JP2016072350A - Member for adsorption - Google Patents

Member for adsorption Download PDF

Info

Publication number
JP2016072350A
JP2016072350A JP2014198294A JP2014198294A JP2016072350A JP 2016072350 A JP2016072350 A JP 2016072350A JP 2014198294 A JP2014198294 A JP 2014198294A JP 2014198294 A JP2014198294 A JP 2014198294A JP 2016072350 A JP2016072350 A JP 2016072350A
Authority
JP
Japan
Prior art keywords
total volume
pores
adsorption
pore
average pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014198294A
Other languages
Japanese (ja)
Inventor
和洋 石川
Kazuhiro Ishikawa
和洋 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2014198294A priority Critical patent/JP2016072350A/en
Publication of JP2016072350A publication Critical patent/JP2016072350A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To relatively strongly adsorb an adsorbed object and to relatively easily remove a foreign substance that is deposited on an adsorption face.SOLUTION: A member for adsorption for adsorbing and holding the adsorbed object includes: a placement body formed from a porous ceramic body including the adsorption face on which the adsorbed object is placed, a bottom face at an opposite side of the adsorption face, and an outer side face continued to the adsorption face and the bottom face; and a support formed from a dense ceramic body including a substrate part including an arrangement face that is opposite to the bottom face, and a protrusive part including an inner side face that surrounds the outer side face. An average pore volume ratio indicating a ratio of a total volume of an average pore group with respect to a total volume of entire pores is 60% or more and 74.5% or less. A large-sized pore volume ratio indicating a ratio of a total volume of a large-sized pore group with respect to the total volume of the entire pores is greater in comparison with a small-sized pore volume ratio indicating a ratio of a total volume of a small-sized pore group with respect to the total volume of the entire pores.SELECTED DRAWING: Figure 1

Description

本発明は、吸着用部材に関する。   The present invention relates to an adsorbing member.

従来から、半導体ウエハやガラス基板等の被吸着体を吸着して保持する治具として、吸着用部材が用いられている。このような吸着用部材として、例えば、特許文献1では、平均気孔径が10〜40μmで、平均気孔径の0.7〜1.2倍の気孔径を有する気孔の体積の、全気孔の体積に対する割合が75%以上であり、平均気孔径の0.7倍未満の気孔径を有する気孔の体積の、全気孔の体積に対する割合が15%以下であり、平均気孔径の1.2倍を超える気孔径を有する気孔の体積の、全気孔の体積に対する割合が10%以下である吸着体を備えてなる吸着用部材が提案されている。   Conventionally, an adsorbing member has been used as a jig for adsorbing and holding an adsorbent such as a semiconductor wafer or a glass substrate. As such an adsorbing member, for example, in Patent Document 1, the average pore diameter is 10 to 40 μm, and the total pore volume is the pore volume having a pore diameter 0.7 to 1.2 times the average pore diameter. The ratio of the volume of pores having a pore diameter less than 0.7 times the average pore diameter to the volume of all pores is 15% or less, and 1.2 times the average pore diameter. There has been proposed an adsorbing member comprising an adsorbent in which the ratio of the volume of pores having a pore diameter exceeding 10% to the total pore volume is 10% or less.

特開2004−306254号公報JP 2004-306254 A

しかしながら、例えば特許文献1に記載の吸着用部材は、平均気孔径が10〜40μmと比較的小さく、かつ気孔径の分布も少なくこの比較的小さい気孔径が分散して配置しているため、真空引きが困難で吸着面における単位面積当たりの吸着力が弱いものであった。また、被吸着体を研磨する研磨装置にこの真空チャックを用いる場合など、被吸着体の研磨粉が吸着面に開口した比較的小さな気孔径の気孔内に浸入して凝集し易く、その一部が吸着面に付着すると、吸着面に付着した研磨粉を流体の噴射によって取り除こうとしても、容易に除去することができないという問題もあった。本発明はかかる課題を解決することを目的とする。   However, for example, the adsorbing member described in Patent Document 1 has a relatively small average pore diameter of 10 to 40 μm and a small distribution of pore diameters. It was difficult to pull, and the adsorption force per unit area on the adsorption surface was weak. In addition, when this vacuum chuck is used in a polishing apparatus for polishing an object to be adsorbed, the abrasive powder of the object to be adsorbed easily enters and aggregates into pores having a relatively small pore diameter opened on the adsorption surface. When adhering to the adsorption surface, there is also a problem that it cannot be easily removed even if the abrasive powder adhering to the adsorption surface is removed by jetting fluid. The present invention aims to solve such problems.

本発明の一態様による吸着用部材は、被吸着体を吸着して保持するための吸着用部材であって、前記被吸着体が載置される吸着面と、該吸着面と反対側の底面と、前記吸着面および前記底面に連なる外側面とを備える多孔質セラミックス体からな載置体と、前記底面と対向する配置面を有する基体部と、前記外側面を囲繞する内側面を備える凸状部とを有する、緻密質セラミックス体からなる支持体とを備え、前記載置体は複数の気孔を備えており、該気孔の全体の平均気孔径が41μm以上80μm以下であり、前記全体の平均気孔径の0.7倍以上かつ1.2倍以下である気孔径を有する複数の気孔を平均気孔群とし、前記全体の平均気孔径の1.2倍を超える気孔径を有する複数の気孔を大型気孔群とし、前記全体の平均気孔径の0.7倍未満の気孔径を有する複数の気孔を小型気孔群としたとき、前記気孔の全体の合計体積に対する前記平均気孔群の合計体積の比率を示す平均気孔体積比率が60%以上74.5%以下であり、前記気孔の全体の合計体積に対する前記大型気孔群の合計体積の比率を示す大型気孔体積比率が、前記気孔の全体の合計体積に対する前記小型気孔群の合計体積の比率を示す小型気孔体積比率に比べて大きいことを特徴とする。   An adsorbing member according to an aspect of the present invention is an adsorbing member for adsorbing and holding an object to be adsorbed, and an adsorption surface on which the object to be adsorbed is placed, and a bottom surface opposite to the adsorption surface And a convex body including a mounting body made of a porous ceramic body including the adsorption surface and an outer surface continuous to the bottom surface, a base portion having an arrangement surface facing the bottom surface, and an inner surface surrounding the outer surface. And a support made of a dense ceramic body, and the mounting body includes a plurality of pores, and an average pore diameter of the pores is 41 μm or more and 80 μm or less. A plurality of pores having a pore diameter that is 0.7 times or more and 1.2 times or less of the average pore diameter as an average pore group, and a plurality of pores having a pore diameter exceeding 1.2 times the total average pore diameter Is a large pore group, 0.7 of the average pore size of the whole When a plurality of pores having a pore diameter less than double is a small pore group, the average pore volume ratio indicating the ratio of the total volume of the average pore group to the total volume of the pores is 60% or more and 74.5% or less And the large pore volume ratio indicating the ratio of the total volume of the large pore group to the total volume of the entire pore is the small pore volume indicating the ratio of the total volume of the small pore group to the total volume of the pores. It is characterized by being larger than the ratio.

本発明の一態様による吸着用部材は、被吸着体を比較的強く吸着することができるとともに、吸着面に付着した異物を比較的容易に除去することができる。   The adsorbing member according to one embodiment of the present invention can adsorb the object to be adsorbed relatively strongly, and can remove foreign substances adhering to the adsorbing surface relatively easily.

本実施形態の吸着用部材の一例を示す斜視図である。It is a perspective view which shows an example of the member for adsorption | suction of this embodiment. (a)は、図1の吸着用部材の一例を示す平面図、(b)は、(a)のA−A線における断面図である。(A) is a top view which shows an example of the member for adsorption | suction of FIG. 1, (b) is sectional drawing in the AA of (a). 本実施形態の吸着用部材の他の例を示す、(a)は、斜視図、(b)は、(a)のB−B線における断面図である。The other example of the member for adsorption | suction of this embodiment is shown, (a) is a perspective view, (b) is sectional drawing in the BB line of (a). 本実施形態の吸着用部材の他の例を示す、(a)は、斜視図、(b)は、(a)のC−C線における断面図である。The other example of the member for adsorption of this embodiment is shown, (a) is a perspective view and (b) is a sectional view in the CC line of (a). 吸着用部材の熱伝導性を測定するための方法を示す模式図である。It is a schematic diagram which shows the method for measuring the thermal conductivity of the member for adsorption | suction.

以下、図面を参照して、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本実施形態の吸着用部材の一例を示す斜視図である。   FIG. 1 is a perspective view illustrating an example of a suction member according to the present embodiment.

また、図2(a)は、図1の吸着用部材を示す平面図、(b)は、(a)のA−A線における断面図である。   2A is a plan view showing the adsorbing member of FIG. 1, and FIG. 2B is a cross-sectional view taken along the line AA in FIG.

図1および図2に示す吸着用部材1aは、半導体ウエハやガラス基板等の被吸着体を吸着して保持するための吸着用部材であって、図示しない被吸着体が載置される吸着面2aと、吸着面2aと反対側の底面2bと、吸着面2aおよび底面2bに連なる外側面2cとを備える多孔質セラミックス体からなる載置体2と、底面2bと対向する配置面3aを有する基体部3bと、外側面2cを囲繞する内側面3cを備える凸状部3dとを有する、緻密質セラミックス体からなる支持体3とを備えている。載置体2は複数の気孔を備えており、気孔の全体の平均気孔径が41μm以上80μm以下であり、全体の平均気孔径の0.7倍以上かつ1.2倍以下である気孔径を有する複数の気孔を平均気孔群とし、全体の平均気孔径の1.2倍を超える気孔径を有する複数の気孔を大型気孔群とし、全体の平均気孔径の0.7倍未満の気孔径を有する複数の気孔を小型気孔群としたとき、気孔の全体の合計体積に対する平均気孔群の合計体積の比率を示す平均気孔体積比率が60%以上74.5%以下であり、気孔の全体の合計体積に対する大型気孔群の合計体積の比率を示す大型気孔体積比率が、気孔の全体の合計体積に対する小型気孔群の合計体積の比率を示す小型気孔体積比率に比べて大きい。   A suction member 1a shown in FIGS. 1 and 2 is a suction member for sucking and holding an object to be adsorbed such as a semiconductor wafer or a glass substrate, and an adsorption surface on which an object to be adsorbed (not shown) is placed. 2a, a mounting surface 2 made of a porous ceramic body having a bottom surface 2b opposite to the suction surface 2a, an outer surface 2c connected to the suction surface 2a and the bottom surface 2b, and a placement surface 3a facing the bottom surface 2b. There is provided a support body 3 made of a dense ceramic body having a base portion 3b and a convex portion 3d having an inner side surface 3c surrounding the outer side surface 2c. The mounting body 2 has a plurality of pores, the average pore diameter of the whole pores is 41 μm or more and 80 μm or less, and the pore diameter is 0.7 times or more and 1.2 times or less of the whole average pore diameter. A plurality of pores having an average pore group, and a plurality of pores having a pore diameter exceeding 1.2 times the average pore size as a large pore group, and a pore diameter less than 0.7 times the total average pore size. When the plurality of pores are small pore groups, the average pore volume ratio indicating the ratio of the total volume of the average pore group to the total volume of the whole pores is 60% or more and 74.5% or less, and the total of the pores The large pore volume ratio indicating the ratio of the total volume of the large pore group to the volume is larger than the small pore volume ratio indicating the ratio of the total volume of the small pore group to the total volume of the pores.

なお、支持体3は、底面側に円周方向に帯状部3eが形成され、帯状部3eには円周方向に沿って等間隔に取り付け穴3fが設置され、ボルト(不図示)等を介して、固定ベース(不図示)に連結、固定される。   The support 3 is formed with a belt-like portion 3e in the circumferential direction on the bottom surface side, and the belt-like portion 3e is provided with mounting holes 3f at equal intervals along the circumferential direction, via bolts (not shown) or the like. Are connected and fixed to a fixed base (not shown).

支持体3は、配置面3a側に開口を有する複数の吸引孔3gを有しており、吸引孔3gを介して支持体3の内部の空気を吸引することがで、吸着面2aに載置した被吸着体を吸着して保持されるようになっている。また、凸状部3dの頂面3hは、載置体2の吸着面2aと面一とされている。   The support body 3 has a plurality of suction holes 3g having openings on the arrangement surface 3a side, and can be placed on the suction surface 2a by sucking air inside the support body 3 through the suction holes 3g. The adsorbed object is adsorbed and held. Further, the top surface 3 h of the convex portion 3 d is flush with the suction surface 2 a of the mounting body 2.

本実施形態の吸着用部材1aでは、載置体2における気孔の全体の平均気孔径が41μm以上と比較的大きく、個々の気孔における圧力損失が低くなるので、載置体2の通気抵抗が低く抑制され、被吸着体を比較的強く吸着して保持することができる。   In the adsorbing member 1a of the present embodiment, the average pore diameter of the entire pores in the mounting body 2 is relatively large, 41 μm or more, and the pressure loss in each pore is reduced, so the ventilation resistance of the mounting body 2 is low. It is suppressed and the object to be adsorbed can be relatively strongly adsorbed and held.

また、平均気孔径の0.7倍以上かつ1.2倍以下の気孔径を有する平均気孔群は、載置体2の圧力損失および放熱特性に大きな影響を与える。気孔の全体の合計体積に対する平均気孔群の合計体積の比率を示す平均気孔体積比率が60%以上であるので、多孔質セラミックス体からなる載置体2の通気抵抗が比較的低く、被吸着体を比較的強く吸着して
保持することができる。また、平均気孔体積比率が74.5%以下であるので、載置体2の放熱特性は比較的高くされており、被吸着体が昇温した場合も、この被吸着体を速やかに冷却することができる。
Moreover, the average pore group having a pore diameter of 0.7 times or more and 1.2 times or less of the average pore diameter has a great influence on the pressure loss and heat radiation characteristics of the mounting body 2. Since the average pore volume ratio indicating the ratio of the total volume of the average pore group to the total volume of the pores is 60% or more, the airflow resistance of the mounting body 2 made of a porous ceramic body is relatively low, and the adsorbed body Can be adsorbed relatively strongly. In addition, since the average pore volume ratio is 74.5% or less, the heat dissipation characteristics of the mounting body 2 are relatively high, and even when the temperature of the object to be adsorbed rises, the object to be adsorbed is quickly cooled. be able to.

また、本実施形態の吸着用部材1aの載置体2は、気孔の全体の合計体積に対する小型気孔群の合計体積の比率を示す小型気孔体積比率に比べて、気孔の全体の合計体積に対する大型気孔群の合計体積の比率を示す大型気孔体積比率が大きいので、載置体2の通気抵抗がより充分に抑制されている。例えば、この吸着用部材1aを研磨装置等に用いて被吸着体を研磨した場合など、研磨粉が吸着面2aに開口した気孔内に浸入して凝集してその一部が吸着面2aに付着したとしても、吸着用部材1aの通気抵抗が充分に抑制されているので、基体部3b側から流体を噴射すれば容易に研磨粉を除去することができる。   Moreover, the mounting body 2 of the adsorbing member 1a of the present embodiment has a large size with respect to the total volume of the pores as compared with a small pore volume ratio indicating a ratio of the total volume of the small pore group to the total volume of the pores. Since the large pore volume ratio indicating the ratio of the total volume of the pore group is large, the ventilation resistance of the mounting body 2 is more sufficiently suppressed. For example, when the object to be adsorbed is polished by using this adsorbing member 1a in a polishing apparatus or the like, the polishing powder enters and aggregates in the pores opened on the adsorption surface 2a, and a part thereof adheres to the adsorption surface 2a. Even if it does, since the ventilation resistance of the member 1a for adsorption | suction is fully suppressed, if a fluid is injected from the base | substrate part 3b side, polishing powder can be removed easily.

また、本実施形態の吸着用部材1aは、例えば載置体2の小型気孔体積比率が15%以下であり、通気抵抗がより低く抑制されており、基体部3b側からの流体の噴射によって研磨粉を比較的容易に除去することができる。   Further, the adsorption member 1a of the present embodiment has a small pore volume ratio of, for example, 15% or less of the mounting body 2 and has a lower ventilation resistance, and is polished by jetting fluid from the base portion 3b side. The powder can be removed relatively easily.

また、本実施形態の吸着用部材1aは、載置体2の気孔率が例えば28%以上かつ38%以下である。載置体2の気孔率が28%以上であるので、多孔質セラミックス体全体における通気抵抗が低く、比較的低い吸引力で被吸着体を固定することができる。また、気孔率が38%以下であるので、多孔質セラミックス体全体の放熱特性は比較的高く、速やかな放熱が求められる被吸着体にも適用させることができる。   Further, in the adsorption member 1a of the present embodiment, the porosity of the mounting body 2 is, for example, 28% or more and 38% or less. Since the porosity of the mounting body 2 is 28% or more, the ventilation resistance of the entire porous ceramic body is low, and the object to be adsorbed can be fixed with a relatively low suction force. Moreover, since the porosity is 38% or less, the heat dissipation characteristic of the entire porous ceramic body is relatively high, and it can be applied to an adsorbed body that requires quick heat dissipation.

ここで、載置体2の気孔の全体の平均気孔径,平均気孔群、小型気孔群、および大型気孔群それぞれの気孔体積比率や各気孔率は、いずれもJIS R 1655−2003に準拠した水銀圧入法に準拠して求めることができる。   Here, the average pore diameter of the entire pores of the mounting body 2, the average pore group, the small pore group, and the pore volume ratio and the respective porosity of the large pore group are all mercury conforming to JIS R 1655-2003. It can be determined according to the press-fitting method.

図3は、本実施形態の吸着用部材の他の例を示す、(a)は斜視図、(b)は(a)のB−B線における断面図である。図3に示す実施形態の吸着用部材1bは、吸着面2aの形状が四角形状である点で、図1および2に示す実施形態と異なっている。図3に示す実施形態の吸着用部材は、角板形状の被吸着体の吸着に適している。   3A and 3B show another example of the adsorbing member of the present embodiment, in which FIG. 3A is a perspective view, and FIG. 3B is a cross-sectional view taken along line BB in FIG. The suction member 1b of the embodiment shown in FIG. 3 is different from the embodiment shown in FIGS. 1 and 2 in that the suction surface 2a has a quadrangular shape. The adsorbing member of the embodiment shown in FIG. 3 is suitable for adsorbing a square-plate-shaped adsorbent.

図3に示す実施形態の吸着用部材1bは、四角形状の吸着面2aと、吸着面2aと反対側の底面2bと、吸着面2aおよび底面2bに連なる外側面2cとを備える、多孔質セラミックス体からなる載置体2と、底面2bと対向する配置面3aを有する基体部3bと、外側面2cを囲繞する内側面3cを備える凸状部3dとを備える支持体3とを有している。吸着用部材1bは、載置体2を分割する緻密質セラミックス体からなる隔壁3jをさらに備えている。また、支持体3は、基体部3bの配置面3aに開口する吸引溝3k,3kと、これら吸引溝3k,3kに連通する吸引孔3g,3gとが設けられている。被吸着体の大きさに応じて、吸着面2aの大きさを設定した上で、吸引溝3k,3kを適宜選択すればよい。 The adsorbing member 1b of the embodiment shown in FIG. 3 includes a porous adsorbing surface 2a, a bottom surface 2b opposite to the adsorbing surface 2a, and an outer surface 2c connected to the adsorbing surface 2a and the bottom surface 2b. A support body 3 including a mounting body 2 made of a body, a base portion 3b having a placement surface 3a facing the bottom surface 2b, and a convex portion 3d having an inner side surface 3c surrounding the outer side surface 2c. Yes. The adsorbing member 1 b further includes a partition wall 3 j made of a dense ceramic body that divides the mounting body 2. In addition, the support 3 is provided with suction grooves 3k 1 and 3k 2 that open to the arrangement surface 3a of the base portion 3b, and suction holes 3g 1 and 3g 2 that communicate with the suction grooves 3k 1 and 3k 2 . . The suction grooves 3k 1 and 3k 2 may be appropriately selected after setting the size of the suction surface 2a according to the size of the object to be attracted.

具体的には、被吸着体の大きさが平面視して吸着面2a全面の大きさに近い場合、被吸着体を吸着するには、全ての吸引孔3g,3gから外部に排気し、吸引溝3k,3kを通じて被吸着体を吸着して保持すればよい。また、被吸着体の大きさが平面視して隔壁3jで囲まれる部分の大きさと略同じ大きさの場合、被吸着体を吸着するには、吸引孔3gのみから排気し、吸引溝3kを通じて被吸着体を吸着して保持すればよい。 Specifically, when the size of the object to be adsorbed is close to the entire surface of the adsorption surface 2a in plan view, in order to adsorb the object to be adsorbed, all the suction holes 3g 1 and 3g 2 are exhausted to the outside. The adsorbents may be adsorbed and held through the suction grooves 3k 1 and 3k 2 . Further, if the size and substantially the same size as the portion size of the adsorbent is surrounded by the partition wall 3j in plan view, to adsorb the adsorbent, evacuated only from the suction hole 3 g 1, suction grooves 3k The adsorbent may be adsorbed and held through 1 .

なお、支持体3は、その外縁に沿って一定間隔毎に取り付け穴3fが設置され、ボルト(不図示)等を介して、固定ベース(不図示)に連結、固定される。   The support 3 is provided with mounting holes 3f at regular intervals along its outer edge, and is connected and fixed to a fixed base (not shown) via bolts (not shown).

また、図4は、本実施形態の吸着用部材の他の例を示す、(a)は斜視図、(b)は(a)のC−C線における断面図である。   4A and 4B show another example of the adsorbing member of the present embodiment, in which FIG. 4A is a perspective view, and FIG. 4B is a cross-sectional view taken along line CC in FIG.

図4に示す例の吸着用部材1cは、吸着面2aが隔壁3jによって四角形状の4つの領域に分割されている点で、図3に示す実施形態と異なっている。図4に示す実施形態の吸着用部材1cは、四角形状の被吸着体を同時に複数個吸着する場合などに適している。   The suction member 1c in the example shown in FIG. 4 is different from the embodiment shown in FIG. 3 in that the suction surface 2a is divided into four rectangular regions by a partition wall 3j. The adsorbing member 1c according to the embodiment shown in FIG. 4 is suitable for a case where a plurality of quadrangular objects to be adsorbed are adsorbed simultaneously.

次に、本実施形態の吸着用部材の製造方法の一例について説明する。   Next, an example of the manufacturing method of the adsorption member according to the present embodiment will be described.

まず、平均粒径が90〜250μmであるα型炭化珪素の粉末100質量部に対して、平均粒径が1〜90μmである珪素の粉末15〜25質量部を混合し、成形助剤として後の脱脂処理後の残炭率が10%以上となるような熱硬化性樹脂、例えば、フェノール樹脂、エポキシ樹脂、フラン樹脂、フェノキシ樹脂、メラミン樹脂、尿素樹脂、アニリン樹脂、不飽和ポリエステル樹脂、ウレタン樹脂およびメタクリル樹脂の少なくともいずれか1種を添加し、ボールミル、振動ミル、コロイドミル、アトライター、高速ミキサー等で混合する。特に、上記成形助剤として、熱硬化後の低収縮性の点からレゾール型またはノボラック型のフェノール樹脂が好適である。   First, 15 to 25 parts by mass of silicon powder having an average particle size of 1 to 90 μm is mixed with 100 parts by mass of α-type silicon carbide powder having an average particle size of 90 to 250 μm and used as a molding aid later. Thermosetting resin with a residual carbon ratio after degreasing treatment of 10% or more, for example, phenol resin, epoxy resin, furan resin, phenoxy resin, melamine resin, urea resin, aniline resin, unsaturated polyester resin, urethane At least one of resin and methacrylic resin is added and mixed with a ball mill, a vibration mill, a colloid mill, an attritor, a high-speed mixer or the like. In particular, a resol-type or novolac-type phenol resin is suitable as the molding aid from the viewpoint of low shrinkage after thermosetting.

ここで、珪素の粉末の純度は、高いほうが好ましく、95質量%以上の純度のものが好適で、99質量%以上の純度のものが特に好ましい。なお、使用する珪素粉末の形状は特に限定されず、球形又はそれに近い形状のみならず、不規則形状であっても好適に用いることができる。この珪素粉末は、後の熱処理で珪素相となって、炭化珪素の結晶粒子を連結する。   Here, the purity of the silicon powder is preferably higher, preferably 95% by mass or more, and particularly preferably 99% by mass or more. In addition, the shape of the silicon powder to be used is not particularly limited, and not only a spherical shape or a shape close thereto, but also an irregular shape can be suitably used. This silicon powder becomes a silicon phase in the subsequent heat treatment, and connects the silicon carbide crystal particles.

ここで、気孔率が28%以上かつ38%以下である多孔質セラミックス体からなる吸着用部材を得るには、α型炭化珪素の粉末100質量部に対して、成形助剤を11質量部以上かつ18.5質量部以下添加すればよい。炭化珪素および珪素の各粉末の平均粒径は、液相沈降法、光投下法、レーザー散乱回折法等により測定することができる。   Here, in order to obtain an adsorbing member made of a porous ceramic body having a porosity of 28% or more and 38% or less, 11 parts by mass or more of a molding aid is added to 100 parts by mass of α-type silicon carbide powder. And 18.5 mass parts or less should just be added. The average particle diameter of each powder of silicon carbide and silicon can be measured by a liquid phase precipitation method, a light dropping method, a laser scattering diffraction method, or the like.

次に、混合した原料を転動造粒機、スプレードライヤー、圧縮造粒機、押し出し造粒機等各種造粒機を用いて造粒することによって顆粒を得る。特に、粒径の大きな顆粒、例えば粒径が0.4mm〜1.6mmの顆粒を得るには、転動造粒機の使用が好適である。なお、造粒時間は成形体の潰れ性を考慮すると30分以上にすることが好適である。   Next, granules are obtained by granulating the mixed raw materials using various granulators such as a rolling granulator, a spray dryer, a compression granulator, an extrusion granulator, and the like. In particular, in order to obtain granules having a large particle size, for example, granules having a particle size of 0.4 mm to 1.6 mm, it is preferable to use a rolling granulator. The granulation time is preferably 30 minutes or longer in consideration of the crushability of the compact.

また、この造粒で得られる顆粒の粒径は、0.4〜1.6mmとすることが好適で、0.4mm未満あるいは1.6mmを超えても成形体の潰れ性が悪くなったり、ハンドリングが難しくなったりするが、顆粒の粒径を0.4〜1.6mmとすることで成形体の潰れ性もハンドリングも向上する。特に、上記顆粒の粒径は0.5〜1.5mmとすることが好適である。   In addition, the particle size of the granules obtained by this granulation is preferably 0.4 to 1.6 mm, and even if the particle size is less than 0.4 mm or exceeds 1.6 mm, the crushability of the molded product is deteriorated, Although handling becomes difficult, the collapsibility of a molded object and handling improve by making the particle size of a granule into 0.4-1.6 mm. In particular, the particle size of the granules is preferably 0.5 to 1.5 mm.

次に、得られた顆粒を成形する。成形体中の気孔径や気孔の体積比率等は、成形における圧力の影響を受ける。平均気孔体積比率が60%以上74.5%以下である載置体を得るためには、顆粒を乾式加圧成形法、冷間等方静水圧成形法等の成形手段で、圧力を78.4〜117.6MPaとして成形し、必要に応じて、アルゴン、ヘリウム、ネオン、窒素、真空等の非酸化雰囲気中、400〜600℃で脱脂処理を行なった後、非酸化雰囲気中、1460〜1500℃で熱処理すればよい。   Next, the obtained granules are formed. The pore diameter in the molded body, the volume ratio of the pores, and the like are affected by pressure in molding. In order to obtain a mounting body having an average pore volume ratio of 60% or more and 74.5% or less, the granule is formed by a molding means such as a dry pressure molding method or a cold isostatic pressing method, and the pressure is set at 78. It is molded as 4 to 117.6 MPa, and after degreasing treatment at 400 to 600 ° C. in a non-oxidizing atmosphere such as argon, helium, neon, nitrogen, vacuum, etc., if necessary, in a non-oxidizing atmosphere, 1460 to 1500 What is necessary is just to heat-process at ° C.

ここで、小型気孔体積比率や大型気孔体積比率の大きさはいずれも降温速度の影響を受け、前者の気孔の体積比率が後者の気孔の体積比率よりも大きい載置体を得るには、1400℃までの降温速度を1℃/分以上2℃/分以下とすればよい。   Here, the size of the small pore volume ratio and the large pore volume ratio are both affected by the temperature drop rate, and in order to obtain a mounting body in which the volume ratio of the former pores is larger than the volume ratio of the latter pores, 1400 What is necessary is just to make the temperature-fall rate to 1 degreeC into 1 degreeC / min or more and 2 degrees C / min or less.

また、小型気孔体積比率が15%以下である載置体を得るには、1400℃までの降温速度を1.6℃/分以下とすればよい。   Moreover, what is necessary is just to make the temperature-fall rate to 1400 degreeC into 1.6 degrees C / min or less in order to obtain the mounting body whose small pore volume ratio is 15% or less.

次に、緻密質セラミックス体からなる支持体を準備する。ここで、例えば、凸状部の外径は143〜380mmであり、凸状部の頂面および基体部の底面間の厚みは、14.3〜60mmである。   Next, a support made of a dense ceramic body is prepared. Here, for example, the outer diameter of the convex portion is 143 to 380 mm, and the thickness between the top surface of the convex portion and the bottom surface of the base portion is 14.3 to 60 mm.

そして、SiO、Al、B、CaO、MgOおよびTiOを含み、その各質量比率が、例えば、30〜65%、10〜40%、10〜20%、4〜5%、1〜5%、0〜5%であるペースト状のガラスを凸状部の内側面に沿って形成された凹状部に塗布する。 Then, comprises SiO 2, Al 2 O 3, B 2 O 3, CaO, and MgO and TiO 2, that the mass ratio, for example, 30-65%, 10-40%, 10-20%, 4-5 %, 1 to 5%, and 0 to 5% of paste-like glass is applied to the concave portion formed along the inner surface of the convex portion.

なお、吸引孔には、ペースト状のガラスが浸入しないようにするために、予め樹脂を吸引孔に充填、硬化させ、引き続き行なわれる熱処理により、硬化した樹脂を消失させればよい。   In order to prevent the paste-like glass from entering the suction holes, the resin is filled in the suction holes and cured in advance, and the cured resin may be eliminated by the subsequent heat treatment.

ガラス塗布後、載置体を凹状部内に設置した後、専用の加圧装置で厚み方向から加圧する。加圧後、950〜980℃で熱処理することによって、載置体2と支持体3とは、ガラスからなる結合層で接合される。そして、凸状部の表面および載置体の表面を研削、研磨等の機械加工を施すことによって、本実施形態の吸着用部材を得ることができる。   After the glass application, the mounting body is placed in the concave portion, and then pressurized from the thickness direction by a dedicated pressurizing device. After pressurization, the mounting body 2 and the support body 3 are joined by a bonding layer made of glass by heat treatment at 950 to 980 ° C. And the member for adsorption | suction of this embodiment can be obtained by performing machining, such as grinding and grinding | polishing, on the surface of a convex part and the surface of a mounting body.

以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples.

まず、平均粒径が170μmのα型炭化珪素の粉末100質量部に対して、表1に示す比率で平均粒径が5μmの珪素の粉末と、フェノール樹脂19.3質量部を混合し、転動造粒機で造粒することによって顆粒を得た。   First, with respect to 100 parts by mass of α-type silicon carbide powder having an average particle size of 170 μm, silicon powder having an average particle size of 5 μm and 19.3 parts by mass of phenol resin are mixed at the ratio shown in Table 1, Granules were obtained by granulation with a dynamic granulator.

次に、得られた顆粒を乾式加圧成形法で、圧力を表1に示す圧力で成形し、窒素雰囲気中、500℃で脱脂処理を行なった後、真空雰囲気中、1480℃で熱処理し、表1に示す降温速度で冷却し、載置体を得た。   Next, the obtained granule was molded by a dry pressure molding method at a pressure shown in Table 1, and after degreasing treatment at 500 ° C. in a nitrogen atmosphere, heat treatment was performed at 1480 ° C. in a vacuum atmosphere, It cooled at the temperature-fall rate shown in Table 1, and the mounting body was obtained.

次に、載置体の底面と対向する配置面を有する基体部と、外側面を囲繞する内側面を備える凸状部とを有する、緻密質セラミックス体からなる支持体を準備した。   Next, a support body made of a dense ceramic body having a base portion having an arrangement surface facing the bottom surface of the mounting body and a convex portion having an inner surface surrounding the outer surface was prepared.

そして、SiO、Al、B、CaO、MgOおよびTiOを含み、その各質量比率が、50%、25%、15%、4.5%、3%、2.5%であるペースト状のガラスを凸状部の内側面に沿って形成された凹状部に塗布した。 Then, it comprises SiO 2, Al 2 O 3, B 2 O 3, CaO, and MgO and TiO 2, that the mass ratio is 50%, 25%, 15%, 4.5%, 3%, 2.5 % Of paste-like glass was applied to the concave part formed along the inner surface of the convex part.

なお、吸引孔には、予め樹脂を吸引溝に充填、硬化させておいた。   The suction holes were previously filled with resin in the suction grooves and cured.

ガラス塗布後、載置体2を凹状部3a内に設置した後、専用の加圧装置で厚み方向から加圧した。加圧後、965℃で熱処理することによって、載置体2と支持体3とをガラスからなる結合層で接合した。そして、載置体2の表面および支持体3の表面を研削した後、研磨することによって、図1に示す吸着用部材1aである試料No.1〜14を得た。   After the glass application, the mounting body 2 was placed in the concave portion 3a, and then pressurized from the thickness direction with a dedicated pressurizing device. After pressurization, the mounting body 2 and the support body 3 were joined by a bonding layer made of glass by heat treatment at 965 ° C. And after grinding the surface of the mounting body 2 and the surface of the support body 3, it grind | polishes and sample No. which is the member 1a for adsorption | suction shown in FIG. 1-14 were obtained.

ここで、載置体の気孔の全体の平均気孔径、平均気孔群、小型気孔群および大型気孔群それぞれの気孔体積比率は、いずれもJIS R 1655−2003に準拠した水銀圧
入法によって求め、その値を表1に示した。
Here, the average pore diameter of the entire pores of the mounting body, the average pore group, the pore volume ratio of each of the small pore group and the large pore group are all determined by a mercury intrusion method according to JIS R 1655-2003, The values are shown in Table 1.

また、載置体の吸着面に、直径が200mmである半導体ウェハ(図示しない)を載置した後、圧力を80kPaとして吸着し、ドライポリッシュ装置を用いて半導体ウェハを厚み方向に100μm研磨したときの表面の平面度を平面度測定装置(黒田精工社(製)、ナノメトロTT)で測定した。なお、表面の平面度は研磨した表面の最も高い点と最も低い点との差とした。   Further, when a semiconductor wafer (not shown) having a diameter of 200 mm is placed on the suction surface of the mounting body, the pressure is sucked at 80 kPa, and the semiconductor wafer is polished 100 μm in the thickness direction using a dry polishing apparatus. The flatness of the surface was measured with a flatness measuring device (Kuroda Seiko Co., Ltd., Nanometro TT). The flatness of the surface was defined as the difference between the highest point and the lowest point on the polished surface.

また、半導体ウェハの研磨前後における吸着用部材の通気抵抗を測定するために、真空ポンプ(図示しない)を配管(図示しない)を介して吸引孔3gに接続した後、85kPaの圧力で吸引し、発生した圧力損失の値を配管に備え付けられた圧力ゲージで読みとった。この圧力損失の値が大きければ、通気抵抗が高いことを示し、圧力損失の値が小さければ、通気抵抗が低いことを示す。   In order to measure the ventilation resistance of the adsorption member before and after polishing the semiconductor wafer, a vacuum pump (not shown) is connected to the suction hole 3g via a pipe (not shown), and then sucked at a pressure of 85 kPa. The value of the generated pressure loss was read with a pressure gauge attached to the pipe. A large pressure loss value indicates that the ventilation resistance is high, and a small pressure loss value indicates that the ventilation resistance is low.

また、各試料の熱伝導性を以下のように測定した。図5は、吸着用部材の熱伝導性を測定するための方法を示す模式図である。吸着用部材の熱伝導性を測定するために、図5に示すように、炭化珪素からなる均熱板4をホットプレート5に置いた後、ホットプレート5を加熱し、均熱板4を60℃に保持した。この状態で、吸着面が均熱板4の表面に当接するように吸着用部材を均熱板4上に置き、このときから50秒後の支持体の底面の中心の温度を熱電対6(K熱電対)で検出し、熱電対6に接続した記録計7でその温度を読みとった。この温度が高ければ、吸着用部材の熱伝導性は高く、この温度が低ければ、熱伝導性は低いと言える。   Moreover, the thermal conductivity of each sample was measured as follows. FIG. 5 is a schematic diagram showing a method for measuring the thermal conductivity of the adsorption member. In order to measure the thermal conductivity of the adsorbing member, the soaking plate 4 made of silicon carbide is placed on the hot plate 5 as shown in FIG. Held at 0C. In this state, the adsorbing member is placed on the soaking plate 4 so that the attracting surface comes into contact with the surface of the soaking plate 4, and the temperature at the center of the bottom surface of the support 50 seconds later is set to the thermocouple 6 ( K thermocouple), and the temperature was read by a recorder 7 connected to the thermocouple 6. If this temperature is high, the thermal conductivity of the adsorption member is high, and if this temperature is low, it can be said that the thermal conductivity is low.

Figure 2016072350
Figure 2016072350

表1に示すように、試料No.2,4,5,7〜11,13は、平均気孔径が41μm以上80μm以下である気孔を備え、平均気孔体積比率が60%以上74.5%以下であり、大型気孔体積比率が小型気孔体積比率よりも大きい載置体を備えていることから、通気抵抗が低く、放熱特性が高いことがわかる、また、これらの試料を用いて、被吸着体を研磨すると、研磨後の被吸着体の表面の平面度が小さく、研磨後の通気抵抗の上昇も抑制されていることがわかり、基体部3b側からの流体の噴射による研磨粉の除去を容易することができるといえる。   As shown in Table 1, sample no. 2, 4, 5, 7 to 11 and 13 have pores having an average pore diameter of 41 μm or more and 80 μm or less, an average pore volume ratio of 60% or more and 74.5% or less, and a large pore volume ratio of small pores. Since it has a mounting body larger than the volume ratio, it can be seen that the ventilation resistance is low and the heat dissipation characteristics are high, and when the adsorbent is polished using these samples, the adsorbent after polishing is polished. It can be said that the flatness of the surface is small and the increase in the airflow resistance after polishing is suppressed, and it is possible to easily remove the polishing powder by jetting the fluid from the base portion 3b side.

また、平均気孔径および平均気孔体積比率がいずれも同じである試料No.7〜9を比べると、試料No.8.9は小型気孔体積比率が15%以下である載置体を備えているこ
とから、研磨後の通気抵抗の上昇も抑制されていることがわかり、基体部3b側からの流体の噴射による研磨粉の除去をさらに容易することができるといえる。
Sample Nos. Having the same average pore diameter and average pore volume ratio were used. Comparing 7-9, sample No. 8.9 is equipped with a mounting body having a small pore volume ratio of 15% or less, so it can be seen that the increase in ventilation resistance after polishing is also suppressed, It can be said that it is possible to further facilitate the removal of the polishing powder by jetting the fluid from the base portion 3b side.

まず、平均粒径が170μmのα型炭化珪素の粉末100質量部に対して、平均粒径が5μmであって質量比率が20.1質量部である珪素の粉末と、質量比率が表1に示すフェノール樹脂とを混合し、転動造粒機で造粒することによって顆粒を得た。ここで、フェノール樹脂の質量比率を試料毎に変更したのは、気孔率を適宜設定するためである。   First, with respect to 100 parts by mass of α-type silicon carbide powder having an average particle diameter of 170 μm, silicon powder having an average particle diameter of 5 μm and a mass ratio of 20.1 parts by mass is shown in Table 1. Granules were obtained by mixing with the phenol resin shown and granulating with a tumbling granulator. Here, the reason why the mass ratio of the phenol resin is changed for each sample is to appropriately set the porosity.

次に、得られた顆粒を乾式加圧成形法で、圧力を97.9MPaとして成形し、窒素雰囲気中、500℃で脱脂処理を行なった後、真空雰囲気中、1480℃で熱処理し、降温速度を1.7℃/分として冷却して載置体を得た。そして、実施例1で示した方法と同じ方法で、吸着用部材である試料No.15〜21を得た。   Next, the obtained granule was molded by a dry pressure molding method at a pressure of 97.9 MPa, degreased at 500 ° C. in a nitrogen atmosphere, then heat-treated at 1480 ° C. in a vacuum atmosphere, and the temperature decreasing rate Was cooled to 1.7 ° C./min to obtain a mounting body. And by the same method as shown in Example 1, sample No. 15-21 were obtained.

そして、載置体の気孔の全体の平均気孔径、平均気孔群、小型気孔群および大型気孔群それぞれの気孔体積比率をJIS R 1655−2003に準拠した水銀圧入法によって求めたところ、いずれの試料も全体の平均気孔径は60μmであり、平均気孔群、小型気孔群および大型気孔群それぞれの気孔体積比率は、67.3%,16.8%,15.9%であった。   Then, when the average pore diameter of the whole pores of the mounting body, the average pore group, the pore volume ratio of each of the small pore group and the large pore group were determined by a mercury intrusion method according to JIS R 1655-2003, any sample was obtained. The overall average pore diameter was 60 μm, and the pore volume ratios of the average pore group, the small pore group, and the large pore group were 67.3%, 16.8%, and 15.9%, respectively.

そして、実施例1で示した方法と同じ方法で、半導体ウェハの研磨前の圧力損失および支持体15の底面の中心の温度をそれぞれ測定し、その値を表2に示した。   The pressure loss before polishing of the semiconductor wafer and the temperature at the center of the bottom surface of the support 15 were measured by the same method as shown in Example 1, and the values are shown in Table 2.

Figure 2016072350
Figure 2016072350

表2に示すように、試料No.16〜20は、気孔率が28%以上かつ38%以下である載置体を備えていることから、載置体全体の通気抵抗が低くなっているので、低い吸引力で被吸着体を固定することができる。また、試料No.16〜20は、載置体全体の放熱特性が高くなっているので、被吸着体を研磨した後、速やかな放熱が求められる被吸着体にも適用させることができると言える。   As shown in Table 2, sample no. Since 16-20 are equipped with a mounting body having a porosity of 28% or more and 38% or less, the ventilation resistance of the entire mounting body is low, so the object to be adsorbed is fixed with a low suction force. can do. Sample No. Nos. 16 to 20 can be applied to an adsorbed body that requires quick heat dissipation after the adsorbed object is polished since the heat dissipation characteristics of the entire mounting body are high.

以上、本発明の実施例について説明したが、本発明の要旨を超えない限り、上記実施例に限定されるものではない。   As mentioned above, although the Example of this invention was described, unless it exceeds the summary of this invention, it is not limited to the said Example.

1a,1b,1c 吸着用部材
2 載置体
3 支持体
1a, 1b, 1c Adsorption member 2 Mounting body 3 Support body

Claims (3)

被吸着体を吸着して保持するための吸着用部材であって、
前記被吸着体が載置される吸着面と、該吸着面と反対側の底面と、前記吸着面および前記底面に連なる外側面とを備える多孔質セラミックス体からなる載置体と、
前記底面と対向する配置面を有する基体部と、前記外側面を囲繞する内側面を備える凸状部とを有する、緻密質セラミックス体からなる支持体とを備え、
前記載置体は複数の気孔を備えており、該気孔の全体の平均気孔径が41μm以上80μm以下であり、前記全体の平均気孔径の0.7倍以上かつ1.2倍以下である気孔径を有する複数の気孔を平均気孔群とし、前記全体の平均気孔径の1.2倍を超える気孔径を有する複数の気孔を大型気孔群とし、前記全体の平均気孔径の0.7倍未満の気孔径を有する複数の気孔を小型気孔群としたとき、
前記気孔の全体の合計体積に対する前記平均気孔群の合計体積の比率を示す平均気孔体積比率が60%以上74.5%以下であり、
前記気孔の全体の合計体積に対する前記大型気孔群の合計体積の比率を示す大型気孔体積比率が、前記気孔の全体の合計体積に対する前記小型気孔群の合計体積の比率を示す小型気孔体積比率に比べて大きいことを特徴とする吸着用部材。
An adsorbing member for adsorbing and holding an adsorbent,
A mounting body comprising a porous ceramic body including an adsorption surface on which the object to be adsorbed is mounted; a bottom surface opposite to the adsorption surface; and an outer surface continuous to the adsorption surface and the bottom surface;
A support body made of a dense ceramic body, including a base portion having an arrangement surface facing the bottom surface, and a convex portion having an inner surface surrounding the outer surface;
The above-mentioned mounting body has a plurality of pores, and the average average pore diameter of the pores is 41 μm or more and 80 μm or less, and the average pore diameter is 0.7 times or more and 1.2 times or less of the whole average pore diameter. A plurality of pores having a pore size as an average pore group, and a plurality of pores having a pore size exceeding 1.2 times the overall average pore size as a large pore group, less than 0.7 times the overall average pore size When a plurality of pores having a pore diameter of a small pore group,
The average pore volume ratio indicating the ratio of the total volume of the average pore group to the total volume of the pores is 60% or more and 74.5% or less,
The large pore volume ratio indicating the ratio of the total volume of the large pore group to the total volume of the entire pore is compared with the small pore volume ratio indicating the ratio of the total volume of the small pore group to the total volume of the pore. An adsorption member characterized by being large.
前記小型気孔体積比率が15%以下であることを特徴とする請求項1に記載の吸着用部材。   The adsorbing member according to claim 1, wherein the small pore volume ratio is 15% or less. 前記載置体の気孔率が28%以上かつ38%以下であることを特徴とする請求項1または請求項2に記載の吸着用部材。   The adsorbing member according to claim 1 or 2, wherein the porosity of the mounting body is 28% or more and 38% or less.
JP2014198294A 2014-09-29 2014-09-29 Member for adsorption Pending JP2016072350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014198294A JP2016072350A (en) 2014-09-29 2014-09-29 Member for adsorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014198294A JP2016072350A (en) 2014-09-29 2014-09-29 Member for adsorption

Publications (1)

Publication Number Publication Date
JP2016072350A true JP2016072350A (en) 2016-05-09

Family

ID=55867277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014198294A Pending JP2016072350A (en) 2014-09-29 2014-09-29 Member for adsorption

Country Status (1)

Country Link
JP (1) JP2016072350A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019096717A (en) * 2017-11-22 2019-06-20 日本特殊陶業株式会社 Substrate suction member and manufacturing method thereof
CN110098143A (en) * 2018-01-31 2019-08-06 上海微电子装备(集团)股份有限公司 A kind of chip adsorbent equipment and chip bonding system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819927A (en) * 1994-07-04 1996-01-23 Kyocera Corp Vacuum sucking device and its manufacture
US5938512A (en) * 1996-12-27 1999-08-17 Shin-Etsu Handotai Co., Ltd. Wafer holding jig
JPH11309638A (en) * 1998-04-28 1999-11-09 Kyocera Corp Vacuum suction pad
JP2002036102A (en) * 2000-07-28 2002-02-05 Ibiden Co Ltd Wafer holding jig
JP2004510334A (en) * 2000-09-27 2004-04-02 ストラスバウ Method for back-polishing a wafer while leaving a back polishing tape on the chuck
JP2004306254A (en) * 2003-03-27 2004-11-04 Ibiden Co Ltd Vacuum chuck
JP2008166312A (en) * 2006-12-26 2008-07-17 Kyocera Corp Vacuum chuck and vacuum sucker employing it
JP2011258846A (en) * 2010-06-11 2011-12-22 Sintokogio Ltd Suction member and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819927A (en) * 1994-07-04 1996-01-23 Kyocera Corp Vacuum sucking device and its manufacture
US5938512A (en) * 1996-12-27 1999-08-17 Shin-Etsu Handotai Co., Ltd. Wafer holding jig
JPH11309638A (en) * 1998-04-28 1999-11-09 Kyocera Corp Vacuum suction pad
JP2002036102A (en) * 2000-07-28 2002-02-05 Ibiden Co Ltd Wafer holding jig
JP2004510334A (en) * 2000-09-27 2004-04-02 ストラスバウ Method for back-polishing a wafer while leaving a back polishing tape on the chuck
JP2004306254A (en) * 2003-03-27 2004-11-04 Ibiden Co Ltd Vacuum chuck
JP2008166312A (en) * 2006-12-26 2008-07-17 Kyocera Corp Vacuum chuck and vacuum sucker employing it
JP2011258846A (en) * 2010-06-11 2011-12-22 Sintokogio Ltd Suction member and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019096717A (en) * 2017-11-22 2019-06-20 日本特殊陶業株式会社 Substrate suction member and manufacturing method thereof
CN110098143A (en) * 2018-01-31 2019-08-06 上海微电子装备(集团)股份有限公司 A kind of chip adsorbent equipment and chip bonding system
CN110098143B (en) * 2018-01-31 2021-06-04 上海微电子装备(集团)股份有限公司 Chip adsorption device and chip bonding system

Similar Documents

Publication Publication Date Title
CN100467210C (en) Vacuum chuck and suction board
JPS63210148A (en) Plastic sinter for vacuum chuck
JP2008132562A (en) Vacuum chuck and vacuum suction device using it
JP5730071B2 (en) Adsorption member
JP2008211098A (en) Vacuum suction apparatus, manufacturing method thereof and method of sucking object to be sucked
JP3880977B2 (en) Vacuum chuck
JP4502683B2 (en) Porous alumina sintered body and method for producing the same
JP5261057B2 (en) Suction board and vacuum suction device
JP2008211097A (en) Vacuum suction apparatus and manufacturing method thereof
KR20080048947A (en) Cmp conditioner
JP2016072350A (en) Member for adsorption
JP3325441B2 (en) Vacuum suction device
JP4703590B2 (en) Vacuum adsorption apparatus and adsorption method using the same
JP5046859B2 (en) Bonded body, adsorbing member, adsorbing apparatus and processing apparatus
JP4545536B2 (en) Vacuum suction jig
JP4948920B2 (en) Vacuum chuck and vacuum suction device using the same
JP2005279789A (en) Vacuum chuck for grinding/polishing
JP2004283936A (en) Vacuum sucking device
JP2012069557A (en) Porous chuck and method of manufacturing same
JP4964910B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2004296898A (en) Vacuum chuck
JP2006093492A (en) Vacuum suction apparatus
JP2005118979A (en) Grinding/polishing vacuum chuck and sucking plate
JP2009253247A (en) Suction body for vacuum suction apparatus, and vacuum suction apparatus
JP2007180102A (en) Suction body and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190122