5) 日本光学硝子工業会規格JOGIS11−2008「光学ガラスの脈理の測定方法」に基づく脈理の評価が1〜3級のいずれかである(1)から(4)のいずれか記載の光学ガラス。
(6) 質量%で、Sb成分の含有量が0.5%以下である(1)から(5)のいずれか記載の光学ガラス。
(7) 質量%で
La成分 10.0〜65.0%、
Gd成分 0〜30.0%、
成分 0〜30.0%、
Yb成分 0〜20.0%
である(1)から(6)のいずれか記載の光学ガラス。
(8) 質量%で
SiO成分 0〜30.0%
ZrO成分 0〜20.0%
ZnO成分 0〜30.0%
である(1)から(7)のいずれか記載の光学ガラス。
(9) 質量%で
TiO成分 0〜30.0%
Nb成分 0〜20.0%
WO成分 0〜20.0%
である(1)から(8)のいずれかに記載の光学ガラス。
(10) TiO成分、Nb成分及びWO成分の含有量の和が30.0%以下である(1)から(9)のいずれかに記載の光学ガラス。
(11) 質量%で
MgO成分 0〜10.0%
CaO成分 0〜10.0%
SrO成分 0〜20.0%
BaO成分 0〜20.0%
である(1)から(10)のいずれか記載の光学ガラス。
(12) RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の質量和が30.0%以下である(1)から(11)のいずれかに記載の光学ガラス。
(13) 質量%で
LiO成分 0〜20.0%
NaO成分 0〜15.0%
O成分 0〜10.0%
である(1)から(12)のいずれかに記載の光学ガラス。
(14) RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の質量和が20.0%以下である(1)から(13)のいずれかに記載の光学ガラス。
(15) 質量%で
成分 0〜20.0%
GeO成分 0〜10.0%
Ta成分 0〜20.0%
Bi成分 0〜15.0%
TeO成分 0〜20.0%
Al成分 0〜20.0%
Ga成分 0〜20.0%
SnO成分 0〜3.0%
である(1)から(14)のいずれか記載の光学ガラス。
(16) 1.70以上の屈折率(n)を有し、20以上60以下のアッベ数(ν)を有する(1)から(15)のいずれか記載の光学ガラス。
(17) 分光透過率が70%を示す波長(λ70)が500nm以下である(1)から(16)のいずれか記載の光学ガラス。
(18) (1)から(17)のいずれか記載の光学ガラスを母材とする光学素子。
(19) (18)記載の光学素子を備える光学機器。
本発明によれば、高屈折率を有しながらも十分に清澄されており、高い可視光透過率を有し、且つ内部品質が優れた光学ガラスと、これを用いたプリフォーム及び光学素子を提供できる。
本発明の光学ガラスは、質量%でB成分を5.0〜40.0%、Ln成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)を合計で25.0%以上75.0%以下含有し、硫黄成分及びハロゲン成分より選ばれる1種以上からなる揮発成分を合計で0.01%以上15.00%以下含有し、1350℃まで昇温したときの熱重量減率が0.01%以上5.00%以下である。
成分及びLn成分を含有するガラスにおいて、硫黄成分を含有させながらも、昇温したときの熱重量減率を低減させることにより、可視光透過率を高めながらも、脈理をはじめとした内部品質の低下を抑えられる。
特に、B成分及びLa成分をベースとすることにより、1.70以上の高い屈折率(n)を有しながらも、着色のより少ないガラスを得易くできる。
従って、高屈折率を有しながらも十分に清澄されており、高い可視光透過率を有し、且つ内部品質が優れた光学ガラスを提供できる。
以下、本発明の光学ガラスの実施形態について詳細に説明する。本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所について、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。
[ガラス成分]
本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中において、各成分の含有量は、特に断りがない場合、全て酸化物換算組成のガラス全質量に対する質量%で表示されるものとする。ここで、「酸化物換算組成」は、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が熔融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量を100質量%として、ガラス中に含有される各成分を表記した組成である。
<必須成分、任意成分について>
成分は、希土類酸化物を多く含む本発明の光学ガラスでは、ガラス形成酸化物として必須の成分である。特に、B成分を5.0%以上含有することで、ガラスの耐失透性を高め、ガラス原料の溶融性を高め、且つガラスのアッベ数を高められる。従って、B成分の含有量は、好ましくは5.0%、より好ましくは8.0%、さらに好ましくは11.0%、さらに好ましくは13.0%を下限とする。
一方、B成分の含有量を40.0%以下にすることで、より大きな屈折率を得易くでき、且つ化学的耐久性の悪化を抑えられる。従って、B成分の含有量は、好ましくは40.0%、より好ましくは36.0%、さらに好ましくは32.0%、さらに好ましくは27.0%を上限とする。
成分は、原料としてHBO、Na、Na・10HO、BPO等を用いることができる。
Ln成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)の合計量は、25.0%以上75.0%以下が好ましい。
特に、この和を25.0%以上にすることで、ガラスの屈折率及びアッベ数がいずれも高められるため、所望の屈折率及びアッベ数を有するガラスを得易くすることができる。従って、Ln成分の合計量は、好ましくは25.0%、より好ましくは35.0%、さらに好ましくは38.0%、さらに好ましくは42.0%、さらに好ましくは45.0%、さらに好ましくは50.0%、さらに好ましくは55.0%を下限とする。
一方で、この和を75.0%以下にすることで、ガラスの失透を低減できる。従って、Ln成分の合計量は、好ましくは75.0%、より好ましくは68.0%、さらに好ましくは63.0%、さらに好ましくは60.0%を上限とする。
La成分は、10.0%以上含有する場合に、ガラスの屈折率を高め、且つガラスのアッベ数を高められる成分である。従って、La成分の含有量は、好ましくは10.0%、より好ましくは20.0%、さらに好ましくは30.0%、さらに好ましくは35.0%、さらに好ましくは38.0%を下限としてもよい。
他方で、La成分の含有量を65.0%以下にすることで、ガラスの失透を低減できる。従って、La成分の含有量は、好ましくは65.0%、より好ましくは55.0%、さらに好ましくは51.0%、さらに好ましくは49.0%を上限とする。
La成分は、原料としてLa、La(NO・XHO(Xは任意の整数)等を用いることができる。
Gd成分は、0%超含有する場合に、ガラスの屈折率を高められ、且つアッベ数を高められる任意成分である。
他方で、Gd成分の含有量を30.0%以下にすることで、ガラスの耐失透性を高められ、且つ材料コストを低減できる。従って、Gd成分の含有量は、好ましくは30.0%以下、より好ましくは25.0%未満、さらに好ましくは20.0%未満、さらに好ましくは16.0%未満、さらに好ましくは10.0%未満とする。
Gd成分は、原料としてGd、GdF等を用いることができる。
成分は、0%超含有する場合に、高アッベ数を維持しながらも屈折率を高められる任意成分である。また、ガラスの材料コストを抑え、且つ、他の希土類成分よりもガラスの比重を低減できる成分でもある。従って、Y成分の含有量は、好ましくは0%超、より好ましくは1.0%超、さらに好ましくは3.0%超、さらに好ましくは5.0%超、さらに好ましくは8.0%超としてもよい。
一方で、Y成分の含有量を30.0%以下にすることで、ガラス原料の溶融性を高められ、且つ耐失透性を高められる。従って、Y成分の含有量は、好ましくは30.0%、より好ましくは20.0%、さらに好ましくは16.0%、さらに好ましくは13.0%、さらに好ましくは11.0%を上限とする。
成分は、原料としてY、YF等を用いることができる。
Yb成分は、0%超含有する場合に、ガラスの屈折率を高められ、且つアッベ数を高められる任意成分である。
他方で、Yb成分の含有量を20.0%以下にすることで、ガラスの耐失透性を高められ、且つ材料コストを低減できる。従って、Yb成分の含有量は、好ましくは20.0%以下、より好ましくは10.0%以下、さらに好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
Yb成分は、原料としてYb等を用いることができる。
SiO成分は、0%超含有する場合に、ガラスの着色を低減でき、且つ化学的耐久性や耐失透性を高められる任意成分である。従って、SiO成分の含有量は、好ましくは0%超、より好ましくは1.0%、さらに好ましくは2.0%、さらに好ましくは3.0%、さらに好ましくは5.0%を下限としてもよい。
他方で、SiO成分の含有量を30.0%以下にすることで、原料ガラスの熔解時における溶け残りを低減でき、熔融ガラスの粘度の上昇を抑えて脱泡を促進し易くでき、且つ、ガラス転移点の上昇や屈折率の低下を抑えられる。従って、SiO成分の含有量は、好ましくは30.0%、より好ましくは20.0%、さらに好ましくは15.0%、さらに好ましくは10.0%、さらに好ましくは8.0%を上限とする。
SiO成分は、原料としてSiO、KSiF、NaSiF等を用いることができる。
ZrO成分は、0%超含有する場合に、ガラスの屈折率を高められ、且つ化学的耐久性及び耐失透性を向上できる任意成分である。また、ガラスの着色を低減して短波長の可視光に対する透過率を高められる成分でもある。従って、ZrO成分の含有量を、好ましくは0%超、より好ましくは1.0%超、さらに好ましくは3.0%超、さらに好ましくは4.5%超としてもよい。
他方で、ZrO成分の含有量を20.0%以下にすることで、ZrO成分の過剰な含有による失透を低減できる。従って、ZrO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、さらに好ましくは10.0%、さらに好ましくは7.0%を上限とする。
ZrO成分は、原料としてZrO、ZrF等を用いることができる。
ZnO成分は、0%超含有する場合に、耐失透性を高められ、ガラス転移点を低くでき、且つ化学的耐久性を改善できる任意成分である。従って、ZnO成分の含有量は、好ましくは0%超としてもよく、より好ましくは1.0%超、さらに好ましくは4.0%超、さらに好ましくは10.0%超、さらに好ましくは13.0%超としてもよい。
他方で、ZnO成分の含有量を30.0%以下にすることで、屈折率の低下を抑えられ、液相温度を低くでき、且つ、ガラス転移点の必要以上の低下による失透を低減できる。従って、ZnO成分の含有量は、好ましくは30.0%、より好ましくは20.0%、さらに好ましくは15.0%、さらに好ましくは10.0%、さらに好ましくは6.0%を上限とする。
ZnO成分は、原料としてZnO、ZnF等を用いることができる。
TiO成分は、0%超含有する場合に、ガラスの屈折率を高められ、且つ耐失透性を高められる任意成分である。従って、TiO成分の含有量は、好ましくは0%超、より好ましくは1.0%超、さらに好ましくは3.0%超としてもよい。
他方で、TiO成分の含有量を30.0%以下にすることで、アッベ数の低下を抑えられ、TiO成分の過剰な含有による失透を低減でき、且つ、ガラスの可視光(特に波長500nm以下)に対する透過率の低下を抑えられる。従って、TiO成分の含有量は、好ましくは30.0%、より好ましくは17.0%、さらに好ましくは13.0%、さらに好ましくは10.0%、さらに好ましくは6.0%を上限とする。
TiO成分は、原料としてTiO等を用いることができる。
Nb成分は、0%超含有する場合に、ガラスの屈折率を高め、且つ耐失透性を高められる任意成分である。従って、Nb成分の含有量は、好ましくは0%超、より好ましくは1.0%超、さらに好ましくは2.0%超、さらに好ましくは4.0%超としてもよい。
他方で、Nb成分の含有量を20.0%以下にすることで、アッベ数の低下を抑えられ、Nb成分の過剰な含有による失透を低減でき、且つ、ガラスの可視光(特に波長500nm以下)に対する透過率の低下を抑えられる。従って、Nb成分の含有量は、好ましくは20.0%、より好ましくは15.0%、さらに好ましくは11.0%、さらに好ましくは9.0%を上限とする。
Nb成分は、原料としてNb等を用いることができる。
WO成分は、0%超含有する場合に、他の高屈折率成分によるガラスの着色を低減しながら、屈折率を高め、ガラス転移点を低くでき、且つガラスの耐失透性を高められる任意成分である。従って、WO成分の含有量は、好ましくは0%超、より好ましくは0.5%超、さらに好ましくは1.5%超としてもよい。
他方で、WO成分の含有量を20.0%以下にすることで、WO成分によるガラスの着色を低減して可視光透過率を高められる。従って、WO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、さらに好ましくは11.0%、さらに好ましくは6.0%、さらに好ましくは3.0%を上限とする。
WO成分は、原料としてWO等を用いることができる。
TiO成分、WO成分及びNb成分の合計量は、30.0%以下が好ましい。
これにより、これら成分の過剰な含有による液相温度の上昇が抑えられるため、光学ガラスの失透を低減できる。従って、質量和(TiO+WO+Nb)は、好ましくは30.0%、より好ましくは23.0%、さらに好ましくは20.0%、さらに好ましくは16.0%、さらに好ましくは13.0%を上限とする。
他方で、これらを合計で0%超含有することで、Ta成分等の難熔解成分を低減しても所望の光学恒数が得られるため、光学ガラスの生産性をより高められる。従って、質量和(TiO+WO+Nb)は、好ましくは0%超、より好ましくは1.0%超、さらに好ましくは4.5%超、さらに好ましくは9.0%超としてもよい。
MgO成分、CaO成分、SrO成分及びBaO成分は、0%超含有する場合に、ガラス原料の溶融性を高め、耐失透性を高め、且つ屈折率を調整できる任意成分である。
他方で、MgO成分及びCaO成分の各々の含有量を10.0%以下にすることで、所望の屈折率を得易くし、且つこれらの成分の過剰な含有によるガラスの失透を低減できる。また、SrO成分及びBaO成分の各々の含有量を20.0%以下にすることで、過剰な含有によるガラスの失透を低減できる。従って、MgO成分及びCaO成分の各々の含有量は、好ましくは10.0%以下、より好ましくは8.0%、さらに好ましくは4.0%、さらに好ましくは2.0%を上限とする。また、SrO成分及びBaO成分の各々の含有量は、好ましくは20.0%、より好ましくは10.0%以下、さらに好ましくは8.0%、さらに好ましくは4.0%、さらに好ましくは2.0%を上限とする。
MgO成分、CaO成分、SrO成分及びBaO成分は、原料としてMgCO、MgF、CaCO、CaF、Sr(NO、SrF、BaCO、Ba(NO、BaF等を用いることができる。
RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の合計量は、30.0%以下が好ましい。これにより、所望の高屈折率を得易くでき、且つ失透を低減できる。従って、RO成分の合計量は、好ましくは30.0%、より好ましくは25.0%、さらに好ましくは15.0%、さらに好ましくは10.0%、さらに好ましくは8.0%、さらに好ましくは4.0%、さらに好ましくは2.0%を上限とする。
LiO成分は、0%超含有する場合に、ガラスの溶解温度を下げられ、且つガラス転移点を低くできる任意成分である。
他方で、LiO成分の含有量を20.0%以下にすることで、ガラスの屈折率を低下し難くでき、ガラスの液相温度を下げて失透を低減でき、且つ化学的耐久性を高められる。従って、LiO成分の含有量は、好ましくは20.0%以下、より好ましくは10.0%以下、さらに好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
LiO成分は、原料としてLiCO、LiNO、LiCO等を用いることができる。
NaO成分及びKO成分は、0%超含有する場合に、ガラスの熔融性を改善でき、ガラス転移点を低くでき、且つ耐失透性を高められる任意成分である。
他方で、NaO成分の含有量を15.0%以下にすることで、ガラスの屈折率を低下し難くし、且つガラスの失透を低減できる。従って、NaO成分の含有量は、好ましくは15.0%以下、より好ましくは10.0%以下、さらに好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
また、KO成分の含有量を10.0%以下にすることでも、ガラスの屈折率を低下し難くし、且つガラスの失透を低減できる。従って、KO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
NaO成分及びKO成分は、原料としてNaCO、NaNO、NaF、NaSiF、KCO、KNO、KF、KHF、KSiF等を用いることができる。
RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の含有量の和は、20.0%以下が好ましい。これにより、ガラスの屈折率を低下し難くし、且つガラスの失透を低減できる。従って、RnO成分の合計含有量は、好ましくは20.0%、より好ましくは15.0%、さらに好ましくは10.0%を上限とし、さらに好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
成分は、0%超含有する場合に、ガラスの液相温度を下げて耐失透性を高められる任意成分である。
他方で、P成分の含有量を20.0%以下にすることで、ガラスの屈折率や耐失透性の低下や、耐水性等の化学的耐久性の低下を抑えられる。従って、P成分の含有量は、好ましくは20.0%以下、より好ましくは10.0%以下、さらに好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
成分は、原料としてAl(PO、Ca(PO、Ba(PO、BPO、HPO等を用いることができる。
GeO成分は、0%超含有する場合に、ガラスの屈折率を高められ、且つ耐失透性を向上できる任意成分である。
しかしながら、GeOは原料価格が高いため、その含有量が多いと生産コストが高くなる。従って、GeO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
GeO成分は、原料としてGeO等を用いることができる。
Ta成分は、0%超含有する場合に、ガラスの屈折率を高められ、且つ耐失透性を高められる任意成分である。
他方で、高価なTa成分を20.0%以下にすることで、ガラスの材料コストが低減されるため、より安価に光学ガラスを作製できる。また、これによりガラスの熔解性の低下を抑えられる。従って、Ta成分の含有量は、好ましくは20.0%以下、より好ましくは15.0%以下、さらに好ましくは10.0%未満、さらに好ましくは5.0%未満、さらに好ましくは3.0%未満とする。
Ta成分は、原料としてTa等を用いることができる。
Bi成分は、0%超含有する場合に、屈折率を高められ、且つガラス転移点を下げられる任意成分である。
他方で、Bi成分の含有量を15.0%以下にすることで、ガラスの液相温度を下げて耐失透性を高められる。また、ガラスの可視光透過率を高められる。従って、Bi成分の含有量は、好ましくは15.0%以下、より好ましくは10.0%以下、さらに好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
Bi成分は、原料としてBi等を用いることができる。
TeO成分は、0%超含有する場合に、屈折率を高められ、且つガラス転移点を下げられる任意成分である。
他方で、TeOは白金製の坩堝や、熔融ガラスと接する部分が白金で形成されている熔融槽でガラス原料を熔融する際、白金と合金化しうることで、坩堝や熔融槽に穴が開く問題がある。従って、TeO成分の含有量は、好ましくは20.0%以下、より好ましくは15.0%以下、さらに好ましくは10.0%未満、さらに好ましくは5.0%未満、さらに好ましくは3.0%未満とする。
TeO成分は、原料としてTeO等を用いることができる。
Al成分及びGa成分は、0%超含有する場合に、ガラスの化学的耐久性を向上でき、ガラス溶融時の粘度を高められ、且つ熔融ガラスの耐失透性を向上できる任意成分である。
他方で、Al成分及びGa成分の各々の含有量を20.0%以下にすることで、ガラスの溶融性を高めつつ、ガラスの液相温度を下げて耐失透性を高められる。従って、Al成分及びGa成分の各々の含有量は、好ましくは20.0%以下、より好ましくは10.0%以下、さらに好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
Al成分及びGa成分は、原料としてAl、Al(OH)、AlF、Ga、Ga(OH)等を用いることができる。
SnO成分は、0%超含有する場合に、熔融ガラスの酸化を低減して清澄し、且つ、Tiイオン及びNbイオンの還元を防ぐこと等によってガラスの可視光透過率を高められる任意成分である。
他方で、SnO成分の含有量を3.0%以下にすることで、熔融ガラスの還元によるガラスの着色や、ガラスの失透を低減できる。また、SnO成分と熔解設備(特にPt等の貴金属)の合金化が低減されるため、熔解設備の長寿命化を図れる。従って、SnO成分の含有量は、好ましくは3.0%以下、より好ましくは1.0%以下、さらに好ましくは0.5%以下、さらに好ましくは0.1%未満とする。
SnO成分は、原料としてSnO、SnO、SnF、SnF等を用いることができる。
Sb成分は、0%超含有する場合に、熔融ガラスの脱泡性を向上させる成分であり、且つ、産業ベースで大量生産を行う場合であっても、過剰な温度上昇による着色を抑えられる任意成分である。
他方で、Sb量が多すぎると、特に高屈折率のガラスにおいて可視光の短波長領域における透過率が悪くなり易い。また、Sb成分の含有量を低減することで、ガラス溶融時における過度の発泡が生じ難くなるため、Sb成分を溶解設備(特にPt等の貴金属)と合金化し難くすることができる。従って、Sb成分の含有量は、好ましくは3.0%、より好ましくは1.0%、さらに好ましくは0.5%を上限とし、さらに好ましくは0.2%未満、さらに好ましくは0.1%未満、さらに好ましくは0.05%未満、さらに好ましくは0.01%以下、さらに好ましくは0.005%未満とする。特に可視光透過率を高める観点では、Sb成分を含有しないことが最も好ましい。
Sb成分は、原料としてSb、Sb、NaSb・5HO等を用いることができる。
本発明の光学ガラスは、硫黄成分及びハロゲン成分より選ばれる1種以上からなる揮発成分を合計で0.01%以上15.00%以下含有する。
特に、揮発成分を合計で0.01%以上含有することで、ガラス熔解時に揮発成分が揮発することで所望の脱泡作用を奏するため、Sb成分の含有量が少ない場合であってもガラスの生産性を高められる。また、揮発成分を含有させながらも熱重量減率を小さくすることで、透過率を高めながらも、脈理をはじめとしたガラスの品質の低下を抑えられる。従って、揮発成分の含有量は、好ましくは0.01%、より好ましくは0.03質量%、さらに好ましくは0.05質量%、さらに好ましくは0.08質量%を下限とする。
他方で、揮発成分の合計量は、溶融したガラス原料の吹きこぼれを低減させる観点から、好ましくは15.00%、より好ましくは10.00%、さらに好ましくは7.0%、さらに好ましくは5.0%、さらに好ましくは3.0%を上限とする。
なお、揮発成分の含有量は、SO換算での硫黄成分の含有量と、酸化物基準の質量に対する外割りでのハロゲン成分の含有量の和によって定義される。
硫黄成分は、0%超含有した場合に、特に高屈折率のランタン系光学ガラスにおいて、ガラスを溶融する際に高い脱泡効果を発揮できる成分である。
本発明の光学ガラスにおいて硫黄成分を0%超用いることで、脱泡性に優れながらも熱重量減率が低くなり易くなるため、脈理等の不具合や特性の変動が生じにくいガラスを得易くできる。
また、本発明の光学ガラスにおいて硫黄成分を0%超用いることで、坩堝や熔解設備等の白金部材へのダメージを低減しつつ、ハロゲン成分に比べてガラス融液中への溶存量を多くでき、ガラス原料を熔解する際の発泡を強くすることでガラスをより効果的に脱泡及び清澄できる。このとき、硫黄成分は、ガラス熔解時に硫黄原料が酸化剤としても作用することで、硫黄原料そのものの揮発のみならず、酸素の発生によっても脱泡効果を高めることができる。
さらに、硫黄原料が酸化剤としても作用することで、坩堝や熔解設備からPtが溶出していても、Ptとガラス成分との相互作用等による着色を低減できる。
これらによって、ガラスを産業ベースで大量に作製する場合であっても、十分に清澄されたガラスを得ることができ、且つガラスの可視光透過率を高めることができる。
本発明の光学ガラスにおいて硫黄成分を導入するためには、原料として硫黄原子を含む塩を用いることがより好ましい。硫黄原子を含む塩としては、硫酸塩、ペルオキソ一硫酸塩、二硫酸塩及びペルオキソ二硫酸塩等が挙げられる。また、硫酸塩としては、硫酸リチウム水和物(LiSO・HO)、硫酸ソーダ(NaSO)、硫酸カリウム(KSO)、硫酸マグネシウム(MgSO)、硫酸カルシウム水和物(CaSO・1/2HO)、硫酸ストロンチウム(SrSO)、硫酸バリウム(BaSO)、硫酸亜鉛水和物(ZnSO・7HO)、硫酸ランタン水和物(La(SO・9HO)等が挙げられる。
硫黄成分は、SO換算での含有量が、0.01質量%以上1.5質量%以下になるように添加することが好ましい。硫黄成分のSO換算での含有量は、好ましくは0.01質量%、より好ましくは0.03質量%、さらに好ましくは0.05質量%、さらに好ましくは0.08質量%を下限とする。他方で、硫黄成分のSO換算での含有量は、好ましくは1.5質量%、より好ましくは1.0質量%、さらに好ましくは0.8質量%、さらに好ましくは0.5質量%を上限とする。
なお、硫黄成分のSO換算での含有量は、各金属元素の1種又は2種以上の酸化物の一部又は全部を硫酸塩に置換した硫酸塩の含有量と、その硫酸塩の分子量でSOの分子量(=64.065)を割った値と、を掛けた値である。
ハロゲン成分、すなわちF成分、Cl成分、Br成分及びI成分は、0%超含有する場合に、ガラスのアッベ数を高めつつ、ガラス転移点を低くし、且つ耐失透性を向上できる任意成分である。
しかし、F成分の酸化物基準の質量に対する外割りでの含有量、すなわち上述した各金属元素の1種又は2種以上の酸化物の一部又は全部と置換した弗化物のFとしての合計量が15.0%を超えると、F成分の揮発量が多くなるため、安定した光学恒数が得られ難くなり、均質なガラスが得られ難くなり、脈理も多くなる。また、Cl成分、Br成分及びI成分の酸化物基準の質量に対する外割りでの含有量が各々5.0%を超えた場合も同様である。
従って、F成分の含有量は、好ましくは15.0%、より好ましくは8.0%、さらに好ましくは3.0%を上限とする。また、Cl成分、Br成分及びI成分の含有量は、好ましくは5.0%、より好ましくは3.0%、さらに好ましくは1.0%を上限とする。
F成分、Cl成分、Br成分及びI成分は、原料として例えばZr、Al、Na、Ca等のハロゲン化物を用いることで、ガラス内に含有することができる。
本発明の光学ガラスでは、ガラス原料に炭酸塩を含有してもよい。
しかしながら、ガラス原料への炭酸塩の含有量が少なくても、ガラスをより効果的に清澄することが可能である。そのため、ガラス原料への炭酸塩の含有量は、酸化物基準の質量に対する外割りでの含有量で、好ましくは1.0%未満、より好ましくは0.5%未満、さらに好ましくは0.2%未満、さらに好ましくは0.1%未満とする。
<含有すべきでない成分について>
次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
上述されていない他の成分を、本願発明のガラスの特性を損なわない範囲で必要に応じ、添加することができる。ただし、Ce、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じることで、本願発明の可視光透過率を高める効果を減殺する性質があるため、特に可視領域の波長を透過させる光学ガラスでは、実質的に含まないことが好ましい。
また、PbO等の鉛化合物及びAs等の砒素化合物は、環境負荷が高い成分であるため、実質的に含有しないこと、すなわち、不可避な混入を除いて一切含有しないことが望ましい。
さらに、Th、Cd、Tl、Os、Be、及びSeの各成分は、近年有害な化学物資として使用を控える傾向にあり、使用した場合には、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要になる。従って、環境上の影響を重視する場合には、これらを実質的に含有しないことが好ましい。
[製造方法]
本発明の光学ガラスは、例えば以下のように作製される。すなわち、上記原料を各成分が所定の含有量の範囲内になるように均一に混合し、作製した混合物を白金坩堝に投入し、ガラス組成の熔融難易度に応じて電気炉で1100〜1500℃の温度範囲で2〜5時間熔融して攪拌均質化した後、適当な温度に下げてから金型に鋳込み、徐冷することにより作製される。
ここで、ガラス原料を熔融及び攪拌均質化する工程は、溶融槽においてガラス原料を溶融し、溶融されたガラス原料を開口部が解放された清澄槽で清澄し、その後略密閉された攪拌槽でガラスを攪拌することにより行うことが好ましい。これにより、ガラス熔解時及び清澄時における揮発成分の揮発が促進され、且つ、それ以降における成分の揮発が低減される。そのため、昇温したときの熱重量減率が小さく、それにより脈理の少ない光学ガラスを得易くできる。
[物性]
本発明の光学ガラスは、昇温したときの熱重量減率が小さい。より具体的には、1350℃まで昇温したときの熱重量減率が0.01%以上5.00%以下である。
特に、この熱重量減率を5.00%以下にすることで、原料を熔解及び清澄させた後におけるガラス成分の不均質な揮発や還元が抑えられるため、可視光についての透過率が高められながらも、脈理をはじめとした内部品質の低下が抑えられる。従って、この熱重量減率は、好ましくは5.00%、より好ましくは2.00%、さらに好ましくは1.00%、さらに好ましくは0.50%、さらに好ましくは0.30%、さらに好ましくは0.10%、さらに好ましくは0.07%を上限とする。
他方で、この熱重量減率が0.01%以上の場合に、原料を熔解させたときの脱泡性が付与されるため、生産性の高いガラスであるといえる。従って、この熱重量減率は、好ましくは0.01%、より好ましくは0.015%、さらに好ましくは0.02%を下限とする。
本発明における熱重量減率は、DTA(示差熱分析)装置を用いて測定される質量変化の割合のことであり、より具体的には、試料となるガラスをDTA用の坩堝に入れ、昇温速度10℃/分で加熱温度となる1350℃まで昇温し、この加熱温度に達してから2時間経過したガラスについての、昇温前のガラスに対する質量変化の割合のことである。
本発明の光学ガラスは、可視光透過率、特に可視光のうち短波長側の光の透過率が高く、それにより着色が少ないことが好ましい。
特に、本発明の光学ガラスにおける、厚み10mmのサンプルで分光透過率80%を示す最も短い波長(λ80)は、好ましくは680nm、より好ましくは660nm、さらに好ましくは600nm、さらに好ましくは560nm、さらに好ましくは540nm、さらに好ましくは520nm、さらに好ましくは500nmを上限としてもよい。
また、本発明の光学ガラスにおける、厚み10mmのサンプルで分光透過率70%を示す最も短い波長(λ70)は、好ましくは500nm、より好ましくは480nm、さらに好ましくは460nm、さらに好ましくは440nm、さらに好ましくは430nmを上限としてもよい。
また、本発明の光学ガラスにおける、厚み10mmのサンプルで分光透過率5%を示す最も短い波長(λ)は、好ましくは380nm、より好ましくは370nm、さらに好ましくは360nm、さらに好ましくは350nmを上限としてもよい。
これらにより、ガラスの吸収端が紫外領域の近傍になり、可視光に対するガラスの透明性が高められるため、この光学ガラスを、レンズ等の光を透過させる光学素子に好ましく用いることができる。
本発明の光学ガラスは、高屈折率及び高アッベ数(低分散)を有することが好ましい。特に、本発明の光学ガラスの屈折率(n)は、好ましくは1.70、より好ましくは1.73、さらに好ましくは1.76、さらに好ましくは1.78、さらに好ましくは1.79、さらに好ましくは1.80を下限としてもよい。この屈折率(n)は、好ましくは2.10、より好ましくは2.05、さらに好ましくは2.01を上限としてもよい。
また、本発明の光学ガラスのアッベ数(ν)は、好ましくは20、より好ましくは22、さらに好ましくは24、さらに好ましくは26、さらに好ましくは28を下限としてもよい。このアッベ数(ν)は、好ましくは60、より好ましくは58、さらに好ましくは55、さらに好ましくは50を上限としてもよい。
このような高屈折率を有することで、光学素子の薄型化を図っても大きな光の屈折量を得ることができ、設計上有利になる。また、このような低分散を有することで、単レンズであっても光の波長による焦点のずれ(色収差)が小さくなる。加えて、このような低分散を有することで、例えば高分散(低いアッベ数)を有する光学素子と組み合わせた場合に、高い結像特性等を図ることができる。
従って、本発明の光学ガラスは、光学設計上有用であり、特に高い結像特性等を図りながらも、光学系の小型化を図ることができ、光学設計の自由度を広げることができる。
本発明の光学ガラスは、比重が小さいことが好ましい。より具体的には、本発明の光学ガラスの比重は6.00[g/cm]以下である。これにより、光学素子やそれを用いた光学機器の質量が低減されるため、光学機器の軽量化に寄与することができる。従って、本発明の光学ガラスの比重は、好ましくは6.00、より好ましくは5.60、さらに好ましくは5.10、さらに好ましくは4.90を上限としてもよい。なお、本発明の光学ガラスの比重は、概ね3.00以上、より詳細には3.50以上、さらに詳細には4.00以上であることが多い。
本発明の光学ガラスの比重は、日本光学硝子工業会規格JOGIS05−1975「光学ガラスの比重の測定方法」に基づいて測定する。
本発明の光学ガラスは、泡が少ないことが好ましい。ここで、ガラス中の泡の程度は、日本光学硝子工業会規格JOGIS12−1994「光学ガラスの泡の測定方法」に基づいて級別することができる。そして、この測定方法に基づいた等級が、級1〜3のいずれかに該当することが好ましく、級1〜2のいずれかに該当することがより好ましく、級1に該当することが最も好ましい。
本発明の光学ガラスは、脈理が少ないことが好ましい。ここで、ガラス中の脈理の程度は、日本光学硝子工業会規格JOGIS11−2008「光学ガラスの脈理の測定方法」に基づいて級別することができる。そして、この測定方法に基づいた等級が、級1〜3のいずれかに該当することが好ましく、級1〜2のいずれかに該当することがより好ましく、級1に該当することが最も好ましい。
[プリフォーム及び光学素子]
作製された光学ガラスから、例えばリヒートプレス成形や精密プレス成形等のモールドプレス成形の手段を用いて、ガラス成形体を作製することができる。すなわち、光学ガラスからモールドプレス成形用のプリフォームを作製し、このプリフォームに対してリヒートプレス成形を行った後で研磨加工を行ってガラス成形体を作製したり、研磨加工を行って作製したプリフォームや、公知の浮上成形等により成形されたプリフォームに対して精密プレス成形を行ってガラス成形体を作製したりすることができる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。
このように、本発明の光学ガラスは、様々な光学素子及び光学設計に有用である。その中でも特に、本発明の光学ガラスからプリフォームを形成し、このプリフォームを用いてリヒートプレス成形や精密プレス成形等を行い、レンズやプリズム等の光学素子を作製することが好ましい。これにより、カメラやプロジェクタ等のような光学素子に可視光を透過させる光学機器に用いたときに、高精細で高精度な結像特性等を実現しつつ、これら光学機器における光学系の小型化を図ることができる。
本発明の実施例(No.1〜No.14)及び比較例(No.A)の組成、熱重量減率の大きさ、並びに、これらのガラスの屈折率(n)、アッベ数(ν)、分光透過率が5%、70%及び80%を示す波長(λ、λ70、λ80)、泡の程度、脈理の程度並びに比重の結果を表1〜表3に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例のみ限定されるものではない。
本発明の実施例及び比較例のガラスは、いずれも各成分の原料として、表に示される種類及び含有量の硫酸塩と、各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、水酸化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度原料を選定し、表に示した各実施例の組成の割合になるように秤量して均一に混合した後、白金坩堝に投入し、ガラス組成の熔融難易度に応じて電気炉で1250℃の温度で2時間熔融した後、攪拌均質化してから金型等に鋳込み、徐冷して作製した。
ここで、ガラス原料を熔融及び攪拌均質化する工程は、溶融槽においてガラス原料を溶融し、溶融されたガラス原料を開口部が解放された清澄槽で清澄し、その後略密閉された攪拌槽でガラスを攪拌することにより行った。
実施例及び比較例のガラスの屈折率(n)及びアッベ数(ν)は、日本光学硝子工業会規格JOGIS01―2003に基づいて測定した。なお、本測定では徐冷降温速度を−25℃/hrにして得られたガラスについて測定を行うことで求めた。
実施例及び比較例のガラスの透過率は、日本光学硝子工業会規格JOGIS02に準じて測定した。なお、本発明においては、ガラスの透過率を測定することで、ガラスの着色の有無と程度を求めた。具体的には、ガラスバルク材を、対面を平行に研磨した厚さ10±0.1mmの試料とし、アニール後すみやかにJOGIS02−1975に規定される方法で光線透過率(分光透過率)λ80(透過率80%時の波長)、λ70(透過率70%時の波長)、λ(透過率5%時の波長)を求めた。
また、実施例及び比較例のガラス中の泡の程度は、日本光学硝子工業会規格JOGIS12−1994「光学ガラスの泡の測定方法」に基づいて級別した。
実施例及び比較例のガラス中の脈理の程度は、日本光学硝子工業会規格JOGIS11−2008「光学ガラスの脈理の測定方法」に基づいて級別した。
実施例及び比較例のガラスの比重は、日本光学硝子工業会規格JOGIS05−1975「光学ガラスの比重の測定方法」に基づいて測定した。
実施例及び比較例のガラスの熱重量減率としては、粉砕したガラスをDTA(示差熱分析)用の坩堝に入れ、昇温速度10℃/分で加熱温度となる1350℃まで昇温し、この加熱温度に達してから2時間経過したガラスについての、昇温前のガラスに対する質量変化の割合を求めた。
Figure 2016074556
Figure 2016074556
Figure 2016074556
表に表されるように、本発明の実施例の光学ガラスは、熱重量減率がいずれも5.00%以下、より詳細には1.00%以下であり、且つ脈理が級1に該当し脈理の少ないものであった。これに対し、比較例のガラスは、熱重量減率が1.00%を超えており、且つ脈理が級4に該当し脈理の多いものであった。
そのため、本発明の実施例の光学ガラスは、比較例のガラスに比べて脈理が少ないことが明らかになった。このことは、本発明の実施例の光学ガラスが、比較例のガラスに比べて熱重量減率が小さく、それにより加熱時における成分の揮発が少ないことが一因であると推察される。
本発明の実施例の光学ガラスは、λ80(透過率80%時の波長)がいずれも680nm以下、より詳細には630nm以下であった。
また、本発明の実施例の光学ガラスは、λ70(透過率70%時の波長)がいずれも500nm以下、より詳細には470nm以下であった。
また、本発明の実施例の光学ガラスは、λ(透過率5%時の波長)がいずれも380nm以下であった。
このため、本発明の実施例の光学ガラスは、可視短波長における透過率が高いことで着色が少ないことが明らかになった。
また、本発明の実施例の光学ガラスは、いずれも屈折率(n)が1.70以上、より詳細には1.72以上であるとともに、この屈折率(n)は2.10以下、より詳細には2.01以下であり、所望の範囲内であった。
また、本発明の実施例の光学ガラスは、いずれもアッベ数(ν)が20以上、より詳細には28以上であるとともに、このアッベ数(ν)は60以下、より詳細には55以下であり、所望の範囲内であった。
また、本発明の実施例の光学ガラスは、いずれも泡数が級1に該当し泡数の少ないものであった。
従って、本発明の実施例の光学ガラスは、1.70以上の高屈折率(n)と、20以上60以下のアッベ数(ν)を有しながらも十分に清澄されており、高い可視光透過率を有し、且つ内部品質が優れた光学ガラスであることが明らかになった。
また、本発明の実施例の光学ガラスは、いずれも比重が6.00以下、より詳細には5.60以下であった。そのため、本発明の実施例の光学ガラスは、比重が小さいことも明らかになった。
さらに、本発明の実施例の光学ガラスを用いて、リヒートプレス成形を行った後で研削及び研磨を行い、レンズ及びプリズムの形状に加工した。また、本発明の実施例の光学ガラスを用いて、精密プレス成形用プリフォームを形成し、精密プレス成形用プリフォームをレンズ及びプリズムの形状に精密プレス成形加工した。いずれの場合も、加熱軟化後のガラスには乳白化及び失透等の問題は生じず、安定に様々なレンズ及びプリズムの形状に加工することができた。
以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。

Claims (19)

  1. 質量%でB成分を5.0〜40.0%、Ln成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)を合計で25.0%以上75.0%以下含有し、硫黄成分及びハロゲン成分より選ばれる1種以上からなる揮発成分を合計で0.01%以上15.00%以下含有し、1350℃まで昇温したときの熱重量減率が0.01%以上5.00%以下である光学ガラス。
  2. 前記揮発成分として、硫黄成分をSO換算で0.01質量%以上1.0質量%以下含有する請求項1記載の光学ガラス。
  3. 前記揮発成分として、酸化物基準の質量に対する外割り質量%で
    F成分 0〜15.0質量%
    Cl成分 0〜5.0質量%
    Br成分 0〜5.0質量%
    I成分 0〜5.0質量%
    である請求項1又は2記載の光学ガラス。
  4. 日本光学硝子工業会規格JOGIS12−1994「光学ガラスの泡の測定方法」に基づくガラス中の泡評価が1〜3級のいずれかである請求項1から3のいずれか記載の光学ガラス。
  5. 日本光学硝子工業会規格JOGIS11−2008「光学ガラスの脈理の測定方法」に基づく脈理の評価が1〜3級のいずれかである請求項1から4のいずれか記載の光学ガラス。
  6. 質量%で、Sb成分の含有量が0.5%以下である請求項1から5のいずれか記載の光学ガラス。
  7. 質量%で
    La成分 10.0〜65.0%、
    Gd成分 0〜30.0%、
    成分 0〜30.0%、
    Yb成分 0〜20.0%
    である請求項1から6のいずれか記載の光学ガラス。
  8. 質量%で
    SiO成分 0〜30.0%
    ZrO成分 0〜20.0%
    ZnO成分 0〜30.0%
    である請求項1から7のいずれか記載の光学ガラス。
  9. 質量%で
    TiO成分 0〜30.0%
    Nb成分 0〜20.0%
    WO成分 0〜20.0%
    である請求項1から8のいずれかに記載の光学ガラス。
  10. TiO成分、Nb成分及びWO成分の含有量の和が30.0%以下である請求項1から9のいずれかに記載の光学ガラス。
  11. 質量%で
    MgO成分 0〜10.0%
    CaO成分 0〜10.0%
    SrO成分 0〜20.0%
    BaO成分 0〜20.0%
    である請求項1から10のいずれか記載の光学ガラス。
  12. RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の質量和が30.0%以下である請求項1から11のいずれかに記載の光学ガラス。
  13. 質量%で
    LiO成分 0〜20.0%
    NaO成分 0〜15.0%
    O成分 0〜10.0%
    である請求項1から12のいずれかに記載の光学ガラス。
  14. RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の質量和が20.0%以下である請求項1から13のいずれかに記載の光学ガラス。
  15. 質量%で
    成分 0〜20.0%
    GeO成分 0〜10.0%
    Ta成分 0〜20.0%
    Bi成分 0〜15.0%
    TeO成分 0〜20.0%
    Al成分 0〜20.0%
    Ga成分 0〜20.0%
    SnO成分 0〜3.0%
    である請求項1から14のいずれか記載の光学ガラス。
  16. 1.70以上の屈折率(n)を有し、20以上60以下のアッベ数(ν)を有する請求項1から15のいずれか記載の光学ガラス。
  17. 分光透過率が70%を示す波長(λ70)が500nm以下である請求項1から16のいずれか記載の光学ガラス。
  18. 請求項1から17いずれか記載の光学ガラスを母材とする光学素子。
  19. 請求項18記載の光学素子を備える光学機器。
JP2014205977A 2014-10-06 2014-10-06 光学ガラス及び光学素子 Pending JP2016074556A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014205977A JP2016074556A (ja) 2014-10-06 2014-10-06 光学ガラス及び光学素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014205977A JP2016074556A (ja) 2014-10-06 2014-10-06 光学ガラス及び光学素子

Publications (1)

Publication Number Publication Date
JP2016074556A true JP2016074556A (ja) 2016-05-12

Family

ID=55949605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014205977A Pending JP2016074556A (ja) 2014-10-06 2014-10-06 光学ガラス及び光学素子

Country Status (1)

Country Link
JP (1) JP2016074556A (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035037A (ja) * 2016-08-31 2018-03-08 Hoya株式会社 ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
JP2019116408A (ja) * 2017-12-27 2019-07-18 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2019147724A (ja) * 2018-02-28 2019-09-05 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2019147725A (ja) * 2018-02-28 2019-09-05 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
WO2019182073A1 (ja) * 2018-03-20 2019-09-26 Agc株式会社 ホモジェナイザ、照明光学系および照明装置
JP2020059629A (ja) * 2018-10-11 2020-04-16 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
WO2021205927A1 (ja) * 2020-04-06 2021-10-14 日本電気硝子株式会社 光学ガラス
CN115231819A (zh) * 2022-08-26 2022-10-25 成都光明光电股份有限公司 高折射率光学玻璃
CN115286238A (zh) * 2022-08-26 2022-11-04 成都光明光电股份有限公司 光学玻璃
CN115304269A (zh) * 2022-08-26 2022-11-08 成都光明光电股份有限公司 光学玻璃
CN115304274A (zh) * 2022-08-26 2022-11-08 成都光明光电股份有限公司 高折射高色散光学玻璃
CN115321814A (zh) * 2022-08-26 2022-11-11 成都光明光电股份有限公司 光学玻璃
JP2022183198A (ja) * 2018-10-11 2022-12-08 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
CN115504666A (zh) * 2022-08-26 2022-12-23 成都光明光电股份有限公司 光学玻璃和光学元件
JP2023024546A (ja) * 2022-10-04 2023-02-16 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
WO2024041274A1 (zh) * 2022-08-26 2024-02-29 成都光明光电股份有限公司 光学玻璃、光学元件和光学仪器

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109641781B (zh) * 2016-08-31 2022-02-11 Hoya株式会社 玻璃、压制成型用玻璃原材料、光学元件坯件及光学元件
WO2018043475A1 (ja) * 2016-08-31 2018-03-08 Hoya株式会社 ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
CN109641781A (zh) * 2016-08-31 2019-04-16 Hoya株式会社 玻璃、压制成型用玻璃原材料、光学元件坯件及光学元件
JP2018035037A (ja) * 2016-08-31 2018-03-08 Hoya株式会社 ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
JP2019116408A (ja) * 2017-12-27 2019-07-18 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2019147724A (ja) * 2018-02-28 2019-09-05 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2019147725A (ja) * 2018-02-28 2019-09-05 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP7112856B2 (ja) 2018-02-28 2022-08-04 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP7048348B2 (ja) 2018-02-28 2022-04-05 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
WO2019182073A1 (ja) * 2018-03-20 2019-09-26 Agc株式会社 ホモジェナイザ、照明光学系および照明装置
US11378877B2 (en) 2018-03-20 2022-07-05 AGC Inc. Homogenizer, illuminating optical system, and illuminator
JP2022183198A (ja) * 2018-10-11 2022-12-08 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
JP2020059629A (ja) * 2018-10-11 2020-04-16 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
JP7194861B6 (ja) 2018-10-11 2024-02-06 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
JP7194551B6 (ja) 2018-10-11 2024-02-06 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
JP7194861B2 (ja) 2018-10-11 2022-12-22 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
JP7194551B2 (ja) 2018-10-11 2022-12-22 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
WO2021205927A1 (ja) * 2020-04-06 2021-10-14 日本電気硝子株式会社 光学ガラス
CN115286238A (zh) * 2022-08-26 2022-11-04 成都光明光电股份有限公司 光学玻璃
CN115321814A (zh) * 2022-08-26 2022-11-11 成都光明光电股份有限公司 光学玻璃
CN115304274A (zh) * 2022-08-26 2022-11-08 成都光明光电股份有限公司 高折射高色散光学玻璃
CN115504666A (zh) * 2022-08-26 2022-12-23 成都光明光电股份有限公司 光学玻璃和光学元件
CN115304269A (zh) * 2022-08-26 2022-11-08 成都光明光电股份有限公司 光学玻璃
CN115231819A (zh) * 2022-08-26 2022-10-25 成都光明光电股份有限公司 高折射率光学玻璃
WO2024041274A1 (zh) * 2022-08-26 2024-02-29 成都光明光电股份有限公司 光学玻璃、光学元件和光学仪器
JP2023024546A (ja) * 2022-10-04 2023-02-16 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子
JP7234454B2 (ja) 2022-10-04 2023-03-07 Hoya株式会社 光学ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子

Similar Documents

Publication Publication Date Title
JP2016074556A (ja) 光学ガラス及び光学素子
JP6096502B2 (ja) 光学ガラス及び光学素子
JP2019131465A (ja) 光学ガラス及び光学素子
JP6973902B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2016088774A (ja) 光学ガラス、プリフォーム及び光学素子
JP2016088835A (ja) 光学ガラス、プリフォーム及び光学素子
JP2016216282A (ja) 光学ガラス及び光学素子
JP2015059062A (ja) 光学ガラス及び光学素子
JP2016088839A (ja) 光学ガラス、プリフォーム及び光学素子
JP2017036210A (ja) 光学ガラス、プリフォーム材及び光学素子
JP2014210694A (ja) 光学ガラス、プリフォーム材及び光学素子
JP2016074558A (ja) 光学ガラス及び光学素子
JP6900110B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2016074566A (ja) 光学ガラス、レンズプリフォーム及び光学素子
JP2015059061A (ja) 光学ガラス及び光学素子
JP6352647B2 (ja) 光学ガラス、レンズプリフォーム及び光学素子
JP2019194155A (ja) 光学ガラス、レンズプリフォーム及び光学素子
JP6973905B2 (ja) 光学ガラス、プリフォーム及び光学素子
WO2019031095A1 (ja) 光学ガラス、光学素子及び光学機器
JP2015163564A (ja) 光学ガラス、レンズプリフォーム及び光学素子
JP2015127277A (ja) 光学ガラスの製造方法
JP6635667B2 (ja) 光学ガラス、レンズプリフォーム及び光学素子
JP6309786B2 (ja) 光学ガラス、レンズプリフォーム及び光学素子
JP6440948B2 (ja) 光学ガラス、レンズプリフォーム及び光学素子
JP6049591B2 (ja) 光学ガラス、プリフォーム材及び光学素子