JP2016074011A - Au-Ge SOLDER ALLOY HAVING CONTROLLED METALLOGRAPHIC STRUCTURE - Google Patents
Au-Ge SOLDER ALLOY HAVING CONTROLLED METALLOGRAPHIC STRUCTURE Download PDFInfo
- Publication number
- JP2016074011A JP2016074011A JP2014206947A JP2014206947A JP2016074011A JP 2016074011 A JP2016074011 A JP 2016074011A JP 2014206947 A JP2014206947 A JP 2014206947A JP 2014206947 A JP2014206947 A JP 2014206947A JP 2016074011 A JP2016074011 A JP 2016074011A
- Authority
- JP
- Japan
- Prior art keywords
- solder
- solder alloy
- mass
- alloy
- shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
本発明はAuを主成分とする高温用のPbフリーはんだ合金に関し、特に、制御された金属組織を有する高温用のAu−Geはんだ合金および該はんだ合金を用いて封止またはロウ付けされた電子装置に関する。 The present invention relates to a high-temperature Pb-free solder alloy mainly composed of Au, and in particular, a high-temperature Au-Ge solder alloy having a controlled metal structure and an electron sealed or brazed using the solder alloy. Relates to the device.
近年、環境に有害な化学物質に対する規制がますます厳しくなってきており、この規制は電子部品などを基板に接合する目的で使用されるはんだ材料に対しても例外ではない。はんだ材料には古くから鉛が主成分として使われ続けてきたが、すでにRoHS指令などで鉛は規制対象物質になっている。そのため、Pbフリー(無鉛)はんだ材料の開発が各種機関で進められており、高温用のPbフリーはんだ材料では高価なAu−Ge合金やAu−Sn合金などが水晶デバイス、SAWフィルター、MEMS等ですでに実用化されている。 In recent years, regulations on chemical substances harmful to the environment have become stricter, and this regulation is no exception for solder materials used for the purpose of joining electronic components and the like to substrates. Although lead has been used as a main component for solder materials for a long time, lead has already been a regulated substance under the RoHS Directive. For this reason, development of Pb-free (lead-free) solder materials is being promoted by various organizations, and for high-temperature Pb-free solder materials, expensive Au-Ge alloys and Au-Sn alloys are crystal devices, SAW filters, MEMS, etc. In practical use.
Au−Ge合金は、Au−12.5質量%Ge(87.5質量%のAuと12.5質量%のGeから構成されることを意味しており、以降においても同様である)が共晶点の組成であり、その融点は356℃である。一方、Au−Sn合金は、Au−20質量%Snが共晶点の組成であり、その融点は280℃である。これらAu系はんだ合金は硬くて脆い性質を有しているが、Au−Sn合金は比較的加工し易いため、枠形状で使用されることが多い。一方、Au−Ge合金は粘り性があるためきれいに破断させることが難しい。しかし、Au−Ge合金は薄く加工することや小さく加工することは可能であり、ペレット形状あるいは加工が不要なボール形状として各種の接続用はんだやパッケージの封止用はんだとして使用されることが多い。 The Au-Ge alloy is composed of Au-12.5 mass% Ge (meaning composed of 87.5 mass% Au and 12.5 mass% Ge, and so on). It has a composition of crystal points, and its melting point is 356 ° C. On the other hand, the Au—Sn alloy has a composition of eutectic point of Au-20 mass% Sn, and its melting point is 280 ° C. These Au-based solder alloys have hard and brittle properties, but Au-Sn alloys are often used in a frame shape because they are relatively easy to process. On the other hand, Au—Ge alloys are sticky and difficult to break cleanly. However, Au-Ge alloys can be processed thinly or smallly, and are often used as various connecting solders or package sealing solders as pellet shapes or ball shapes that do not require processing. .
例えばボール形状のAu−Ge合金は水晶デバイスやSAWフィルター等のパッケージの封止用はんだボールとして使用されている。このパッケージは一般にセラミックスで形成されており、パッケージ内部の空間に水晶振動子等を配置した後、真空中または不活性ガスが充填された状態で内部空間が封止される。パッケージは水晶振動子等を載置する底部に対向する蓋体の一部に段差を有する貫通孔が設けられており、この貫通孔の段差部にボール形状の高温はんだ合金を載せて上からレーザー光をこのはんだ合金に向けて照射することにより、はんだ合金を溶解させてパッケージを封止している。封止されたパッケージは、実装基板等に実装するためリフロー工程において240〜260℃で再加熱される。Au−Ge合金は、上記したように共晶点での融点が356℃とリフロー工程の温度よりも高いので、リフロー工程で再溶融してリークするリスクが少ないという利点を有している。 For example, a ball-shaped Au—Ge alloy is used as a solder ball for sealing a package such as a crystal device or a SAW filter. This package is generally made of ceramics, and after placing a crystal resonator or the like in the space inside the package, the internal space is sealed in a vacuum or in a state filled with an inert gas. The package has a through hole with a step in a part of the lid facing the bottom on which the crystal unit or the like is placed, and a ball-shaped high-temperature solder alloy is placed on the step of the through hole so that the laser can be seen from above. By irradiating light toward the solder alloy, the solder alloy is melted to seal the package. The sealed package is reheated at 240 to 260 ° C. in a reflow process for mounting on a mounting substrate or the like. As described above, since the melting point at the eutectic point is 356 ° C., which is higher than the temperature of the reflow process, the Au—Ge alloy has an advantage that there is less risk of remelting and leaking in the reflow process.
このようなAu−Ge系のはんだ合金に関しては、例えば特許文献1に、Au−Ge合金からなるはんだボールの表面が酸化することにより濡れ性等が阻害される問題を解決するため、Au−Ge合金からなるはんだボールの酸化表面層を改質した後、洗浄することによって良好な濡れ性と耐酸化性とを有するはんだ合金材料を得る技術が開示されている。 With respect to such an Au—Ge based solder alloy, for example, in Patent Document 1, in order to solve the problem that the wettability and the like are hindered by oxidation of the surface of a solder ball made of an Au—Ge alloy, Au—Ge A technique for obtaining a solder alloy material having good wettability and oxidation resistance by modifying an oxidized surface layer of a solder ball made of an alloy and then washing it is disclosed.
近年、電子機器の小型化、薄型化に伴い、水晶デバイスやSAWフィルターなどの電子装置においても外形が小さくて薄型のものが求められている。そのため、これら電子装置に使用するはんだ合金は、はんだ融解時に高い精度で形状を制御可能であることが望ましい。例えば前述したように水晶振動子等を収容するパッケージの貫通孔を封止するはんだにはボール形状のAu−Ge合金が使用されるが、この際、Au−Ge合金が貫通孔の接合面に均一に濡れ広がらなければリーク不良などの不具合が発生するおそれがある。また、溶解時に不均一に濡れ広がると、貫通孔から流れ出したはんだが電極配線等を短絡させるおそれがある。 In recent years, along with the downsizing and thinning of electronic devices, electronic devices such as crystal devices and SAW filters have been required to have a small and thin external shape. Therefore, it is desirable that the shape of the solder alloy used in these electronic devices can be controlled with high accuracy when the solder is melted. For example, as described above, a ball-shaped Au—Ge alloy is used for the solder that seals the through hole of a package that accommodates a crystal unit or the like. At this time, the Au—Ge alloy is used as the bonding surface of the through hole. If it does not spread evenly, there is a risk of problems such as leak failure. In addition, when wet and spread unevenly at the time of melting, there is a possibility that the solder flowing out from the through hole short-circuits the electrode wiring or the like.
また、はんだ合金を半導体素子の接合に使用する場合は、接合面が均一に濡れなければ十分な接合強度が得られなかったり、被接合体である半導体素子が傾いて接合信頼性が著しく低下したりするおそれがある。さらに濡れが不均一になって部分的な濡れ広がりや流れ出しが生じると、はんだ接合に実質的に寄与するはんだの体積が小さくなり、熱応力等による歪みを十分に緩和できなくなってクラック等が発生しやすくなったり、接合信頼性が低下したりなどの問題が生じることもある。このように、Au−Ge合金においては濡れ性が特に重要な特性と言える。 In addition, when using a solder alloy for bonding semiconductor elements, sufficient bonding strength cannot be obtained unless the bonding surface is uniformly wetted, or the bonding reliability of the bonded semiconductor element is significantly reduced due to the inclination of the bonded semiconductor element. There is a risk of Furthermore, when wetting becomes uneven and partial wetting spreads or flows out, the volume of solder that substantially contributes to solder bonding is reduced, distortion due to thermal stress, etc. cannot be relieved sufficiently, and cracks occur. This may cause problems such as ease of bonding and reduced bonding reliability. Thus, it can be said that wettability is a particularly important characteristic in Au—Ge alloys.
上記した種々の問題は、前述した電子機器の小型化、薄型化によって顕在化する傾向にある。すなわち、電子機器の小型化、薄型化に伴って貫通孔と電極配線との間隔やはんだ合金と水晶振動子等の電子部品との間隔等がより狭くなり、上記したはんだの不均一な濡れ広がりや流れ出しにより、水晶振動子や電極配線とはんだ合金とが接触するリスクが高まっている。また、電子機器の小型化、薄型化に伴い、はんだ合金自体のサイズや厚さも制限されるため、限られたはんだ体積で封止や接合をしなければならないという条件のもと、上記した不均一な濡れ広がりや接合面以外への流れ出しが生ずるとはんだ接合部におけるはんだの実質的な体積が小さくなり、はんだ接合の信頼性が損なわれる問題がより一層顕著になってきている。また、当然コストの面からも、高価なAuの使用量を最小限に抑えるよう強く要求されている。なお、一般に、部分的な濡れ広がりの割合は、接合前のはんだ断面の全面積の25%以下に抑える必要がある。 The various problems described above tend to become apparent as the above-described electronic devices are reduced in size and thickness. That is, with the downsizing and thinning of electronic equipment, the distance between the through hole and the electrode wiring, the distance between the solder alloy and the electronic component such as the crystal resonator, and the like become narrower. The risk of contact between the crystal unit or the electrode wiring and the solder alloy is increasing due to the flow out. In addition, as electronic devices become smaller and thinner, the size and thickness of the solder alloy itself are also limited. Therefore, under the condition that sealing and joining must be performed with a limited solder volume, the above-described disadvantages are required. When uniform wetting and spreading out of the joint surface occur, the substantial volume of the solder in the solder joint portion is reduced, and the problem that the reliability of the solder joint is impaired becomes more prominent. Of course, from the viewpoint of cost, there is a strong demand to minimize the amount of expensive Au used. In general, the ratio of partial wetting and spreading needs to be suppressed to 25% or less of the total area of the solder cross section before joining.
上記したように、特に高い信頼性が要求される水晶デバイス、SAWフィルター、MEMS等で使用する高温用Pbフリーはんだ材料は、封止不良などがあると電子部品として使用できないため、十分な濡れ性や信頼性を有することが求められている。特に高い気密性や信頼性を必要とする用途では、良好な濡れ性を有することに加えてはんだで接合や封止する際にはんだ体積(ボリューム)が維持されること、すなわち使用したはんだ合金が有効に接合や封止に寄与することが要求される場合が多い。このように、高い信頼性が求められる水晶デバイス等の電子機器に用いるはんだには、適切な濡れ性とはんだ体積の維持という一見相反するような機能が求められている。 As described above, Pb-free solder materials for high temperature used in quartz devices, SAW filters, MEMS, etc. that require particularly high reliability cannot be used as electronic components if there is a sealing failure. And having high reliability. Especially in applications that require high airtightness and reliability, in addition to having good wettability, the solder volume is maintained when joining and sealing with solder, that is, the solder alloy used In many cases, it is required to effectively contribute to bonding and sealing. As described above, a solder used in an electronic apparatus such as a quartz device that requires high reliability is required to have functions that seem to conflict with each other such as appropriate wettability and maintenance of the solder volume.
上記した状況の下、本発明者らは特に高い信頼性が要求される水晶デバイス等の電子装置用のAu系はんだ合金について鋭意研究を重ねた結果、はんだ接合性の良否は、はんだを溶融接合する際の接合温度、時間、雰囲気などの各種条件の影響を受けるが、これらと同等またはそれ以上に熱処理等による金属組織の制御の影響を大きく受けること、具体的にはAu−Ge合金の共晶点の組成付近を基本として、熱処理等によって金属組織を制御することにより、適切な濡れ性、高い接合信頼性とを有し、更に実質的に接合に寄与するはんだ体積を良好に維持できるAu系はんだ合金が得られることを見出し、本発明を完成するに至った。 Under the circumstances described above, the present inventors conducted extensive research on Au-based solder alloys for electronic devices such as crystal devices that require particularly high reliability. It is affected by various conditions such as bonding temperature, time, atmosphere, etc., but it is greatly affected by the control of the metallographic structure by heat treatment or the like, more specifically, it is common for Au-Ge alloys. By controlling the metal structure by heat treatment or the like based on the vicinity of the composition of crystal points, Au has appropriate wettability, high bonding reliability, and can maintain a good solder volume that contributes substantially to bonding. The present inventors have found that a system solder alloy can be obtained and have completed the present invention.
すなわち、本発明に係るAu−Ge系はんだ合金は、Geを10.0質量%以上15.0質量%以下含有し、残部が製造上不可避に含まれる元素を除きAuから構成されるAu−Ge系はんだ合金であって、縞状の組織の縞の間隔が0.01μm以上0.75μm以下のラメラ組織および/または、円状の場合はその直径、楕円状の場合はその短径が0.01μm以上0.75μm以下の組織からなる金属組織が断面全体に対して25%以下の面積を占めていることを特徴としている。 That is, the Au—Ge based solder alloy according to the present invention contains Au in an amount of 10.0% by mass or more and 15.0% by mass or less, and is composed of Au except for elements that are inevitably included in the production. A solder alloy having a lamellar structure in which the interval between stripes of a striped structure is 0.01 μm or more and 0.75 μm or less and / or a diameter in the case of a circle, and a minor axis in the case of an ellipse. A metal structure composed of a structure of 01 μm or more and 0.75 μm or less occupies an area of 25% or less with respect to the entire cross section.
本発明によれば、従来のAu系はんだよりも均一な濡れ広がり性と高い接合信頼性とを有し、更に実質的に接合や封止に寄与するはんだ体積を維持できるAu系はんだ合金を提供できる。これにより、本発明のはんだ合金が接合材や封止材として使用される水晶デバイス、SAWフィルター、MEMS等の極めて高い信頼性を要求される電子装置およびこれを搭載した電子機器は、ますます小型化や薄型化される場合であっても、高い気密性と優れた信頼性を維持することができる。 According to the present invention, there is provided an Au-based solder alloy that has a uniform wetting and spreading property and higher bonding reliability than conventional Au-based solder, and can maintain a solder volume that substantially contributes to bonding and sealing. it can. As a result, electronic devices that require extremely high reliability, such as crystal devices, SAW filters, MEMS, etc., in which the solder alloy of the present invention is used as a bonding material or a sealing material, and electronic devices equipped with such devices are increasingly smaller. Even when it is made thinner or thinner, high airtightness and excellent reliability can be maintained.
以下、制御された金属組織を有する本発明のAu−Ge系はんだ合金の実施形態について詳しく説明する。一般に二元系はんだ合金の共晶点では、鋳造時にα相およびβ相の2つの層が交互に積層したラメラ構造を含んだ金属組織になる。このようなラメラ構造になることにより、合金の機械的特性等が向上する。本発明者らは、この金属組織を形成するラメラ組織について鋭意研究を重ねた結果、ラメラ組織の縞の間隔等は、原料溶解後の鋳造時や温間圧延時、またはアトマイズ時における熱処理条件や加工速度等を調整することにより制御でき、そして、はんだ濡れ性に大きく影響を及ぼすことを見出した。 Hereinafter, embodiments of the Au—Ge solder alloy of the present invention having a controlled metal structure will be described in detail. In general, at the eutectic point of a binary solder alloy, a metal structure including a lamellar structure in which two layers of α phase and β phase are alternately laminated at the time of casting is obtained. Such a lamellar structure improves the mechanical properties of the alloy. As a result of intensive research on the lamellar structure forming this metal structure, the present inventors have determined the heat treatment conditions during casting, warm rolling, or atomizing after melting of the raw material, as the spacing between the stripes of the lamellar structure. It was found that it can be controlled by adjusting the processing speed and the like, and has a great influence on the solder wettability.
はんだ合金は一般に鋳造した後、圧延加工、押出し加工、アトマイズ加工、プレス加工等を行って所定の形状の製品を得ている。これらの中で特に鋳造や温間圧延、アトマイズ等は熱処理条件や加工条件が金属組織に影響するが、従来、鋳造や温間圧延、アトマイズ等の熱処理条件や加工条件は、生産性等を優先して決定していた。このため、図1のAu−12.5質量%Geはんだ合金の金属組織に例示されるように、全体的にラメラ構造を示しているものの、ラメラ組織の縞の間隔が細かい箇所と、塊状の大きな結晶粒とが混在した組織構造となっていた。このような組織構造を有するはんだ合金は、接合時に再溶解する際、細かい縞状組織で構成されるラメラ組織が先に溶け出し、その後、塊状の大きな結晶粒が溶けることになる。この際、先に溶け出したラメラ組織が基板等に広がっていき、大きな結晶粒は相対的に溶け出さないため、全体としては不均一な濡れ広がりになることがあった。 A solder alloy is generally cast and then rolled, extruded, atomized, pressed, etc. to obtain a product with a predetermined shape. Among these, casting, warm rolling, atomization, etc., particularly affect heat treatment conditions and processing conditions, but the heat treatment conditions, processing conditions such as casting, warm rolling, atomization, etc. have been given priority to productivity. And decided. For this reason, as illustrated in the metal structure of the Au-12.5 mass% Ge solder alloy in FIG. 1, although the lamella structure is shown as a whole, the lamella structure has finely spaced stripes and a lump structure. The structure was a mixture of large crystal grains. When the solder alloy having such a structure is remelted at the time of joining, a lamellar structure composed of fine stripe structures is first melted, and then large massive crystal grains are melted. At this time, since the lamellar structure that has been dissolved first spreads on the substrate and the like, and large crystal grains do not relatively dissolve, the whole may be unevenly spread.
この塊状の大きな結晶は、後述する亜共晶や過共晶による初晶の影響と思われる。そこで、この塊状の大きな結晶粒がそれ以外の縞状のラメラ組織とほぼ同じタイミングで同様に溶解するように、ラメラ構造の縞の間隔を熱処理条件や加工速度等で制御するものである。これにより、上記した塊状の結晶粒とこれに隣接する縞状のラメラ組織との明確な境界がなくなって、ラメラの組織の中に塊状の結晶粒が取り込まれたようになる。その結果、適切な濡れ性を確保できるうえ、実質的に接合に寄与するはんだ体積を維持することができ、高い接合信頼性を有するはんだ合金を得ることができる。 This large massive crystal is considered to be the influence of the primary crystal due to hypoeutectic and hypereutectic described later. Therefore, the interval between the stripes of the lamella structure is controlled by the heat treatment conditions and the processing speed so that the large crystal grains in the lump form are dissolved in the same manner as the other stripe-like lamellar structures. As a result, there is no clear boundary between the above-described massive crystal grains and the striped lamellar structure adjacent thereto, and the massive crystal grains are taken into the lamella structure. As a result, it is possible to ensure appropriate wettability and to maintain a solder volume that substantially contributes to bonding, and to obtain a solder alloy having high bonding reliability.
すなわち、鋳造時に徐冷したり、圧延加工時の温度を高めにしたりすることによって細かなラメラ組織を減らすことができ、その結果、図2に示すように、縞状組織を構成する各帯状部を幅広にしたり、該縞状組織に隣接する塊状等のまだらな非ラメラ状の組織との間に明確な境界が認められない程度にこれらを融合させたりして、全体的にほぼ一様なラメラ組織を有するはんだ合金を得ることができる。より具体的には、縞状の組織の縞の間隔が0.01μm以上0.75μm以下のラメラ組織、および/または、円状の場合はその直径、楕円状の場合はその短径が0.01μm以上0.75μm以下の円状や楕円状の組織からなる金属組織が、はんだを所定の方向で切断した切断面に対して25%以下を占めるようにする。 That is, by gradually cooling at the time of casting or by increasing the temperature at the time of rolling, the fine lamellar structure can be reduced. As a result, as shown in FIG. Or by fusing them so that there is no clear boundary between the striped tissue and the mottled non-lamellar tissue adjacent to the striped tissue. A solder alloy having a lamella structure can be obtained. More specifically, a lamellar structure having a stripe interval of 0.01 μm or more and 0.75 μm or less, and / or a diameter in the case of a circle, and a minor axis in the case of an ellipse. A metal structure composed of a circular or elliptical structure of 01 μm or more and 0.75 μm or less occupies 25% or less with respect to a cut surface obtained by cutting the solder in a predetermined direction.
なお、上記したラメラ組織の面積に関する要件は実際のはんだ合金の生産ラインにおいて、経験的、実験的に得られた数値である。また、上記した組織のサイズやそれらがはんだの断面に占める面積の割合は、金属顕微鏡に付属している面積算出機能より算出することができる。すなわち、測定対象の試料に対して所定の方向に切断した断面を金属顕微鏡で見た時の0.20mm×0.20mmの矩形領域内から20μm×20μmの測定範囲を任意に5箇所を選定し、それらの測定結果を平均することで求めることができる。 The requirements regarding the area of the lamella structure described above are numerical values obtained experimentally and experimentally in an actual solder alloy production line. Moreover, the size of the above-described structure and the ratio of the area that they occupy in the cross section of the solder can be calculated by the area calculation function attached to the metal microscope. In other words, arbitrarily select five measurement ranges of 20 μm × 20 μm from a 0.20 mm × 0.20 mm rectangular area when a cross section cut in a predetermined direction with respect to the sample to be measured is viewed with a metal microscope. It can be obtained by averaging the measurement results.
ここで縞状のラメラ組織とは前述したα相とβ相との積層面に垂直な方向から見た時にこれらα相の帯状部とβ相の帯状部とが交互に縞状に並ぶように形成している金属組織をいうものとする。一方、円状もしくは楕円状のラメラ組織とは、同様にα相とβ相との積層面に垂直な方向から見た時にα相またはβ相が円形もしくは楕円形の島状部を形成している金属組織をいうものとする。これらラメラ組織が占める割合の測定が行われる断面の方向は、はんだの加工法を考慮して定められる。例えば、はんだ形状が後述する板状や枠状の場合はその厚み方向に平行な断面に対して測定が行われる。一方、ボール形状の場合はその中心部を通る断面であれば任意の断面に対して測定を行ってもよい。次に、本発明のはんだ合金を構成する元素について説明する。 Here, the striped lamellar structure is such that when viewed from the direction perpendicular to the laminating surface of the α phase and the β phase, the band portions of the α phase and the band portions of the β phase are alternately arranged in a striped pattern. It shall mean the metallographic structure that is formed. On the other hand, a lamellar structure having a circular or elliptical shape is similar to the case where the α or β phase forms a circular or elliptical island when viewed from a direction perpendicular to the laminating surface of the α and β phases. It means the metallographic structure. The direction of the cross section in which the ratio of the lamella structure is measured is determined in consideration of the solder processing method. For example, when the solder shape is a plate shape or a frame shape to be described later, the measurement is performed on a cross section parallel to the thickness direction. On the other hand, in the case of a ball shape, any cross section may be measured as long as the cross section passes through the central portion. Next, the elements constituting the solder alloy of the present invention will be described.
<Au>
Auは本発明のはんだ合金の主成分を構成する必須の元素である。Auは非常に酸化しづらい性質を有しているため、高い信頼性が要求される電子部品類の接合用や封止用のはんだとして、特性面においては最も適している。このため、水晶デバイスやSAWフィルターの封止用としてAu系はんだが多用されており、本発明のはんだ合金もAuを主成分とすることで、このような高信頼性を要求される技術分野に属するはんだを提供する。ただし、適切な濡れ性や高い接合信頼性を有し、更には接合や封止として有効に機能する実質的なはんだの体積を維持するため、前述したように熱処理等による金属組織の制御を行って金属組織を制御する必要がある。
<Au>
Au is an essential element constituting the main component of the solder alloy of the present invention. Since Au has a property that is very difficult to oxidize, it is most suitable in terms of characteristics as a solder for joining and sealing of electronic parts that require high reliability. For this reason, Au-based solder is often used for sealing quartz devices and SAW filters, and the solder alloy of the present invention is mainly composed of Au, so that such high reliability is required in the technical field. Provide the solder to which it belongs. However, the metal structure is controlled by heat treatment or the like as described above in order to maintain a proper solder volume that has appropriate wettability and high bonding reliability and also functions effectively as a bonding and sealing. It is necessary to control the metal structure.
<Ge>
Geは本発明のはんだ合金において必須の元素である。GeはAuと共晶合金を作り、固相線温度を356℃と低くできる。Au−Ge系合金は耐酸化性に最も優れるAuを85〜90質量%近く含有するため非常に濡れ性や接合信頼性等に優れる。Geの含有量は10.0質量%以上15.0質量%以下である。Ge含有量がこの範囲から外れてしまうと液相線温度が高くなりすぎて溶け分け現象が起きたり、基板やチップとはんだが均一に合金化せず、接合不良を起こしてしまう。Ge含有量が10.0質量%以上15.0質量%以下であれば、共晶点の組成に近く、より一層優れた接合が可能になり好ましい。
<Ge>
Ge is an essential element in the solder alloy of the present invention. Ge forms a eutectic alloy with Au, and the solidus temperature can be lowered to 356 ° C. Since the Au—Ge-based alloy contains nearly 85 to 90% by mass of Au, which is the most excellent in oxidation resistance, it is very excellent in wettability and bonding reliability. The Ge content is 10.0% by mass or more and 15.0% by mass or less. If the Ge content deviates from this range, the liquidus temperature becomes too high and a melting phenomenon occurs, or the substrate, chip and solder are not uniformly alloyed, resulting in poor bonding. A Ge content of 10.0% by mass or more and 15.0% by mass or less is preferable because it is close to the composition of the eutectic point and enables further excellent bonding.
Au−Geはんだ合金は、通常、共晶点付近の組成、つまりAu−12.5質量%Ge付近の組成で使用される。これにより固相線温度が356℃になり、かつ、結晶が微細化するので比較的濡れ性が安定するわけである。しかし、Geが12.5質量%未満の場合は亜共晶となり、Geが12.5質量%を超えた場合は過共晶となるため、初晶が発生してラメラ組織と混在する。このため、濡れ性にばらつきが出たり、局所的に濡れ広がる部分や濡れ難くなる部分が存在することになる。工業的に利用可能な範囲はGe12.5質量%近傍の10.0質量%以上15.0質量%以下であるが、均一な濡れ広がりのためには、初晶の発生を極力抑えることが望ましく、Geを11.5質量%以上13.5質量%以下にするのが好ましい。 The Au—Ge solder alloy is usually used with a composition near the eutectic point, that is, a composition near Au-12.5 mass% Ge. As a result, the solidus temperature becomes 356 ° C. and the crystal becomes finer, so that the wettability is relatively stable. However, when Ge is less than 12.5% by mass, it becomes hypoeutectic, and when Ge exceeds 12.5% by mass, it becomes hypereutectic, so that a primary crystal is generated and mixed with a lamellar structure. For this reason, the wettability varies, and there are portions that spread locally and are difficult to wet. The industrially usable range is 10.0 mass% or more and 15.0 mass% or less near Ge 12.5 mass%, but it is desirable to suppress the generation of primary crystals as much as possible for uniform wetting and spreading. , Ge is preferably 11.5 mass% or more and 13.5 mass% or less.
上記で説明したはんだ合金は、真空溶解および鋳造後、温間圧延、アトマイズ、またはプレス等によりはんだ形状を枠状、シート状、リボン状、またはボール状に加工することができる。また、これら形状のはんだ合金は、気密性が要求される水晶デバイス、SAWフィルター、MEMS等電子デバイスの接合に用いられる。 The solder alloy described above can be processed into a frame shape, a sheet shape, a ribbon shape, or a ball shape by warm rolling, atomizing, pressing, or the like after vacuum melting and casting. In addition, these shapes of solder alloys are used for joining electronic devices such as quartz devices, SAW filters, and MEMS that require airtightness.
はんだ断面において特定のサイズのラメラ構造が占める面積の割合やGeの含有率が異なる種々のAu−Geはんだ合金試料を作製してそれらの濡れ性や信頼性について評価を行った。具体的には、まず原料としてそれぞれ純度99.999質量%以上のAuおよびGeを準備した。大きな薄片やバルク状の原料については、溶解後の合金においてサンプリング場所による組成のバラツキがなく均一になるように留意しながら切断、粉砕等を行い、3mm以下の大きさに細かくした。次に、高周波溶解炉用グラファイトるつぼに、これら原料から所定量を秤量して入れた。 Various Au—Ge solder alloy samples differing in the proportion of the area occupied by the lamellar structure of a specific size and the Ge content in the solder cross section were prepared and their wettability and reliability were evaluated. Specifically, first, Au and Ge having a purity of 99.999 mass% or more were prepared as raw materials. Large flakes and bulk-shaped raw materials were cut and pulverized, etc. so as to be uniform with no variation in composition depending on the sampling location in the alloy after melting, and were reduced to a size of 3 mm or less. Next, a predetermined amount of these raw materials was weighed into a graphite crucible for a high-frequency melting furnace.
原料の入ったるつぼを高周波溶解炉に入れ、酸化を抑制するために窒素を原料1kg当たり0.7L/分以上の流量で流した。この状態で溶解炉の電源を入れ、原料を加熱溶融させた。金属が溶融しはじめたら混合棒でよく攪拌し、局所的な組成のばらつきが起きないように均一に混ぜた。十分溶融したことを確認した後、高周波電源を切り、速やかにるつぼを取り出し、るつぼ内の溶湯をはんだ母合金の鋳型に流し込んだ。 The crucible containing the raw material was placed in a high-frequency melting furnace, and nitrogen was flowed at a flow rate of 0.7 L / min or more per 1 kg of the raw material in order to suppress oxidation. In this state, the melting furnace was turned on to heat and melt the raw material. When the metal began to melt, it was stirred well with a mixing rod and mixed uniformly so as not to cause local compositional variations. After confirming sufficient melting, the high frequency power supply was turned off, the crucible was quickly removed, and the molten metal in the crucible was poured into the solder mother alloy mold.
鋳型には、圧延用には厚さ3mm×幅40mm×長さ150mmの板状の合金が得られるものを使用し、アトマイズ用には直径19mmの円柱状の合金が得られるものを使用した。なお、圧延用の鋳型には急冷用のジャケットを取り付け、水量を調整することによって金属組織の制御を行った。すなわち、急冷させると結晶が微細化してより細かいラメラ組織を得ることができ、逆に徐冷させると縞の間隔が広いラメラ組織になる。さらに、板材の引出し速度も制御して、金属組織の制御を行った。一方、アトマイズでボール状にした試料については不活性ガス中でアニールを行い、アニール温度とアニール時間を試料ごとに様々に変えることにより金属組織を調整した。 As the mold, one that can obtain a plate-like alloy having a thickness of 3 mm, a width of 40 mm, and a length of 150 mm was used for rolling, and a mold that was used to obtain a columnar alloy having a diameter of 19 mm was used. In addition, a rapid cooling jacket was attached to the rolling mold, and the metal structure was controlled by adjusting the amount of water. That is, when cooled rapidly, the crystal becomes finer and a finer lamella structure can be obtained, and conversely when cooled slowly, a lamellar structure with a wide stripe interval is obtained. Furthermore, the metal structure was controlled by controlling the drawing speed of the plate material. On the other hand, the sample made into a ball shape by atomization was annealed in an inert gas, and the metal structure was adjusted by changing the annealing temperature and annealing time for each sample.
このようにして組成や金属組織が互いに異なる試料1〜43のはんだ母合金を作製した。これらの試料1〜43のはんだ母合金についてICP発光分光分析器(SHIMAZU S−8100)を用いて組成分析を行った。また、キーエンス製のデジタルマイクロスコープ(VHX−900)を用いて断面に占めるラメラ組織の面積を求めた。その際、縞状のラメラ組織は縞を構成する各帯状部の幅が0.01μm以上0.75μm以下のものに限定し、円状もしくは楕円状のラメラ組織は円状の場合は直径の長さが、楕円状の場合は短径の長さが0.01μm以上0.75μm以下のものに限定した。また、断面の方向は、リボン状のものについてはその厚み方向に平行な断面とし、ボール状のものについてはその中心部を通る任意の断面とした。その分析結果を前述した組成分析の結果と共に下記の表1および表2に示す。 In this way, solder mother alloys of Samples 1 to 43 having different compositions and metal structures were produced. The solder mother alloys of Samples 1 to 43 were subjected to composition analysis using an ICP emission spectroscopic analyzer (SHIMAZU S-8100). Moreover, the area of the lamellar structure | tissue which occupies for a cross section was calculated | required using the digital microscope (VHX-900) made from Keyence. At that time, the striped lamellar structure is limited to a width of each band-shaped portion constituting the stripe of 0.01 μm or more and 0.75 μm or less, and a circular or elliptical lamellar structure has a long diameter when it is circular. However, in the case of an ellipse, the length of the minor axis was limited to 0.01 μm or more and 0.75 μm or less. Moreover, the direction of the cross section was a cross section parallel to the thickness direction of the ribbon-shaped one, and an arbitrary cross section passing through the center of the ball-shaped one. The analysis results are shown in Table 1 and Table 2 below together with the results of the composition analysis described above.
次に、上記試料1〜9、19〜27、28〜33、40〜43の各はんだ母合金について、温間圧延機を用いてリボン状に加工した。溶解鋳造工程に加えて、温間圧延工程でも金属組織の調整を行い、高い精度で目的とする金属組織が得られるように制御した。すなわち圧延時の温度、圧延速度を制御して、試料に加わる熱と時間を調整することによって金属組織を調整した。 Next, each of the solder mother alloys of Samples 1 to 9, 19 to 27, 28 to 33, and 40 to 43 was processed into a ribbon shape using a warm rolling mill. In addition to the melt casting process, the metal structure was also adjusted in the warm rolling process and controlled so as to obtain the desired metal structure with high accuracy. That is, the metal structure was adjusted by controlling the temperature and rolling speed during rolling and adjusting the heat and time applied to the sample.
そして、これらリボン状に加工した試料1〜9、28〜33に対して、プレス機で1.0mm×1.0mmの四角形状に打抜いてプリフォーム材(打抜き品)を作り、濡れ広がり性の評価に用いた。一方、リボン状にした試料19〜27、40〜43に対しては、プレス機で外寸1.5mm×2.0mm、枠幅150μmの枠形状に打抜いて、打抜き品を作り、封止性、信頼性の評価に用いた。以下、試料の加工方法、各評価について具体的に説明する。 The samples 1 to 9 and 28 to 33 processed into a ribbon shape are punched into a square shape of 1.0 mm × 1.0 mm with a press machine to produce a preform material (punched product), and wet spreadability. Used for evaluation. On the other hand, samples 19 to 27 and 40 to 43 in the form of ribbons are punched into a frame shape with an outer dimension of 1.5 mm × 2.0 mm and a frame width of 150 μm with a press machine to produce a punched product and sealed. Used for evaluation of safety and reliability. Hereinafter, a sample processing method and each evaluation will be specifically described.
<リボンの製造方法>
準備した厚さ3mm×幅40mm×長さ150mmの板状母合金試料を温間圧延機で圧延した。具体的には圧延時の温度(ロール温度)は120℃〜260℃、圧延速度は0.5m/分〜4m/分として、試料に加わる熱と時間を調整することによって金属組織を調整した。そしてそれぞれの試料を30.0±1.5μmの厚さになるように圧延した。
<Ribbon manufacturing method>
The prepared plate-shaped mother alloy sample having a thickness of 3 mm, a width of 40 mm, and a length of 150 mm was rolled with a warm rolling mill. Specifically, the temperature during rolling (roll temperature) was 120 ° C. to 260 ° C., the rolling speed was 0.5 m / min to 4 m / min, and the metal structure was adjusted by adjusting the heat and time applied to the sample. Each sample was rolled to a thickness of 30.0 ± 1.5 μm.
<打抜き品(四角形状)の製造方法と濡れ広がり性評価1>
リボン状に加工した試料1〜9、28〜33に対して、プレス機を用いて、プレス用オイルを供給しながら1.0mm×1.0mmの四角形状に打抜いた。その後、打ち抜いた試料をアルコールで洗浄し、40℃の真空中で2時間乾燥し、打抜き品を製造した。このようにして製造した四角形状の打抜き品を用いて、基板と試料を接合し、不均一な濡れ広がりの有無を評価基準とする濡れ広がり性の評価1とした。具体的には濡れ性試験機(装置名:雰囲気制御式濡れ性試験機)を起動し、加熱するヒーター部分に2重のカバーをしてヒーター部の周囲4箇所から窒素ガスを12L/分の流量で流した。その後、ヒーター設定温度を融点より50℃高い温度にして加熱した。
<Production method of punched product (square shape) and wet spreadability evaluation 1>
Samples 1 to 9 and 28 to 33 processed into a ribbon shape were punched into a square shape of 1.0 mm × 1.0 mm using a pressing machine while supplying pressing oil. Thereafter, the punched sample was washed with alcohol and dried in a vacuum at 40 ° C. for 2 hours to produce a punched product. Using the rectangular punched product thus manufactured, the substrate and the sample were joined, and the wetting spreadability evaluation 1 was evaluated based on the presence or absence of uneven wetting spread. Specifically, a wettability tester (device name: atmosphere control type wettability tester) is started, a double cover is applied to the heater part to be heated, and nitrogen gas is supplied from four locations around the heater part to 12 L / min. Flowed at a flow rate. Thereafter, the heater was set to a temperature higher than the melting point by 50 ° C. and heated.
ヒーター温度が設定値で安定した後、Niめっき(膜厚:3.0μm)したCu基板(板厚:0.3mm)をヒーター部にセッティングして25秒加熱し、次に四角形状のはんだ試料をCu基板上に載せて25秒加熱した。加熱が完了した後、Cu基板をヒーター部から取り上げ、その横の窒素雰囲気が保たれている場所に一旦設置して冷却し、十分に冷却した後大気中に取り出した。 After the heater temperature is stabilized at the set value, a Cu substrate (plate thickness: 0.3 mm) plated with Ni (film thickness: 3.0 μm) is set in the heater section and heated for 25 seconds, and then a rectangular solder sample Was placed on a Cu substrate and heated for 25 seconds. After the heating was completed, the Cu substrate was picked up from the heater part, once installed in a place where the nitrogen atmosphere next to it was maintained, cooled, and after sufficiently cooled, taken out into the atmosphere.
このようにして接合した接合体について、図3(a)に示すようにはんだ試料と基板がきちんと接合して、かつ四角形状を保っていた場合を「○」と評価し、図3(b)に示すように接合前の四角形状を留めず部分的に濡れ広がった場合や、基板がはんだをはじいて部分的に接合できなかった場合、または接合できなかった場合を「×」と評価した。濡れ広がり性評価1の評価結果を表2に示した。 With respect to the joined body thus joined, the case where the solder sample and the substrate were properly joined and kept square as shown in FIG. 3A was evaluated as “◯”, and FIG. As shown in FIG. 2, the case where the rectangular shape before joining was not retained and the substrate partially wetted and spread, the case where the substrate could not be joined partially by repelling the solder, or the case where joining was not possible was evaluated as “x”. The evaluation results of the wettability evaluation 1 are shown in Table 2.
<打抜き品(枠形状)の製造方法と接合信頼性評価1、接合信頼性評価2>
リボン状に加工した試料19〜27、40〜43に対して、外寸1.5mm×2.0mm、枠幅150μmの枠形状に打抜いて、打抜き品を製造した。このようにして製造した枠状の打抜き品を用いて、封止用容器と封止用基板をはんだ試料で接合し、リーク状態を確認して接合信頼性評価1とし、さらにその接合体についてヒートサイクル試験を行い接合信頼性評価2とした。
<Production method of punched product (frame shape), bonding reliability evaluation 1, bonding reliability evaluation 2>
The samples 19 to 27 and 40 to 43 processed into a ribbon shape were punched into a frame shape having an outer dimension of 1.5 mm × 2.0 mm and a frame width of 150 μm to produce punched products. Using the frame-shaped punched product thus manufactured, the sealing container and the sealing substrate are joined with a solder sample, the leakage state is confirmed to be a joint reliability evaluation 1, and the joined body is heated. A cycle test was conducted to make the joint reliability evaluation 2.
<打抜き品(枠形状)の接合信頼性評価1(封止性)>
はんだ合金による封止性を確認するため、図4に示す形状の封止用容器4と封止用蓋5を各はんだ合金試料で封止した。封止には簡易ダイボンダー(ウェストボンド社製、MODEL:7327C)を用い、窒素フロー中(8L/分)、融点より50℃高い温度で30秒保持し、その後、窒素フローされたサイドボックスで室温まで十分に冷却し、その後、封止体を大気中に取り出した。このようにして準備した各封止体を水中に2時間浸漬し、その後、水中から封止体を取り出し、解体してリーク状態を確認した。解体した封止体内部に水が入っていた場合はリークがあったと判断し、封止性の評価として「×」とした。このようなリークな無かった場合を「○」と評価した。
<Joint reliability evaluation 1 (sealing property) of punched product (frame shape)>
In order to confirm the sealing performance by the solder alloy, the sealing container 4 and the sealing lid 5 having the shape shown in FIG. 4 were sealed with each solder alloy sample. A simple die bonder (made by West Bond, MODEL: 7327C) is used for sealing, and is kept in a nitrogen flow (8 L / min) for 30 seconds at a temperature 50 ° C. higher than the melting point. Then, the sealing body was taken out into the atmosphere. Each sealing body prepared in this way was immersed in water for 2 hours, and then the sealing body was taken out from the water and disassembled to confirm a leak state. When water was contained in the disassembled sealing body, it was determined that there was a leak, and “×” was evaluated as the sealing performance evaluation. The case where there was no such leak was evaluated as “◯”.
<打抜き品(枠形状)の接合信頼性評価2(ヒートサイクル試験)>
はんだ接合の信頼性を評価するためにヒートサイクル試験を行った。なお、この試験は、上記接合信頼性評価1と同様にして得たはんだ合金で封止した封止体を用いて行った。まず、各封止体に対して、−40℃の冷却と300℃の加熱を1サイクルとして、これを所定のサイクル繰り返した。その後、ヒートサイクル試験を行った各封止体を水中に2時間浸漬し、その後、水中から封止体を取り出し、解体してリーク状態を確認した。解体した封止体内部に水が入っていた場合はリークがあったと判断し、封止性の評価として「×」とした。このようなリークな無かった場合を「○」と評価した。
<Joint Reliability Evaluation 2 (Heat Cycle Test) for Stamped Products (Frame Shape)>
A heat cycle test was conducted to evaluate the reliability of solder joints. In addition, this test was done using the sealing body sealed with the solder alloy obtained similarly to the said joint reliability evaluation 1. FIG. First, for each sealing body, cooling at −40 ° C. and heating at 300 ° C. were taken as one cycle, and this was repeated for a predetermined cycle. Then, each sealing body which performed the heat cycle test was immersed in water for 2 hours, then, the sealing body was taken out from the water, disassembled, and the leak state was confirmed. When water was contained in the disassembled sealing body, it was determined that there was a leak, and “×” was evaluated as the sealing performance evaluation. The case where there was no such leak was evaluated as “◯”.
<ボールの製造方法>
次に準備した試料10〜18、34〜39の各母合金(直径27mmの円柱状)を液中アトマイズ装置のノズルに投入し、このノズルを300℃に加熱した油の入った石英管の上部(高周波溶解コイルの中)にセットした。ノズル中の母合金を高周波により520℃まで加熱して5分保持した後、不活性ガスによりノズルに圧力を加えてアトマイズを行い、ボール状のはんだ合金とした。尚、ボール直径は設定値を0.30mmとし、予めノズル先端の直径を調整した。得られた各試料ボールはそれぞれエタノール洗浄を3回行い、その後、真空乾燥機で真空中45℃−2時間の乾燥を行った。さらに各はんだ試料の金属組織を制御するため、窒素ガス中でアニール温度40〜300℃、アニール時間3〜120分の条件でアニールを行った。
<Ball manufacturing method>
Next, the prepared master alloys of samples 10 to 18 and 34 to 39 (columns with a diameter of 27 mm) were put into a nozzle of a submerged atomizer, and this nozzle was heated to 300 ° C. above the quartz tube containing oil. (In the high frequency melting coil). The mother alloy in the nozzle was heated to 520 ° C. by high frequency and held for 5 minutes, and then atomized by applying pressure to the nozzle with an inert gas to obtain a ball-shaped solder alloy. The ball diameter was set to 0.30 mm, and the nozzle tip diameter was adjusted in advance. Each of the obtained sample balls was washed with ethanol three times, and then dried in a vacuum dryer at 45 ° C. for 2 hours. Furthermore, in order to control the metal structure of each solder sample, annealing was performed in nitrogen gas under conditions of an annealing temperature of 40 to 300 ° C. and an annealing time of 3 to 120 minutes.
<ボールの濡れ性の評価2(接合体の縦横比の測定)>
濡れ性試験機(装置名:雰囲気制御式濡れ性試験機)を起動し、加熱するヒーター部分に2重のカバーをしてヒーター部の周囲4箇所から窒素ガスを12L/分の流量で流した。その後、ヒーター設定温度を融点より50℃高い温度にして加熱した。ヒーター温度が設定値で安定した後、Niめっき(膜厚:3.0μm)したCu基板(板厚:0.3mm)をヒーター部にセッティングして25秒加熱し、次にボール状のはんだ合金をCu基板上に載せて25秒加熱した。加熱が完了した後、Cu基板をヒーター部から取り上げ、その横の窒素雰囲気が保たれている場所に一旦設置して冷却し、十分に冷却した後大気中に取り出した。
<Evaluation of ball wettability 2 (measurement of aspect ratio of joined body)>
A wettability tester (device name: atmosphere control type wettability tester) was started, a double cover was applied to the heater part to be heated, and nitrogen gas was allowed to flow from four locations around the heater part at a flow rate of 12 L / min. . Thereafter, the heater was set to a temperature higher than the melting point by 50 ° C. and heated. After the heater temperature has stabilized at the set value, a Cu substrate (plate thickness: 0.3 mm) plated with Ni (film thickness: 3.0 μm) is set in the heater and heated for 25 seconds, and then a ball-shaped solder alloy Was placed on a Cu substrate and heated for 25 seconds. After the heating was completed, the Cu substrate was picked up from the heater part, once installed in a place where the nitrogen atmosphere next to it was maintained, cooled, and after sufficiently cooled, taken out into the atmosphere.
得られた接合体は、図5に示すようにCu基板のNi層2の表面にはんだ合金3が濡れ広がって接合された接合形態を有しており、その濡れ広がったはんだ合金の縦横比を求めた。具体的には、図5に示す最大のはんだ濡れ広がり長さを長径X1と、最小のはんだ濡れ広がり長さ短径X2とを測定し、下記計算式1により縦横比を算出した。 As shown in FIG. 5, the obtained joined body has a joining form in which the solder alloy 3 is joined by spreading on the surface of the Ni layer 2 of the Cu substrate, and the aspect ratio of the wet-spreading solder alloy is set. Asked. Specifically, the maximum solder wetting spread length shown in FIG. 5 was measured as the major axis X1 and the minimum solder wetting spread length minor axis X2, and the aspect ratio was calculated by the following formula 1.
[計算式1]
縦横比=長径(X1)÷短径(X2)
[Calculation Formula 1]
Aspect ratio = major axis (X1) ÷ minor axis (X2)
上記計算式1の縦横比が1に近いほど基板上に円形状に濡れ広がっており、濡れ広がり性がよいと判断できる。1より大きくなるに従い、濡れ広がり形状が円形からずれていき、溶融はんだの移動距離にバラつきがでて反応が不均一になり合金層の厚みや成分バラつきが大きくなったりして均一で良好な接合ができなくなってしまう。さらにある方向に多くのはんだが流れるように広がってはんだ量が過剰な箇所とはんだが無い箇所ができ、接合不良や場合よっては接合できなかったりしてしまう。接合体の縦横比の測定結果を上記した濡れ広がり性評価1(はんだのはみ出しやはじき)、接合信頼性評価1(封止性)、および接合信頼性評価2(ヒートサイクル試験)と共に下記表3および表4に示す。 It can be determined that the closer the aspect ratio of the calculation formula 1 is to 1, the more wetting and spreading in a circular shape on the substrate, the better the wetting and spreading property. As it becomes larger than 1, the wetting and spreading shape deviates from the circle, the movement distance of the molten solder varies, the reaction becomes non-uniform, and the thickness of the alloy layer and the component variation increase, resulting in uniform and good bonding Will not be able to. Furthermore, it spreads so that a lot of solder flows in a certain direction, and a portion where the amount of solder is excessive and a portion where there is no solder are formed. Table 3 below shows the measurement results of the aspect ratio of the joined body together with the above-described wettability evaluation 1 (extruding and repelling of solder), bonding reliability evaluation 1 (sealing property), and bonding reliability evaluation 2 (heat cycle test). And in Table 4.
上記表3および表4から分かるように、本発明の要件を満たしている試料1〜27のはんだ母合金は、各評価項目において良好な特性を示している。つまり、濡れ広がり性評価1(はんだのはみ出しやはじき)、濡れ広がり性2(縦横比)、接合信頼性評価1(封止性)、接合信頼性評価2(ヒートサイクル試験)で全て良好な結果であった。このように良好な結果が得られた理由は、はんだ合金試料が本発明の組成範囲内であり、かつ細かなラメラ組織の面積がはんだ断面全体の25%以下であることによるものと考えられる。 As can be seen from Tables 3 and 4 above, the solder mother alloys of Samples 1 to 27 that satisfy the requirements of the present invention show good characteristics in each evaluation item. In other words, all the results are good in Wetting Spreadability Evaluation 1 (extruding and repelling of solder), Wetting Spreadability 2 (aspect ratio), Bonding Reliability Evaluation 1 (sealing property), and Bonding Reliability Evaluation 2 (heat cycle test). Met. The reason why such a good result was obtained is considered to be that the solder alloy sample is within the composition range of the present invention, and the area of the fine lamellar structure is 25% or less of the entire solder cross section.
一方、本発明の要件を満たしていない比較例の試料28〜43のはんだ合金は、少なくともいずれかの特性において好ましくない結果となった。従来から一般的に使用されているAu−12.5Ge質量%である試料32、33、38、39、42、43においても金属組織が好ましい範囲に制御された本発明の試料に比べて濡れ広がり性等が劣る結果であった。なお、Au−12.5Ge質量%である試料32、33、38、39、42、43は本発明より劣るものの、これが従来と同等程度の性能であり、市場における要求が高まりによりさらなる特性向上が求められているのである。 On the other hand, the solder alloys of Samples 28 to 43 of Comparative Examples not satisfying the requirements of the present invention resulted in undesirable results in at least any of the characteristics. In the samples 32, 33, 38, 39, 42, and 43, which are Au-12.5Ge mass%, which has been generally used from the past, the wetting and spreading are compared to the samples of the present invention in which the metal structure is controlled within a preferable range. The result was inferior in nature. The samples 32, 33, 38, 39, 42, and 43, which are Au-12.5 Ge mass%, are inferior to the present invention, but they have the same performance as the conventional ones, and further improvement in characteristics due to increasing market demands. It is demanded.
1 Cu基板
2 Ni層
3 はんだ合金試料
3a はみ出し部
4 封止用容器
5 封止用蓋
DESCRIPTION OF SYMBOLS 1 Cu board | substrate 2 Ni layer 3 Solder alloy sample 3a Overhang | projection part 4 Sealing container 5 Sealing lid
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014206947A JP2016074011A (en) | 2014-10-08 | 2014-10-08 | Au-Ge SOLDER ALLOY HAVING CONTROLLED METALLOGRAPHIC STRUCTURE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014206947A JP2016074011A (en) | 2014-10-08 | 2014-10-08 | Au-Ge SOLDER ALLOY HAVING CONTROLLED METALLOGRAPHIC STRUCTURE |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016074011A true JP2016074011A (en) | 2016-05-12 |
Family
ID=55950565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014206947A Pending JP2016074011A (en) | 2014-10-08 | 2014-10-08 | Au-Ge SOLDER ALLOY HAVING CONTROLLED METALLOGRAPHIC STRUCTURE |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016074011A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005262317A (en) * | 2004-02-20 | 2005-09-29 | Tanaka Kikinzoku Kogyo Kk | JOINING METHOD WITH Au-Sn BASED BRAZING FILLER METAL |
JP2010214396A (en) * | 2009-03-14 | 2010-09-30 | Tanaka Kikinzoku Kogyo Kk | Au-Ge ALLOY SOLDERING BALL |
JP2016052662A (en) * | 2014-09-03 | 2016-04-14 | 住友金属鉱山株式会社 | Au-Sn SOLDER ALLOY HAVING CONTROLLED METALLOGRAPHIC STRUCTURE |
-
2014
- 2014-10-08 JP JP2014206947A patent/JP2016074011A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005262317A (en) * | 2004-02-20 | 2005-09-29 | Tanaka Kikinzoku Kogyo Kk | JOINING METHOD WITH Au-Sn BASED BRAZING FILLER METAL |
JP2010214396A (en) * | 2009-03-14 | 2010-09-30 | Tanaka Kikinzoku Kogyo Kk | Au-Ge ALLOY SOLDERING BALL |
JP2016052662A (en) * | 2014-09-03 | 2016-04-14 | 住友金属鉱山株式会社 | Au-Sn SOLDER ALLOY HAVING CONTROLLED METALLOGRAPHIC STRUCTURE |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160375526A1 (en) | Au-Sn-Ag BASED SOLDER ALLOY AND ELECTRONIC COMPONENT SEALED WITH THE SAME Au-Sn-Ag BASED SOLDER ALLOY, AND ELECTRONIC COMPONENT MOUNTING DEVICE | |
JP2018079480A (en) | Bi-In-Sn TYPE SOLDER ALLOY FOR LOW TEMPERATURE, ELECTRONIC PART IMPLEMENTATION SUBSTRATE USING THE ALLOY, AND APPARATUS MOUNTING THE IMPLEMENTATION SUBSTRATE | |
US20090014092A1 (en) | Process for producing a solder preform having high-melting metal particles dispersed therein | |
JP5962461B2 (en) | Au-Ge-Sn solder alloy | |
JP2011147982A (en) | Solder, electronic component, and method for manufacturing the electronic component | |
CN105531075A (en) | Bi group solder alloy, method for bonding electronic part using same, and electronic part mounting substrate | |
JP5383795B2 (en) | Semiconductor device | |
JP6413668B2 (en) | Au-Sn-Ag solder alloy, solder material, electronic component sealed using this solder alloy or solder material, and electronic component mounting apparatus | |
JP2016074011A (en) | Au-Ge SOLDER ALLOY HAVING CONTROLLED METALLOGRAPHIC STRUCTURE | |
JP2016052662A (en) | Au-Sn SOLDER ALLOY HAVING CONTROLLED METALLOGRAPHIC STRUCTURE | |
JP6459472B2 (en) | Pb-free Au-Ge solder alloy with controlled energy absorption and electronic component sealed or bonded using the same | |
JP2016016453A (en) | Au-Ge-Sn-based solder alloy | |
JP5979083B2 (en) | Pb-free Au-Ge-Sn solder alloy | |
TW201619399A (en) | Au-sn-ag-based solder alloy, electronic device sealed or joined using the same, and electronic apparatus equipped with the electronic device | |
JP2016112588A (en) | Au-Sn-BASED SOLDER ALLOY WHERE SURFACE CONDITION IS CONTROLLED AND SEALED OR BONDED ELECTRONIC COMPONENT USING THE SAME | |
JP2017196647A (en) | Au-Sn-Ag-α-TYPE SOLDER ALLOY, ITS SOLDER MATERIAL, AND MOUNTING SUBSTRATE BONDED OR SEALED BY USING SOLDER MATERIAL | |
JP2017035708A (en) | Sb-Cu SOLDER ALLOY CONTAINING NO Pb | |
JP2016052663A (en) | Au-Sn SOLDER ALLOY HAVING CONTROLLED METALLOGRAPHIC STRUCTURE | |
JP2017030006A (en) | Au-Ge SOLDER ALLOY, AND ELECTRONIC SYSTEM AND ELECTRONIC APPARATUS USING THE SAME | |
JP5765109B2 (en) | Lead-free In-based solder alloy for CPU for server and its manufacturing method | |
JP2017189793A (en) | Au-Sn-BASED SOLDER ALLOY | |
JP2016087608A (en) | Pb-FREE Au-Ge-Sn-BASED SOLDER ALLOY WITH CONTROLLED ENERGY ABSORPTION AMOUNT AND ELECTRONIC COMPONENT ENCAPSULATED OR BONDED USING THE SAME | |
JP2017185520A (en) | Au-Sn-BASED SOLDER ALLOY | |
JP2015208777A (en) | BALL-LIKE Au-Ag-Ge BASED SOLDER ALLOY, ELECTRONIC COMPONENT SEALED USING THE BALL-LIKE Au-Ag-Ge BASED SOLDER ALLOY, AND DEVICE MOUNTED WITH THE ELECTRONIC COMPONENT | |
JP2016203208A (en) | Au-Sn-Ag-BASED SOLDER PASTE, AND ELECTRONIC COMPONENT JOINED OR SEALED USING THE Au-Sn-Ag-BASED SOLDER PASTE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171226 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180626 |