JP2016073140A - Load integrated power supply device and led integrated power source illumination device - Google Patents

Load integrated power supply device and led integrated power source illumination device Download PDF

Info

Publication number
JP2016073140A
JP2016073140A JP2014202758A JP2014202758A JP2016073140A JP 2016073140 A JP2016073140 A JP 2016073140A JP 2014202758 A JP2014202758 A JP 2014202758A JP 2014202758 A JP2014202758 A JP 2014202758A JP 2016073140 A JP2016073140 A JP 2016073140A
Authority
JP
Japan
Prior art keywords
power supply
load
current
wiring
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014202758A
Other languages
Japanese (ja)
Other versions
JP6417831B2 (en
Inventor
亘央二 古俣
Koji Komata
亘央二 古俣
祐哉 山崎
Yuya Yamazaki
祐哉 山崎
知広 白木
Tomohiro Shiraki
知広 白木
竜介 山口
Ryusuke Yamaguchi
竜介 山口
秀明 岩館
Hideaki Iwadate
秀明 岩館
伸一 野月
Shinichi Nozuki
伸一 野月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2014202758A priority Critical patent/JP6417831B2/en
Publication of JP2016073140A publication Critical patent/JP2016073140A/en
Application granted granted Critical
Publication of JP6417831B2 publication Critical patent/JP6417831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a configuration capable of reducing device cost and improving production efficiency by eliminating the need of mounting a connector pin for inspecting an output current to be supplied from a power supply circuit to a load and wiring processing with the inspection in a substrate of a load integrated power supply device.SOLUTION: A load integrated power supply device (1) includes: a power supply circuit (10) which generates an output current; a load (20); output wiring (31 and 32) for supplying the output current from the power supply circuit to the load; and a substrate (40) on which the power supply circuit, the load and the output wiring are mounted. On the substrate, a predetermined wiring portion (31a) that is a portion of the output wiring is mounted substantially in parallel with a predetermined edge portion (41a) of an edge (41) of the substrate and in a range surrounded by the output wiring, the power supply circuit and the load, a through-hole (45) is provided at a position holding the predetermined wiring portion between the position and the predetermined edge portion.SELECTED DRAWING: Figure 1

Description

本発明は負荷一体型電源装置及びLED一体型電源照明装置に関し、具体的には、電源回路とその負荷が同一基板上に実装された負荷一体型電源装置及びLED一体型電源照明装置に関する。   The present invention relates to a load-integrated power supply device and an LED-integrated power illumination device, and more specifically, to a load-integrated power supply device and an LED-integrated power illumination device in which a power circuit and its load are mounted on the same substrate.

特許文献1は、電源回路と、電源回路から給電されるLEDと、電源回路とLEDとが実装されたLED基板とを備えた光源表示装置を開示する。LED基板の基部には電源回路が搭載され、基部から延在するLED配置部にLEDが配置され、全体として、電源回路とLEDとが一体化された基板からなる装置が構成される。   Patent Document 1 discloses a light source display device including a power supply circuit, an LED fed from the power supply circuit, and an LED substrate on which the power supply circuit and the LED are mounted. A power supply circuit is mounted on the base portion of the LED substrate, and LEDs are arranged on an LED arrangement portion extending from the base portion. As a whole, an apparatus including a substrate on which the power supply circuit and the LED are integrated is configured.

ところで、一般に、照明装置等においては、製造工程中に出力検査が行われる。この出力検査では、電源回路から光源に供給される出力電流等が測定される。図9を参照して、従来のLED一体型電源照明装置3における出力電流検査を説明する。基板B上に、電源回路10と、LED20と、電源回路10からLED20に供給される出力電流が流れる出力配線Lが実装され、出力電流の測定のために、基板B上の出力配線Lの一部にコネクタピンP1及びP2が立設される。出力電流検査においては、コネクタピンP1とP2の間の配線が開放され、コネクタピンP1とP2の間に電流計が接続されて出力電流が測定される。出力電流検査の終了後に、電流計が取り外されてコネクタピンP1とP2の間が結線処理される。このような出力電流検査は、特許文献1の装置においても同様に必要となるものと考えられる。   By the way, in general, in a lighting device or the like, output inspection is performed during a manufacturing process. In this output inspection, an output current or the like supplied from the power supply circuit to the light source is measured. With reference to FIG. 9, the output current test | inspection in the conventional LED integrated power supply illuminating device 3 is demonstrated. On the substrate B, the power supply circuit 10, the LED 20, and an output wiring L through which an output current supplied from the power supply circuit 10 to the LED 20 flows are mounted. For measurement of the output current, one of the output wirings L on the substrate B is mounted. Connector pins P1 and P2 are erected on the part. In the output current test, the wiring between the connector pins P1 and P2 is opened, and an ammeter is connected between the connector pins P1 and P2 to measure the output current. After completion of the output current inspection, the ammeter is removed and the connection between the connector pins P1 and P2 is processed. Such an output current inspection is considered to be necessary in the apparatus of Patent Document 1 as well.

特開2014−112564号公報JP 2014-112564 A

しかし、上記のようなコネクタピンが設けられるLED一体型電源照明装置によると、コネクタピンによって部品点数が増加し、装置のコストが増大することが問題となる。また更に、出力配線と計測器を直列接続する構成上、検査時に開放されていた出力配線を検査終了後に結線する配線処理が必要となり、装置の生産効率が低下する。   However, according to the LED-integrated power source lighting apparatus provided with the connector pins as described above, the number of parts increases due to the connector pins, which increases the cost of the apparatus. Furthermore, due to the configuration in which the output wiring and the measuring instrument are connected in series, a wiring process for connecting the output wiring that has been opened at the time of the inspection after the inspection is necessary, and the production efficiency of the apparatus is lowered.

そこで、本発明は、LED一体型電源照明装置等の負荷一体型電源装置の基板において、電源回路から負荷に供給される出力電流の検査のためのコネクタピンの実装及び検査に伴う配線処理を不要とし、装置のコスト低減及び生産効率向上を可能とする構成を提供することを課題とする。   Therefore, the present invention eliminates the need for wiring of the connector pins for mounting and inspection of the output current supplied from the power supply circuit to the load on the substrate of the load integrated power supply device such as the LED integrated power supply lighting device. It is an object of the present invention to provide a configuration capable of reducing the cost of the apparatus and improving the production efficiency.

本発明の第1の形態による負荷一体型電源装置は、出力電流を生成する電源回路と、負荷と、電源回路から負荷に出力電流を供給するための出力配線と、電源回路、負荷及び出力配線が実装された基板とを備え、基板において、出力配線の一部分である所定配線部分が基板の所定縁部分に略平行に実装され、出力配線、電源回路及び負荷によって囲まれた領域において、所定配線部分を所定縁部分との間に挟む位置に貫通孔が設けられる。   A load-integrated power supply apparatus according to a first embodiment of the present invention includes a power supply circuit that generates an output current, a load, an output wiring for supplying the output current from the power supply circuit to the load, a power supply circuit, the load, and the output wiring. And a predetermined wiring portion in a region surrounded by the output wiring, the power supply circuit, and the load. A through hole is provided at a position where the portion is sandwiched between the predetermined edge portion.

上記の負荷一体型電源装置によると、電源回路、負荷及び出力配線が実装された基板において、所定配線部分を所定縁部分との間に挟む位置に貫通孔が設けられる。これにより、貫通孔に電流クランプ又は電流プローブのコア部を貫通させて同コア部に所定配線部分をクランプさせ、出力配線に流れる出力電流を測定することが可能となる。したがって、基板において、出力電流検査のためのコネクタピンの実装及び検査に伴う配線処理が不要となり、装置のコスト低減及び生産効率向上が可能となる。   According to the load-integrated power supply device described above, the through hole is provided at a position where the predetermined wiring portion is sandwiched between the predetermined edge portion on the substrate on which the power supply circuit, the load, and the output wiring are mounted. Accordingly, it is possible to measure the output current flowing through the output wiring by allowing the core portion of the current clamp or current probe to pass through the through hole and clamping the predetermined wiring portion to the core portion. Therefore, the wiring processing associated with the mounting and inspection of the connector pin for the output current inspection on the substrate is not required, and the cost of the apparatus can be reduced and the production efficiency can be improved.

ここで、貫通孔が、所定配線部分に対して直交配置された略矩形であることが好ましい。基板上の部品及び配線は通常は直交配置されること、及び電流クランプ又は電流プローブのコア部先端は概ね矩形状であることから、貫通孔が矩形であることにより基板上のスペース効率が向上する。   Here, it is preferable that the through hole is a substantially rectangular shape arranged orthogonal to the predetermined wiring portion. Since the components and wiring on the board are usually arranged orthogonally and the tip of the core part of the current clamp or current probe is generally rectangular, space efficiency on the board is improved by the rectangular through hole. .

また、貫通孔と所定縁部分との離隔距離は24mm未満であることが好ましい。このように、上記離隔距離、すなわち所定配線部分を含む基板部分の幅が一般的な電流クランプの測定可能導体径未満であることにより、一般的な電流クランプの使用による出力電流検査に適した構成が実現される。   Moreover, it is preferable that the separation distance of a through-hole and a predetermined edge part is less than 24 mm. As described above, the separation distance, that is, the width of the substrate portion including the predetermined wiring portion is smaller than a measurable conductor diameter of a general current clamp, and thus a configuration suitable for an output current inspection using a general current clamp. Is realized.

また、貫通孔と所定縁部分との離隔距離は20mm未満であることが好ましい。このように、上記離隔距離、すなわち所定配線部分を含む基板部分の幅が一般的な電流クランプ及び比較的大型の電流プローブの測定可能導体径未満であることにより、これらの電流クランプ又は電流プローブの使用による出力電流検査に適した構成が実現され、装置の汎用性が高まる。更に、貫通孔と所定縁部分との離隔距離は5mm未満であることがより好ましい。このように、所定配線部分を含む基板部分の幅が一般的な電流クランプ並びに比較的大型及び比較的小型の電流プローブの測定可能導体径未満であることにより、これらの電流クランプ及び電流プローブの使用による出力電流検査に適した構成が実現され、装置の汎用性が更に高まる。   Moreover, it is preferable that the separation distance of a through-hole and a predetermined edge part is less than 20 mm. Thus, the separation distance, that is, the width of the substrate portion including the predetermined wiring portion is smaller than the measurable conductor diameter of a general current clamp and a relatively large current probe. A configuration suitable for output current inspection by use is realized, and the versatility of the apparatus is enhanced. Furthermore, the separation distance between the through hole and the predetermined edge portion is more preferably less than 5 mm. In this way, the width of the substrate portion including the predetermined wiring portion is less than the measurable conductor diameter of a general current clamp and relatively large and relatively small current probes, so that these current clamps and current probes can be used. The configuration suitable for the output current inspection is realized, and the versatility of the apparatus is further enhanced.

本発明の第2の形態による負荷一体型電源装置は、出力電流を生成する電源回路と、負荷と、電源回路から負荷に出力電流を供給するための出力配線と、電源回路、負荷及び出力配線が実装され、出力配線の一部である所定配線部分を挟んで対向する位置に第1及び第2の貫通孔が設けられた基板とを備える。   A load-integrated power supply apparatus according to a second embodiment of the present invention includes a power supply circuit that generates an output current, a load, an output wiring for supplying the output current from the power supply circuit to the load, a power supply circuit, the load, and the output wiring. And a substrate provided with first and second through holes at positions facing each other across a predetermined wiring portion which is a part of the output wiring.

上記の負荷一体型電源装置によると、基板において、出力配線の所定配線部分を挟んで対向する位置に第1及び第2の貫通孔が設けられるので、基板の比較的内側の領域に配置された出力配線を電流プローブでクランプしてその電流を測定することが可能となる。この構成によると、検査対象となる出力配線と基板縁部との間に他の配線又は部品が配置されるような種々の基板に関して、出力電流検査のためのコネクタピンの実装及び検査に伴う配線処理が不要となり、装置のコスト低減及び生産効率向上が可能となる。   According to the load-integrated power supply device described above, the first and second through holes are provided at positions facing each other across the predetermined wiring portion of the output wiring on the substrate, so that they are arranged in a relatively inner region of the substrate. It becomes possible to clamp the output wiring with a current probe and measure the current. According to this configuration, the connector pins for the output current inspection and the wiring accompanying the inspection on various boards in which other wiring or parts are arranged between the output wiring to be inspected and the board edge. No processing is required, and the cost of the apparatus can be reduced and the production efficiency can be improved.

また、第1の形態と同様にスペース効率向上の観点から、第1及び第2の貫通孔が、所定配線部分に対して直交配置された略矩形をなすことが好ましい。そして、第1の貫通孔と第2の貫通孔との離隔距離は20mm未満であることが好ましい。このように、上記離隔距離、すなわち所定配線部分を含む基板部分の幅が比較的大型の電流プローブの測定可能導体径未満であることにより、このような電流プローブの使用による出力電流検査に適した構成が実現される。更に、第1の貫通孔と第2の貫通孔との離隔距離は5mm未満であることがより好ましい。このように、所定配線部分を含む基板部分の幅が比較的大型及び比較的小型の電流プローブの測定可能導体径未満であることにより、これらの電流プローブの使用による出力電流検査に適した構成が実現され、装置の汎用性が高まる。   Moreover, it is preferable that the 1st and 2nd through-holes make the substantially rectangular shape orthogonally arranged with respect to the predetermined wiring part from a viewpoint of space efficiency improvement similarly to the 1st form. And it is preferable that the separation distance of a 1st through-hole and a 2nd through-hole is less than 20 mm. As described above, the separation distance, that is, the width of the substrate portion including the predetermined wiring portion is smaller than the measurable conductor diameter of the relatively large current probe, which is suitable for the output current inspection by using such a current probe. Configuration is realized. Furthermore, the separation distance between the first through hole and the second through hole is more preferably less than 5 mm. As described above, since the width of the substrate portion including the predetermined wiring portion is smaller than the measurable conductor diameter of the relatively large and relatively small current probes, the configuration suitable for the output current inspection by using these current probes can be obtained. Realized and increases the versatility of the device.

本発明は、上記第1又は第2の形態の負荷一体型電源装置からなるLED一体型電源照明装置を含む。このLED一体型電源照明装置において、電源回路が直流電流を出力する直流電源回路であり、負荷がLEDである。LED一体型電源照明装置においては、LEDは半導体素子であることから電源回路と同一の基板上に実装される場合が多く、本発明の適用が特に有用となる。   The present invention includes an LED-integrated power source lighting device comprising the load-integrated power source device of the first or second form. In this LED integrated power lighting device, the power circuit is a DC power circuit that outputs a DC current, and the load is an LED. In the LED-integrated power lighting device, since the LED is a semiconductor element, it is often mounted on the same substrate as the power circuit, and the application of the present invention is particularly useful.

本発明の第1の実施形態のLED一体型電源照明装置を示す図である。It is a figure which shows the LED integrated power supply illuminating device of the 1st Embodiment of this invention. 第1の実施形態における、電流クランプによる測定を説明する図である。It is a figure explaining the measurement by a current clamp in 1st Embodiment. 第1の実施形態における、電流プローブによる測定を説明する図である。It is a figure explaining the measurement by a current probe in a 1st embodiment. 第1の実施形態における、電流プローブによる測定を説明する図である。It is a figure explaining the measurement by a current probe in a 1st embodiment. 第1の実施形態における貫通孔の配置を説明する図である。It is a figure explaining arrangement | positioning of the through-hole in 1st Embodiment. 第1の実施形態のLED一体型電源照明装置の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the LED integrated power lighting device of 1st Embodiment. 本発明の第2の実施形態のLED一体型電源照明装置における基板を示す図である。It is a figure which shows the board | substrate in the LED integrated power lighting device of the 2nd Embodiment of this invention. 第2の実施形態における、電流プローブによる測定を説明する図である。It is a figure explaining the measurement by a current probe in 2nd Embodiment. 第2の実施形態の応用例を示す図である。It is a figure which shows the application example of 2nd Embodiment. 従来のLED一体型電源照明装置を説明する図である。It is a figure explaining the conventional LED integrated power supply lighting device.

第1の実施形態.
図1に、本発明の第1の実施形態に係るLED一体型電源照明装置1(以下、「装置1」という)の概略構成を示す。なお、以降の各図において、図面は寸法通りではない。装置1は、出力電流を生成する電源回路10と、負荷であるLED20と、電源回路10からLED20に出力電流を供給する出力配線31及び32と、電源回路10、LED20並びに出力配線31及び32が実装された基板40を有する。
First embodiment.
FIG. 1 shows a schematic configuration of an LED-integrated power lighting device 1 (hereinafter referred to as “device 1”) according to the first embodiment of the present invention. In the following drawings, the drawings are not exactly the same. The apparatus 1 includes a power supply circuit 10 that generates an output current, an LED 20 that is a load, output wirings 31 and 32 that supply an output current from the power supply circuit 10 to the LED 20, and a power supply circuit 10, the LED 20, and the output wirings 31 and 32. A substrate 40 is mounted.

電源回路10は、入力線11及び12から入力電源の供給を受け、入力電力をLED20の点灯に適した電流値の直流電流に変換する。入力電源が商用電源等の交流電源である場合には、電源回路10はAC/DCコンバータであり、例えば、交流電源を全波整流する全波整流器と、全波整流器による全波整流出力を所定の直流電流に変換する降圧コンバータとを含む。入力電源がバッテリ等の直流電源である場合には、電源回路10はDC/DCコンバータを含む。   The power supply circuit 10 receives input power from the input lines 11 and 12 and converts the input power into a direct current having a current value suitable for lighting the LED 20. When the input power supply is an AC power supply such as a commercial power supply, the power supply circuit 10 is an AC / DC converter. For example, a full-wave rectifier that full-wave rectifies the AC power supply and a full-wave rectified output from the full-wave rectifier are predetermined. And a step-down converter that converts the current into a direct current. When the input power source is a direct current power source such as a battery, the power source circuit 10 includes a DC / DC converter.

LED20は、単一のLED素子、又は複数のLED素子が直列接続若しくは直並列接続されたLEDアレイからなる。LED20には、電源回路10からの直流電流が出力配線31及び32を介して供給される。ここで、出力配線31及び32の一方が高電位側配線であり、他方が低電位側配線である。LED20のアノード端は高電位側配線(出力配線31及び32の一方)に接続され、LED20のカソード端は低電位側配線(出力配線31及び32の他方)に接続される。   The LED 20 includes a single LED element or an LED array in which a plurality of LED elements are connected in series or in series-parallel. A direct current from the power supply circuit 10 is supplied to the LED 20 via the output wirings 31 and 32. Here, one of the output wirings 31 and 32 is a high potential side wiring, and the other is a low potential side wiring. The anode end of the LED 20 is connected to the high potential side wiring (one of the output wirings 31 and 32), and the cathode end of the LED 20 is connected to the low potential side wiring (the other of the output wirings 31 and 32).

基板40は、回路基板として一般的な材質の基板であればよく、例えば、ガラエポ基板、紙フェノール基板等であればよい。また、基板40は片面実装基板であっても両面実装基板であってもよいし、多層配線可能な基板であってもよい。いずれの場合であっても、基板40のいずれかの実装面又は層に、電源回路10を構成する部品、LED20、並びに出力配線31及び32が実装される。本実施形態では、少なくとも出力配線31の一部分である所定配線部分31aが、基板40の縁部41の一部分である所定縁部分41aに沿って実質的に平行に延在するように実装される。   The board | substrate 40 should just be a board | substrate of a general material as a circuit board, for example, may be a glass epoxy board | substrate, a paper phenol board | substrate, etc. The substrate 40 may be a single-sided mounting substrate, a double-sided mounting substrate, or a substrate capable of multilayer wiring. In any case, the components constituting the power supply circuit 10, the LED 20, and the output wirings 31 and 32 are mounted on any mounting surface or layer of the substrate 40. In the present embodiment, at least a predetermined wiring portion 31 a that is a part of the output wiring 31 is mounted so as to extend substantially in parallel along the predetermined edge portion 41 a that is a part of the edge 41 of the substrate 40.

基板40において、出力配線31及び32、電源回路10並びにLED20によって囲まれた領域に貫通孔45が設けられる。貫通孔45は、所定配線部分31aを所定縁部分41aとの間に挟む位置に設けられる。言い換えると、貫通孔45によって所定縁部分41a及び所定配線部分31aが規定される。この貫通孔45は、詳細を後述するように、出力電流検査のために電流クランプ又は電流プローブを挿入可能な貫通孔である。すなわち、貫通孔45を貫通して閉じられた電流クランプ又は電流プローブのコア部によって所定配線部分31aがクランプされ、出力配線31を流れる出力電流が測定される。以下、所定配線部分31aを被測定部分31aともいう。   In the substrate 40, a through hole 45 is provided in a region surrounded by the output wirings 31 and 32, the power supply circuit 10, and the LED 20. The through hole 45 is provided at a position where the predetermined wiring portion 31a is sandwiched between the predetermined edge portion 41a. In other words, the predetermined edge portion 41 a and the predetermined wiring portion 31 a are defined by the through hole 45. As will be described in detail later, the through hole 45 is a through hole into which a current clamp or a current probe can be inserted for output current inspection. That is, the predetermined wiring portion 31a is clamped by the current clamp closed through the through hole 45 or the core portion of the current probe, and the output current flowing through the output wiring 31 is measured. Hereinafter, the predetermined wiring portion 31a is also referred to as a measured portion 31a.

図2に、本実施形態の一利用態様として、電流クランプによる測定が行われる場合の態様を示す。図2の上段の図は基板40及び電流クランプ50を基板実装面に垂直な方向から見た部分平面図であり、下段の図は上段の図のA−A´矢視図である。   FIG. 2 shows a mode in which measurement by current clamping is performed as one usage mode of the present embodiment. The upper diagram of FIG. 2 is a partial plan view of the substrate 40 and the current clamp 50 as viewed from the direction perpendicular to the substrate mounting surface, and the lower diagram is an AA ′ arrow view of the upper diagram.

電流クランプ50は、市販の一般的な電流クランプであればよい(ただし、本実施形態においては直流測定が可能な電流クランプであることが必要である)。例えば、電流クランプ50は、コア部51及び52並びに本体53からなる。コア部51は、本体53のボタン54の操作により本体53内の所定の軸に関して枢動可能であり、この枢動によりコア部52に対して開閉される。コア部51及び52の先端部がコア当接面Cにおいて当接する(閉じられる)ことにより、コア部51及び52の内周面によって内径空間55が形成される。このように、コア部51とコア部52が貫通孔45を貫通して閉じられ、内径空間55に出力配線31の被測定部分31aが含まれることにより、出力電流の測定が可能となる。   The current clamp 50 may be a commercially available general current clamp (however, in the present embodiment, it is necessary to be a current clamp capable of direct current measurement). For example, the current clamp 50 includes core portions 51 and 52 and a main body 53. The core portion 51 can be pivoted with respect to a predetermined axis in the main body 53 by operating the button 54 of the main body 53, and is opened and closed with respect to the core portion 52 by this pivoting. When the tip portions of the core portions 51 and 52 abut (close) on the core contact surface C, an inner diameter space 55 is formed by the inner peripheral surfaces of the core portions 51 and 52. As described above, the core portion 51 and the core portion 52 are closed through the through hole 45, and the measured portion 31a of the output wiring 31 is included in the inner diameter space 55, whereby the output current can be measured.

図3Aに、本実施形態の一利用態様として、電流プローブによる測定が行われる場合の態様を示す。図3Aの上段の図は基板40及び電流プローブ60を基板実装面に垂直な方向から見た部分平面図であり、下段の図は上段の図のB−B´矢視図である。   FIG. 3A shows an aspect in which measurement by a current probe is performed as one utilization aspect of the present embodiment. The upper diagram in FIG. 3A is a partial plan view of the substrate 40 and the current probe 60 as viewed from the direction perpendicular to the substrate mounting surface, and the lower diagram is a BB ′ arrow view of the upper diagram.

電流プローブ60は、市販の一般的な電流プローブであればよい(ただし、本実施形態においては直流測定が可能な電流プローブであることが必要である)。例えば、電流プローブ60は、固定コア部61、スライドコア部62及び本体63からなり、本体63には不図示のオシロスコープ(必要に応じてアンプ)、メモリハイコーダ等がケーブル66を介して接続される。スライドコア部62は、本体63のスライダ64のスライド操作により本体63の長手方向に摺動可能であり、スライドコア部62のスライド動作により、固定コア部61とスライドコア部62とが開閉される。固定コア部61及びスライドコア部62の先端部が閉じられることにより、固定コア部61及びスライドコア部62の内面によって内径空間65が形成される。このように、固定コア部61が貫通孔45を貫通してスライドコア部62が閉じられ、内径空間65に出力配線31の被測定部分31aが含まれることにより、出力電流の測定が可能となる。   The current probe 60 may be a commercially available general current probe (however, in this embodiment, it is necessary to be a current probe capable of direct current measurement). For example, the current probe 60 includes a fixed core portion 61, a slide core portion 62, and a main body 63, and an oscilloscope (amplifier if necessary), a memory hicoder, and the like are connected to the main body 63 via a cable 66. The The slide core portion 62 can slide in the longitudinal direction of the main body 63 by a slide operation of the slider 64 of the main body 63, and the fixed core portion 61 and the slide core portion 62 are opened and closed by the slide operation of the slide core portion 62. . By closing the distal end portions of the fixed core portion 61 and the slide core portion 62, an inner diameter space 65 is formed by the inner surfaces of the fixed core portion 61 and the slide core portion 62. As described above, the fixed core portion 61 passes through the through hole 45 and the slide core portion 62 is closed, and the measured portion 31a of the output wiring 31 is included in the inner diameter space 65, whereby the output current can be measured. .

なお、電流プローブ60は、図3Bの断面図に示すような態様で使用されてもよい。すなわち、基板40の実装面と電流プローブ60の長手方向が略垂直に配置される。そして、スライドコア部62が貫通孔45を貫通して閉じられ、内径空間65に被測定部分31aが含まれることにより、出力電流の測定が可能となる。もちろん、図3A及び図3Bに示す配置において測定される電流値は同じである。   The current probe 60 may be used in a manner as shown in the cross-sectional view of FIG. 3B. That is, the mounting surface of the substrate 40 and the longitudinal direction of the current probe 60 are arranged substantially perpendicularly. The slide core portion 62 is closed through the through hole 45 and the inner diameter space 65 includes the portion to be measured 31a, whereby the output current can be measured. Of course, the current values measured in the arrangements shown in FIGS. 3A and 3B are the same.

次に、図2、図3A及び図3Bを参照しつつ、図4を用いて貫通孔45の配置及び寸法について検討する。図4は、基板40をその実装面に対して垂直な方向から見た場合の部分拡大図である。なお、出力配線31は、図4における基板上面に実装されていてもよいし、基板下面(裏面)に実装されていてもよいし、基板内部層に実装されていてもよい。本実施形態では、貫通孔45は矩形であり、所定縁部分41a及び被測定部分31aに対して直交配置される。基板40上の部品及び各配線は通常は直交配置されること、及び電流クランプ又は電流プローブのコア部先端は概ね矩形状であることから、貫通孔45が矩形であることにより基板40上のスペース効率が向上する。貫通孔45は、被測定部分31aに平行でかつ被測定部分31aに近い側の近端部45a、被測定部分31aに平行でかつ被測定部分31aに遠い側の遠端部45b、並びに被測定部分31aに垂直な側端部45c及び45dで画定される。   Next, with reference to FIGS. 2, 3A and 3B, the arrangement and dimensions of the through holes 45 will be discussed with reference to FIG. FIG. 4 is a partially enlarged view of the substrate 40 viewed from a direction perpendicular to the mounting surface. The output wiring 31 may be mounted on the upper surface of the substrate in FIG. 4, may be mounted on the lower surface (back surface) of the substrate, or may be mounted on an inner layer of the substrate. In the present embodiment, the through hole 45 has a rectangular shape and is arranged orthogonal to the predetermined edge portion 41a and the measured portion 31a. Since the components and the wirings on the substrate 40 are normally arranged orthogonally and the tip of the core portion of the current clamp or current probe is generally rectangular, the space on the substrate 40 is determined by the rectangular through hole 45. Efficiency is improved. The through hole 45 includes a near end 45a parallel to the part to be measured 31a and close to the part to be measured 31a, a far end 45b parallel to the part to be measured 31a and far from the part to be measured 31a, and the part to be measured. It is defined by side edges 45c and 45d perpendicular to the portion 31a.

所定縁部分41aと近端部45aの離隔間隔Dは、被測定部分31aの線幅d1、被測定部分31aと所定縁部分41aとの離隔距離d2、及び被測定部分31aと近端部45aとの離隔距離d3の合計によって決まる。線幅d1並びに離隔距離d2及びd3の各値(したがってこれらの合計によって定まる離隔距離D)の下限値は、離隔距離d2=d3として、出力配線31に流れる電流、すなわちLED点灯電流の値、基板の材質等に基づいて定められる。これらの具体的な値については、例えば、電気用品安全法の別表第八、附表第二等が参照される。一方、離隔距離Dの上限値は、以下に詳述するように、使用される電流クランプ又は電流プローブの寸法等によって決まる。   The separation distance D between the predetermined edge portion 41a and the near end portion 45a includes the line width d1 of the measured portion 31a, the separation distance d2 between the measured portion 31a and the predetermined edge portion 41a, and the measured portion 31a and the near end portion 45a. Determined by the sum of the separation distances d3. The lower limit of each value of the line width d1 and the separation distances d2 and d3 (therefore, the separation distance D determined by the sum of these) is the separation distance d2 = d3, and the current flowing through the output wiring 31, that is, the value of the LED lighting current, the substrate It is determined on the basis of the material. For these specific values, for example, refer to Appendix 8 of the Electrical Appliance and Material Safety Law, Appendix 2 and the like. On the other hand, the upper limit value of the separation distance D is determined by the dimensions of the current clamp or current probe used, as will be described in detail below.

電流クランプが測定に用いられる場合、図2を参照すると、離隔距離Dは内径空間55の直径d55(以下、「測定可能導体径d55」という)未満に設定される必要がある。ここで、直流電流を測定可能でかつ比較的小型の市販電流クランプを例示すると、日置電機株式会社製・電流クランプ(型名:3284、3287)の測定可能導体径d55はそれぞれφ33mm、φ35mmであり、横河メータ&インスツルメンツ株式会社製・電流クランプ(型名:CL220)の測定可能導体径d55はφ24mmであり、共立電気計器株式会社製・電流クランプ(型名:MODEL2033)の測定可能導体径d55はφ24mmである。このように、離隔距離D(すなわち、被測定部分31a含む基板部分の幅)が24mm未満であれば、概ね市販電流クランプによって貫通孔45を介して被測定部分31aをクランプできる。したがって、電流クランプが測定に使用される場合には、離隔距離Dは24mm未満であることが好ましい。   When the current clamp is used for measurement, referring to FIG. 2, the separation distance D needs to be set to be less than the diameter d55 of the inner diameter space 55 (hereinafter referred to as “measurable conductor diameter d55”). Here, when a comparatively small commercial current clamp capable of measuring direct current is illustrated, the measurable conductor diameter d55 of Hioki Electric Co., Ltd. current clamp (type names: 3284, 3287) is φ33 mm and φ35 mm, respectively. The measurable conductor diameter d55 of the current clamp (model name: CL220) manufactured by Yokogawa Meters & Instruments Co., Ltd. is 24 mm, and the measurable conductor diameter d55 of the current clamp manufactured by Kyoritsu Electric Instruments Co., Ltd. (model name: MODEL 2033). Is φ24 mm. Thus, if the separation distance D (that is, the width of the substrate portion including the portion to be measured 31a) is less than 24 mm, the portion to be measured 31a can be clamped through the through hole 45 by a commercially available current clamp. Therefore, when the current clamp is used for measurement, the separation distance D is preferably less than 24 mm.

なお、貫通孔45の寸法は概ね10mm角より大きいことが好ましい。これは、例えば上記の日置電機株式会社製・電流クランプ(型名:3287)のコア断面(コア当接面C)は10mm角であり、上記に挙げたような一般的な電流クランプのコア当接面Cが10mm角程度であることによる。ただし、これらはあくまでも例示であり、貫通孔45の寸法は使用される電流クランプに応じて適宜設定されればよい。そして、貫通孔45の遠端部45b、側端部45c及び側端部45dのそれぞれの位置は、出力配線32、電源回路10及びLED20との間に適切な離隔距離(絶縁距離等)が確保される範囲が限度となる。   In addition, it is preferable that the dimension of the through-hole 45 is larger than about 10 mm square. This is because, for example, the above-mentioned current clamp (model name: 3287) manufactured by Hioki Electric Co., Ltd. has a 10 mm square core cross section (core contact surface C). This is because the contact surface C is about 10 mm square. However, these are merely examples, and the dimension of the through hole 45 may be set as appropriate according to the current clamp to be used. In addition, each of the far end 45b, the side end 45c, and the side end 45d of the through hole 45 has an appropriate separation distance (insulation distance, etc.) between the output wiring 32, the power supply circuit 10, and the LED 20. The range to be limited is the limit.

電流プローブが測定に用いられる場合、図3A及び図3Bを参照すると、離隔距離Dは内径空間65の直径(以下、「測定可能導体径d65」という)未満に設定される必要がある。ここで、直流電流を測定可能で比較的大型の市販電流クランプを例示すると、日置電機株式会社製・電流プローブ(型名:3274、3275)の測定可能導体径d65はφ20mmであり、横河メータ&インスツルメンツ株式会社製・電流プローブ(型名:701930、701931)の測定可能導体径d65はφ20mmであり、テクトロニクス社製・電流プローブ(型名:TCP303型)の測定可能導体サイズは21mm×25mmである(測定可能導体径d65=φ21mmに相当する)。このように、離隔距離D(すなわち、被測定部分31a含む基板部分の幅)が20mm未満であれば、概ね比較的大型の市販電流プローブによって貫通孔45を介して被測定部分31aをクランプできる。したがって、電流プローブが測定に使用される場合には、離隔距離Dは20mm未満であることが好ましい。   When a current probe is used for measurement, referring to FIGS. 3A and 3B, the separation distance D needs to be set to be less than the diameter of the inner diameter space 65 (hereinafter referred to as “measurable conductor diameter d65”). Here, when a comparatively large commercial current clamp capable of measuring a direct current is illustrated, a measurable conductor diameter d65 of a current probe (model name: 3274, 3275) manufactured by Hioki Electric Co., Ltd. is 20 mm, and Yokogawa Meter Measured conductor diameter d65 of the current probe (model name: 701930, 701931) manufactured by & Instruments Co., Ltd. is φ20 mm, and the measurable conductor size of the current probe manufactured by Tektronix (model name: TCP303 type) is 21 mm × 25 mm Yes (corresponding to measurable conductor diameter d65 = φ21 mm). Thus, if the separation distance D (that is, the width of the substrate portion including the portion to be measured 31a) is less than 20 mm, the portion to be measured 31a can be clamped via the through hole 45 by a generally relatively large commercial current probe. Therefore, when the current probe is used for measurement, the separation distance D is preferably less than 20 mm.

ここで、直流電流が測定可能でかつ比較的小型の市販電流クランプを例示すると、日置電機株式会社製・電流プローブ(型名:3273−50、3276)の測定可能導体径d65はφ5mmであり、横河メータ&インスツルメンツ株式会社製・電流プローブ(型名:701932、701933)の測定可能導体径d65はφ5mmであり、テクトロニクス社製・電流プローブ(型名:TCP312A型)の測定可能導体径d65はφ5mmである。このように、離隔距離D(すなわち、被測定部分31a含む基板部分の幅)が5mm未満であれば、概ね比較的小型の市販電流プローブによっても貫通孔45をクランプできる。したがって、比較的小型又は比較的大型の市販電流プローブが測定に使用される場合には、離隔距離Dは5mm未満であることが好ましい。   Here, when a DC current can be measured and a comparatively small commercial current clamp is illustrated, a measurable conductor diameter d65 of a current probe (model name: 3273-50, 3276) manufactured by Hioki Electric Co., Ltd. is φ5 mm, The measurable conductor diameter d65 of the current probe (model name: 701932, 701933) manufactured by Yokogawa Meter & Instruments Co., Ltd. is 5 mm, and the measurable conductor diameter d65 of the current probe manufactured by Tektronix (model name: TCP312A type) is φ5 mm. Thus, if the separation distance D (that is, the width of the substrate portion including the portion to be measured 31a) is less than 5 mm, the through-hole 45 can be clamped by a generally relatively small commercial current probe. Therefore, when a relatively small or relatively large commercial current probe is used for measurement, the separation distance D is preferably less than 5 mm.

なお、貫通孔45の寸法、使用される電流プローブに応じて適宜設定されればよい。そして、貫通孔45の遠端部45b、側端部45c及び側端部45dのそれぞれの位置は、出力配線32、電源回路10及びLED20との間に適切な離隔距離(絶縁距離等)が確保される範囲が限度となる。   In addition, what is necessary is just to set suitably according to the dimension of the through-hole 45, and the current probe used. In addition, each of the far end 45b, the side end 45c, and the side end 45d of the through hole 45 has an appropriate separation distance (insulation distance, etc.) between the output wiring 32, the power supply circuit 10, and the LED 20. The range to be limited is the limit.

貫通孔45の配置について上記をまとめると、所定縁部分41aと近端部45aとの離隔距離Dが24mm未満であれば電流クランプによる測定に適する。そして、離隔距離Dが20mm未満であれば電流クランプ及び比較的大型の電流プローブによる測定に適し、装置1の汎用性が高まる。更に、離隔距離Dが5mm未満であれば電流クランプ、比較的大型の電流プローブ及び比較的小型の電流プローブによる測定に適し、装置1の汎用性がさらに高まる。そして、貫通孔45の寸法は、使用する電流クランプ又は電流プローブに応じて、他の回路部品及び配線との適切な離隔距離を確保することを条件として適宜設定される。   Summarizing the above regarding the arrangement of the through-holes 45, if the separation distance D between the predetermined edge portion 41a and the near end 45a is less than 24 mm, it is suitable for measurement by current clamping. And if the separation distance D is less than 20 mm, it is suitable for the measurement by a current clamp and a comparatively large current probe, and the versatility of the apparatus 1 increases. Furthermore, if the separation distance D is less than 5 mm, it is suitable for measurement with a current clamp, a relatively large current probe, and a relatively small current probe, and the versatility of the apparatus 1 is further enhanced. And the dimension of the through-hole 45 is suitably set on condition that the appropriate separation distance with other circuit components and wiring is ensured according to the current clamp or current probe to be used.

図5に、装置1の製造方法のフローチャートを示す。
工程S100(基板準備工程)において、電源回路10内の配線パターン及び出力配線31及び32のパターン並びに貫通孔45が形成された基板40が準備される。貫通孔45は、例えば、抜き打ち加工される。貫通孔45の形成後にパターン配線が形成されてもよいし、パターン配線の形成後に貫通孔45が形成されてもよい。
FIG. 5 shows a flowchart of the manufacturing method of the device 1.
In step S100 (substrate preparation step), the substrate 40 in which the wiring pattern in the power supply circuit 10, the patterns of the output wirings 31 and 32, and the through holes 45 are formed is prepared. The through hole 45 is punched, for example. The pattern wiring may be formed after the formation of the through hole 45, or the through hole 45 may be formed after the formation of the pattern wiring.

工程S102(部品実装工程)において、基板40に、電源回路10の各部品及びLED20が実装される。この工程には、各部品及びLED素子の基板40への接着、その後の半田リフロー等が含まれる。また、工程S102において、入力線11及び12が基板40(電源回路10)に接続される。   In step S102 (component mounting step), each component of the power supply circuit 10 and the LED 20 are mounted on the substrate 40. This process includes adhesion of each component and LED element to the substrate 40, and subsequent solder reflow. In step S102, the input lines 11 and 12 are connected to the substrate 40 (power supply circuit 10).

工程S104(出力検査工程)において、電流クランプ又は電流プローブが貫通孔45に挿入され、出力配線31の被測定部分31aがこれらにクランプされる。入力線11及び12から電源回路10に入力電源が投入され、電源回路10から出力配線31を介してLED20に供給される出力電流が電流クランプ又は電流プローブによって測定される。ここで、出力電流が電源回路10の制御調整用のボリューム抵抗等によって可変である場合には、ボリューム抵抗の抵抗値調整によって、出力電流が調整されるようにしてもよい。   In step S104 (output inspection step), a current clamp or current probe is inserted into the through hole 45, and the portion to be measured 31a of the output wiring 31 is clamped to these. Input power is supplied to the power supply circuit 10 from the input lines 11 and 12, and an output current supplied from the power supply circuit 10 to the LED 20 via the output wiring 31 is measured by a current clamp or a current probe. Here, when the output current is variable depending on the volume resistor for control adjustment of the power supply circuit 10, the output current may be adjusted by adjusting the resistance value of the volume resistor.

工程S106(合否判定工程)において、工程S104で測定された出力電流が規定範囲内であるか否かが判定され、出力電流が規定範囲内である場合(S106:YES)、検査対象となっている装置1は合格と判定される。装置1がハウジング等を必要としない場合、すなわち一体基板単体で出荷又は流通される場合には、次の工程S108で装置1(一体基板)が完成する。他の構成部材が基板40に取り付けられる場合には、フローは工程S110に進む。一方、工程S104で測定された出力電流が規定範囲外である場合、あるいは出力電流が調整されても規定範囲に収まらない場合(S106:NO)、検査対象となっている装置1は不合格と判定され、フローは工程S112に進む。   In step S106 (pass / fail judgment step), it is determined whether or not the output current measured in step S104 is within the specified range. If the output current is within the specified range (S106: YES), the test is performed. The device 1 that is present is determined to be acceptable. When the device 1 does not require a housing or the like, that is, when shipped or distributed as a single integrated substrate, the device 1 (integrated substrate) is completed in the next step S108. If another component is attached to the substrate 40, the flow proceeds to step S110. On the other hand, if the output current measured in step S104 is outside the specified range, or if the output current does not fall within the specified range even if the output current is adjusted (S106: NO), the device 1 to be inspected is rejected. As a result, the flow proceeds to step S112.

工程S110(追加組立工程)において、基板40がハウジング等の他の構成部材に取り付けられ、これにより装置1が完成する。ここで、例えば、貫通孔45が、ハウジングに基板40を取り付ける際の位置決め用の孔として利用されるようにしてもよい。例えば、ハウジングにおける基板40との対向面に貫通孔45に対応する形状の凸部が形成され、取付けの際に、この凸部が貫通孔45に嵌合されることによってハウジングに対する基板40の位置が決定されるようにしてもよい。あるいは、貫通孔45が、リード線の引き回し経路として利用されるようにしてもよい。例えば、電源回路10に接続された入力線11及び12並びに(接続される場合には)調光信号線、センサ出力信号線等の信号線が貫通孔45を介して引き回されるようにしてもよい。また、貫通孔45が、基板裏面への充填剤注入用の注入口として利用されるようにしてもよい。例えば、基板40がハウジングに固定された後に、放熱材、絶縁材等の充填剤(シリコン等)が基板表面から貫通孔45を介して基板裏面とハウジングとの間の空間に注入されるようにしてもよい。このように、貫通孔45を出力電流検査後の他の用途に兼用できる構成を採用することにより、当該他の用途のための部材の削減が可能となり、コスト上有利となる。   In step S110 (additional assembly step), the substrate 40 is attached to another constituent member such as a housing, whereby the apparatus 1 is completed. Here, for example, the through hole 45 may be used as a positioning hole when the substrate 40 is attached to the housing. For example, a convex portion having a shape corresponding to the through hole 45 is formed on the surface of the housing that faces the substrate 40, and the convex portion is fitted into the through hole 45 during mounting, whereby the position of the substrate 40 with respect to the housing. May be determined. Alternatively, the through hole 45 may be used as a lead route. For example, input lines 11 and 12 connected to the power supply circuit 10 and signal lines such as dimming signal lines and sensor output signal lines (when connected) are routed through the through holes 45. Also good. Further, the through hole 45 may be used as an injection port for injecting a filler into the back surface of the substrate. For example, after the substrate 40 is fixed to the housing, a filler (silicon or the like) such as a heat radiating material or an insulating material is injected from the substrate surface into the space between the substrate back surface and the housing through the through hole 45. May be. Thus, by adopting a configuration in which the through hole 45 can be used for other purposes after the output current inspection, it is possible to reduce the number of members for the other purposes, which is advantageous in terms of cost.

工程S112において、不合格品の処理が行われる。不合格品は、例えば、部品交換等の後に、合否判定工程S104に再投入されてもよいし、実質的に廃棄されるようにしてもよい。   In step S112, a rejected product is processed. For example, the rejected product may be re-introduced in the pass / fail judgment step S104 after parts replacement or the like, or may be substantially discarded.

以上のように、本実施形態による装置1によると、電源回路10、LED20並びに出力配線31及び32が実装された基板40において、被測定部分31aを所定縁部分41aとの間に挟む位置に貫通孔45が設けられる。これにより、貫通孔45に電流クランプ又は電流プローブのコア部を貫通させ、同コア部に被測定部分31aをクランプさせて出力配線31上の出力電流を測定することが可能となる。したがって、基板40において、電源回路10からLED20に供給される出力電流の検査のためのコネクタピンの実装及び検査に伴う配線処理が不要となり、装置1のコスト低減及び生産効率向上が可能となる。   As described above, according to the device 1 according to the present embodiment, in the substrate 40 on which the power supply circuit 10, the LED 20, and the output wirings 31 and 32 are mounted, the portion to be measured 31a is inserted between the predetermined edge portion 41a. A hole 45 is provided. As a result, it is possible to measure the output current on the output wiring 31 by passing the core portion of the current clamp or current probe through the through hole 45 and clamping the measured portion 31a in the core portion. Therefore, it is not necessary to mount the connector pins for the inspection of the output current supplied from the power supply circuit 10 to the LED 20 on the substrate 40 and the wiring process associated with the inspection, thereby reducing the cost of the apparatus 1 and improving the production efficiency.

第2の実施形態.
上記第1の実施形態では出力配線の被測定部分が基板40の縁部41付近に沿って実装される場合の構成を示したが、本実施形態では出力配線の被測定部分が基板40の比較的内側の領域に実装される場合の構成を示す。図6に、本実施形態に係るLED一体型電源照明装置2(以下、「装置2」という)における基板40の概略構成を示す。装置2において、第1の実施形態と同一又は類似の構成には、その図示、不図示にかかわらず同様の符号を付し、それらの詳細な説明を省略する。
Second embodiment.
In the first embodiment, the configuration in which the measured portion of the output wiring is mounted along the vicinity of the edge 41 of the substrate 40 is shown. However, in this embodiment, the measured portion of the output wiring is compared with the substrate 40. A configuration when mounted in a region inside the target is shown. FIG. 6 shows a schematic configuration of the substrate 40 in the LED integrated power lighting device 2 (hereinafter referred to as “device 2”) according to the present embodiment. In the device 2, the same or similar components as those in the first embodiment are denoted by the same reference numerals regardless of whether they are illustrated or not illustrated, and detailed description thereof is omitted.

図6に示すように、基板40において、出力配線33の所定配線部分33a(以下、「被測定部分33a」という)を挟んで対向する位置に貫通孔46及び47が設けられる。出力配線33は電源回路10に接続されたいずれかの出力配線であればよく、被測定部分33aと基板40の縁部41とのなす角はどのような角度であってもよい(平行であっても垂直であってもよい)。   As shown in FIG. 6, in the substrate 40, through holes 46 and 47 are provided at positions facing each other across a predetermined wiring portion 33 a of the output wiring 33 (hereinafter referred to as “measured portion 33 a”). The output wiring 33 may be any output wiring connected to the power supply circuit 10, and the angle formed between the portion to be measured 33a and the edge 41 of the substrate 40 may be any angle (parallel). Or vertical).

本実施形態では、電流プローブによって被測定部分33aをクランプすることを想定している。図7に、基板40と電流プローブ60との位置関係を、基板40の厚み方向から見た断面側面図によって示す。図7に示すように、電流プローブ60は、その長手方向が基板40に対して略垂直となる配置で使用される。具体的なクランプ操作について、まず、電流プローブ60が基板40の図面下方にある状態から、電流プローブ60のスライダ64が引かれた状態で(すなわち、スライドコア部62が開位置にある状態で)電流プローブ60が上昇され、これにより固定コア部61が貫通孔47を貫通する。次に、スライドコア部62が開位置に維持された状態で、内径空間65が被測定部分33aを内包するように、プローブ60が貫通孔46の方向(図7の左方向)に移動される。その後、スライダ64が戻されてスライダコア部62が閉位置となる。これにより、被測定部分33aが固定コア部61及びスライダコア部62によってクランプされ、出力配線33の電流測定が可能となる。   In the present embodiment, it is assumed that the portion to be measured 33a is clamped by a current probe. FIG. 7 is a sectional side view of the positional relationship between the substrate 40 and the current probe 60 as viewed from the thickness direction of the substrate 40. As shown in FIG. 7, the current probe 60 is used in an arrangement in which the longitudinal direction is substantially perpendicular to the substrate 40. Regarding a specific clamping operation, first, from the state where the current probe 60 is below the drawing of the substrate 40, the slider 64 of the current probe 60 is pulled (that is, the slide core 62 is in the open position). The current probe 60 is raised, whereby the fixed core portion 61 penetrates the through hole 47. Next, the probe 60 is moved in the direction of the through hole 46 (left direction in FIG. 7) so that the inner diameter space 65 contains the portion to be measured 33a in a state where the slide core portion 62 is maintained in the open position. . Thereafter, the slider 64 is returned and the slider core portion 62 is in the closed position. As a result, the portion to be measured 33a is clamped by the fixed core portion 61 and the slider core portion 62, and the current of the output wiring 33 can be measured.

図6に戻り、本実施形態でも第1の実施形態と同様に、スペース効率の観点から、貫通孔46及び47は矩形であり、被測定部分33aに対して直交配置される。貫通孔46は、被測定部分33aに平行でかつ被測定部分33aに近い側の近端部46a、被測定部分33aに平行でかつ被測定部分33aに遠い側の遠端部46b、並びに被測定部分33aに垂直な側端部46c及び46dで画定される。同様に、貫通孔47は、被測定部分33aに平行でかつ被測定部分33aに近い側の近端部47a、被測定部分33aに平行でかつ被測定部分33aに遠い側の遠端部47b、並びに被測定部分33aに垂直な側端部47c及び47dで画定される。   Returning to FIG. 6, in this embodiment as well, from the viewpoint of space efficiency, the through holes 46 and 47 are rectangular and are arranged orthogonal to the portion to be measured 33a, as in the first embodiment. The through hole 46 is parallel to the part to be measured 33a and close to the part to be measured 33a, near end 46a, parallel to the part to be measured 33a and far from the part to be measured 33a, and far from the part to be measured 33a. It is defined by side edges 46c and 46d perpendicular to the portion 33a. Similarly, the through hole 47 has a near end portion 47a parallel to the measured portion 33a and close to the measured portion 33a, a far end portion 47b parallel to the measured portion 33a and far from the measured portion 33a, And is defined by side end portions 47c and 47d perpendicular to the portion to be measured 33a.

貫通孔46と貫通孔47の離隔距離D、すなわち近端部46aと近端部47aとの離隔距離D(=d4+d5+d6)の下限値は、第1の実施形態の離隔距離D(=d1+d2+d3)の下限値と同様の値であればよい。すなわち、線幅d4並びに離隔距離d5及びd6の各値(したがってこれらの合計によって定まる離隔距離D)の下限値は、離隔距離d5=d6として、出力配線33に流れる電流、基板の材質等に基づいて定められる。   The lower limit value of the separation distance D between the through hole 46 and the through hole 47, that is, the separation distance D (= d4 + d5 + d6) between the near end portion 46a and the near end portion 47a is the separation distance D (= d1 + d2 + d3) of the first embodiment. Any value similar to the lower limit value may be used. That is, the lower limit value of each value of the line width d4 and the separation distances d5 and d6 (therefore, the separation distance D determined by the sum of these) is based on the current flowing through the output wiring 33, the material of the board, etc., with the separation distance d5 = d6. Determined.

また、第1の実施形態において説明したように、離隔距離Dは、20mm未満であれば比較的大型の電流プローブによる測定に適し、更に5mm未満であれば比較的大型の電流プローブ及び比較的小型の電流プローブによる測定に適し、汎用性が高まる。そして、貫通孔46及び47の各寸法は、他の回路部品及び配線との適切な離隔距離(絶縁距離等)を確保することを条件として、使用される電流プローブに応じて適宜設定される。   Further, as described in the first embodiment, if the separation distance D is less than 20 mm, it is suitable for measurement with a relatively large current probe, and if it is less than 5 mm, it is relatively large current probe and relatively small. It is suitable for the measurement with the current probe and increases versatility. And each dimension of the through-holes 46 and 47 is suitably set according to the current probe used on condition that the appropriate separation distance (insulation distance etc.) with other circuit components and wiring is ensured.

本実施形態の応用例を図8に示す。図8に示す例では、電源回路10に2つのLED21及び22が並列接続される。LED21及び22の各々はLED20と同一又は類似の構成を有する。この実装状態において、基板内側にあるLED21の電流を単独で測定する場合に本実施形態の構成が利用される。図8に示すように、電源回路10からの出力配線31及び32は、LED21に接続される出力配線33と、LED22に接続される出力配線34に分岐される。貫通孔46及び47は出力配線33の被測定部分33aを挟んで対向する位置に配置される。図7に関して説明した操作により、被測定部分33aが電流プローブのコア部にクランプされることにより、出力配線33及びLED21に流れる出力電流の測定(検査)が可能となる。   An application example of this embodiment is shown in FIG. In the example shown in FIG. 8, two LEDs 21 and 22 are connected in parallel to the power supply circuit 10. Each of the LEDs 21 and 22 has the same or similar configuration as the LED 20. In this mounted state, the configuration of the present embodiment is used when measuring the current of the LED 21 inside the substrate alone. As shown in FIG. 8, the output wirings 31 and 32 from the power supply circuit 10 are branched into an output wiring 33 connected to the LED 21 and an output wiring 34 connected to the LED 22. The through holes 46 and 47 are arranged at positions facing each other across the portion to be measured 33 a of the output wiring 33. With the operation described with reference to FIG. 7, the measured portion 33 a is clamped to the core portion of the current probe, whereby the output current flowing through the output wiring 33 and the LED 21 can be measured (inspected).

また、貫通孔46、縁部41及び出力配線34の位置関係が、第1の実施形態で示した貫通孔45、縁部41及び出力配線31について規定した関係を満たすことにより、出力配線34に流れる出力電流の測定(検査)が可能となる。同様に、貫通孔47、縁部41及び出力配線31の位置関係が、第1の実施形態で示した貫通孔45、縁部41及び出力配線31について規定した関係を満たすことにより、出力配線31に流れる出力電流の測定(検査)が可能となる。なお、出力配線31で測定される電流値から出力配線34で測定される電流値を減算することによって出力配線33を流れる出力電流値を求めることができる。ただし、出力配線33の電流を直接測定することにより、減算処理が不要となるのでデータ処理の工程が簡素化される。   Further, the positional relationship among the through hole 46, the edge portion 41, and the output wiring 34 satisfies the relationship defined for the through hole 45, the edge portion 41, and the output wiring 31 described in the first embodiment. Measurement (inspection) of the flowing output current is possible. Similarly, when the positional relationship among the through hole 47, the edge portion 41, and the output wiring 31 satisfies the relationship defined for the through hole 45, the edge portion 41, and the output wiring 31 described in the first embodiment, It is possible to measure (inspect) the output current flowing through the. The output current value flowing through the output wiring 33 can be obtained by subtracting the current value measured by the output wiring 34 from the current value measured by the output wiring 31. However, by directly measuring the current of the output wiring 33, the subtraction process is not required, so that the data processing process is simplified.

以上のように、本実施形態の装置2によると、基板40において、出力配線33の被測定部分33aを挟んで対向する位置に貫通孔46及び47が設けられるので、基板40のより内側の領域に配置された出力配線の電流を電流プローブによって測定(検査)することが可能となる。したがって、検査対象となる出力配線部分と基板縁部との間に他の配線又は部品が配置されるような種々の基板40に関して、出力電流検査のためのコネクタピンの実装及び検査に伴う配線処理が不要となり、装置2のコスト低減及び生産効率向上が可能となる。   As described above, according to the apparatus 2 of the present embodiment, the through-holes 46 and 47 are provided in the substrate 40 at positions facing each other with the measured portion 33a of the output wiring 33 interposed therebetween. It is possible to measure (inspect) the current of the output wiring arranged at the current probe. Therefore, with respect to various boards 40 in which other wiring or parts are arranged between the output wiring portion to be inspected and the board edge, wiring processing associated with mounting and inspection of connector pins for output current inspection Becomes unnecessary, and the cost of the apparatus 2 can be reduced and the production efficiency can be improved.

変形例.
上記において本発明の好適な実施形態を示したが、本発明は上記構成に限られず、以下に示すように種々の変形が可能である。
Modified example.
Although the preferred embodiment of the present invention has been described above, the present invention is not limited to the above configuration, and various modifications are possible as described below.

(1)負荷に関する変形
上記各実施形態においては、負荷としてLED20、21及び22を例示した。LEDは半導体素子であることから、(他の半導体素子を含む)電源回路10と同一の基板40上に実装されることが多く、本発明の適用が特に有用である。一方、電源回路から給電される負荷はLEDに限られず、電源回路と同一基板に実装可能であれば他の負荷であってもよい。このような負荷を有する負荷一体型電源装置にも本発明は適用可能である。また、出力電流が直流ではなく交流の場合にも本発明は適用可能である。
(1) Modifications related to load In each of the above embodiments, the LEDs 20, 21, and 22 are exemplified as the load. Since the LED is a semiconductor element, it is often mounted on the same substrate 40 as the power supply circuit 10 (including other semiconductor elements), and the application of the present invention is particularly useful. On the other hand, the load fed from the power supply circuit is not limited to the LED, and may be another load as long as it can be mounted on the same substrate as the power supply circuit. The present invention is also applicable to a load-integrated power supply device having such a load. The present invention is also applicable when the output current is not direct current but alternating current.

(2)貫通孔の形状に関する変形
上記各実施形態においては、貫通孔45、46及び47の形状を、スペース効率の観点から矩形としたが、貫通孔の形状は矩形に限られない。例えば、貫通孔の形状は、上述した各条件を満たす範囲で、円、長円、楕円、半円(弦が被測定部分31a又は33a側となる)、多角形等であってもよく、例えば、上記に規定した矩形に外接する円、長円、楕円、半円、多角形等であってもよい。
(2) Modification regarding shape of through-hole In each of the above embodiments, the shape of through-holes 45, 46, and 47 is rectangular from the viewpoint of space efficiency, but the shape of the through-hole is not limited to a rectangle. For example, the shape of the through hole may be a circle, an ellipse, an ellipse, a semicircle (a chord is on the measured portion 31a or 33a side), a polygon, or the like as long as the above-described conditions are satisfied. A circle, an ellipse, an ellipse, a semicircle, a polygon or the like circumscribing the rectangle defined above may be used.

1、2 LED一体型電源照明装置(負荷一体型電源装置)
10 電源回路
20、21、22 LED(負荷)
31、32、33、34 出力配線
31a、33a 所定配線部分又は被測定部分
40 基板
41 縁部
41a 所定縁部分
45、46、47 貫通孔

1, 2 LED integrated power lighting device (load integrated power device)
10 Power supply circuit 20, 21, 22 LED (load)
31, 32, 33, 34 Output wiring 31a, 33a Predetermined wiring portion or portion to be measured 40 Substrate 41 Edge portion 41a Predetermined edge portion 45, 46, 47 Through hole

Claims (8)

負荷一体型電源装置であって、
出力電流を生成する電源回路と、
負荷と、
前記電源回路から前記負荷に前記出力電流を供給するための出力配線と、
前記電源回路、前記負荷及び前記出力配線が実装された基板であって、前記出力配線の一部分である所定配線部分が前記基板の所定縁部分に略平行に実装され、前記出力配線、前記電源回路及び前記負荷によって囲まれた領域において、前記所定配線部分を前記所定縁部分との間に挟む位置に貫通孔が設けられた基板と
を備えた負荷一体型電源装置。
A load-integrated power supply,
A power supply circuit for generating an output current;
Load,
Output wiring for supplying the output current from the power supply circuit to the load;
A substrate on which the power supply circuit, the load, and the output wiring are mounted, and a predetermined wiring portion that is a part of the output wiring is mounted substantially parallel to a predetermined edge portion of the substrate, and the output wiring, the power supply circuit And a load-integrated power supply device comprising: a substrate provided with a through hole at a position sandwiching the predetermined wiring portion with the predetermined edge portion in a region surrounded by the load.
請求項1に記載の負荷一体型電源装置において、前記貫通孔が、前記所定配線部分に対して直交配置された略矩形をなす、負荷一体型電源装置。   The load-integrated power supply apparatus according to claim 1, wherein the through-hole has a substantially rectangular shape arranged orthogonal to the predetermined wiring portion. 請求項2に記載の負荷一体型電源装置において、前記貫通孔と前記所定縁部分との離隔距離が24mm未満である、負荷一体型電源装置。   The load-integrated power supply apparatus according to claim 2, wherein a separation distance between the through hole and the predetermined edge portion is less than 24 mm. 請求項2又は3に記載の負荷一体型電源装置において、前記貫通孔と前記所定縁部分との離隔距離が20mm未満、好ましくは5mm未満である、負荷一体型電源装置。   4. The load-integrated power supply apparatus according to claim 2 or 3, wherein a distance between the through hole and the predetermined edge portion is less than 20 mm, preferably less than 5 mm. 負荷一体型電源装置であって、
出力電流を生成する電源回路と、
負荷と、
前記電源回路から前記負荷に前記出力電流を供給するための出力配線と、
前記電源回路、前記負荷及び前記出力配線が実装され、前記出力配線の一部である所定配線部分を挟んで対向する位置に第1及び第2の貫通孔が設けられた基板と
を備えた負荷一体型電源装置。
A load-integrated power supply,
A power supply circuit for generating an output current;
Load,
Output wiring for supplying the output current from the power supply circuit to the load;
A load including the power supply circuit, the load, and the output wiring, and a substrate provided with first and second through holes at positions facing each other across a predetermined wiring portion that is a part of the output wiring. Integrated power supply.
請求項5に記載の負荷一体型電源装置において、前記第1及び第2の貫通孔が、前記所定配線部分に対して直交配置された略矩形をなす、負荷一体型電源装置。   6. The load-integrated power supply apparatus according to claim 5, wherein the first and second through holes form a substantially rectangular shape arranged orthogonal to the predetermined wiring portion. 請求項6に記載の負荷一体型電源装置において、前記第1の貫通孔と前記第2の貫通孔との離隔距離が20mm未満、好ましくは5mm未満である、負荷一体型電源装置。   The load-integrated power supply device according to claim 6, wherein a separation distance between the first through hole and the second through hole is less than 20 mm, preferably less than 5 mm. 請求項1から7のいずれか一項に記載の負荷一体型電源装置からなるLED一体型電源照明装置であって、前記電源回路が直流電流を出力する直流電源回路であり、前記負荷がLEDであるLED一体型電源照明装置。

8. An LED-integrated power source lighting device comprising the load-integrated power source device according to claim 1, wherein the power circuit is a DC power circuit that outputs a DC current, and the load is an LED. An LED-integrated power source lighting device.

JP2014202758A 2014-10-01 2014-10-01 Load integrated power supply device and LED integrated power supply illumination device Active JP6417831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014202758A JP6417831B2 (en) 2014-10-01 2014-10-01 Load integrated power supply device and LED integrated power supply illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014202758A JP6417831B2 (en) 2014-10-01 2014-10-01 Load integrated power supply device and LED integrated power supply illumination device

Publications (2)

Publication Number Publication Date
JP2016073140A true JP2016073140A (en) 2016-05-09
JP6417831B2 JP6417831B2 (en) 2018-11-07

Family

ID=55867599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014202758A Active JP6417831B2 (en) 2014-10-01 2014-10-01 Load integrated power supply device and LED integrated power supply illumination device

Country Status (1)

Country Link
JP (1) JP6417831B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843822A (en) * 1971-10-06 1973-06-25
JPS6253368U (en) * 1985-09-25 1987-04-02
JP2006269980A (en) * 2005-03-25 2006-10-05 Nissin Kogyo Co Ltd Electronic-part board housing
JP2010103446A (en) * 2008-10-27 2010-05-06 Keihin Corp Housing device of electronic circuit substrate
JP2012189572A (en) * 2011-02-25 2012-10-04 Toyota Central R&D Labs Inc Current measurement probe
JP2013004389A (en) * 2011-06-20 2013-01-07 Mitsubishi Electric Corp Lighting system
US20140203803A1 (en) * 2013-01-20 2014-07-24 International Business Machines Corporation Current detector to sense current without being in series with conductor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843822A (en) * 1971-10-06 1973-06-25
JPS6253368U (en) * 1985-09-25 1987-04-02
JP2006269980A (en) * 2005-03-25 2006-10-05 Nissin Kogyo Co Ltd Electronic-part board housing
JP2010103446A (en) * 2008-10-27 2010-05-06 Keihin Corp Housing device of electronic circuit substrate
JP2012189572A (en) * 2011-02-25 2012-10-04 Toyota Central R&D Labs Inc Current measurement probe
JP2013004389A (en) * 2011-06-20 2013-01-07 Mitsubishi Electric Corp Lighting system
US20140203803A1 (en) * 2013-01-20 2014-07-24 International Business Machines Corporation Current detector to sense current without being in series with conductor

Also Published As

Publication number Publication date
JP6417831B2 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
US10914758B2 (en) Inspection jig provided with probe, substrate inspection device provided with same, and method for manufacturing inspection jig
CN105988026A (en) Probe head, probe card assembly using the same, and manufacturing method thereof
CN202018494U (en) Four-wire printed circuit board (PCB) test jig
CN102981129B (en) Testing tool for power supply
US9482700B2 (en) Current detector to sense current without being in series with conductor
TW201901160A (en) Electrical connection device
JPWO2010061888A1 (en) Probe unit base member and probe unit
CN100474577C (en) Base board and electric test method therefor
TWI489092B (en) Temperature detecting device and temperature detecting panel thereof
JP6417831B2 (en) Load integrated power supply device and LED integrated power supply illumination device
TWI526132B (en) Correction film structure
CN116449064B (en) Shunt, electric equipment and energy storage equipment thereof
CN105301516B (en) One kind being convenient for bga chip power supply test jig and method
KR101039049B1 (en) Chip scale package for detecting open/short of elcectrode pettern using noncontact inspection method and the inspection apparatus thereof
JP5801746B2 (en) Winding short circuit detection method and winding short circuit detection device
CN205643615U (en) Ageing magazine
US10264684B2 (en) Conductivity inspection method of printed circuit board and manufacturing method of printed circuit board
TWI690711B (en) Non-contact detector of substrate examining device and fabricating method thereof
TW201509248A (en) Printed circuit board thereof
KR101462954B1 (en) Fixture of auto test equipment for testing electronic circuit card
JP2010066031A (en) Circuit board inspection apparatus
JP2012175054A (en) Led package
JP4860761B2 (en) Adapter board, semiconductor device using the same, and method for measuring input / output signals between printed circuit boards
US20220091159A1 (en) High Current Component
CN207798989U (en) A kind of open-short circuit device of flexible circuit board connector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180924

R150 Certificate of patent or registration of utility model

Ref document number: 6417831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350