JP2016069939A - Substructure using insulation formwork, construction method, and pressure-resistant slab type grid post-foundation forming method - Google Patents

Substructure using insulation formwork, construction method, and pressure-resistant slab type grid post-foundation forming method Download PDF

Info

Publication number
JP2016069939A
JP2016069939A JP2014200887A JP2014200887A JP2016069939A JP 2016069939 A JP2016069939 A JP 2016069939A JP 2014200887 A JP2014200887 A JP 2014200887A JP 2014200887 A JP2014200887 A JP 2014200887A JP 2016069939 A JP2016069939 A JP 2016069939A
Authority
JP
Japan
Prior art keywords
formwork
mold
heat insulation
heat
pressure plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014200887A
Other languages
Japanese (ja)
Other versions
JP6418524B2 (en
Inventor
手塚 純一
Junichi Tezuka
純一 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J Arch System Inc
J Architecture System Inc
Original Assignee
J Arch System Inc
J Architecture System Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Arch System Inc, J Architecture System Inc filed Critical J Arch System Inc
Priority to JP2014200887A priority Critical patent/JP6418524B2/en
Publication of JP2016069939A publication Critical patent/JP2016069939A/en
Application granted granted Critical
Publication of JP6418524B2 publication Critical patent/JP6418524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substructure using insulation formwork, the substructure that eliminates concerns such as damages of the insulation formwork, furthermore can sufficiently secure a concrete placement volume, and thereby can secure the reinforced concrete section performance and retain high construction quality and thermal insulation performance.SOLUTION: Insulation formwork 10 has a pair of formwork plates 11 and 12 made of synthetic resin foam and a metallic connecting member 13 for connecting both formwork plates while being spaced at regular intervals by both ends buried and fixed in the formwork plates, respectively. The insulation formwork is installed in a construction place of an outer circumference base beam 2. An opening part 20 is secured in a height of a pressure-resistant slab 3 and concrete is placed, and thereby a substructure 1 using the insulation formwork is constructed in which the outer circumference base beam 2 and the pressure-resistant slab 3 are integrated.SELECTED DRAWING: Figure 7

Description

本発明は、断熱性能を有した断熱型枠を捨て型枠として外周基礎梁を構築した断熱型枠を用いた基礎構造、施工方法及び耐圧版式グリッドポスト基礎の形成方法に関するものである。   TECHNICAL FIELD The present invention relates to a foundation structure, a construction method, and a pressure plate type grid post foundation forming method using a heat insulation form frame in which an outer peripheral foundation beam is constructed using a heat insulation form having heat insulation performance as a discarded form frame.

特許文献1に、家屋の基礎などに埋め込み施工される断熱型枠(型枠ブロックともよばれる)の例と、その断熱型枠を用いて基礎梁を施工する方法の例が記載されている。この特許文献1に記載された断熱型枠は、一定間隔をあけて平行配置された一対の合成樹脂発泡体からなる型枠板を連結部でつないだ樹脂一体成形の断熱型枠である。   Patent Document 1 describes an example of a heat insulating formwork (also referred to as a formwork block) embedded in a foundation of a house and an example of a method for constructing a foundation beam using the heat insulating formwork. The heat insulation form described in Patent Document 1 is a resin-integrated heat insulation form formed by connecting a pair of form plates made of a synthetic resin foam arranged in parallel with a predetermined interval at a connecting portion.

ところで、このような断熱型枠を使用して家屋の基礎梁を構築する場合、シロアリ駆除用の薬品を注入することがあるが、この薬品が樹脂同士の結合力を弱める懸念があった。   By the way, when constructing a foundation beam of a house using such a heat-insulating formwork, a chemical for termite control may be injected, but there is a concern that this chemical weakens the bonding force between the resins.

特許第3700327号公報Japanese Patent No. 3730347

このため、施工時に最も負荷がかかる型枠板と連結部との接合部が損傷するおそれがあり、断熱型枠が損傷した場合には施工品質が悪くなる可能性があった。   For this reason, there exists a possibility that the junction part of the formwork board and connection part which are most loaded at the time of construction may be damaged, and when a heat insulation formwork was damaged, construction quality may deteriorate.

また、樹脂で一体成形された断熱型枠の連結部は、連結強度の確保のために断面寸法が大きくならざるを得ないので、その分コンクリートの打設容積が減り、コンクリート強度の低下を招くおそれがあった。   In addition, since the connecting portion of the heat-insulated mold integrally formed with resin has to have a large cross-sectional dimension in order to ensure the connecting strength, the concrete placement volume is reduced accordingly, and the concrete strength is reduced. There was a fear.

本発明は、上記事情を考慮し、シロアリ駆除用の薬品を注入して製造しても断熱型枠が損傷するような懸念がなく、しかも、コンクリートの打設容積を十分に確保でき、それにより、鉄筋コンクリート断面性能の確保と高い施工品質・断熱性能を保持することのできる断熱型枠を用いた基礎構造、施工方法及び耐圧版式グリッドポスト基礎の形成方法を提供することを目的とする。   In consideration of the above circumstances, the present invention has no concern that the heat insulation formwork may be damaged even if it is manufactured by injecting chemicals for termite control, and can sufficiently secure the concrete placement volume, An object of the present invention is to provide a foundation structure, construction method, and pressure plate type grid post foundation formation method using a heat insulating formwork capable of ensuring reinforced concrete cross-sectional performance and maintaining high construction quality and heat insulation performance.

上記課題を解決するために、請求項1の発明の断熱型枠を用いた基礎構造は、一定間隔をあけて互いに平行に配置され、両者間がコンクリートの打設空間とされた一対の合成樹脂発泡体製の型枠板と、両端が前記一対の型枠板の中にそれぞれ埋設固定されることで、前記両型枠板を前記一定間隔をあけた状態で連結する金属製の連結部材と、を有する断熱型枠が、外周基礎梁の捨て型枠として利用され、当該捨て型枠として利用された前記断熱型枠の内周側の前記型枠板の耐圧版の高さに相当する位置に、耐圧版下型枠の上側の耐圧版コンクリート打設空間に連通する開口部が確保され、前記断熱型枠の内部に外周基礎梁用の鉄筋が配置され、前記耐圧版下型枠の上側に耐圧版用の鉄筋が配置され、更に前記開口部を通して前記耐圧版下型枠の上側から前記断熱型枠の内部まで繋ぎの鉄筋が配置され、その上で、前記断熱型枠の内部空間及び耐圧版下型枠の上側の耐圧版コンクリート打設空間にコンクリートが打設されることにより、外周基礎梁と耐圧版とが一体に構築されていることを特徴としている。   In order to solve the above-mentioned problem, the basic structure using the heat insulating form of the invention of claim 1 is a pair of synthetic resins which are arranged in parallel with each other at a predetermined interval and between which a concrete is placed. A foam-made form plate, and a metal connecting member for connecting the two form-plates in a state of being spaced apart by both ends being embedded and fixed in the pair of form-plates, respectively. Is used as a discarded formwork of the outer peripheral foundation beam, and the position corresponding to the height of the pressure plate of the formwork plate on the inner peripheral side of the heat-insulated formwork used as the discarded formwork In addition, an opening communicating with the pressure plate concrete placement space on the upper side of the pressure plate lower formwork is secured, and reinforcing bars for outer peripheral foundation beams are arranged inside the heat insulation formwork, and the upper side of the pressure plate lower formwork A pressure-resistant plate rebar is disposed in the opening, and further through the opening, the pressure-resistant plate mold Reinforcing bars are arranged from the upper side to the inside of the heat insulation formwork, and then, concrete is placed in the internal space of the heat insulation formwork and the pressure plate concrete placement space above the pressure plate lower formwork. Thus, the outer peripheral foundation beam and the pressure plate are constructed integrally.

請求項1の発明の断熱型枠を用いた基礎構造によれば、断熱型枠を捨て型枠として施工する外周基礎梁と、耐圧版とを、断熱型枠に設けた開口部を通して、1回のコンクリート打設によって一体に形成することができるため、施工の容易化が図れる。また、断熱型枠の内周側の型枠板に確保した開口部の高さに耐圧版が構築されるため、外周基礎梁の上端の位置に建物の床の高さを合わせた場合、耐圧版と床との間に床下空間を確保することができる。   According to the foundation structure using the heat insulation formwork of the invention of claim 1, the outer peripheral foundation beam for constructing the heat insulation formwork as a discarded formwork and the pressure-resistant plate once through the opening provided in the heat insulation formwork. Since it can be formed integrally by placing concrete in this manner, construction can be facilitated. In addition, since the pressure-resistant plate is constructed at the height of the opening secured in the formwork plate on the inner circumference side of the heat-insulated formwork, An underfloor space can be secured between the plate and the floor.

また、この断熱型枠を用いた基礎構造において外周基礎梁の捨て型枠として利用する断熱型枠は、一対の合成樹脂発泡体製の型枠板を連結するための連結部材が金属製とされているため、小さな断面積で十分な連結強度を発揮することができる。また、その連結部材の両端を合成樹脂発泡体製の型枠板の中に埋設固定しているため、型枠板と連結部材の接合強度を十分に発揮することができる。したがって、両型枠板を一定間隔をあけて確実に保持することができ、施工時に損傷するおそれがなく、施工品質を高めることができる。また、金属製の連結部材は、強度の点から断面積が小さくて済むため、コンクリートの打設容積を大きく確保することができ、高い鉄筋コンクリート強度を持つ外周基礎梁を構築することができる。その結果、外周基礎梁と耐圧版とが一体になった断熱型枠を用いた基礎構造、特に水平力に対する剛性や不同沈下に対する剛性の高い断熱型枠を用いた基礎構造を、簡単な施工方法でコストをかけずに得ることができる。   In addition, in the heat insulation formwork used as the discarded formwork of the outer peripheral foundation beam in the foundation structure using this heat insulation formwork, the connecting member for connecting a pair of synthetic resin foam formplates is made of metal. Therefore, sufficient connection strength can be exhibited with a small cross-sectional area. Moreover, since the both ends of the connecting member are embedded and fixed in the mold plate made of the synthetic resin foam, the bonding strength between the mold plate and the connecting member can be sufficiently exhibited. Therefore, both mold frame plates can be reliably held at regular intervals, there is no risk of damage during construction, and construction quality can be improved. Further, since the metal connecting member has a small cross-sectional area from the viewpoint of strength, it is possible to secure a large concrete placement volume and to construct an outer peripheral foundation beam having high reinforced concrete strength. As a result, a simple construction method for a foundation structure using a heat-insulated formwork in which the outer peripheral foundation beam and the pressure plate are integrated, especially a foundation structure using a heat-insulated formwork with high rigidity against horizontal force and uneven settlement. Can be obtained without cost.

請求項2の発明の断熱型枠を用いた基礎構造は、請求項1に記載の断熱基礎構造であって、前記耐圧版の上面の所定位置に、該耐圧版の施工後に後付けでグリッドポストとして束石用柱状体が設置されていることを特徴としている。   The foundation structure using the heat insulation formwork of the invention of claim 2 is the heat insulation foundation structure according to claim 1, wherein a grid post is installed after installation of the pressure plate at a predetermined position on the upper surface of the pressure plate. It is characterized by a columnar body for boulders.

請求項2の発明の断熱型枠を用いた基礎構造によれば、耐圧版の上面にグリッドポストとしての束石用柱状体を設置しているため、中布基礎のような立上がり壁を無くすことができて、床下の空間を広げることができる。その結果として、床下の通風性を良くすることができると共に、床下のメンテナンス性を高めることができる。また、耐圧版の施工後に束石用柱状体を設置するだけでよいため、中布基礎を設ける場合のように、余計な型枠の設置や撤去が不要であり、広い作業スペースを確保できて作業性の向上が図れる共に、工期短縮とコストダウンを図ることができる。   According to the foundation structure using the heat-insulating form of the invention of claim 2, since the boulder pillars as the grid posts are installed on the upper surface of the pressure plate, the rising wall such as the inner cloth foundation is eliminated. Can expand the space under the floor. As a result, the air permeability under the floor can be improved, and the maintainability under the floor can be improved. In addition, since it is only necessary to install a column for bundling after the pressure plate is installed, there is no need to install or remove extra formwork, as in the case of providing a padding foundation, and a large work space can be secured. The workability can be improved and the work period can be shortened and the cost can be reduced.

請求項3の発明の断熱型枠を用いた基礎構造は、請求項2に記載の断熱基礎構造であって、少なくとも1箇所の前記束石用柱状体の下側の前記耐圧版の内部に地中梁が構築されていることを特徴としている。   The foundation structure using the heat insulation formwork of the invention of claim 3 is the heat insulation foundation structure according to claim 2, wherein the ground structure is formed inside the pressure plate at the lower side of the at least one columnar body for bundling. It is characterized by a built-in beam.

請求項3の発明の断熱型枠を用いた基礎構造によれば、少なくとも1箇所の束石用柱状体の下側の耐圧版の内部に地中梁を構築しているため、当該部分の支持強度を充分に高めることができる。   According to the basic structure using the heat insulation form of the invention of claim 3, since the underground beam is built inside the pressure plate on the lower side of the columnar body for bundling at least one place, The strength can be sufficiently increased.

請求項4の発明の断熱型枠を用いた基礎構造は、請求項1〜3のいずれかに記載の断熱型枠を用いた基礎構造であって、前記耐圧版下型枠として、砕石により形成された型枠が用いられており、その上に防湿シートを介してコンクリートが打設されることで、前記耐圧版が構築されていることを特徴としている。   The foundation structure using the heat insulation formwork of the invention of claim 4 is a foundation structure using the heat insulation formwork according to any one of claims 1 to 3, and is formed of crushed stone as the pressure-resistant lower formwork form. The above-mentioned pressure-resistant plate is constructed by placing concrete on the formwork via a moisture-proof sheet.

請求項4の発明の断熱型枠を用いた基礎構造によれば、耐圧版下型枠として、砕石により形成された型枠を用いており、その上に防湿シートを介してコンクリートを打設することで耐圧版を構築しているため、特別に作製した型枠が不要であり、施工コストの低減が図れる。   According to the basic structure using the heat-insulating form of the invention of claim 4, the form formed of crushed stone is used as the pressure-resistant plate form, and concrete is placed thereon via a moisture-proof sheet. Thus, since the pressure plate is constructed, a specially produced formwork is unnecessary, and the construction cost can be reduced.

請求項5の発明の断熱型枠を用いた基礎構造は、請求項1〜4のいずれかに記載の断熱型枠を用いた基礎構造であって、前記外周基礎梁の延在方向を前記断熱型枠の長手方向とするとき、前記断熱型枠が長手方向に多数接続されると共に上下方向に積段されており、積段された複数の前記断熱型枠のうちの1段の断熱型枠の内周側の型枠板の高さ方向寸法が外周側の型枠板の高さ方向寸法より短く設定されていることにより、積段された前記上下の断熱型枠の内周側の型枠板間に前記開口部が確保され、その開口部を確保するために、前記上下の断熱型枠の内周側の型枠板間に、下側の断熱型枠の内周側の型枠板に上側の断熱型枠の内周側の型枠板の荷重を伝える支持部材が設けられていることを特徴としている。   The foundation structure using the heat insulation formwork of the invention of claim 5 is the foundation structure using the heat insulation formwork according to any one of claims 1 to 4, wherein the extension direction of the outer peripheral foundation beam is defined as the heat insulation form. When it is set as the longitudinal direction of the mold, a large number of the heat insulating molds are connected in the longitudinal direction and stacked in the vertical direction, and one heat insulating mold of the plurality of stacked heat insulating molds The inner peripheral mold of the upper and lower heat-insulating molds stacked in the height direction dimension of the inner peripheral mold form plate is set to be shorter than the height dimension of the outer peripheral mold form plate. The opening is secured between the frame plates, and in order to ensure the opening, the inner peripheral formwork of the lower heat insulation formwork is provided between the inner peripheral formwork plates of the upper and lower heat insulation formwork. The board is provided with a support member for transmitting a load of the inner peripheral formwork plate of the upper heat insulating formwork.

請求項5の発明の断熱型枠を用いた基礎構造によれば、断熱型枠の内周側の上下型枠板間に支持部材を配置して開口部を確保しているため、その開口部を通して外周基礎梁と耐圧版とを鉄筋コンクリートでスムーズに繋ぐことができる。   According to the basic structure using the heat insulating form of the invention of claim 5, since the opening is secured by arranging the support member between the upper and lower form plates on the inner peripheral side of the heat insulating form, the opening The peripheral foundation beam and the pressure plate can be smoothly connected through reinforced concrete.

請求項6の発明の断熱型枠を用いた基礎構造は、請求項5に記載の断熱型枠を用いた基礎構造であって、積段された上段の前記断熱型枠の長手方向の接続位置とその下段の前記断熱型枠の長手方向の接続位置とが長手方向にずれていることを特徴としている。   The foundation structure using the heat insulation formwork of the invention of claim 6 is a base structure using the heat insulation formwork of claim 5, and is a connection position in the longitudinal direction of the heat insulation formwork of the upper stage stacked. And the connection position in the longitudinal direction of the heat-insulating mold at the lower stage thereof are shifted in the longitudinal direction.

請求項6の発明の断熱型枠を用いた基礎構造によれば、上段の断熱型枠の長手方向の接続位置と下段の断熱型枠の長手方向の接続位置とをずらしているため、上段の断熱型枠(下段の断熱型枠)の接続箇所を、下段の断熱型枠(上段の断熱型枠)が繋ぐことができる。したがって、上段と下段の断熱型枠の接続位置が重なることによる、型枠の組立強度の低下を回避することができる。また、型枠間に無用な隙間ができにくくなり、施工品質の向上に貢献することができる。   According to the basic structure using the heat insulation form of the invention of claim 6, the longitudinal connection position of the upper heat insulation mold and the connection position in the longitudinal direction of the lower heat insulation form are shifted. The connection part of the heat insulation formwork (lower heat insulation formwork) can be connected to the lower heat insulation formwork (upper heat insulation formwork). Therefore, it is possible to avoid a decrease in the assembly strength of the mold due to the connection positions of the upper and lower heat insulating molds overlapping. Moreover, it becomes difficult to make useless gaps between the molds, which can contribute to improvement of construction quality.

請求項7の発明の断熱型枠を用いた基礎構造は、請求項5または6に記載の断熱型枠を用いた基礎構造であって、直線状に前記外周基礎梁が延びる直線部に対応した直線状の前記断熱型枠と、L字状に前記外周基礎梁が曲がるコーナー部に対応したL字状の前記断熱型枠とが利用され、前記直線部に前記直線状の断熱型枠が配置され、前記コーナー部に前記L字状の断熱型枠が配置されていることを特徴としている。   The foundation structure using the heat insulation formwork of the invention of claim 7 is a foundation structure using the heat insulation formwork according to claim 5 or 6, and corresponds to a straight portion in which the outer peripheral foundation beam extends linearly. The linear heat-insulating form and the L-shaped heat-insulating form corresponding to a corner portion where the outer peripheral foundation beam is bent in an L-shape are used, and the linear heat-insulating form is disposed in the straight part. The L-shaped heat insulation formwork is arranged at the corner portion.

請求項7の発明の断熱型枠を用いた基礎構造によれば、直線状の断熱型枠とL字状の断熱型枠を予め用意して外周基礎梁の型枠を構築するため、型枠施工の容易化を図ることができる。   According to the foundation structure using the heat insulating form of the invention of claim 7, in order to construct a form of the outer peripheral foundation beam by preparing a linear heat insulating form and an L-shaped heat insulating form in advance, Construction can be facilitated.

請求項8の発明の断熱型枠を用いた基礎構造の施工方法は、一定間隔をあけて互いに平行に配置され、両者間がコンクリートの打設空間とされた一対の合成樹脂発泡体製の型枠板と、両端が前記一対の型枠板の中にそれぞれ埋設固定されることで、前記両型枠板を前記一定間隔をあけた状態で連結する金属製の連結部材と、を有する断熱型枠を、外周基礎梁の施工箇所に捨て型枠として設置し、その際、前記断熱型枠の内周側の前記型枠板の耐圧版の高さに相当する位置に、耐圧版下型枠の上側の耐圧版コンクリート打設空間に連通する開口部を確保し、前記断熱型枠の内部に外周基礎梁用の鉄筋を配置すると共に耐圧版下型枠の上側に耐圧版の鉄筋を配置し、更に前記開口部を通して前記耐圧版下型枠の上側から前記断熱型枠の内部まで繋ぎの鉄筋を配置し、その上で、前記断熱型枠の内部空間及び耐圧版下型枠の上側の耐圧版コンクリート打設空間にコンクリートを打設することにより、外周基礎梁と耐圧版とが一体になった基礎を構築することを特徴としている。   The construction method of the foundation structure using the heat insulation form of the invention of claim 8 is a pair of synthetic resin foam molds arranged in parallel with each other at a predetermined interval, and between them as a concrete placement space. A heat insulating mold having a frame plate and a metal connecting member for connecting both mold plates in the state of being spaced apart by being embedded and fixed at both ends in the pair of mold plates. The frame is disposed as a discarded mold frame at the construction site of the outer peripheral foundation beam. At that time, the pressure-resistant plate mold is located at a position corresponding to the height of the pressure-resistant plate of the mold plate on the inner peripheral side of the heat-insulating mold frame. An opening communicating with the upper pressure plate concrete placing space is secured, and reinforcing bars for the outer peripheral foundation beam are arranged inside the heat insulation formwork and a pressure plate reinforcement is placed on the upper side of the pressure plate lower formwork. Furthermore, it connects from the upper side of the pressure-resistant plate lower mold to the inside of the heat insulation mold through the opening. By placing concrete in the inner space of the heat insulation formwork and the pressure plate concrete placing space above the pressure plate lower formwork, the outer foundation foundation beam and the pressure plate are integrated. It is characterized by building a basic.

請求項8の発明の断熱型枠を用いた基礎構造の施工方法によれば、コンクリートの打設容積の拡大を図りながら十分な強度を発揮できる断熱型枠を用いて外周基礎梁を施工するため、高いコンクリート強度を確保することができると共に、施工品質を高めることができる。また、外周基礎梁と耐圧版とを1回のコンクリート打設によって施工できることから、施工の容易化が図れる。   According to the construction method of the foundation structure using the heat insulation formwork of the invention of claim 8, in order to construct the outer peripheral foundation beam using the heat insulation formwork that can exhibit sufficient strength while increasing the placement volume of the concrete In addition to ensuring high concrete strength, construction quality can be improved. Moreover, since the outer peripheral foundation beam and the pressure plate can be constructed by a single concrete placement, the construction can be facilitated.

請求項9の発明の耐圧版式グリッドポスト基礎の形成方法は、請求項8に記載の断熱基礎構造の施工方法であって、前記耐圧版を地盤面下で施工し、耐圧版内における束石用柱状体の配設予定箇所の下面に補強用の地中梁を構築し、束石用柱状体の配設予定箇所の上面にグリッドポストとしての束石用柱状体を設置することを特徴としている。   A method for forming a pressure-proof plate-type grid post foundation according to the invention of claim 9 is a method for constructing a heat-insulating foundation structure according to claim 8, wherein the pressure-resistant plate is applied under the ground surface and is used for bundling in the pressure-resistant plate. It is characterized by constructing an underground beam for reinforcement on the lower surface of the planned location of the columnar body, and installing a baststone columnar body as a grid post on the upper surface of the planned location of the columnar body for the boulder stone. .

請求項9の発明の耐圧版式グリッドポスト基礎の形成方法によれば、外周基礎梁の内周側で耐圧版を地盤面下で施工し、耐圧版内に補強用の地中梁を構築し、その地中梁の上に、グリッドポストとしての束石用柱状体を設置することにより、床下空間の通気性を確保しながら、高い強度を発揮し得る耐圧版式グリッドポスト基礎構造を作ることができる。   According to the pressure plate type grid post foundation forming method of the invention of claim 9, the pressure plate is constructed under the ground surface on the inner peripheral side of the outer peripheral foundation beam, and a reinforcing underground beam is constructed in the pressure plate, By installing a boulder column as a grid post on the underground beam, it is possible to create a pressure-resistant plate post structure that can exhibit high strength while ensuring air permeability in the underfloor space. .

本発明によれば、断熱型枠が損傷するような懸念がなく、しかも、コンクリートの打設容積を十分に確保でき、それにより、鉄筋コンクリート断面性能の確保と高い施工品質・断熱性能を保持することのできる断熱型枠を用いた基礎構造、断熱型枠を用いた基礎構造の施工方法及び耐圧版式グリッドポスト基礎の形成方法を提供することができる。   According to the present invention, there is no concern that the heat-insulated formwork will be damaged, and the concrete placement volume can be sufficiently secured, thereby ensuring the cross-sectional performance of the reinforced concrete and maintaining high construction quality and heat insulation performance. It is possible to provide a foundation structure using a heat-insulating mold, a construction method for the foundation using a heat-insulating mold, and a method for forming a pressure-resistant plate post foundation.

本発明の実施形態の断熱型枠を用いた基礎構造の外観を示す概略斜視図である。It is a schematic perspective view which shows the external appearance of the basic structure using the heat insulation formwork of embodiment of this invention. 同断熱型枠を用いた基礎構造の概略平面図である。It is a schematic plan view of the basic structure using the heat insulation formwork. (a)は図2のA−A矢視断面図の一の例であり、(b)は図2のA−A矢視断面図の他の例である。(A) is an example of the AA arrow sectional drawing of FIG. 2, (b) is the other example of the AA arrow sectional drawing of FIG. 同実施形態で用いる断熱型枠を示す正面図で、(a)は左右の型枠板の上端の高さが同一に設定されたタイプAの断熱型枠の正面図、(b)は一方の型枠板の上端が他方の型枠板の上端よりも高くなるように設定されたタイプBの断熱型枠の正面図、(c)は左右の型枠板の上端の高さがタイプAよりも低い位置で同一に設定されたタイプCの断熱型枠の正面図である。It is a front view which shows the heat insulation formwork used in the embodiment, (a) is a front view of the heat insulation formwork of type A in which the heights of the upper ends of the left and right formwork plates are set to be the same, and (b) is one of The front view of the heat insulation formwork of the type B set so that the upper end of a formwork board may become higher than the upper end of the other formwork board, (c) is the height of the upper end of a left and right formwork board from type A It is a front view of the heat insulation formwork of type C set equally in the lower position. 前記断熱型枠に使用されている金属製の連結部材(橋渡し材ともいう)の構成を示す斜視図である。It is a perspective view which shows the structure of the metal connection members (it is also called a bridging material) currently used for the said heat insulation formwork. 同実施形態で用いるコーナー部用のEタイプとFタイプの2種類の上から見た形状がL字状の断熱型枠の例を示す斜視図である。It is a perspective view which shows the example of the heat insulation form which the shape seen from two types, E type and F type for corner parts used in the embodiment. 同実施形態の断熱型枠を用いた基礎構造の施工時の状態を示す側断面図である。It is a sectional side view which shows the state at the time of construction of the foundation structure using the heat insulation formwork of the embodiment. 図7に示す支持部材の説明図である。It is explanatory drawing of the supporting member shown in FIG. 同実施形態の断熱型枠を用いた基礎構造の施工手順の説明用の斜視図(1)である。It is a perspective view (1) for description of the construction procedure of the foundation structure using the heat insulation formwork of the embodiment. 図9の次の工程内容の説明用の斜視図(2)である。It is a perspective view (2) for description of the following process content of FIG. 図10の次の工程内容の説明用の斜視図(3)である。It is a perspective view (3) for description of the following process content of FIG. 同実施形態の断熱型枠を用いた基礎構造のコーナー部における断熱型枠の積段の仕方の説明用の斜視図である。It is a perspective view for explanation of how to stack the heat insulation formwork at the corner portion of the foundation structure using the heat insulation formwork of the embodiment. 図7に示した場合よりも深い位置まで外周基礎梁の下端を延ばす場合の施工時の状態を示す側断面図である。It is a sectional side view which shows the state at the time of construction in the case of extending the lower end of an outer periphery foundation beam to a deeper position than the case shown in FIG. 本実施形態における断熱型枠の別の態様を示す正面図((a)〜(c))および斜視図((d)〜(e))。The front view ((a)-(c)) and perspective view ((d)-(e)) which show another aspect of the heat insulation formwork in this embodiment. 本実施形態の別の態様における断熱型枠を用いた基礎構造の施工途中の状態を示す斜視図である。It is a perspective view which shows the state in the middle of construction of the foundation structure using the heat insulation formwork in another aspect of this embodiment. 本実施形態の別の態様における断熱型枠を用いた基礎構造の施工途中の状態を示す断面図である。It is sectional drawing which shows the state in the middle of construction of the foundation structure using the heat insulation formwork in another aspect of this embodiment.

以下、本発明の実施形態を図面を参照して説明する。
図1は本実施形態の断熱型枠を用いた基礎構造の外観を示す概略斜視図、図2は同断熱基礎構造の概略平面図、図3は図2のA−A矢視断面図であり、(a)、(b)の2例を図示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic perspective view showing the external appearance of a foundation structure using the heat insulation formwork of the present embodiment, FIG. 2 is a schematic plan view of the heat insulation foundation structure, and FIG. 3 is a cross-sectional view taken along the line AA in FIG. , (A) and (b) are shown in two examples.

図1〜図3に示すように、本実施形態の断熱型枠を用いた基礎構造1(以下、断熱基礎構造1ともいう)では、断熱型枠10(図3(a)、(b)参照)を外周基礎梁2の施工箇所に捨て型枠として設置し、外周基礎梁2の施工と同時に、外周基礎梁2の内側に地盤面GL下で耐圧版3を施工し、それにより、耐圧版3と外周基礎梁2とを一体に形成している。また、耐圧版3の施工後に、耐圧版3上の所定箇所に、後付けでグリッドポストとしての束石用柱状体4を設置固定している。   As shown in FIGS. 1-3, in the foundation structure 1 (henceforth the heat insulation foundation structure 1) using the heat insulation formwork of this embodiment, the heat insulation formwork 10 (refer FIG. 3 (a), (b)). ) Is installed at the construction site of the outer foundation beam 2 as a formwork, and at the same time as the outer foundation beam 2, the pressure plate 3 is installed inside the outer foundation beam 2 under the ground surface GL. 3 and the outer peripheral foundation beam 2 are integrally formed. In addition, after the pressure plate 3 is installed, a boulder columnar body 4 as a grid post is installed and fixed at a predetermined location on the pressure plate 3 as a retrofit.

この断熱基礎構造1の施工の際に、断熱型枠10の内周側の型枠板12の耐圧版3の高さに相当する位置に、耐圧版下型枠32の上側の耐圧版コンクリート打設空間3Aに連通する開口部20を確保する。そして、断熱型枠10の内部に外周基礎梁用の鉄筋26を配置し、耐圧版下型枠32の上側に耐圧版用の鉄筋27を配置し、更に開口部20を通して耐圧版下型枠32の上側から断熱型枠10の内部まで繋ぎの鉄筋27aを配置する。繋ぎの鉄筋27aは、例えば、耐圧版用の鉄筋27の一部を、断熱型枠10の内部に届く位置まで延長して、曲げたりすることで構成する。   During the construction of the heat insulating basic structure 1, the pressure-resistant plate concrete placement on the upper side of the pressure-resistant plate lower mold 32 is placed at a position corresponding to the height of the pressure-resistant plate 3 of the mold plate 12 on the inner peripheral side of the heat-insulating mold 10. An opening 20 communicating with the installation space 3A is secured. A reinforcing bar 26 for the outer peripheral foundation beam is arranged inside the heat insulating mold 10, a reinforcing bar 27 for pressure plate is arranged on the upper side of the pressure plate lower mold 32, and further the pressure plate lower mold 32 through the opening 20. Reinforcing bars 27a are arranged from the upper side to the inside of the heat insulating mold 10. The connecting reinforcing bar 27a is configured by, for example, extending and bending a part of the pressure-resistant plate reinforcing bar 27 to a position reaching the inside of the heat insulating mold 10.

その上で、断熱型枠10の内部空間(外周基礎梁コンクリート打設空間)2A及び耐圧版下型枠32の上側の耐圧版コンクリート打設空間3Aにコンクリート50を打設することにより、外周基礎梁2と耐圧版3とが一体に構築された、実施形態の断熱基礎構造1が構築されている。また、本実施形態では、コンクリート50を打設する前に、耐圧版下型枠32の上面にポリエチレンフィルム60を敷設し、その後、コンクリート50を打設している。このようにポリエチレンフィルム60を敷設することにより、コンクリート50打設前の捨てコンクリートを省略することができ、工期短縮・コスト削減を図ることができる。また、ポリエチレンフィルム60により、コンクリートのノロ流出を防止することができ、設計上の耐圧版厚さを確実に確保することができる。なお、ポリエチレンフィルム60は敷設しなくてもよい。   Then, the concrete 50 is placed in the inner space (outer foundation beam concrete placement space) 2A of the heat insulation mold 10 and the pressure plate concrete placement space 3A on the upper side of the pressure plate lower mold 32, so that the outer foundation is placed. The heat insulation basic structure 1 of the embodiment in which the beam 2 and the pressure plate 3 are integrally constructed is constructed. Further, in the present embodiment, before the concrete 50 is placed, the polyethylene film 60 is laid on the upper surface of the pressure plate lower mold 32, and then the concrete 50 is placed. By laying the polyethylene film 60 in this way, it is possible to omit the abandoned concrete before placing the concrete 50, thereby shortening the work period and reducing the cost. Further, the polyethylene film 60 can prevent the concrete from flowing out, and the design pressure plate thickness can be reliably ensured. The polyethylene film 60 may not be laid.

耐圧版下型枠32としては、本実施形態では、砕石により構成した型枠を直接用いており、その上にポリエチレンフィルム(防湿シート)60を敷いてコンクリート50を打設することで、耐圧版3を構築している。このように耐圧版3の型枠(耐圧版下型枠32)を砕石のみで構成した場合、その他の特別な型枠が不要になる利点がある。   In this embodiment, as the pressure-resistant plate lower mold 32, a mold made of crushed stone is directly used, and a concrete film 50 is placed on the polyethylene film (moisture-proof sheet) 60. 3 is built. Thus, when the formwork of the pressure plate 3 (pressure plate lower formwork 32) is composed only of crushed stone, there is an advantage that no other special formwork is required.

ここで、耐圧版3の内部には、図3に示すように、束石用柱状体4の配設予定箇所の下面に位置させて、必要に応じて、補強用の地中梁8を構築しておく。そして、束石用柱状体の配設予定箇所に予めアンカー材6を配置しておき、そのアンカー材を用いて後付けした束石用柱状体4を固定する。なお、束石用柱状体4の上端には、建物の土台や大引5などを固定するためのアンカー材を配置しておく。   Here, as shown in FIG. 3, a reinforcing underground beam 8 is constructed inside the pressure-resistant plate 3 as shown in FIG. Keep it. And the anchor material 6 is previously arrange | positioned in the arrangement | positioning plan location of the columnar body for bunch stones, and the columnar body 4 for bundling retrofitted using the anchor material is fixed. In addition, an anchor material for fixing the base of the building, the large drawing 5 and the like is arranged at the upper end of the boulder columnar body 4.

束石用柱状体4の断面形状は、十字型、T字型、L字型、I字型、O字型などから任意に選択可能である。また、束石用柱状体4の素材も、PC材、塩化ビニール、硬質プラスチック、鉄等から任意に選択可能である。また、耐圧版3の上に筒体を配置し、その筒体の内部にコンクリートを打設することで、束石用柱状体4を形成してもよい。   The cross-sectional shape of the boulder columnar body 4 can be arbitrarily selected from a cross shape, a T shape, an L shape, an I shape, an O shape, and the like. Moreover, the material of the columnar body 4 for the boulders can be arbitrarily selected from PC material, vinyl chloride, hard plastic, iron and the like. Moreover, the columnar body 4 for boulders may be formed by arranging a cylinder on the pressure plate 3 and placing concrete inside the cylinder.

次に上記断熱基礎構造1の施工方法について説明する。
図4は本実施形態で用いる断熱型枠を示す正面図で、(a)は左右の型枠板の上端の高さが同一に設定されたタイプAの断熱型枠の正面図、(b)は一方の型枠板の上端が他方の型枠板の上端よりも高くなるように設定されたタイプBの断熱型枠の正面図、(c)は左右の型枠板の上端の高さがタイプAよりも低い位置で同一に設定されたタイプCの断熱型枠の正面図、図5は同断熱型枠に使用されている金属製の連結部材(橋渡し材とも言う)の構成を示す斜視図、図6は本実施形態で用いるコーナー部用のEタイプとFタイプの2種類の上から見た形状がL字状の断熱型枠の例を示す斜視図である。
Next, the construction method of the said heat insulation basic structure 1 is demonstrated.
FIG. 4 is a front view showing the heat insulation mold used in the present embodiment. FIG. 4A is a front view of a type A heat insulation mold in which the heights of the upper ends of the left and right mold plates are set to be the same. Is a front view of a heat insulating mold of type B set so that the upper end of one mold plate is higher than the upper end of the other mold plate, (c) is the height of the upper ends of the left and right mold plates FIG. 5 is a perspective view showing a configuration of a metal connecting member (also referred to as a bridging material) used in the heat insulating mold, which is set at the same position at a position lower than Type A. FIG. FIG. 6 and FIG. 6 are perspective views showing an example of a heat-insulating form having an L-shaped shape as seen from above, two types of E-type and F-type for corner portions used in this embodiment.

ここでは、外周基礎梁2を構築するための捨て型枠として、基本的に、図4に示すように、高さの異なる3種類の断熱型枠10A、10B、10Cを使用している。これらは、直線状に外周基礎梁2が延びる直線部に対応した直線状の断熱型枠10A、10B、10Cである。これらの他に、L字状に外周基礎梁2が曲がるコーナー部に対応した図6に示すような、上から見た形状がL字状の断熱型枠10E、10Fも使用している。また、図4や図6には示さないが、高さ合わせのための、より小さい高さの断熱型枠も必要に応じて使用している。   Here, three types of heat-insulating molds 10A, 10B, and 10C having different heights are basically used as discard molds for constructing the outer peripheral foundation beam 2, as shown in FIG. These are the linear heat insulation formwork 10A, 10B, 10C corresponding to the linear part where the outer periphery foundation beam 2 extends linearly. In addition to these, heat-insulating molds 10E and 10F whose shapes viewed from above are L-shaped as shown in FIG. 6 corresponding to corner portions where the outer peripheral foundation beam 2 bends in an L-shape are also used. Moreover, although not shown in FIG.4 and FIG.6, the heat insulation formwork of the smaller height for the height adjustment is also used as needed.

図4に示すタイプA、B、Cの断熱型枠10A、10B、10Cは、一対の型枠板11、12と連結部材13とを有している。一対の型枠板11、12は、一定間隔をあけて互いに平行に配置され、両者間がコンクリートの打設空間16とされたものである。連結部材13は、両端が一対の型枠板11、12の中にそれぞれ埋設固定されることで、両型枠板11、12を前記一定間隔をあけた状態で連結する金属製の橋渡し材である。   The heat insulation molds 10A, 10B, and 10C of types A, B, and C shown in FIG. 4 have a pair of mold plates 11 and 12 and a connecting member 13. The pair of mold plates 11 and 12 are arranged in parallel with each other at a predetermined interval, and the space between them is a concrete placement space 16. The connecting member 13 is a metal bridging material that connects both the mold plates 11 and 12 with the predetermined interval between them by embedding and fixing both ends in the pair of mold plates 11 and 12. is there.

タイプA、B、Cの断熱型枠10A、10B、10Cの型枠板11、12の上端面には、少なくともコンクリートの打設空間16側に開口しないように嵌合凹部14が形成されている。また、タイプA、B、Cの断熱型枠10A、10B、10Cの型枠板11、12の下端面には、下段の断熱型枠10A、10B、10Cの上端面に形成された嵌合凹部14に嵌合する嵌合凸部15が形成されている。なお、最上段に配置する断熱型枠の上端面には、タイプによらず、嵌合凹部14は設けないようにする。また、最下段に配置する断熱型枠の下端面には、場合によって嵌合凸部15を形成しないでもよい。   A fitting recess 14 is formed on the upper end surfaces of the heat insulating molds 10A, 10B, and 10C of type A, B, and C so as not to open at least to the concrete placement space 16 side. . Further, the fitting recesses formed on the upper end surfaces of the lower heat-insulating molds 10A, 10B, and 10C are formed on the lower end surfaces of the heat-insulating molds 10A, 10B, and 10C of the type A, B, and C types. The fitting convex part 15 fitted to 14 is formed. In addition, it is made not to provide the fitting recessed part 14 in the upper end surface of the heat insulation formwork arrange | positioned in the uppermost stage irrespective of a type. Moreover, the fitting convex part 15 does not need to be formed in the lower end surface of the heat insulation form frame arrange | positioned in the lowest step depending on the case.

連結部材13は、図5に示すように、プレス加工された1枚の金属板よりなり、両型枠板11、12を橋渡しするウェブ部13aと、ウェブ部13aの両端13b、13bに直角に折り曲げ形成されたフランジ部13cとを有している。連結部材13の両端であるウェブ部13aの両端13b、13bとフランジ部13cには、合成樹脂発泡体で構成される型枠板11、12の成形時に金型内に挿入されることで、型枠板11、12の中に埋設される部分であり、それぞれ埋設された際の固定強度を高めるためのアンカー孔13dが形成されている。また、ウェブ部13aの中央上縁には間隔をあけて一対の鉄筋受け溝13eが形成され、ウェブ部13aの中央下縁には不要部カットのための切欠13fが形成されている。鉄筋受け溝13eは、必要に応じて配筋した横筋を受けることのできる部分に形成されている。   As shown in FIG. 5, the connecting member 13 is made of a pressed metal plate, and is perpendicular to the web portion 13 a that bridges both mold frame plates 11 and 12, and both ends 13 b and 13 b of the web portion 13 a. And a flange portion 13c formed by bending. By inserting the mold plates 11 and 12 made of synthetic resin foam into the molds at both ends 13b and 13b of the web part 13a and the flange part 13c, which are both ends of the connecting member 13, the mold An anchor hole 13d is formed to be embedded in the frame plates 11 and 12, and to increase the fixing strength when each is embedded. In addition, a pair of reinforcing bar receiving grooves 13e are formed at the center upper edge of the web portion 13a with a space therebetween, and a notch 13f for cutting unnecessary portions is formed at the center lower edge of the web portion 13a. The reinforcing bar receiving groove 13e is formed in a portion that can receive the lateral bars arranged as necessary.

一方、型枠板11、12は、軽量で断熱性及び耐久性、成形性及び量産性に優れた合成樹脂発泡体で構成されている。具体的には、ポリスチレン発泡体の独立気泡を有する合成樹脂発泡体で構成されていることが好ましいが、ポリエチレン(共重合体を含む)、ポリプロピレン(共重合体を含む)、ポリエチレン/ポリスチレン複合樹脂、アクリロニトリル/スチレン共重合体などからなる合成樹脂発泡体で構成されていてもよい。   On the other hand, the mold plates 11 and 12 are made of a synthetic resin foam that is lightweight and has excellent heat insulation and durability, moldability, and mass productivity. Specifically, it is preferably composed of a synthetic resin foam having closed cells of polystyrene foam, but polyethylene (including a copolymer), polypropylene (including a copolymer), polyethylene / polystyrene composite resin. Or a synthetic resin foam made of acrylonitrile / styrene copolymer or the like.

連結部材13は、両型枠板11、12の長手方向に一定間隔おきに複数個設けられている。連結部材13の無い箇所は、上下方向及び長手方向にコンクリート打設空間16が貫通している。なお、長手方向とは、構築すべき外周基礎梁2の延在する方向である。断熱型枠10A、10B、10Cは、長手方向の長さが適当な単位長さに設定されたブロックとして構成されている。   A plurality of connecting members 13 are provided at regular intervals in the longitudinal direction of both mold plates 11 and 12. The concrete placement space 16 penetrates in a vertical direction and a longitudinal direction at a place where the connecting member 13 is not provided. The longitudinal direction is the direction in which the outer peripheral foundation beam 2 to be constructed extends. The heat insulating molds 10A, 10B, and 10C are configured as blocks in which the length in the longitudinal direction is set to an appropriate unit length.

ここで、図4(a)に示すタイプAの断熱型枠10Aは、左右の型枠板11、12の上端の高さが同一に設定されたものである。また、図4(b)に示すタイプBの断熱型枠10Bは、一方の型枠板11の上端が他方の型枠板12の上端よりも高くなるように設定されたものである。また、図4の(c)に示すタイプCの断熱型枠10Cは、左右の型枠板11、12の上端の高さが、タイプAよりも低い位置で同一に設定されたものである。タイプBの断熱型枠10Bの左右の型枠板11の上端の高さの差は、後述する耐圧版(スラブ)の厚さと同等かそれよりも大きく設定されている。   Here, the type A heat-insulating formwork 10A shown in FIG. 4A is configured such that the heights of the upper ends of the left and right formwork plates 11 and 12 are set to be the same. 4B is set such that the upper end of one mold plate 11 is higher than the upper end of the other mold plate 12. As shown in FIG. In addition, the type C heat insulating mold 10C shown in FIG. 4C is configured such that the heights of the upper ends of the left and right mold plates 11 and 12 are set to be the same at a position lower than that of the type A. The difference in height between the upper ends of the left and right mold plates 11 of the type B heat insulating mold 10B is set to be equal to or greater than the thickness of a pressure plate (slab) described later.

図4(a)、(b)、(c)に示したタイプA、B、Cの断熱型枠10A、10B、10Cは、直線状に外周基礎梁2が延びる直線部に対応した直線状の断熱型枠であるが、L字状に外周基礎梁2が曲がるコーナー部には、図6に示すように、L字状に曲がったEタイプとFタイプの2種類の断熱型枠10E、10Fが使用されている。   The type A, B, and C heat insulating molds 10A, 10B, and 10C shown in FIGS. 4 (a), 4 (b), and 4 (c) have a linear shape corresponding to a linear portion in which the outer peripheral foundation beam 2 extends linearly. Although it is a heat insulation formwork, in the corner part where the outer periphery foundation beam 2 bends in L shape, as shown in FIG. 6, two types of heat insulation formwork 10E, 10F of E type and F type bent in L shape are shown. Is used.

これらタイプE、Fの断熱型枠10E、10Fも、タイプA、Bの断熱型枠10A、10Bと同様に、左右一対の型枠板11、12と、それらを連結する連結部材13とからなるものである。タイプEの断熱型枠10Eは、タイプAの断熱型枠10Aと同様に、左右の型枠板11、12の上端の高さが等しく設定されている。一方、タイプFの断熱型枠10Fは、タイプBの断熱型枠10Bと同様に、左右の型枠板11、12の上端の高さが段違いに設定されている。   The heat insulation molds 10E and 10F of type E and F are also composed of a pair of left and right mold plates 11 and 12 and a connecting member 13 for connecting them, like the heat insulation molds 10A and 10B of type A and B. Is. In the type E heat insulating mold 10E, the heights of the upper ends of the left and right mold plates 11 and 12 are set to be equal, as in the type A heat insulating mold 10A. On the other hand, the type F heat insulation formwork 10F is set to have different heights at the upper ends of the left and right formwork plates 11 and 12, similarly to the type B heat insulation formwork 10B.

また、左右の型枠板11、12は、図6に示すように、上から見た形状がL字状に曲がっており、曲がり部の両側の直線部分を両袖部10Ea、10Eb、10Fa、10Fbと呼ぶとき、両袖部10Ea、10Eb、10Fa、10Fbの長さが互いに異なっている。即ち、タイプEの断熱型枠10Eでは、図中左側の袖部10Eaの長さa1が、右側の袖部10Ebの長さb1よりも短くなっている。一方、タイプFの断熱型枠10Fでは、タイプEと反対に、図中左側の袖部10Faの長さa2が、右側の袖部10Fbの長さb2よりも長くなっている。   Further, as shown in FIG. 6, the left and right mold plates 11 and 12 are bent in an L shape when viewed from above, and the straight portions on both sides of the bent portion are the sleeve portions 10Ea, 10Eb, 10Fa, When called 10Fb, the lengths of the sleeve portions 10Ea, 10Eb, 10Fa, and 10Fb are different from each other. That is, in the type E heat-insulating formwork 10E, the length a1 of the left sleeve 10Ea in the drawing is shorter than the length b1 of the right sleeve 10Eb. On the other hand, in the type F heat insulating form 10F, the length a2 of the left sleeve 10Fa in the drawing is longer than the length b2 of the right sleeve 10Fb, contrary to the type E.

このように、左右両袖部10Ea、10Eb、10Fa、10Fbの長さの異なるタイプの断熱型枠10E、10Fを用意するのであるが、その際、左右両袖部10Ea、10Eb、10Fa、10Fbの長さが逆に設定された、いわゆる左右勝手違いタイプの断熱型枠(同じ符号10E、10Fで示す)も必要に応じて用意する。そして、左右両袖部10Ea、10Eb、10Fa、10Fbの長さが違う断熱型枠10E、10Fを上下に積段するときに、図12に示すように、上段の断熱型枠10E、10Fの長手方向の接続位置Pと、その下段の断熱型枠10E、10Fの長手方向の接続位置Pとが、長手方向にずれるように積み重ねる。そうすることで、外周基礎梁2の長手方向のどの位置(直線部)でも、上下の断熱型枠の接続位置Pがずれることになる。   Thus, the left and right sleeve portions 10Ea, 10Eb, 10Fa, and 10Fb are prepared with different types of heat insulating molds 10E and 10F. In this case, the left and right sleeve portions 10Ea, 10Eb, 10Fa, and 10Fb are prepared. A so-called right-and-left heat-insulating form (represented by the same reference numerals 10E and 10F) whose length is set in reverse is also prepared as necessary. When the left and right sleeve portions 10Ea, 10Eb, 10Fa, and 10Fb have different lengths, when the heat insulating molds 10E and 10F are stacked up and down, as shown in FIG. The connection position P in the direction and the connection position P in the longitudinal direction of the heat insulating molds 10E and 10F in the lower stage are stacked so as to be shifted in the longitudinal direction. By doing so, the connection position P of the upper and lower heat insulation formwork will shift at any position (straight portion) in the longitudinal direction of the outer peripheral foundation beam 2.

本実施形態の断熱基礎構造を施工する場合は、例えば、図7及び図9に示すように、まず、外周地中梁の構築箇所の根掘り・砕石地業を行う。即ち、地面に溝を掘って、溝内に砕石31を敷設し、その上に捨てコンクリート25を打設する。次に、断熱型枠設置のための墨出しを行い、墨出しに沿って断熱型枠の固定のためのプラスチックアングル29を設置する。また、コンクリートのかぶり厚さを確保するためスペーサブロック33を設置し、捨てコンクリート25から一定距離浮き上がらせた状態で、下端鉄筋(下端主筋)34などを配筋する。なお、砕石31の上面にポリエチレンフィルム60を敷設して、捨てコンクリート25の打設を省略する構成としてもよい。   When constructing the heat insulation foundation structure of the present embodiment, for example, as shown in FIGS. 7 and 9, first, the digging and crushed stone industry of the construction site of the outer peripheral underground beam is performed. That is, a groove is dug in the ground, and the crushed stone 31 is laid in the groove, and then the discarded concrete 25 is placed thereon. Next, inking for installing the heat insulating formwork is performed, and a plastic angle 29 for fixing the heat insulating formwork is installed along the inking. In addition, a spacer block 33 is installed to secure the concrete cover thickness, and the lower end reinforcing bar (lower end main reinforcing bar) 34 and the like are arranged in a state where the spacer block 33 is lifted from the discarded concrete 25 by a certain distance. In addition, it is good also as a structure which lays the polyethylene film 60 on the upper surface of the crushed stone 31, and abbreviate | omits placement of the discard concrete 25. FIG.

次に、1段目の直線部については、図4(b)に示したタイプBの断熱型枠10Bを設置する。また、外周基礎梁のコーナー部については、図6に示したタイプFの断熱型枠10Fを設置する。これらのタイプの断熱型枠10B、10Fは、外周側の型枠板11の高さに対して、内周側の型枠板12の高さが低く設定されたものである。   Next, the type B heat insulation formwork 10B shown in FIG. Moreover, the type F heat insulation formwork 10F shown in FIG. 6 is installed about the corner part of an outer periphery foundation beam. In these types of heat insulating molds 10B and 10F, the height of the inner peripheral mold plate 12 is set lower than the height of the outer peripheral mold plate 11.

また、外周基礎梁のT字部や十字部については、タイプBの断熱型枠10Bの型枠板11、12を適当に切り取って開口させ、その開口の縁に、交差する断熱型枠10Bの型枠板11、12の端部を接続する。なお、1段目の断熱型枠10B、10Fの設置の際には、コーナー部やT字部、十字部をスタートとして型枠の組み立てを順番に進める。   Further, for the T-shaped portion and the cross portion of the outer peripheral foundation beam, the mold plates 11 and 12 of the type B heat insulation mold 10B are appropriately cut out and opened, and the edges of the heat insulation mold 10B intersecting the edges of the openings. The end portions of the mold plates 11 and 12 are connected. Note that when the first-stage heat-insulating molds 10B and 10F are installed, the assembly of the molds proceeds in order starting from the corner, T-shaped part, and cross.

一方、耐圧版3の施工面にも、図7に示すように、根掘り・砕石地業を行い、砕石により、上側が耐圧版コンクリート打設空間3Aとなった耐圧版下型枠32を作る。   On the other hand, as shown in FIG. 7, as shown in FIG. 7, digging and crushed stone are also carried out on the construction surface of the pressure plate 3, and the pressure plate lower formwork 32 whose upper side becomes the pressure plate concrete placement space 3 </ b> A is formed by crushed stone. .

次に、図7及び図10に示すように、2段目の断熱型枠10C(コーナー部については断熱型枠10E)を、1段目の断熱型枠10B(コーナー部については断熱型枠10F)の上に積段する。積段のスタート位置は1段目と同様とする。2段目の断熱型枠10Cを積み上げるときには、自身の外周側の型枠板11の下端面に形成した嵌合凸部15を、下段の断熱型枠10Bの外周側の型枠板11の上端面に形成した嵌合凹部14に嵌める。同時に、下段の断熱型枠10Bの内周側の高さの低い型枠板11の上に、支持金物(支持部材)28を介して、2段目の断熱型枠10Cを積み上げる。   Next, as shown in FIGS. 7 and 10, the second-stage heat-insulating mold 10 </ b> C (the heat-insulating mold 10 </ b> E for the corner portion) is replaced with the first-stage heat-insulating mold 10 </ b> B (the heat-insulating mold 10 </ b> F for the corner portion). ). The starting position of the product stage is the same as the first stage. When stacking the second-stage heat-insulating formwork 10C, the fitting convex portion 15 formed on the lower end surface of the outer-side formwork plate 11 is formed on the outer-side formwork plate 11 on the lower-stage heat-insulating formwork 10B. It fits in the fitting recessed part 14 formed in the end surface. At the same time, the second-stage heat-insulating mold 10 </ b> C is piled up on the mold board 11 having a low height on the inner peripheral side of the lower-stage heat-insulating mold 10 </ b> B via the support hardware (support member) 28.

ここで用いる支持金物28は、図8に示すように、上端と下端に、上下の型枠板12の下端と上端にそれぞれ嵌まるコ字状の嵌合部28a、28bを有し、それら上端と下端のコ字状の嵌合部28a、28bを長さ調節可能なボルト28cで連結したものである。   As shown in FIG. 8, the support hardware 28 used here has U-shaped fitting portions 28 a and 28 b that fit on the lower end and the upper end of the upper and lower mold plates 12 at the upper end and the lower end, respectively. And a U-shaped fitting portion 28a, 28b at the lower end are connected by a bolt 28c whose length can be adjusted.

この支持金物28の下端の嵌合部28bを、1段目の断熱型枠10Bの内周側の型枠版12の上端に嵌める。そして、支持金物28の上端の嵌合部28aを、2段目の断熱型枠10Cの内周側の型枠版12の下端に嵌めることで、下段の断熱型枠10Bの内周側の型枠板12によって上段の断熱型枠10Cの内周側の型枠板12の荷重を支持する。これにより、積段された上下の断熱型枠10B、10Cの内周側の型枠板12、12間に、断熱型枠10の内部空間2Aと耐圧版コンクリート打設空間3A戸を連通する開口部20が確保される。   The fitting portion 28b at the lower end of the support metal 28 is fitted into the upper end of the mold plate 12 on the inner peripheral side of the first-stage heat-insulating mold 10B. Then, by fitting the fitting portion 28a at the upper end of the support metal 28 to the lower end of the mold plate 12 on the inner peripheral side of the second-stage heat-insulating mold 10C, the inner peripheral mold of the lower-stage heat-insulating mold 10B. The frame plate 12 supports the load of the mold plate 12 on the inner peripheral side of the upper heat insulating mold 10C. Thereby, the opening which connects the internal space 2A of the heat insulation formwork 10 and the pressure plate concrete placing space 3A between the inner peripheral side formwork plates 12 and 12 of the stacked upper and lower heat insulation formwork 10B and 10C. Part 20 is secured.

続いて、図11に示すように、2段目の断熱型枠10Cの上に3段目の断熱型枠10Aを積段し、最上段(本実施形態では3段目)の断熱型枠10Aの上端余長分10x(図7参照)を、外周基礎梁2の施工上端ラインの位置でカットする。また、このような断熱型枠の積段に合わせて、外周基礎梁用の鉄筋26を断熱型枠10(10B、10C、10A)の内部に配筋する。また、耐圧版下型枠32の上側にも、この段階までに耐圧版用の鉄筋27を配筋しておく。   Subsequently, as shown in FIG. 11, the third-stage heat-insulating mold 10 </ b> A is stacked on the second-stage heat-insulating mold 10 </ b> C, and the upper-stage (third-stage in this embodiment) heat-insulating mold 10 </ b> A. Is cut at the position of the construction upper end line of the outer peripheral foundation beam 2. Further, the reinforcing bars 26 for the outer peripheral foundation beams are arranged inside the heat insulating mold 10 (10B, 10C, 10A) in accordance with the stacking stage of such heat insulating molds. In addition, the pressure plate reinforcing bar 27 is also arranged on the upper side of the pressure plate lower mold 32 by this stage.

以上の要領で断熱型枠10の組み立てが完了したら、耐圧版下型枠32の上側の耐圧版コンクリート打設空間3Aと断熱型枠10の内部空間2Aとにコンクリート50を打設する。打設したコンクリート50は、断熱型枠10の内部に充填されると共に、耐圧版下断熱型枠45の上側に充填される。コンクリートが硬化することにより、外周基礎梁2と耐圧版3とが一体化される。その後、耐圧版3の上面の所定箇所に束石用柱状体4を設置固定することにより、実施形態の断熱基礎構造1が出来上がる。   When the assembly of the heat insulation mold 10 is completed in the manner described above, the concrete 50 is placed in the pressure plate concrete placing space 3A above the pressure plate lower mold 32 and the internal space 2A of the heat insulation mold 10. The cast concrete 50 is filled in the heat insulating mold 10 and on the upper side of the pressure-resistant plate-shaped heat insulating mold 45. As the concrete hardens, the outer peripheral foundation beam 2 and the pressure plate 3 are integrated. Thereafter, the heat insulating foundation structure 1 of the embodiment is completed by installing and fixing the bony stone columnar bodies 4 at predetermined positions on the upper surface of the pressure plate 3.

この断熱基礎構造1では、断熱型枠10が捨て型枠として残置されているので、建築物の床下の断熱性を高めることが可能となる。   In this heat insulation basic structure 1, since the heat insulation formwork 10 is left as a discarded formwork, it becomes possible to improve the heat insulation property under the floor of a building.

以上説明した断熱基礎構造1によれば、断熱型枠10(10A、10B、10C、10E、10F)を捨て型枠として施工する外周基礎梁2と、耐圧版3とを、断熱型枠10に設けた開口部20を通して、1回のコンクリート打設によって一体に形成することができるので、施工の容易化が図れる。また、断熱型枠10の内周側の型枠板12に確保した開口部20の高さに耐圧版3が構築されるので、外周基礎梁2の上端の位置に建物の床の高さを合わせた場合、耐圧版3と床との間に床下空間を確保することができる。   According to the heat insulating basic structure 1 described above, the outer peripheral foundation beam 2 for constructing the heat insulating mold 10 (10A, 10B, 10C, 10E, 10F) as a discarded mold, and the pressure plate 3 are formed in the heat insulating mold 10. Since it can form integrally by one concrete placement through the provided opening part 20, construction can be facilitated. Further, since the pressure-resistant plate 3 is constructed at the height of the opening 20 secured in the mold plate 12 on the inner peripheral side of the heat insulating mold 10, the height of the floor of the building is set at the position of the upper end of the outer peripheral foundation beam 2. When combined, an underfloor space can be secured between the pressure-resistant plate 3 and the floor.

また、この断熱基礎構造1において外周基礎梁2の捨て型枠として利用する断熱型枠10は、一対の合成樹脂発泡体製の型枠板11、12を連結するための連結部材13が金属製とされているので、小さな断面積で十分な連結強度を発揮することができる。また、その連結部材13の両端を合成樹脂発泡体製の型枠板11、12の中に埋設固定しているので、型枠板11、12と連結部材13の接合強度を十分に発揮することができる。従って、両型枠板11、12を一定間隔をあけて確実に保持することができ、施工時に損傷するおそれがなく、施工品質を高めることができる。また、金属製の連結部材13は、強度の点から断面積が小さくて済むので、コンクリートの打設容積をできるだけ大きくとることができ、高い鉄筋コンクリート強度を持つ外周基礎梁2を構築することができる。その結果、外周基礎梁2と耐圧版3とが一体になった断熱基礎構造1、特に水平力に対する剛性や不同沈下に対する剛性の高い断熱基礎構造1を、簡単な施工方法でコストをかけずに得ることができる。   Further, in the heat insulating base structure 1, the heat insulating form 10 used as a discarded form for the outer peripheral foundation beam 2 has a connecting member 13 for connecting a pair of synthetic resin foam form plates 11 and 12 made of metal. Therefore, sufficient connection strength can be exhibited with a small cross-sectional area. Further, since both ends of the connecting member 13 are embedded and fixed in the mold plates 11 and 12 made of synthetic resin foam, the bonding strength between the mold plates 11 and 12 and the connecting member 13 is sufficiently exhibited. Can do. Therefore, both mold frame plates 11 and 12 can be reliably held at a predetermined interval, there is no risk of damage during construction, and construction quality can be improved. Further, since the metal connecting member 13 has a small cross-sectional area from the viewpoint of strength, the concrete placement volume can be made as large as possible, and the outer peripheral foundation beam 2 having high reinforced concrete strength can be constructed. . As a result, the heat insulating basic structure 1 in which the outer peripheral foundation beam 2 and the pressure plate 3 are integrated, particularly the heat insulating basic structure 1 having high rigidity against horizontal force and non-settled subsidence, without a cost by a simple construction method. Can be obtained.

また、上記断熱基礎構造1によれば、耐圧版3の上面にグリッドポストとしての束石用柱状体4を設置しているので、中布基礎のような立上がり壁を無くすことができて、床下の空間を広げることができる。その結果として、床下の通風性を良くすることができると共に、床下のメンテナンス性を高めることができる。また、耐圧版3の施工後に束石用柱状体4を設置するだけでよいので、中布基礎を設ける場合のように、余計な型枠の設置や撤去が不要であり、広い作業スペースを確保できて作業性の向上が図れる共に、工期短縮とコストダウンを図ることができる。   Further, according to the heat insulating foundation structure 1, the columnar body 4 for boulders as a grid post is installed on the upper surface of the pressure-resistant plate 3. Can be expanded. As a result, the air permeability under the floor can be improved, and the maintainability under the floor can be improved. In addition, since it is only necessary to install the columnar body 4 for the boulder stone after the pressure plate 3 is installed, it is not necessary to install or remove the extra formwork as in the case of providing the inner cloth foundation, ensuring a wide working space. As a result, the workability can be improved and the work period can be shortened and the cost can be reduced.

また、上記断熱基礎構造1によれば、少なくとも1箇所の束石用柱状体4の下側の耐圧版3の内部に地中梁8を構築しているので、当該部分の支持強度を充分に高めることができる。   Moreover, according to the said heat insulation basic structure 1, since the underground beam 8 is constructed | assembled in the inside of the pressure-resistant plate 3 of the lower side of the columnar body 4 for at least one bunch stone, the support strength of the said part is fully provided. Can be increased.

また、上記断熱基礎構造1によれば、耐圧版下型枠32として、砕石により形成された型枠を用いており、その上に防湿シートを介してコンクリートを打設することで耐圧版3を構築しているので、特別に作製した型枠が不要であり、施工コストの低減が図れる。   Moreover, according to the said heat insulation basic | foundation structure 1, the formwork formed with the crushed stone is used as the pressure-resistant plate lower mold 32, and the pressure-resistant plate 3 is formed by placing concrete through a moisture-proof sheet | seat on it. Since it is constructed, a specially produced formwork is unnecessary, and the construction cost can be reduced.

また、上記断熱基礎構造1によれば、断熱型枠10の内周側の上下型枠板12間に支持金物28を配置して開口部20を確保しているので、その開口部20を通して外周基礎梁2と耐圧版3とを鉄筋コンクリートでスムーズに繋ぐことができる。   Further, according to the heat insulating basic structure 1, since the opening 20 is secured by arranging the support hardware 28 between the upper and lower mold plates 12 on the inner peripheral side of the heat insulating mold 10, the outer periphery is passed through the opening 20. The foundation beam 2 and the pressure plate 3 can be smoothly connected with reinforced concrete.

また、上記断熱基礎構造1によれば、上段の断熱型枠10E(10F)の長手方向の接続位置Pと下段の断熱型枠10E(10F)の長手方向の接続位置Pとをずらしているので、上段の断熱型枠(下段の断熱型枠)の接続箇所を、下段の断熱型枠(上段の断熱型枠)が繋ぐことができる。従って、上段と下段の断熱型枠10E(10F)の接続位置Pが重なることによる、型枠の組立強度の低下を回避することができる。また、型枠間に無用な隙間ができにくくなり、施工品質の向上に貢献することができる。   Moreover, according to the said heat insulation basic | foundation structure 1, since the connection position P of the longitudinal direction of the upper heat insulation formwork 10E (10F) and the connection position P of the lower heat insulation formwork 10E (10F) are shifted, The lower heat insulation formwork (upper heat insulation formwork) can be connected to the connection location of the upper heat insulation formwork (lower heat insulation formwork). Therefore, it is possible to avoid a decrease in the assembly strength of the mold due to the overlapping of the connection positions P of the upper and lower heat insulating molds 10E (10F). Moreover, it becomes difficult to make useless gaps between the molds, which can contribute to improvement of construction quality.

また、上記断熱基礎構造1によれば、直線状の断熱型枠10A、10B、10CとL字状の断熱型枠10E、10Fを予め用意して外周基礎梁2の型枠を構築するので、型枠施工の容易化を図ることができる。   Moreover, according to the said heat insulation basic | foundation structure 1, since the linear heat insulation formwork 10A, 10B, 10C and the L-shaped heat insulation formwork 10E, 10F are prepared previously, the formwork of the outer periphery foundation beam 2 is constructed, It is possible to facilitate the formwork construction.

また、上記断熱基礎構造1の施工方法によれば、コンクリート50の打設容積の拡大を図りながら十分な強度を発揮できる断熱型枠10を用いて外周基礎梁2を施工するので、高いコンクリート強度を確保することができると共に、施工品質を高めることができる。また、外周基礎梁2と耐圧版3とを1回のコンクリート打設によって施工できることから、施工の容易化が図れる。   Moreover, according to the construction method of the said heat insulation foundation structure 1, since the outer periphery foundation beam 2 is constructed using the heat insulation formwork 10 which can exhibit sufficient intensity | strength, aiming at expansion of the placement volume of the concrete 50, high concrete strength Can be secured, and the construction quality can be improved. Moreover, since the outer peripheral foundation beam 2 and the pressure plate 3 can be constructed by a single concrete placement, the construction can be facilitated.

また、上記断熱基礎構造1の施工方法によれば、外周基礎梁2の内周側で耐圧版3を地盤面GL下で施工し、耐圧版3の内部に補強用の地中梁8を構築し、その地中梁8の上にグリッドポストとしての束石用柱状体4を設置することにより、床下空間の通気性を確保しながら、高い強度を発揮し得る基礎構造を作ることができる。   Further, according to the construction method of the heat insulating foundation structure 1, the pressure plate 3 is constructed under the ground surface GL on the inner circumference side of the outer circumferential foundation beam 2, and the reinforcing underground beam 8 is constructed inside the pressure plate 3. In addition, by installing the boulder columnar body 4 as a grid post on the underground beam 8, a foundation structure capable of exhibiting high strength can be made while ensuring the air permeability of the underfloor space.

なお、上記した基礎構造では、図7に示すように、タイプBの断熱型枠10Bを1段目に設置し、その上に、タイプCの断熱型枠10CやタイプAの断熱型枠10Aを2段目、3段目として積み上げた場合を示したが、必要に応じて、より多段に断熱型枠10A、10B、10E、10Fを積み上げて基礎を施工してもよい。   In the above-described basic structure, as shown in FIG. 7, the type B heat insulation formwork 10B is installed in the first stage, and the type C heat insulation formwork 10C and the type A heat insulation formwork 10A are provided thereon. Although the case where it piled up as the 2nd stage and the 3rd stage was shown, you may pile up the heat insulation formwork 10A, 10B, 10E, 10F in more stages, and may construct a foundation.

例えば、上へ積段数を増やすのではなく、図13に示すように、下に積段数を増やしてもよい。この図13に示す例では、外周基礎梁2の下端を更に地中深くに延ばすために、断熱型枠10Bの更に下段に断熱型枠10A、10Cを積み増している。このように構成することで、凍結深度が深い寒冷地などにおいても高性能の外周基礎梁2を構築することが可能となる。   For example, instead of increasing the number of product stages upward, the number of product stages may be increased downward as shown in FIG. In the example shown in FIG. 13, in order to extend the lower end of the outer peripheral foundation beam 2 deeper into the ground, the heat insulating molds 10A and 10C are stacked further below the heat insulating mold 10B. By configuring in this way, it is possible to construct a high-performance peripheral foundation beam 2 even in a cold district where the freezing depth is deep.

また、上記実施形態で用いた断熱型枠10A〜10Fの別の態様として、図14に示すような断熱型枠10G〜10Lを用いてもよい。断熱型枠10A〜10Fと断熱型枠10G〜10Lとは、連結部材13の向きが上下反転して配されている点のみが異なっている。つまり、断熱型枠10A〜10Fは連結部材13のウェブ部13aの切欠13f(図2参照)が中央下縁に位置するように配されているのに対して、断熱型枠10G〜10Lは切欠13fが中央上縁に位置するように配されている。このように構成された断熱部材10A〜10Fおよび断熱型枠10G〜10Lを組み合せて使用してもよい。   Moreover, you may use the heat insulation form 10G-10L as shown in FIG. 14 as another aspect of heat insulation form 10A-10F used in the said embodiment. The heat insulating molds 10A to 10F and the heat insulating molds 10G to 10L are different only in that the direction of the connecting member 13 is arranged upside down. That is, the heat insulating molds 10A to 10F are arranged so that the notch 13f (see FIG. 2) of the web portion 13a of the connecting member 13 is positioned at the lower central edge, whereas the heat insulating molds 10G to 10L are notched. 13f is arranged so as to be located at the center upper edge. You may use combining the heat insulation members 10A-10F and the heat insulation formwork 10G-10L comprised in this way.

具体的には、図15、図16に示すように、断熱型枠10G〜10L(図15、図16では10Kを示す)を下側に配置し、断熱型枠10A〜10F(図15、図16では10Fを示す)を上側に配置する。このように配することにより、下側の断熱型枠10G〜10Lの連結部材13と、上側の断熱型枠10A〜10Fの連結部材13との間のスペースを大きく確保することができる。その結果、下端鉄筋37をこの互いの連結部材13,13同士の間に配筋しても地中梁の強度を確保することができる。
このように構成することにより、鉄筋を現場組みするのではなく、予め格子状に組んだ鉄筋をこの連結部材13,13同士の間に配するだけで下端鉄筋37の配筋が完了するため、施工手順を簡略化することができる。
Specifically, as shown in FIGS. 15 and 16, the heat insulating molds 10G to 10L (indicated by 10K in FIGS. 15 and 16) are arranged on the lower side, and the heat insulating molds 10A to 10F (FIG. 15, FIG. 16). 16 indicates 10F) on the upper side. By arranging in this way, a large space can be secured between the connecting members 13 of the lower heat insulating molds 10G to 10L and the connecting members 13 of the upper heat insulating molds 10A to 10F. As a result, the strength of the underground beam can be ensured even if the lower end reinforcing bar 37 is arranged between the connecting members 13 and 13.
By configuring in this way, instead of assembling the rebar in the field, the rebar arrangement of the lower end rebar 37 is completed simply by arranging the rebar assembled in a lattice shape in advance between the connecting members 13, 13. The construction procedure can be simplified.

また、本実施形態では、耐圧版3の上面にグリッドポストとしての束石用柱状体4を設置したが、布状の基礎であってもよい。   Moreover, in this embodiment, although the bony stone columnar body 4 as a grid post was installed on the upper surface of the pressure-resistant plate 3, a cloth-like foundation may be used.

1 断熱型枠を用いた基礎構造(断熱基礎構造)
2 外周基礎梁
2A 内部空間(外周基礎梁コンクリート打設空間)
3 耐圧版
3A 耐圧版コンクリート打設空間
4 束石用柱状体
8 地中梁
10,10A,10B,10C,10E,10F,10G,10H,10I,10K,10L 断熱型枠
11,12 型枠板
13 連結部材
20 開口部
26 外周基礎梁用の鉄筋
27 他圧版用の鉄筋
27a 繋ぎ鉄筋
28 支持金物(支持部材)
32 耐圧版下型枠
50 コンクリート
P 接続位置
1 Foundation structure using heat insulation formwork (insulation foundation structure)
2 Outer foundation beam 2A Internal space (Outer foundation beam concrete placement space)
DESCRIPTION OF SYMBOLS 3 Pressure-resistant plate 3A Pressure-resistant concrete placement space 4 Column for boulders 8 Underground beam 10, 10A, 10B, 10C, 10E, 10F, 10G, 10H, 10I, 10K, 10L Insulation formwork 11,12 Formwork plate DESCRIPTION OF SYMBOLS 13 Connecting member 20 Opening 26 Reinforcing bar for outer periphery foundation beam 27 Reinforcing bar for other pressure plate 27a Connecting reinforcing bar 28 Support hardware (support member)
32 Pressure-resistant lower formwork 50 Concrete P Connection position

Claims (9)

一定間隔をあけて互いに平行に配置され、両者間がコンクリートの打設空間とされた一対の合成樹脂発泡体製の型枠板と、両端が前記一対の型枠板の中にそれぞれ埋設固定されることで、前記両型枠板を前記一定間隔をあけた状態で連結する金属製の連結部材と、を有する断熱型枠が、外周基礎梁の捨て型枠として利用され、
当該捨て型枠として利用された前記断熱型枠の内周側の前記型枠板の耐圧版の高さに相当する位置に、耐圧版下型枠の上側の耐圧版コンクリート打設空間に連通する開口部が確保され、
前記断熱型枠の内部に外周基礎梁用の鉄筋が配置され、前記耐圧版下型枠の上側に耐圧版用の鉄筋が配置され、更に前記開口部を通して前記耐圧版下型枠の上側から前記断熱型枠の内部まで繋ぎの鉄筋が配置され、
その上で、前記断熱型枠の内部空間及び耐圧版下型枠の上側の耐圧版コンクリート打設空間にコンクリートが打設されることにより、外周基礎梁と耐圧版とが一体に構築されていることを特徴とする断熱型枠を用いた基礎構造。
A pair of synthetic resin foam mold plates arranged in parallel to each other with a predetermined interval between them and a concrete placement space therebetween, and both ends embedded and fixed in the pair of mold plates, respectively. In this way, a heat-insulating formwork having a metal connecting member that connects the two formwork plates in a state of being spaced apart from each other is used as a discarded formwork of the outer peripheral foundation beam,
It communicates with the pressure plate concrete placement space on the upper side of the pressure plate lower mold frame at a position corresponding to the height of the pressure plate of the mold plate on the inner peripheral side of the heat insulation mold frame used as the disposal mold frame. An opening is secured,
Reinforcing bar for outer peripheral foundation beam is arranged inside the heat insulation formwork, a reinforcing bar for pressure plate is placed on the upper side of the pressure plate lower mold frame, and further from the upper side of the pressure plate lower mold frame through the opening. Reinforcing bars are placed inside the heat-insulated formwork,
Then, the outer peripheral foundation beam and the pressure plate are constructed integrally by placing concrete in the space inside the heat insulating formwork and the pressure plate concrete placing space above the pressure form lower formwork. A basic structure using a heat-insulated formwork.
前記耐圧版の上面の所定位置に、該耐圧版の施工後に後付けでグリッドポストとして束石用柱状体が設置されていることを特徴とする請求項1に記載の断熱型枠を用いた基礎構造。   The foundation structure using the heat insulation formwork according to claim 1, wherein a columnar body for a boulder stone is installed at a predetermined position on an upper surface of the pressure plate as a grid post after installation of the pressure plate. . 少なくとも1箇所の前記束石用柱状体の下側の前記耐圧版の内部に地中梁が構築されていることを特徴とする請求項2に記載の断熱型枠を用いた基礎構造。   The foundation structure using the heat insulation formwork according to claim 2, wherein an underground beam is constructed in the pressure-resistant plate below the at least one columnar body for boulders. 前記耐圧版下型枠として、砕石により形成された型枠が用いられており、その上に防湿シートを介してコンクリートが打設されることで、前記耐圧版が構築されていることを特徴とする請求項1〜3のいずれか1項に記載の断熱型枠を用いた基礎構造。   As the pressure-resistant plate mold, a mold formed of crushed stone is used, and the pressure-resistant plate is constructed by placing concrete on the moisture-proof sheet thereon. The basic structure using the heat insulation formwork of any one of Claims 1-3 to do. 前記外周基礎梁の延在方向を前記断熱型枠の長手方向とするとき、前記断熱型枠が長手方向に多数接続されると共に上下方向に積段されており、積段された複数の前記断熱型枠のうちの1段の断熱型枠の内周側の型枠板の高さ方向寸法が外周側の型枠板の高さ方向寸法より短く設定されていることにより、積段された前記上下の断熱型枠の内周側の型枠板間に前記開口部が確保され、その開口部を確保するために、前記上下の断熱型枠の内周側の型枠板間に、下側の断熱型枠の内周側の型枠板に上側の断熱型枠の内周側の型枠板の荷重を伝える支持部材が設けられていることを特徴とする請求項1〜4のいずれか1項に記載の断熱型枠を用いた基礎構造。   When the extending direction of the outer peripheral foundation beam is the longitudinal direction of the heat insulating mold, a plurality of the heat insulating molds are connected in the longitudinal direction and stacked in the vertical direction. When the height direction dimension of the inner peripheral side mold frame plate of the one-stage heat insulating mold frame of the mold frames is set shorter than the height direction dimension of the outer peripheral side mold frame plate, The opening is secured between the inner peripheral formwork plates of the upper and lower heat insulation molds, and in order to ensure the opening, the lower side between the inner peripheral formwork plates of the upper and lower heat insulation molds The support member which transmits the load of the formwork board of the inner peripheral side of an upper heat insulation formwork is provided in the formwork board of the inner periphery side of the heat insulation formwork of any one of Claims 1-4 characterized by the above-mentioned. A basic structure using the heat insulating form described in 1. 積段された上段の前記断熱型枠の長手方向の接続位置と、その下段の前記断熱型枠の長手方向の接続位置とが長手方向にずれていることを特徴とする請求項5に記載の断熱型枠を用いた基礎構造。   6. The connection position in the longitudinal direction of the heat-insulated formwork in the upper stage stacked and the connection position in the longitudinal direction of the heat-insulation formwork in the lower stage are shifted in the longitudinal direction. Basic structure using heat-insulated formwork. 直線状に前記外周基礎梁が延びる直線部に対応した直線状の前記断熱型枠と、L字状に前記外周基礎梁が曲がるコーナー部に対応したL字状の前記断熱型枠とが利用され、前記直線部に前記直線状の断熱型枠が配置され、前記コーナー部に前記L字状の断熱型枠が配置されていることを特徴とする請求項5または6に記載の断熱型枠を用いた基礎構造。   The linear heat-insulating mold corresponding to the straight part where the outer peripheral foundation beam extends linearly and the L-shaped thermal insulating form corresponding to the corner where the outer peripheral basic beam bends in an L-shape are used. The heat insulation formwork according to claim 5 or 6, wherein the linear heat insulation formwork is arranged in the straight part and the L-shaped heat insulation formwork is arranged in the corner part. The basic structure used. 一定間隔をあけて互いに平行に配置され、両者間がコンクリートの打設空間とされた一対の合成樹脂発泡体製の型枠板と、両端が前記一対の型枠板の中にそれぞれ埋設固定されることで、前記両型枠板を前記一定間隔をあけた状態で連結する金属製の連結部材と、を有する断熱型枠を、外周基礎梁の施工箇所に捨て型枠として設置し、その際、前記断熱型枠の内周側の前記型枠板の耐圧版の高さに相当する位置に、耐圧版下型枠の上側の耐圧版コンクリート打設空間に連通する開口部を確保し、
前記断熱型枠の内部に外周基礎梁用の鉄筋を配置すると共に耐圧版下型枠の上側に耐圧版の鉄筋を配置し、更に前記開口部を通して前記耐圧版下型枠の上側から前記断熱型枠の内部まで繋ぎの鉄筋を配置し、
その上で、前記断熱型枠の内部空間及び耐圧版下型枠の上側の耐圧版コンクリート打設空間にコンクリートを打設することにより、外周基礎梁と耐圧版とが一体になった基礎を構築することを特徴とする断熱型枠を用いた基礎構造の施工方法。
A pair of synthetic resin foam mold plates arranged in parallel to each other with a predetermined interval between them and a concrete placement space therebetween, and both ends embedded and fixed in the pair of mold plates, respectively. A heat-insulating formwork having a metal connecting member for connecting the two formwork plates in a state of being spaced apart from each other at a construction position of the outer peripheral foundation beam, In the position corresponding to the height of the pressure plate of the mold plate on the inner peripheral side of the heat insulation mold, an opening communicating with the pressure plate concrete placing space on the upper side of the pressure plate lower mold is secured,
The reinforcing bar for the outer peripheral foundation beam is disposed inside the heat insulating mold, and the reinforcing bar of the pressure plate is disposed on the upper side of the pressure plate lower mold, and further, the heat insulating mold from above the pressure plate lower mold through the opening. Place the connecting rebar to the inside of the frame,
After that, by placing concrete in the space inside the heat-insulated formwork and the pressure-proof concrete placement space above the pressure-proof platen, the foundation with the outer foundation foundation beam and the pressure-proof plate integrated is built. The construction method of the foundation structure using the heat insulation formwork characterized by doing.
請求項8に記載の断熱型枠を用いた基礎構造の施工方法において、
前記耐圧版を地盤面下で施工し、耐圧版内における束石用柱状体の配設予定箇所の下面に補強用の地中梁を構築し、束石用柱状体の配設予定箇所の上面にグリッドポストとしての束石用柱状体を設置することを特徴とする耐圧版式グリッドポスト基礎の形成方法。
In the construction method of the foundation structure using the heat insulation formwork according to claim 8,
The pressure plate is constructed under the ground surface, and a reinforcing underground beam is constructed on the lower surface of the planned location of the boulder pillars in the pressure plate, and the upper surface of the planned location of the boulder columns. A method for forming a pressure-proof type grid post foundation, characterized in that a columnar body for boulders as a grid post is installed on the plate.
JP2014200887A 2014-09-30 2014-09-30 Foundation structure using heat-insulating formwork, construction method and method for forming pressure-proof plate post foundation Active JP6418524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014200887A JP6418524B2 (en) 2014-09-30 2014-09-30 Foundation structure using heat-insulating formwork, construction method and method for forming pressure-proof plate post foundation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014200887A JP6418524B2 (en) 2014-09-30 2014-09-30 Foundation structure using heat-insulating formwork, construction method and method for forming pressure-proof plate post foundation

Publications (2)

Publication Number Publication Date
JP2016069939A true JP2016069939A (en) 2016-05-09
JP6418524B2 JP6418524B2 (en) 2018-11-07

Family

ID=55864261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014200887A Active JP6418524B2 (en) 2014-09-30 2014-09-30 Foundation structure using heat-insulating formwork, construction method and method for forming pressure-proof plate post foundation

Country Status (1)

Country Link
JP (1) JP6418524B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125220A (en) * 2014-12-26 2016-07-11 フクビ化学工業株式会社 Building foundation
JP6137394B1 (en) * 2016-08-22 2017-05-31 株式会社地耐協 Anchor holder for low-rise buildings and foundation work
JP2021059971A (en) * 2018-06-29 2021-04-15 ダイセルミライズ株式会社 Form unit and concrete structure construction method
GB2604372A (en) * 2021-03-03 2022-09-07 Greenraft Ltd Insulating concrete formwork

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9933092B2 (en) 2016-08-18 2018-04-03 Deflecto, LLC Tubular structures and knurling systems and methods of manufacture and use thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260159U (en) * 1988-10-27 1990-05-02
US5174083A (en) * 1991-03-28 1992-12-29 Mussell Barry D Concrete slab forming system
JPH08277589A (en) * 1995-04-10 1996-10-22 Yoshihiro Fujiyoshi Concrete form
JPH09217360A (en) * 1996-02-08 1997-08-19 Nippon Bio Syst:Kk Lightweight form body, and construction method for forming concrete structure using lightweight form body
JPH10121486A (en) * 1996-10-24 1998-05-12 Dow Kakoh Kk Work execution method of ship's bottom-shaped heat insulated foundation
JP2000220150A (en) * 1999-02-03 2000-08-08 J Kenchiku Syst Kk Bundled stone-like body, and forming method for pressure-resisting board type foundation
JP2001032421A (en) * 1999-07-21 2001-02-06 Fukuvi Chem Ind Co Ltd Foundation heat insulating form and support for foundation heat insulating form
JP2002167774A (en) * 2000-11-29 2002-06-11 Yuusuke Kajita Concrete foundation structure and execution method of concrete foundation
JP2004124490A (en) * 2002-10-02 2004-04-22 Uchiyama Mfg Corp Foundation structure of housing building and its construction method
JP2007224542A (en) * 2006-02-22 2007-09-06 Kenji Matsui Heat insulating foundation and its construction method
JP2013079510A (en) * 2011-10-03 2013-05-02 Dannetsu Co Ltd Method of constructing thermal insulation foundation and support for thermal insulation type formwork used for construction
JP2013221374A (en) * 2012-04-19 2013-10-28 Misawa Homes Co Ltd Form holder, heat insulating foundation for building, and construction method of heat insulating foundation for building
JP2014118711A (en) * 2012-12-14 2014-06-30 Kyoraku Co Ltd Form panel for installation and building foundation structure

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260159U (en) * 1988-10-27 1990-05-02
US5174083A (en) * 1991-03-28 1992-12-29 Mussell Barry D Concrete slab forming system
JPH08277589A (en) * 1995-04-10 1996-10-22 Yoshihiro Fujiyoshi Concrete form
JPH09217360A (en) * 1996-02-08 1997-08-19 Nippon Bio Syst:Kk Lightweight form body, and construction method for forming concrete structure using lightweight form body
JPH10121486A (en) * 1996-10-24 1998-05-12 Dow Kakoh Kk Work execution method of ship's bottom-shaped heat insulated foundation
JP2000220150A (en) * 1999-02-03 2000-08-08 J Kenchiku Syst Kk Bundled stone-like body, and forming method for pressure-resisting board type foundation
JP2001032421A (en) * 1999-07-21 2001-02-06 Fukuvi Chem Ind Co Ltd Foundation heat insulating form and support for foundation heat insulating form
JP2002167774A (en) * 2000-11-29 2002-06-11 Yuusuke Kajita Concrete foundation structure and execution method of concrete foundation
JP2004124490A (en) * 2002-10-02 2004-04-22 Uchiyama Mfg Corp Foundation structure of housing building and its construction method
JP2007224542A (en) * 2006-02-22 2007-09-06 Kenji Matsui Heat insulating foundation and its construction method
JP2013079510A (en) * 2011-10-03 2013-05-02 Dannetsu Co Ltd Method of constructing thermal insulation foundation and support for thermal insulation type formwork used for construction
JP2013221374A (en) * 2012-04-19 2013-10-28 Misawa Homes Co Ltd Form holder, heat insulating foundation for building, and construction method of heat insulating foundation for building
JP2014118711A (en) * 2012-12-14 2014-06-30 Kyoraku Co Ltd Form panel for installation and building foundation structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125220A (en) * 2014-12-26 2016-07-11 フクビ化学工業株式会社 Building foundation
JP6137394B1 (en) * 2016-08-22 2017-05-31 株式会社地耐協 Anchor holder for low-rise buildings and foundation work
JP2018031131A (en) * 2016-08-22 2018-03-01 株式会社地耐協 Low-rise building and anchor holder for foundation construction
JP2021059971A (en) * 2018-06-29 2021-04-15 ダイセルミライズ株式会社 Form unit and concrete structure construction method
GB2604372A (en) * 2021-03-03 2022-09-07 Greenraft Ltd Insulating concrete formwork

Also Published As

Publication number Publication date
JP6418524B2 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
JP6418524B2 (en) Foundation structure using heat-insulating formwork, construction method and method for forming pressure-proof plate post foundation
KR101301081B1 (en) Wall structure and the construction method therefor
KR101283550B1 (en) Precast Panel, Wall Structure using such Precast Panel, and Constructing Method thereof
KR20170032826A (en) Precast concrete dual wall structure and construction method thereof
JP5654652B1 (en) Concrete hollow slab construction method and embedded body used therefor
JP5229913B2 (en) Slope reinforcement method
KR101190739B1 (en) Method of Constructing Underground Composite Outer Wall Structure and Underground Composite Outer Wall Structure Constructed by the Same
KR100585495B1 (en) Sheeting board
JP2016186166A (en) Concrete mold panel, concrete mold panel unit, concrete building frame structure, and concrete mold construction method
JP6418523B2 (en) Foundation structure using heat-insulating formwork and method for forming pressure-proof soil foundation
KR20170038769A (en) Retaining Wall constructed by Blocks, and Constructing Method thereof
KR101312990B1 (en) Wire-mesh with lateral bending parts for concrete composite wall, concrete composite and concrete composite wall construction method wall using the same
US8800218B2 (en) Insulating construction panels, systems and methods
JP2007291849A (en) Form block for wall, wall structure, and execution method of underground structure
JP6196088B2 (en) Integrated foundation formwork and foundation formwork connection structure
US11225792B2 (en) Insulating construction panels, systems and methods
KR101846305B1 (en) Air adiabaetic construction material
JP6553855B2 (en) Building foundation structure and building foundation construction method
KR101824021B1 (en) Structure of bottom of compost
KR100605559B1 (en) Assembling structure of tunnel lining using concrete panel
KR20140110526A (en) A fixing coupler used a burial slab of an outer wall of an underground construction and a burial slab construction method using it
KR20180055035A (en) Retaining wall structure using precast double-wall and construction method thereof
KR101366503B1 (en) Concrete composite wall for improving concrete pouring pressure resistance ability and the construction method therefor
JP5327992B2 (en) Seismic reinforcement structure for existing buildings
JP2012046991A (en) Composite beam, building, and construction method for composite beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180928

R150 Certificate of patent or registration of utility model

Ref document number: 6418524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250