JP2016069710A - Nickel particle composition, joint material and joint method - Google Patents

Nickel particle composition, joint material and joint method Download PDF

Info

Publication number
JP2016069710A
JP2016069710A JP2014202480A JP2014202480A JP2016069710A JP 2016069710 A JP2016069710 A JP 2016069710A JP 2014202480 A JP2014202480 A JP 2014202480A JP 2014202480 A JP2014202480 A JP 2014202480A JP 2016069710 A JP2016069710 A JP 2016069710A
Authority
JP
Japan
Prior art keywords
nickel
weight
range
fine particles
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014202480A
Other languages
Japanese (ja)
Other versions
JP6422289B2 (en
Inventor
隆之 清水
Takayuki Shimizu
隆之 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2014202480A priority Critical patent/JP6422289B2/en
Publication of JP2016069710A publication Critical patent/JP2016069710A/en
Application granted granted Critical
Publication of JP6422289B2 publication Critical patent/JP6422289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a nickel fine particle composition for forming a joint layer capable of obtaining sufficient joint strength by using a nickel fine particle which is more inexpensive than noble metals to achieve a good sinter status at a temperature of 250 to 350°C, and a joint material using the same.SOLUTION: A nickel particle composition contains A) nickel particle having an average particle diameter by a laser diffraction/scattering method in a range of 0.5 to 20 μm and containing a nickel element of 99 wt.% or more and B) nickel fine particle having an average primary particle diameter by a scanning type electron microscope observation in the range of 30 to 150 nm, containing the nickel element in the range of 90 to 99 wt.%, of which particle surface is coated by an organic compound and having weight reduction and a heat generating peak of 0.15%/min. or more when heated to 200 to 250°C in differential thermal and thermogravimetry simultaneous measurement, with a weight ratio of the component A and the component B (component A:component B) in the range of 30:70 to 70:30.SELECTED DRAWING: Figure 1

Description

本発明は、電子部品の製造に利用可能なニッケル粒子組成物、接合材及びそれを用いた接合方法に関する。 The present invention relates to a nickel particle composition, a bonding material, and a bonding method using the same, which can be used for manufacturing electronic components.

近年、省電力化の取り組みの中で、インバータなどの電力変換器の高効率化が進められている。その中でも、低損失化が期待できる次世代のパワーデバイス半導体材料として、SiC(シリコンカーバイド)の実用化が検討されている。しかしながら、現行のSi(シリコン)パワーデバイスの駆動温度が125℃程度に対して、SiCは250℃以上が想定されるため、パワー半導体チップと実装基板を接合する接合材料には高温駆動時の信頼性が必要となる。
また、2006年にEUにおいて施行されたRoHS指令により、鉛フリーのはんだ材料が求められているが、高温領域の鉛はんだ代替材料については、いまだ満足するものは得られていない。
In recent years, high efficiency of power converters such as inverters has been promoted in efforts to save power. Among these, the practical application of SiC (silicon carbide) is being studied as a next-generation power device semiconductor material that can be expected to reduce loss. However, since the driving temperature of the current Si (silicon) power device is about 125 ° C, SiC is assumed to be 250 ° C or higher, so the bonding material for bonding the power semiconductor chip and the mounting substrate is reliable at high temperature driving. Sexuality is required.
In addition, although a lead-free solder material is required by the RoHS directive enforced in the EU in 2006, a satisfactory material for a lead solder substitute material in a high temperature region has not yet been obtained.

はんだに代わる接合材料として、微小なサイズの金属がバルク金属よりも低い温度で焼結する物性を利用し、銀ナノ微粒子を中心に広く検討が行われてきた。一方で、微小な金属粒子は、その表面活性の高さゆえに粒子同士の凝集が生じやすく、分散安定性確保のために有機物などで粒子を被覆する必要がある。粒子被覆物の炭素数が大きい場合、それを揮発させるための温度は当然高温化するため、半導体実装温度としては不適であった。   As a joining material that replaces solder, a metal having a small size has been studied extensively, centering on silver nanoparticles, utilizing the physical property of sintering at a temperature lower than that of bulk metal. On the other hand, fine metal particles are likely to aggregate due to their high surface activity, and it is necessary to coat the particles with an organic substance to ensure dispersion stability. When the particle coating has a large number of carbon atoms, the temperature for volatilizing the particle coating naturally rises, so that it is not suitable as a semiconductor packaging temperature.

このような問題に対し、特許文献1では100nm以下の金属粒子の被覆に炭素数2以上8以下の有機物を用いることで、有機物の低温揮発させることが提案され、ヘキシルアミンやオクチルアミンで被覆された銀粒子を用いた接合材料は250℃の加熱で高い接合強度を発揮すると例示されている。同様に低炭素数表面被覆材の試みとして、特許文献2では、炭素数1〜9又は11のアルコール分子残基、アルコール分子誘導体(ここで、アルコール分子誘導体とは、カルボン酸、アルデヒド又はCn−12n−1COOの一種以上に限定される)又はアルコール分子の一種以上からなる有機被覆層を形成した複合銀ナノ粒子を含有する金属ペーストが提案されている。 In order to solve such a problem, Patent Document 1 proposes that an organic substance having 2 to 8 carbon atoms is used to coat metal particles having a thickness of 100 nm or less, and the organic substance is volatilized at a low temperature, and is coated with hexylamine or octylamine. It is exemplified that a bonding material using silver particles exhibits high bonding strength when heated at 250 ° C. Similarly, as an attempt of a low carbon number surface coating material, in Patent Document 2, an alcohol molecule residue having 1 to 9 or 11 carbon atoms, an alcohol molecule derivative (herein, an alcohol molecule derivative is a carboxylic acid, an aldehyde, or C n. -1 H 2n-1 COO) or a metal paste containing composite silver nanoparticles formed with an organic coating layer composed of one or more alcohol molecules has been proposed.

また、特許文献3では、金属粒子有機被覆の熱分解を熱示差・熱重量同時測定(Thermogravimetry−Differential Thermal Analysis:TG−DTA)を行い、粒子の焼結性良否を判定する方法が示されている。具体的には、金属の触媒作用により有機物の熱分解温度が本来その有機物が持つ熱分解温度よりも低下し、かつ熱分解における活性化エネルギーが95kJ/モル未満である場合に優れた焼結性であるとされる。   Patent Document 3 discloses a method for determining the quality of sinterability of a particle by conducting thermal differential-thermogravimetric measurement (TG-DTA) of pyrolysis of metal particle organic coating. Yes. Specifically, the sinterability is excellent when the pyrolysis temperature of the organic substance is lower than the intrinsic pyrolysis temperature of the organic substance due to the catalytic action of the metal, and the activation energy in the pyrolysis is less than 95 kJ / mol. It is said that.

上記特許文献1および2は銀微粒子を例にした良好な低温焼結の例示であり、ニッケルのような銀と比較して安価な金属を粒子焼結する例は示されていない。さらに特許文献3では、フレーク状のニッケル粒子を空気気流下で熱示差天秤を測定し、有機物の熱分解温度や活性化エネルギーから焼結性が銀粒子よりも劣る判定しており、10%水素を含む還元雰囲気での焼成による接合試験では接合強度測定不可と例示されている。   The above Patent Documents 1 and 2 are examples of good low-temperature sintering taking silver fine particles as an example, and no examples of sintering particles of a metal cheaper than silver such as nickel are shown. Furthermore, in Patent Document 3, a flaky nickel particle is measured with a thermal differential balance in an air stream, and it is determined that the sinterability is inferior to silver particles from the thermal decomposition temperature and activation energy of organic matter. It is exemplified that the bonding strength cannot be measured in the bonding test by firing in a reducing atmosphere including

特許第4872663号公報Japanese Patent No. 4872663 特許第5306322号公報Japanese Patent No. 5306322 特許第4633857号公報Japanese Patent No. 4633857

本発明の目的は、貴金属と比較して安価なニッケル微粒子を用い、250〜350℃の温度にて良好な焼結状態を達成することで、十分な接合強度が得られる接合層を形成することである。   An object of the present invention is to form a bonding layer that can provide sufficient bonding strength by using nickel fine particles that are cheaper than precious metals and achieving a good sintered state at a temperature of 250 to 350 ° C. It is.

本発明者は上記課題に対し、特定の熱挙動を有する有機化合物で被覆されたニッケル微粒子を用いることで、250℃から350℃の間においても良好な粒子焼結状態を達成できることを見出した。   The present inventor has found that a good particle sintering state can be achieved even between 250 ° C. and 350 ° C. by using nickel fine particles coated with an organic compound having a specific thermal behavior.

すなわち、本発明のニッケル粒子組成物は、次の成分A及びB;
A)レーザー回折/散乱法による平均粒子径が0.5〜20μmの範囲内であり、ニッケル元素を99重量%以上含有するニッケル粒子、
B)走査型電子顕微鏡観察による平均一次粒子径が30〜150nmの範囲内であり、ニッケル元素を90〜99重量%の範囲内で含有し、粒子表面が有機化合物で被覆され、3%の体積割合で水素ガスを含有する水素ガス及び窒素ガスの混合ガスからなる雰囲気中で、5℃/分の昇温速度の示差熱・熱重量同時測定によって、200℃から250℃まで加熱したときに、0.15%/分以上の重量減少及び発熱ピークが観測されるニッケル微粒子、
を含有し、前記成分A及び成分Bの重量比(成分A:成分B)が30:70〜70:30の範囲内である。
That is, the nickel particle composition of the present invention comprises the following components A and B;
A) Nickel particles having an average particle diameter by laser diffraction / scattering in the range of 0.5 to 20 μm and containing 99% by weight or more of nickel element,
B) The average primary particle diameter by scanning electron microscope observation is in the range of 30 to 150 nm, the nickel element is contained in the range of 90 to 99% by weight, the particle surface is coated with an organic compound, and the volume is 3%. When heated from 200 ° C. to 250 ° C. by simultaneous differential heat / thermogravimetric measurement at a heating rate of 5 ° C./min in an atmosphere consisting of a mixture of hydrogen gas and nitrogen gas containing hydrogen gas at a rate of Nickel fine particles in which a weight loss of 0.15% / min or more and an exothermic peak are observed,
And the weight ratio of the component A and the component B (component A: component B) is in the range of 30:70 to 70:30.

本発明のニッケル粒子組成物は、前記有機化合物が、炭素数6〜17の範囲内にある脂肪酸であってもよい。   In the nickel particle composition of the present invention, the organic compound may be a fatty acid having 6 to 17 carbon atoms.

本発明のニッケル粒子組成物は、前記ニッケル微粒子が、3%の体積割合で水素ガスを含有する水素ガス及び窒素ガスの混合ガスからなる雰囲気中で、5℃/分の昇温速度の示差熱・熱重量同時測定によって、250℃を超える温度で加熱したとき、重量減少が観測されないものであってもよい。   In the nickel particle composition of the present invention, the nickel fine particles have a differential heat with a heating rate of 5 ° C./min in an atmosphere composed of a mixed gas of hydrogen gas and nitrogen gas containing hydrogen gas at a volume ratio of 3%. -When heated at a temperature exceeding 250 ° C. by simultaneous thermogravimetric measurement, weight reduction may not be observed.

本発明の接合材は、上記いずれかのニッケル粒子組成物を含有するものであって、前記ニッケル粒子組成物の含有量が70〜96重量%の範囲内である。   The bonding material of the present invention contains any of the above nickel particle compositions, and the content of the nickel particle composition is in the range of 70 to 96% by weight.

本発明の接合材は、沸点が100〜300℃の範囲内にある有機溶媒を含有し、前記有機溶媒の含有量が4〜30重量%の範囲内であってもよい。   The bonding material of the present invention may contain an organic solvent having a boiling point in the range of 100 to 300 ° C., and the content of the organic solvent may be in the range of 4 to 30% by weight.

本発明の接合材は、前記有機溶媒が1−ウンデカノール、テトラデカンからなる群より選ばれる少なくとも1種を全有機溶媒に対して15重量%以上含むものであってもよい。   In the bonding material of the present invention, the organic solvent may contain at least one selected from the group consisting of 1-undecanol and tetradecane in an amount of 15% by weight or more based on the total organic solvent.

本発明の接合材は、更に、有機バインダー成分を含有するものであってもよい。   The bonding material of the present invention may further contain an organic binder component.

本発明の接合方法は、上記いずれかの接合材を、被接合部材の間に介在させて還元性ガスを含有する還元性ガス雰囲気下で250〜350℃の範囲内の温度で加熱することにより、被接合部材の間に接合層を形成する。   In the bonding method of the present invention, any one of the above-described bonding materials is interposed between the members to be bonded and heated at a temperature in the range of 250 to 350 ° C. in a reducing gas atmosphere containing a reducing gas. A bonding layer is formed between the members to be bonded.

本発明のニッケル粒子組成物、接合材、接合方法は、焼結時の体積収縮が抑制され、銀などの貴金属を用いず、250〜350℃の温度にて良好な焼結状態が達成でき、十分な接合強度が得られる接合層を形成することができる。   The nickel particle composition, bonding material, and bonding method of the present invention are capable of suppressing volume shrinkage during sintering, and can achieve a good sintered state at a temperature of 250 to 350 ° C. without using a noble metal such as silver. A bonding layer capable of obtaining sufficient bonding strength can be formed.

ニッケル微粒子1のTG−DTA測定結果を示す図面である。It is drawing which shows the TG-DTA measurement result of the nickel fine particle 1. FIG. ペースト1の焼結性評価によるSEM画像を示す図面である。4 is a drawing showing an SEM image obtained by evaluating the sinterability of paste 1. ニッケル微粒子2のTG−DTA測定結果を示す図面である。It is drawing which shows the TG-DTA measurement result of the nickel fine particle 2. FIG. ニッケル微粒子3のTG−DTA測定結果を示す図面である。It is drawing which shows the TG-DTA measurement result of the nickel fine particle 3. FIG. ニッケル微粒子4のTG−DTA測定結果を示す図面である。It is drawing which shows the TG-DTA measurement result of the nickel fine particle 4. FIG. ペースト4の焼結性評価によるSEM画像を示す図面である。4 is a drawing showing an SEM image obtained by evaluating the sinterability of paste 4. ニッケル微粒子5のTG−DTA測定結果を示す図面である。It is drawing which shows the TG-DTA measurement result of the nickel fine particle 5. FIG. ニッケル微粒子6のTG−DTA測定結果を示す図面である。It is drawing which shows the TG-DTA measurement result of the nickel fine particle 6. FIG.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

本発明のニッケル粒子組成物は、次の成分A及びB;
A)レーザー回折/散乱法による平均粒子径が0.5〜20μmの範囲内であり、ニッケル元素を99重量%以上含有するニッケル粒子、
B)走査型電子顕微鏡観察による平均一次粒子径が30〜150nmの範囲内であり、ニッケル元素を90〜99重量%の範囲内で含有し、粒子表面が有機化合物で被覆され、3%の体積割合で水素ガスを含有する水素ガス及び窒素ガスの混合ガスからなる雰囲気中で、5℃/分の昇温速度の示差熱・熱重量同時測定によって、200℃から250℃まで加熱したときに、0.15%/分以上の重量減少及び発熱ピークが観測されるニッケル微粒子、
を含有し、前記成分A及び成分Bの重量比(成分A:成分B)は30:70〜70:30の範囲内である。
The nickel particle composition of the present invention comprises the following components A and B;
A) Nickel particles having an average particle diameter by laser diffraction / scattering in the range of 0.5 to 20 μm and containing 99% by weight or more of nickel element,
B) The average primary particle diameter by scanning electron microscope observation is in the range of 30 to 150 nm, the nickel element is contained in the range of 90 to 99% by weight, the particle surface is coated with an organic compound, and the volume is 3%. When heated from 200 ° C. to 250 ° C. by simultaneous differential heat / thermogravimetric measurement at a heating rate of 5 ° C./min in an atmosphere consisting of a mixture of hydrogen gas and nitrogen gas containing hydrogen gas at a rate of Nickel fine particles in which a weight loss of 0.15% / min or more and an exothermic peak are observed,
The weight ratio of the component A and the component B (component A: component B) is in the range of 30:70 to 70:30.

(成分A:ニッケル粒子)
成分Aのニッケル粒子は、加熱よる接合層形成時の体積収縮を抑制する観点から、レーザー回折/散乱法による平均粒子径が0.5〜20μmの範囲内とする。平均粒子径が0.5μm未満であると、加熱による接合層形成時において体積収縮が大きくなり、被接合体同士が十分に接合しない。一方、平均粒子径が20μmを超えると、被接合体上に塗布性の悪化や、接合層厚みの調整が困難となる。
(Component A: Nickel particles)
From the viewpoint of suppressing volume shrinkage during the formation of the bonding layer by heating, the nickel particles of component A have an average particle diameter in the range of 0.5 to 20 μm by the laser diffraction / scattering method. When the average particle diameter is less than 0.5 μm, the volume shrinkage increases when the bonding layer is formed by heating, and the objects to be bonded are not sufficiently bonded to each other. On the other hand, when the average particle diameter exceeds 20 μm, it is difficult to adjust the coating property on the bonded body and to adjust the bonding layer thickness.

また、成分Aのニッケル粒子は、その使用目的に応じて、ニッケル元素の含有量を適宜選択すればよく、全金属元素の100重量部に対し、本発明の効果を発現するために、ニッケル元素を99重量部以上含有することが最も好ましい。例えばニッケル元素含有量を99重量部以上とするのは、一般的に市販されているニッケル粒子に含有されるニッケル元素量を目安としたものである。その他の含有成分としては、酸素や炭素の他、不純物金属を含んでもよい。また、ニッケル粒子の焼結性は、ニッケル粒子の表面又は表層部の性状に影響されるので、このような観点から、ニッケル粒子は、ニッケル元素を含有するシェル(殻部)と異種金属によるコア(中心部)からなるコア−シェル構造などの多層構造を有していてもよく、あるいは、ニッケル粒子の表層部におけるニッケル元素の濃度が中心部より高く、異種金属の濃度が中心部で高い構造を有していてもよい。このような構造を有する場合には、表層部における全金属元素に対して、ニッケル元素を好ましくは50重量%以上、より好ましくは75重量%以上、更に好ましくは90重量%以上含有することがよい。   In addition, the nickel particles of component A may be appropriately selected according to the purpose of use, and the content of nickel element may be appropriately selected. In order to exhibit the effects of the present invention with respect to 100 parts by weight of all metal elements, nickel element Most preferably, 99 parts by weight or more is contained. For example, the nickel element content of 99 parts by weight or more is based on the amount of nickel element generally contained in commercially available nickel particles. Other contained components may include impurity metals in addition to oxygen and carbon. In addition, since the sinterability of nickel particles is affected by the properties of the surface or surface layer of the nickel particles, from this point of view, the nickel particles have a core (shell) containing nickel element and a core made of a different metal. It may have a multilayer structure such as a core-shell structure composed of (central part), or a structure in which the concentration of nickel element in the surface layer part of nickel particles is higher than that in the central part and the concentration of different metals is high in the central part You may have. In the case of such a structure, the nickel element is preferably contained in an amount of 50% by weight or more, more preferably 75% by weight or more, and still more preferably 90% by weight or more with respect to all the metal elements in the surface layer portion. .

成分Aのニッケル粒子は、その製造方法を問わず利用できる。成分Aのニッケル粒子としては、例えば、関東化学工業社製(製品名:ニッケル(粉末))、シグマアルドリッチジャパン合同会社製(製品名:Nickel)などの市販品を好ましく利用できる。   The nickel particles of component A can be used regardless of the production method. As the nickel particles of component A, for example, commercially available products such as those manufactured by Kanto Chemical Co., Ltd. (product name: nickel (powder)) and Sigma-Aldrich Japan LLC (product name: Nickel) can be preferably used.

(成分B:ニッケル微粒子)
成分Bのニッケル微粒子は、走査型電子顕微鏡観察による平均一次粒子径が30〜150nmの範囲内である。ニッケル微粒子の平均一次粒子径が30nm未満であると、ニッケル微粒子が凝集しやすくなり、成分Aのニッケル粒子との均一な混合が困難となる。一方、ニッケル微粒子の平均一次粒子径が150nmを超えると、350℃以下の低温焼成において、ニッケル微粒子間もしくはニッケル微粒子とニッケル粒子との焼結能力が不十分であり、接合強度の低下を招く。なお、本明細書において、ニッケル微粒子の一次粒子の平均粒子径は、実施例で用いた値を含めて、電界放出形走査電子顕微鏡(Field Emission−Scanning Electron Microscope:FE−SEM)により試料の写真を撮影して、その中から無作為に200個を抽出してそれぞれの面積を求め、真球に換算したときの粒子径を個数基準として算出した値である。
(Component B: Nickel fine particles)
The nickel fine particles of component B have an average primary particle diameter in the range of 30 to 150 nm as observed with a scanning electron microscope. When the average primary particle size of the nickel fine particles is less than 30 nm, the nickel fine particles are likely to aggregate, and uniform mixing with the component A nickel particles becomes difficult. On the other hand, when the average primary particle diameter of the nickel fine particles exceeds 150 nm, the sintering ability between the nickel fine particles or between the nickel fine particles and the nickel particles is insufficient during low-temperature firing at 350 ° C. or less, resulting in a decrease in bonding strength. In addition, in this specification, the average particle diameter of the primary particles of the nickel fine particles, including the values used in the examples, is a photograph of a sample by a field emission scanning electron microscope (FE-SEM). Is a value calculated based on the number of particles, which is obtained by randomly extracting 200 images from each of the images, obtaining the respective areas, and converting them into true spheres.

また、成分Bのニッケル微粒子は、その使用目的に応じて、ニッケル元素の含有量を適宜選択すればよく、全金属元素の100重量部に対し、90〜99重量部の範囲内で含有することがよい。例えば、成分Bとして、湿式還元法で製造したニッケル微粒子や分散処理を行ったニッケル微粒子を使用する場合は、それらの平均一次粒子径が30〜150nmの範囲内であると、表面被覆の炭素や不動態酸素の存在で、ニッケル元素の含有量は上記の値となる。また、ニッケル微粒子の焼結性は、ニッケル微粒子の表面又は表層部の性状に影響されるので、このような観点から、ニッケル微粒子は、ニッケル元素を含有するシェル(殻部)と異種金属によるコア(中心部)からなるコア−シェル構造などの多層構造を有していてもよく、あるいは、ニッケル微粒子の表層部におけるニッケル元素の濃度が中心部より高く、異種金属の濃度が中心部で高い構造を有していてもよい。このような構造を有する場合には、表層部における全金属元素に対して、ニッケル元素を好ましくは50重量%以上、より好ましくは75重量%以上、更に好ましくは90重量%以上含有することがよい。   In addition, the nickel fine particles of component B may be appropriately selected according to the purpose of use, and the nickel element content should be selected within the range of 90 to 99 parts by weight with respect to 100 parts by weight of all metal elements. Is good. For example, when using nickel fine particles produced by a wet reduction method or nickel fine particles that have been subjected to a dispersion treatment as Component B, if the average primary particle diameter is within the range of 30 to 150 nm, the surface coating carbon or In the presence of passive oxygen, the content of nickel element becomes the above value. In addition, since the sinterability of the nickel fine particles is affected by the properties of the surface of the nickel fine particles or the surface layer portion, from this point of view, the nickel fine particles are composed of a shell containing a nickel element and a core made of a different metal. It may have a multilayer structure such as a core-shell structure composed of (central part), or a structure in which the concentration of nickel element in the surface layer part of nickel fine particles is higher than that in the central part and the concentration of different metals is high in the central part You may have. In the case of such a structure, the nickel element is preferably contained in an amount of 50% by weight or more, more preferably 75% by weight or more, and still more preferably 90% by weight or more with respect to all the metal elements in the surface layer portion. .

また、成分Bのニッケル微粒子は、ニッケル以外の金属を含有していてもよいが、その含有量は1〜10重量%の範囲内の量とすることが最も好ましい。ニッケル以外の金属としては、例えば、スズ、チタン、コバルト、銅、クロム、マンガン、鉄、ジルコニウム、タングステン、モリブデン、バナジウム等の卑金属、金、銀、白金、パラジウム、イリジウム、オスミウム、ルテニウム、ロジウム、レニウム等の貴金属などの金属元素を挙げることができる。これらは、単独で又は2種以上含有していてもよい。   The nickel fine particles of component B may contain a metal other than nickel, but the content is most preferably in the range of 1 to 10% by weight. Examples of metals other than nickel include, for example, base metals such as tin, titanium, cobalt, copper, chromium, manganese, iron, zirconium, tungsten, molybdenum, vanadium, gold, silver, platinum, palladium, iridium, osmium, ruthenium, rhodium, A metal element such as a noble metal such as rhenium can be given. These may be contained alone or in combination of two or more.

また、成分Bとして、湿式還元法で製造したニッケル微粒子や分散処理を行ったニッケル微粒子を使用する場合は、例えば、酸素元素、炭素元素などの非金属元素を含有していてもよい。炭素元素を含有する場合、その含有率は、例えば0.3〜2.5重量%の範囲内、好ましくは0.5〜2.0重量%の範囲内である。炭素元素は、ニッケル微粒子の表面に存在する有機化合物に由来するものであり、ニッケル微粒子の分散性向上に寄与する。従って、炭素元素の含有量が0.3重量%未満では、十分な分散性が得られない場合があり、2.5重量%を超える場合は、焼成後に炭化して残炭となり、接合層の導電性を低下させる可能性がある。また、酸素元素を含有する場合、その含有率は、例えば0.7〜7.5重量%の範囲内、好ましくは1.0〜2.0重量%の範囲内である。   Moreover, when using the nickel fine particle manufactured by the wet reduction method or the nickel fine particle which performed the dispersion process as component B, nonmetallic elements, such as an oxygen element and a carbon element, may be contained, for example. When the carbon element is contained, the content thereof is, for example, in the range of 0.3 to 2.5% by weight, preferably in the range of 0.5 to 2.0% by weight. The carbon element is derived from an organic compound present on the surface of the nickel fine particles, and contributes to an improvement in the dispersibility of the nickel fine particles. Therefore, when the carbon element content is less than 0.3% by weight, sufficient dispersibility may not be obtained. When the carbon element content exceeds 2.5% by weight, carbonization is performed after firing to form residual charcoal. There is a possibility of reducing the conductivity. Moreover, when it contains an oxygen element, the content rate is in the range of 0.7 to 7.5 weight%, for example, Preferably it exists in the range of 1.0 to 2.0 weight%.

(ニッケル微粒子の示差熱・熱重量同時測定)
ニッケル微粒子に含まれる酸素元素、炭素元素は、焼成によって除去された場合、ニッケル金属表面が露出され、目的とするニッケル微粒子同士の焼結、もしくはニッケル粒子との焼結が進行する。上記成分が除去される熱挙動は、熱示差・熱重量同時測定(Thermogravimetry−Differential Thermal Analysis:TG−DTA)によって調べることが可能であり、測定結果よりニッケル微粒子の焼結に必要最低限の温度も把握することができる。
(Differential heat and thermogravimetric measurement of nickel fine particles)
When the oxygen element and the carbon element contained in the nickel fine particles are removed by firing, the nickel metal surface is exposed, and sintering of the target nickel fine particles or sintering with the nickel particles proceeds. The thermal behavior at which the above components are removed can be examined by simultaneous thermo-differential-differential thermal analysis (TG-DTA). The minimum temperature required for sintering of nickel fine particles is determined from the measurement results. Can also grasp.

TG−DTA測定雰囲気は、実際の接合試験時と同様に、数体積%以上の還元性ガスと不活性ガスの混合ガスでなければならない。還元性ガスを全く含まない不活性ガスのみの場合、ニッケル微粒子上での還元反応が発生しないため、正確な熱挙動を調べることができない。さらに炭素成分が除去される温度も、不活性ガスのみでは10℃以上高温で検出される場合がある。また、酸素などの酸化性ガスが含まれる場合も、ニッケル微粒子の酸化反応が進行による重量上昇が発生し、熱挙動をみるのに適さない。上記還元性ガスと不活性ガスの混合ガスとしては、例えば、3%の体積割合で水素ガスを含有する水素ガス及び窒素ガスの混合ガスを用いることが好ましい。   The TG-DTA measurement atmosphere must be a mixed gas of a reducing gas and an inert gas of several volume% or more as in the actual bonding test. In the case of only an inert gas that does not contain any reducing gas, a reduction reaction does not occur on the nickel fine particles, so that an accurate thermal behavior cannot be examined. Furthermore, the temperature at which the carbon component is removed may be detected at a high temperature of 10 ° C. or higher with only the inert gas. Also, when an oxidizing gas such as oxygen is included, the weight increase due to the progress of the oxidation reaction of the nickel fine particles occurs, which is not suitable for examining the thermal behavior. As the mixed gas of the reducing gas and the inert gas, it is preferable to use, for example, a mixed gas of hydrogen gas and nitrogen gas containing hydrogen gas at a volume ratio of 3%.

TG−DTA測定時の昇温速度は5℃/分以下が好ましい。昇温速度が速いほど炭素成分、酸素成分の除去される際の重量減少が高温化、もしくは広い温度域で観察されるため、正確な挙動が分からない場合が多い。   The rate of temperature rise during TG-DTA measurement is preferably 5 ° C./min or less. As the rate of temperature increase is faster, the weight loss when the carbon component and oxygen component are removed is observed at a higher temperature or in a wider temperature range, so the exact behavior is often unknown.

250℃〜350℃の間でニッケル微粒子同士の焼結、もしくはニッケル微粒子とニッケル粒子の良好な焼結状態を実現するため、成分Bのニッケル微粒子は、上記TG−DTA測定条件にて200℃から250℃の間に0.15%/分以上の重量減少が測定されることが好ましい。ニッケル微粒子を被覆している有機成分は、ニッケル微粒子表面との相互作用により安定化され、被覆有機成分自体が持つ沸点よりも高温で揮発する。そのため、低分子成分あっても200℃以上で分解揮発が生じる。200℃を下回って重量減少が生じる場合、ニッケル微粒子表面との相互作用が小さく、溶媒のように振る舞うと考えられる。その場合、ニッケル微粒子は分散安定性を得られず、凝集状態となり、接合材の機能を果たさない。また、250℃を超える温度で重量減少が測定される場合は、有機成分の炭化反応のため粒子焼結が阻害される。従って、成分Bのニッケル微粒子は、250℃を超える温度では重量減少が観測されないことが好ましい。さらに、200℃から250℃の間の重量減少が0.15%/分を下回る場合は、有機成分が十分にニッケル微粒子表面を被覆できておらず凝集状態をまねくことが懸念される。   In order to realize sintering between nickel fine particles between 250 ° C. and 350 ° C., or a good sintered state of nickel fine particles and nickel particles, the nickel fine particles of component B are from 200 ° C. under the above TG-DTA measurement conditions. Preferably, a weight loss of 0.15% / min or more is measured during 250 ° C. The organic component covering the nickel fine particles is stabilized by the interaction with the surface of the nickel fine particles, and volatilizes at a temperature higher than the boiling point of the coated organic component itself. Therefore, even if it is a low molecular component, decomposition and volatilization occurs at 200 ° C. or higher. When the weight is reduced below 200 ° C., the interaction with the surface of the nickel fine particles is small, and it is considered to behave like a solvent. In that case, the nickel fine particles cannot obtain dispersion stability, become agglomerated, and do not function as a bonding material. Further, when weight loss is measured at a temperature exceeding 250 ° C., particle sintering is hindered due to carbonization reaction of organic components. Therefore, it is preferable that the nickel fine particles of component B are not observed to lose weight at temperatures exceeding 250 ° C. Furthermore, when the weight loss between 200 ° C. and 250 ° C. is less than 0.15% / min, there is a concern that the organic component is not sufficiently coated on the surface of the nickel fine particles and leads to an agglomerated state.

ニッケル微粒子を上記TG−DTA条件で測定した場合、重量減少と同時に発熱ピークが観察される。この発熱は、還元性ガスを含まない雰囲気や被覆有機成分のないニッケル微粒子では測定されないため、表面有機成分がニッケル金属表面で生じた反応熱であると考えられる。   When the nickel fine particles are measured under the above TG-DTA conditions, an exothermic peak is observed simultaneously with the weight reduction. This exotherm is not measured in an atmosphere containing no reducing gas or in nickel fine particles having no coating organic component, and is considered to be reaction heat generated by the surface organic component on the nickel metal surface.

(ニッケル微粒子の合成方法)
成分Bのニッケル微粒子は、その製造方法を問わず利用できるが、ニッケル塩及び有機アミンを含む混合物から、湿式還元法によりニッケルイオンを加熱還元して析出させる公知の方法によって得られたものが好ましい(例えば、特許文献1を参照)。ここでは、湿式還元法によるニッケル微粒子の製造方法の一例について説明する。
(Method of synthesizing nickel fine particles)
The nickel fine particles of component B can be used regardless of the production method, but those obtained by a known method in which nickel ions are heated and reduced by a wet reduction method from a mixture containing a nickel salt and an organic amine are preferable. (For example, see Patent Document 1). Here, an example of a method for producing nickel fine particles by a wet reduction method will be described.

湿式還元法によるニッケル微粒子の製造は、次の工程1及び2;
工程1)カルボン酸ニッケル及び1級アミンを含む混合物を、100℃〜165℃の範囲内の温度に加熱して錯化反応液を得る錯化反応液生成工程、
及び、
工程2)該錯化反応液を、マイクロ波照射によって170℃以上の温度に加熱して該錯化反応液中のニッケルイオンを還元し、1級アミンで被覆されたニッケル微粒子のスラリーを得るニッケル微粒子スラリー生成工程、を含むことができる。
The production of nickel fine particles by the wet reduction method includes the following steps 1 and 2;
Step 1) A complexing reaction solution generating step of obtaining a complexing reaction solution by heating a mixture containing nickel carboxylate and a primary amine to a temperature within a range of 100 ° C. to 165 ° C.,
as well as,
Step 2) Nickel to obtain a slurry of nickel fine particles coated with primary amine by heating the complexing reaction liquid to a temperature of 170 ° C. or higher by microwave irradiation to reduce nickel ions in the complexing reaction liquid A fine particle slurry generating step.

工程1)錯化反応液生成工程:
(カルボン酸ニッケル)
カルボン酸ニッケル(カルボン酸のニッケル塩)は、カルボン酸の種類を限定するものではなく、例えば、カルボキシル基が1つのモノカルボン酸であってもよく、また、カルボキシル基が2つ以上のカルボン酸であってもよい。また、非環式カルボン酸であってもよく、環式カルボン酸であってもよい。このようなカルボン酸ニッケルとして、非環式モノカルボン酸ニッケルを好適に用いることができ、非環式モノカルボン酸ニッケルのなかでも、ギ酸ニッケル、酢酸ニッケル、プロピオン酸ニッケル、シュウ酸ニッケル、安息香酸ニッケル等を用いることがより好ましい。これらの非環式モノカルボン酸ニッケルを用いることによって、例えば、得られるニッケル微粒子は、その形状のばらつきが抑制され、均一な形状として形成されやすくなる。カルボン酸ニッケルは、無水物であってもよく、また水和物であってもよい。
Step 1) Complexation reaction solution generation step:
(Nickel carboxylate)
The nickel carboxylate (nickel salt of carboxylic acid) is not limited to the type of carboxylic acid. For example, the carboxyl group may be a monocarboxylic acid having one carboxyl group, or a carboxylic acid having two or more carboxyl groups. It may be. Moreover, acyclic carboxylic acid may be sufficient and cyclic carboxylic acid may be sufficient. As such nickel carboxylate, nickel acyclic monocarboxylate can be preferably used, and among nickel acyclic monocarboxylate, nickel formate, nickel acetate, nickel propionate, nickel oxalate, benzoic acid It is more preferable to use nickel or the like. By using these nickel acyclic monocarboxylates, for example, the resulting nickel fine particles are less likely to have a variation in shape and are easily formed as a uniform shape. The nickel carboxylate may be an anhydride or a hydrate.

(1級アミン)
1級アミンは、ニッケルイオンとの錯体を形成することができ、ニッケル錯体(又はニッケルイオン)に対する還元能を効果的に発揮する。一方、2級アミンは立体障害が大きいため、ニッケル錯体の良好な形成を阻害するおそれがあり、3級アミンはニッケルイオンの還元能を有しないため、いずれも単独では使用できないが、1級アミンを使用する上で、生成するニッケル微粒子の形状に支障を与えない範囲でこれらを併用することは差し支えない。1級アミンは、ニッケルイオンとの錯体を形成できるものであれば、特に限定するものではなく、常温で固体又は液体のものが使用できる。ここで、常温とは、20℃±15℃をいう。常温で液体の1級アミンは、ニッケル錯体を形成する際の有機溶媒としても機能する。なお、常温で固体の1級アミンであっても、100℃以上の加熱によって液体であるか、又は有機溶媒を用いて溶解するものであれば、特に問題はない。
(Primary amine)
The primary amine can form a complex with nickel ions, and effectively exhibits a reducing ability for nickel complexes (or nickel ions). On the other hand, secondary amines have great steric hindrance and may hinder the good formation of nickel complexes. Since tertiary amines do not have the ability to reduce nickel ions, none can be used alone. When these are used, these may be used in combination as long as the shape of the nickel fine particles to be produced is not hindered. The primary amine is not particularly limited as long as it can form a complex with nickel ions, and can be a solid or liquid at room temperature. Here, room temperature means 20 ° C. ± 15 ° C. The primary amine that is liquid at room temperature also functions as an organic solvent for forming the nickel complex. In addition, even if it is a primary amine solid at normal temperature, there is no particular problem as long as it is liquid by heating at 100 ° C. or higher, or can be dissolved using an organic solvent.

1級アミンは、芳香族1級アミンであってもよいが、反応液におけるニッケル錯体形成の容易性の観点からは脂肪族1級アミンが好適である。脂肪族1級アミンは、例えばその炭素鎖の長さを調整することによって生成するニッケル微粒子の粒径を制御することができ、特に平均一次粒子径が30nm〜150nmの範囲内にあるニッケル微粒子を製造する場合において有利である。ニッケル微粒子の粒径を制御する観点から、脂肪族1級アミンは、その炭素数が6〜20程度のものから選択して用いることが好適である。炭素数が多いほど得られるニッケル微粒子の粒径が小さくなる。このようなアミンとして、例えばオクチルアミン、トリオクチルアミン、ジオクチルアミン、ヘキサデシルアミン、ドデシルアミン、テトラデシルアミン、ステアリルアミン、オレイルアミン、ミリスチルアミン、ラウリルアミン等を挙げることができる。例えばオレイルアミンは、ニッケル微粒子生成過程に於ける温度条件下において液体状態として存在するため均一溶液で反応を効率的に進行できる。   The primary amine may be an aromatic primary amine, but an aliphatic primary amine is preferred from the viewpoint of easy nickel complex formation in the reaction solution. The aliphatic primary amine can control the particle diameter of the nickel fine particles produced by adjusting the length of the carbon chain, for example, the nickel fine particles having an average primary particle diameter in the range of 30 nm to 150 nm. This is advantageous when manufacturing. From the viewpoint of controlling the particle diameter of the nickel fine particles, the aliphatic primary amine is preferably selected from those having about 6 to 20 carbon atoms. The larger the carbon number, the smaller the particle size of the nickel fine particles obtained. Examples of such amines include octylamine, trioctylamine, dioctylamine, hexadecylamine, dodecylamine, tetradecylamine, stearylamine, oleylamine, myristylamine, and laurylamine. For example, oleylamine exists in a liquid state under the temperature conditions in the nickel fine particle production process, and therefore the reaction can proceed efficiently in a homogeneous solution.

1級アミンは、ニッケル微粒子の生成時に表面修飾剤として機能するため、1級アミンの除去後においても二次凝集を抑制できる。また、1級アミンは、還元反応後の生成したニッケル微粒子の固体成分と溶剤または未反応の1級アミン等を分離する洗浄工程における処理操作の容易性の観点からは室温で液体のものが好ましい。更に、1級アミンは、ニッケル錯体を還元してニッケル微粒子を得るときの反応制御の容易性の観点からは還元温度より沸点が高いものが好ましい。すなわち、脂肪族1級アミンにおいては沸点が180℃以上のものが好ましく、200℃以上のものがより好ましく、また、炭素数が9以上のものが好ましい。ここで、例えば炭素数が9である脂肪族アミンのC21N(ノニルアミン)の沸点は201℃である。1級アミンの量は、ニッケル1molに対して2mol以上用いることが好ましく、2.2mol以上用いることがより好ましく、4mol以上用いることが望ましい。1級アミンの量が2mol未満では、得られるニッケル微粒子の粒子径の制御が困難となり、粒子径がばらつきやすくなる。また、1級アミンの量の上限は特にはないが、例えば生産性の観点からは20mol以下とすることが好ましい。 Since the primary amine functions as a surface modifier during the production of the nickel fine particles, secondary aggregation can be suppressed even after removal of the primary amine. The primary amine is preferably liquid at room temperature from the viewpoint of ease of processing operation in the washing step of separating the solid component of the nickel fine particles produced after the reduction reaction and the solvent or unreacted primary amine. . Further, the primary amine is preferably one having a boiling point higher than the reduction temperature from the viewpoint of ease of reaction control when the nickel complex is reduced to obtain nickel fine particles. That is, the aliphatic primary amine preferably has a boiling point of 180 ° C. or higher, more preferably 200 ° C. or higher, and preferably has 9 or more carbon atoms. Here, for example, the boiling point of C 9 H 21 N (nonylamine) of an aliphatic amine having 9 carbon atoms is 201 ° C. The amount of primary amine is preferably 2 mol or more, more preferably 2.2 mol or more, and more preferably 4 mol or more with respect to 1 mol of nickel. When the amount of primary amine is less than 2 mol, it is difficult to control the particle diameter of the obtained nickel fine particles, and the particle diameter tends to vary. The upper limit of the amount of primary amine is not particularly limited, but is preferably 20 mol or less from the viewpoint of productivity, for example.

(有機溶媒)
工程1では、均一溶液での反応をより効率的に進行させるために、1級アミンとは別の有機溶媒を新たに添加してもよい。有機溶媒を用いる場合、有機溶媒をカルボン酸ニッケル及び1級アミンと同時に混合してもよいが、カルボン酸ニッケル及び1級アミンを先ず混合し錯形成した後に有機溶媒を加えると、1級アミンが効率的にニッケル原子に配位するので、より好ましい。使用できる有機溶媒としては、1級アミンとニッケルイオンとの錯形成を阻害しないものであれば、特に限定するものではなく、例えば炭素数4〜30のエーテル系有機溶媒、炭素数7〜30の飽和又は不飽和の炭化水素系有機溶媒、炭素数8〜18のアルコール系有機溶媒等を使用することができる。また、マイクロ波照射による加熱条件下でも使用を可能とする観点から、使用する有機溶媒は、沸点が170℃以上のものを選択することが好ましく、より好ましくは200〜300℃の範囲内にあるものを選択することがよい。このような有機溶媒の具体例としては、例えばテトラエチレングリコール、n−オクチルエーテル等が挙げられる。
(Organic solvent)
In step 1, an organic solvent different from the primary amine may be newly added in order to allow the reaction in the homogeneous solution to proceed more efficiently. When an organic solvent is used, the organic solvent may be mixed simultaneously with the nickel carboxylate and the primary amine. However, when the organic solvent is added after first mixing the nickel carboxylate and the primary amine to form a complex, It is more preferable because it efficiently coordinates to a nickel atom. The organic solvent that can be used is not particularly limited as long as it does not inhibit the complex formation between the primary amine and the nickel ion. For example, the organic solvent having 4 to 30 carbon atoms, 7 to 30 carbon atoms, and the like. A saturated or unsaturated hydrocarbon organic solvent, an alcohol organic solvent having 8 to 18 carbon atoms, or the like can be used. Moreover, from the viewpoint of enabling use even under heating conditions by microwave irradiation, it is preferable to select an organic solvent having a boiling point of 170 ° C. or higher, more preferably in the range of 200 to 300 ° C. It is better to choose one. Specific examples of such an organic solvent include tetraethylene glycol and n-octyl ether.

錯形成反応は室温に於いても進行することができるが、十分且つ、より効率の良い錯形成反応を行うために、100℃〜165℃の範囲内の温度に加熱して反応を行う。この加熱は、カルボン酸ニッケルとして、例えばギ酸ニッケル2水和物や酢酸ニッケル4水和物のようなカルボン酸ニッケルの水和物を用いた場合に特に有利である。加熱温度は、好ましくは100℃を超える温度とし、より好ましくは105℃以上の温度とすることで、カルボン酸ニッケルに配位した配位水と1級アミンとの配位子置換反応が効率よく行われ、この錯体配位子としての水分子を解離させることができ、さらにその水を系外に出すことができるので効率よく錯体を形成させることができる。例えば、ギ酸ニッケル2水和物は、室温では2個の配位水と2座配位子である2個のギ酸イオンが存在した錯体構造をとっているため、この2つの配位水と1級アミンの配位子置換により効率よく錯形成させるには、100℃より高い温度で加熱することでこの錯体配位子としての水分子を解離させることが好ましい。また、カルボン酸ニッケルと1級アミンとの錯形成反応における熱処理は、後に続くニッケル錯体(又はニッケルイオン)のマイクロ波照射による加熱還元の過程と確実に分離し、前記の錯形成反応を完結させるという観点から、上記の上限温度以下とし、好ましくは160℃以下、より好ましくは150℃以下とすることがよい。   Although the complex formation reaction can proceed even at room temperature, in order to perform a sufficient and more efficient complex formation reaction, the reaction is carried out by heating to a temperature in the range of 100 ° C. to 165 ° C. This heating is particularly advantageous when nickel carboxylate hydrate such as nickel formate dihydrate or nickel acetate tetrahydrate is used as nickel carboxylate. The heating temperature is preferably a temperature exceeding 100 ° C., more preferably a temperature of 105 ° C. or more, so that the ligand substitution reaction between the coordinating water coordinated with nickel carboxylate and the primary amine is efficient. The water molecule as the complex ligand can be dissociated, and the water can be discharged out of the system, so that the complex can be formed efficiently. For example, nickel formate dihydrate has a complex structure in which two coordination waters and two formate ions as bidentate ligands exist at room temperature. In order to efficiently form a complex by substituting a ligand for a primary amine, it is preferable to dissociate the water molecule as the complex ligand by heating at a temperature higher than 100 ° C. In addition, the heat treatment in the complex formation reaction between nickel carboxylate and primary amine is surely separated from the subsequent heat reduction process by microwave irradiation of the nickel complex (or nickel ion) to complete the complex formation reaction. In view of the above, the temperature is set to the upper limit temperature or lower, preferably 160 ° C. or lower, more preferably 150 ° C. or lower.

加熱時間は、加熱温度や、各原料の含有量に応じて適宜決定することができるが、錯形成反応を完結させるという観点から、10分以上とすることが好ましい。加熱時間の上限は特にないが、長時間熱処理することはエネルギー消費及び工程時間を節約する観点から無駄である。なお、この加熱の方法は、特に制限されず、例えばオイルバスなどの熱媒体による加熱であっても、マイクロ波照射による加熱であってもよい。   The heating time can be appropriately determined according to the heating temperature and the content of each raw material, but is preferably 10 minutes or more from the viewpoint of completing the complex formation reaction. There is no upper limit on the heating time, but heat treatment for a long time is useless from the viewpoint of saving energy consumption and process time. The heating method is not particularly limited, and may be heating by a heat medium such as an oil bath or heating by microwave irradiation.

カルボン酸ニッケルと1級アミンとの錯形成反応は、カルボン酸ニッケルと1級アミンとを有機溶媒中で混合して得られる溶液を加熱したときに、溶液の色の変化によって確認することができる。また、この錯形成反応は、例えば紫外・可視吸収スペクトル測定装置を用いて、300nm〜750nmの波長領域において観測される吸収スペクトルの吸収極大の波長を測定し、原料の極大吸収波長(例えばギ酸ニッケル2水和物ではその極大吸収波長は710nmであり、酢酸ニッケル4水和物ではその極大吸収波長は710nmである。)に対する錯化反応液のシフト(極大吸収波長が600nmにシフト)を観測することによって確認することができる。   The complex formation reaction between nickel carboxylate and primary amine can be confirmed by a change in the color of the solution when a solution obtained by mixing nickel carboxylate and primary amine in an organic solvent is heated. . In addition, this complex formation reaction is carried out by measuring the absorption maximum wavelength of the absorption spectrum observed in the wavelength region of 300 nm to 750 nm using, for example, an ultraviolet / visible absorption spectrum measuring apparatus, and measuring the maximum absorption wavelength of the raw material (for example, nickel formate). In dihydrate, the maximum absorption wavelength is 710 nm, and in nickel acetate tetrahydrate, the maximum absorption wavelength is 710 nm.) The shift of the complexing reaction solution (the maximum absorption wavelength shifts to 600 nm) is observed. Can be confirmed.

カルボン酸ニッケルと1級アミンとの錯形成が行われた後、得られる反応液を、次に説明するように、マイクロ波照射によって加熱することにより、ニッケル錯体のニッケルイオンが還元され、ニッケルイオンに配位しているカルボン酸イオンが同時に分解し、最終的に酸化数が0価のニッケルを含有するニッケル微粒子が生成する。一般にカルボン酸ニッケルは水を溶媒とする以外の条件では難溶性であり、マイクロ波照射による加熱還元反応の前段階として、カルボン酸ニッケルを含む溶液は均一反応溶液とする必要がある。これに対して、本実施の形態で使用される1級アミンは、使用温度条件で液体であり、かつそれがニッケルイオンに配位することで液化し、均一反応溶液を形成すると考えられる。   After the complex formation between nickel carboxylate and primary amine is performed, the resulting reaction solution is heated by microwave irradiation to reduce the nickel ions of the nickel complex as described below. At the same time, the carboxylate ions coordinated in the nuclei are decomposed, and finally nickel fine particles containing nickel having an oxidation number of 0 are generated. In general, nickel carboxylate is hardly soluble under conditions other than using water as a solvent, and a solution containing nickel carboxylate needs to be a homogeneous reaction solution as a pre-stage of the heat reduction reaction by microwave irradiation. On the other hand, the primary amine used in the present embodiment is liquid under the operating temperature conditions, and is considered to be liquefied by coordination with nickel ions to form a homogeneous reaction solution.

工程2)ニッケル微粒子スラリー生成工程:
本工程では、カルボン酸ニッケルと1級アミンとの錯形成反応によって得られた錯化反応液を、マイクロ波照射によって170℃以上の温度に加熱し、錯化反応液中のニッケルイオンを還元して1級アミンで被覆されたニッケル微粒子スラリーを得る。マイクロ波照射によって加熱する温度は、得られるニッケル微粒子の形状のばらつきを抑制するという観点から、好ましくは180℃以上、より好ましくは200℃以上とすることがよい。加熱温度の上限は特にないが、処理を能率的に行う観点からは例えば270℃以下とすることが好適である。なお、マイクロ波の使用波長は、特に限定するものではなく、例えば2.45GHzである。なお、加熱温度は、例えばカルボン酸ニッケルの種類やニッケル微粒子の核発生を促進させる添加剤の使用などによって、適宜調整することができる。
Step 2) Nickel fine particle slurry generation step:
In this step, the complexing reaction solution obtained by the complexation reaction between nickel carboxylate and primary amine is heated to a temperature of 170 ° C. or higher by microwave irradiation to reduce nickel ions in the complexing reaction solution. To obtain a nickel fine particle slurry coated with a primary amine. The temperature for heating by microwave irradiation is preferably 180 ° C. or higher, more preferably 200 ° C. or higher, from the viewpoint of suppressing variation in the shape of the obtained nickel fine particles. The upper limit of the heating temperature is not particularly limited, but is preferably set to 270 ° C. or less, for example, from the viewpoint of efficiently performing the treatment. In addition, the use wavelength of a microwave is not specifically limited, For example, it is 2.45 GHz. The heating temperature can be appropriately adjusted depending on, for example, the type of nickel carboxylate and the use of an additive that promotes the nucleation of nickel fine particles.

本工程では、マイクロ波が反応液内に浸透するため、均一加熱が行われ、かつ、エネルギーを媒体に直接与えることができるため、急速加熱を行うことができる。これにより、反応液全体を所望の温度に均一にすることができ、ニッケル錯体(又はニッケルイオン)の還元、核生成、核成長各々の過程を溶液全体において同時に生じさせ、結果として粒径分布の狭い単分散な粒子を短時間で容易に製造することができる。   In this step, since microwaves penetrate into the reaction solution, uniform heating is performed, and energy can be directly applied to the medium, so that rapid heating can be performed. As a result, the entire reaction solution can be made uniform at a desired temperature, and the processes of reduction, nucleation, and nucleation of the nickel complex (or nickel ions) can occur simultaneously in the entire solution. Narrow monodisperse particles can be easily produced in a short time.

均一な粒径を有するニッケル微粒子を生成させるには、工程1の錯化反応液生成工程(ニッケル錯体の生成が行われる工程)でニッケル錯体を均一にかつ十分に生成させることと、本工程2のニッケル微粒子スラリー生成工程で、ニッケル錯体(又はニッケルイオン)の還元により生成するニッケル(0価)の核の同時発生・成長を行う必要がある。すなわち、錯化反応液生成工程の加熱温度を上記の特定の範囲内で調整し、ニッケル微粒子スラリー生成工程におけるマイクロ波による加熱温度よりも確実に低くしておくことで、粒径・形状の整った粒子が生成し易い。例えば、錯化反応液生成工程で加熱温度が高すぎるとニッケル錯体の生成とニッケル(0価)への還元反応が同時に進行し異種の金属種が発生することで、ニッケル微粒子スラリー生成工程での粒子形状の整った粒子の生成が困難となるおそれがある。また、ニッケル微粒子スラリー生成工程の加熱温度が低すぎるとニッケル(0価)への還元反応速度が遅くなり核の発生が少なくなるため粒子が大きくなるだけでなく、ニッケル微粒子の収率の点からも好ましくはない。   In order to generate nickel fine particles having a uniform particle size, the nickel complex is uniformly and sufficiently generated in the complexing reaction liquid generating step (step in which the nickel complex is generated) in step 1; In the nickel fine particle slurry generation step, it is necessary to simultaneously generate and grow nickel (zero-valent) nuclei generated by reduction of the nickel complex (or nickel ions). In other words, by adjusting the heating temperature in the complexing reaction liquid production step within the above specific range and ensuring that it is lower than the microwave heating temperature in the nickel fine particle slurry production step, the particle size and shape are adjusted. Particles are easily generated. For example, if the heating temperature is too high in the complexing reaction liquid generation process, the formation of nickel complex and the reduction reaction to nickel (zero valence) proceed simultaneously, and different metal species are generated. There is a possibility that it is difficult to generate particles having a uniform particle shape. In addition, if the heating temperature of the nickel fine particle slurry generation process is too low, the reduction reaction rate to nickel (zero valence) is slowed and the generation of nuclei is reduced, so that not only the particles are enlarged, but also in terms of the yield of nickel fine particles. Is also not preferred.

マイクロ波照射によって加熱して得られるニッケル微粒子スラリーを、例えば、静置分離し、上澄み液を取り除いた後、適当な溶媒を用いて洗浄し、乾燥することで、ニッケル微粒子が得られる。ニッケル微粒子スラリー生成工程においては、必要に応じ、前述した有機溶媒を加えてもよい。なお、前記したように、錯形成反応に使用する1級アミンを有機溶媒としてそのまま用いることが好ましい。   The nickel fine particle slurry obtained by heating by microwave irradiation is, for example, left and separated, and after removing the supernatant liquid, washed with an appropriate solvent and dried to obtain nickel fine particles. In the nickel fine particle slurry production step, the organic solvent described above may be added as necessary. As described above, the primary amine used for the complex formation reaction is preferably used as it is as the organic solvent.

以上のようにして、平均一次粒子径が30〜150nmの範囲内のニッケル微粒子を調製することができる。   As described above, nickel fine particles having an average primary particle diameter in the range of 30 to 150 nm can be prepared.

(ニッケル粒子組成物における配合比)
ニッケル粒子組成物は、成分A及び成分Bの重量比(成分A:成分B)が30:70〜70:30の範囲内である。上記範囲よりも成分Aのニッケル粒子の割合が高くなると、焼結されていないニッケル粒子が増えることにより、接合層としての強度不足が生じる。一方、上記範囲よりもニッケル粒子の割合が低くなると、接合層全体の体積収縮が大きくなり、この場合もまた十分な接合強度が得られない。
(Compounding ratio in nickel particle composition)
In the nickel particle composition, the weight ratio of component A and component B (component A: component B) is in the range of 30:70 to 70:30. When the ratio of the nickel particles of component A is higher than the above range, the unsintered nickel particles increase, resulting in insufficient strength as a bonding layer. On the other hand, when the proportion of nickel particles is lower than the above range, the volume shrinkage of the entire bonding layer increases, and in this case, sufficient bonding strength cannot be obtained.

(ニッケル微粒子被覆有機成分)
ニッケル微粒子を被覆している有機化合物は、200℃から250℃で分解・揮発することが好ましい。先述の通り、200℃を下回って重量減少が生じる場合、ニッケル微粒子表面との相互作用が小さく粒子凝集状態を引き起こす可能性がある。そこで、上記有機化合物はニッケル微粒子と相互作用が生じるような官能基を含有することが好ましく、例えば、アルコール基、アミノ基、スルファニル基、カルボキシル基、カルボニル基などが挙げられる。一方で、ニッケル微粒子表面との相互作用が強すぎる場合、250℃を超える温度でもニッケル微粒子を被覆する有機化合物が揮発しないことがあり、粒子表面で有機化合物が炭化することで焼結を阻害することが懸念される。以上を勘案すると、より好ましい官能基はカルボキシル基である。
(Nickel particulate coating organic component)
The organic compound covering the nickel fine particles is preferably decomposed and volatilized at 200 to 250 ° C. As described above, when the weight is reduced below 200 ° C., the interaction with the surface of the nickel fine particles is small, and there is a possibility of causing a particle aggregation state. Therefore, the organic compound preferably contains a functional group capable of interacting with nickel fine particles, and examples thereof include an alcohol group, an amino group, a sulfanyl group, a carboxyl group, and a carbonyl group. On the other hand, when the interaction with the surface of the nickel fine particles is too strong, the organic compound that coats the nickel fine particles may not volatilize even at a temperature exceeding 250 ° C., and the organic compound is carbonized on the particle surface to inhibit sintering. There is concern. Considering the above, a more preferred functional group is a carboxyl group.

低温揮発性とニッケル微粒子の分散性とを両立させるという観点から、ニッケル微粒子を被覆する有機化合物は、好ましくは炭素数が6〜17の範囲内、より好ましくは炭素数が6〜12の範囲内にある脂肪酸がよい。炭素数が5以下の場合は、ニッケル微粒子同士のニッケル金属表面の距離が近くなり、凝集が起こりやすくなる。また、炭素数が18以上の場合は、250℃を超える温度でも有機化合物は十分に揮発せず、粒子表面で炭化することで焼結を阻害することが懸念される。   From the viewpoint of achieving both low-temperature volatility and dispersibility of nickel fine particles, the organic compound covering the nickel fine particles is preferably within the range of 6 to 17 carbon atoms, more preferably within the range of 6 to 12 carbon atoms. Fatty acids in are good. When the number of carbon atoms is 5 or less, the distance between the nickel metal surfaces of the nickel fine particles becomes close and aggregation tends to occur. Further, when the number of carbon atoms is 18 or more, the organic compound does not sufficiently volatilize even at a temperature exceeding 250 ° C., and there is a concern that sintering may be inhibited by carbonizing on the particle surface.

また、脂肪酸は、飽和脂肪酸、不飽和脂肪酸、直鎖脂肪酸、分岐脂肪酸、環状脂肪酸、ヒドロキシル脂肪酸などが挙げられるが、この中でも特に好ましい脂肪酸は、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ラウリン酸などの直鎖脂肪酸や、2−エチルヘキサン酸など分岐脂肪酸等が挙げられる。   Examples of fatty acids include saturated fatty acids, unsaturated fatty acids, linear fatty acids, branched fatty acids, cyclic fatty acids, hydroxyl fatty acids and the like. Among these, particularly preferred fatty acids are hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decane. Examples include linear fatty acids such as acid, undecanoic acid, and lauric acid, and branched fatty acids such as 2-ethylhexanoic acid.

(有機化合物の被覆処理)
ニッケル微粒子の有機化合物の被覆処理は、例えばニッケル微粒子を有機溶媒でスラリーの状態にして表面処理することができる。スラリーは、例えばニッケル微粒子と有機溶媒とを混合し、撹拌することにより製造することができる。撹拌は、特に限定されず、超音波による方法や、メカニカルスターラーやペイントシェーカーなどによる方法が挙げられるが、有機化合物の添加後にも、これらの撹拌手段を適用することができる。また、必要に応じてジェットミルやボールミルなどの解砕処理をしてもよい。
(Organic compound coating treatment)
The coating treatment of the nickel fine particles with the organic compound can be performed, for example, by treating the nickel fine particles in a slurry state with an organic solvent. The slurry can be produced, for example, by mixing nickel fine particles and an organic solvent and stirring. Stirring is not particularly limited, and examples include a method using ultrasonic waves, a method using a mechanical stirrer, a paint shaker, and the like, but these stirring units can be applied even after the addition of the organic compound. Moreover, you may crush, such as a jet mill and a ball mill, as needed.

有機化合物の被覆処理で使用する有機溶媒としては、ニッケル微粒子の凝集を抑制し、被覆する有機化合物が有機溶媒に相溶するものを用いる。このようなものとしては、水と混和しない有機溶媒であり、その具体例として、例えばトルエン、キシレン、エチルベンゼン等の芳香族系炭化水素系、ヘキサン、ヘプタン、デカン、オクタン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂肪族系炭化水素系、酢酸エチル、酢酸ブチル等のエステル系、α−テルピネオール、ブチルカルビトール等の長鎖アルコール系、長鎖アルコールとカルボン酸とのエステル等が挙げられる。また、ニッケル微粒子が凝集しないものであれば、上記の有機溶媒以外の有機溶媒も使用可能である。   As the organic solvent used in the coating treatment of the organic compound, a solvent in which the aggregation of the nickel fine particles is suppressed and the covering organic compound is compatible with the organic solvent is used. Examples thereof include organic solvents that are immiscible with water. Specific examples thereof include aromatic hydrocarbons such as toluene, xylene, and ethylbenzene, hexane, heptane, decane, octane, heptane, cyclohexane, and methylcyclohexane. And aliphatic hydrocarbons such as ethylcyclohexane, esters such as ethyl acetate and butyl acetate, long-chain alcohols such as α-terpineol and butyl carbitol, and esters of long-chain alcohols and carboxylic acids. Also, organic solvents other than the above organic solvents can be used as long as the nickel fine particles do not aggregate.

有機化合物の添加量は、ニッケル微粒子に被覆可能な量に対して過剰に添加することが好ましく、ニッケル微粒子スラリー中のニッケル量に対し、2〜100重量%程度添加する。また、ニッケル微粒子の表面に被覆されなかった余剰の有機化合物は、有機溶媒によって洗浄することが好ましい。その有機溶媒は被覆有機成分との相溶するものが好ましく、上記の有機溶媒が使用可能であり、例えばオクタンなどの炭化水素溶媒やトルエンやキシレンなどの非極性芳香族溶媒が特に好ましく挙げられる。   The amount of the organic compound added is preferably excessive with respect to the amount that can be coated on the nickel fine particles, and is added in an amount of about 2 to 100% by weight based on the amount of nickel in the nickel fine particle slurry. Moreover, it is preferable to wash the excess organic compound which was not coat | covered on the surface of nickel fine particle with an organic solvent. The organic solvent is preferably compatible with the coating organic component, and the above organic solvents can be used. For example, hydrocarbon solvents such as octane and nonpolar aromatic solvents such as toluene and xylene are particularly preferable.

(接合材)
本実施の形態の接合材は、上記ニッケル粒子組成物を含有する。本実施の形態の接合材は、さらに、沸点100〜300℃の範囲内にある有機溶媒を含有することができる。接合材は、高沸点の有機溶媒を添加後、濃縮し、ペーストの形態とすることが好ましい。接合材に含有される溶媒の沸点は、実使用上の観点から、150〜260℃の範囲内が好ましい。使用する有機溶媒の沸点が100℃未満であると、長期安定性に欠ける傾向があり、300℃を超えると、加熱時に揮発せずに、接合層中に残炭が生じ、粒子同士の焼結や金属間化合物の形成を阻害する傾向がある。
(Joining material)
The bonding material of the present embodiment contains the nickel particle composition. The bonding material of the present embodiment can further contain an organic solvent having a boiling point in the range of 100 to 300 ° C. The joining material is preferably concentrated after adding a high-boiling organic solvent to form a paste. The boiling point of the solvent contained in the bonding material is preferably in the range of 150 to 260 ° C. from the viewpoint of practical use. If the boiling point of the organic solvent used is less than 100 ° C, long-term stability tends to be lacking. If the boiling point exceeds 300 ° C, residual carbon is generated in the joining layer without volatilization during heating, and the particles are sintered. And tends to inhibit the formation of intermetallic compounds.

接合材におけるニッケル粒子組成物の含有量は、例えば70〜96重量%の範囲内であり、85〜95重量%の範囲内が好ましい。ニッケル粒子組成物の含有量が70重量%未満であると、接合層の厚みが薄くなる場合があり、例えば塗布などを複数回繰り返す必要が生じてムラの原因となり、また十分な接合強度が得られない場合がある。一方、ニッケル粒子組成物の含有量が96重量%を超えると、ペーストとしての流動性が失われ、塗布が困難になるなど使用性が低下する場合がある。   The content of the nickel particle composition in the bonding material is, for example, in the range of 70 to 96% by weight, and preferably in the range of 85 to 95% by weight. If the content of the nickel particle composition is less than 70% by weight, the thickness of the bonding layer may be reduced. For example, it may be necessary to repeat coating several times, resulting in unevenness and sufficient bonding strength. It may not be possible. On the other hand, if the content of the nickel particle composition exceeds 96% by weight, the fluidity as a paste is lost, and the usability may be lowered, such as difficulty in coating.

沸点が100〜300℃の範囲内にある溶媒として、例えば、アルコール系、芳香族系、炭化水素系、エステル系、ケトン系、エーテル系の溶媒が使用できる。アルコール系溶媒の例としては、1−ヘプタノール、1−オクタノール、2−オクタノール、2−エチル−1−ヘキサノール、1−ノナノール、3,5,5−トリメチル−1−ヘキサノール、1−デカノール、1−ウンデカノールなどの炭素数7以上の脂肪族アルコール類、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、テトラメチレングリコール、メチルトリグリコール等の多価アルコール類、α−テルピネオール、β−テルピネオール、γ−テルピネオール等のテルピネオール類、さらにエチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、メチルメトキシブタノール、ジエチレングリコール、ジプロピレングリコール、2−フェノキシエタノール、1−フェノキシ−2−プロパノール等のエーテル基を有するアルコール類を挙げることができる。また、炭化水素系の溶媒として、例えば、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカンなどを挙げることができる。これらの中でも、1−ウンデカノール、テトラデカンが好ましく、全有機溶媒に対して1−ウンデカノール及び/又はテトラデカンを15重量%〜50重量%の範囲内で含むことがより好ましい。1−ウンデカノール及び/又はテトラデカンを使用する場合、全有機溶媒に対してテルピネオールを30重量%〜85重量%の範囲内で併用することが更に好ましい。   As the solvent having a boiling point in the range of 100 to 300 ° C., for example, alcohol-based, aromatic-based, hydrocarbon-based, ester-based, ketone-based, and ether-based solvents can be used. Examples of alcohol solvents include 1-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, 1-nonanol, 3,5,5-trimethyl-1-hexanol, 1-decanol, 1-decanol, C7 or more aliphatic alcohols such as undecanol, ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, tetramethylene glycol, Polyhydric alcohols such as methyl triglycol, terpineols such as α-terpineol, β-terpineol, and γ-terpineol, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, methylmethoxybutanol, die Glycol, dipropylene glycol, 2-phenoxyethanol, it can be mentioned alcohols having an ether group such as 1-phenoxy-2-propanol. Examples of the hydrocarbon solvent include octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, and pentadecane. Among these, 1-undecanol and tetradecane are preferable, and it is more preferable that 1-undecanol and / or tetradecane are contained in the range of 15 wt% to 50 wt% with respect to the total organic solvent. When 1-undecanol and / or tetradecane are used, it is more preferable to use terpineol in the range of 30% by weight to 85% by weight with respect to the total organic solvent.

本実施の形態の接合材における有機溶媒の含有量は、例えば、4〜30重量%の範囲内であり、5〜15重量%の範囲内が好ましい。接合材における有機溶媒の含有量が4重量%未満であると、流動性が低下して接合材としての使用性が低下する場合がある。一方、有機溶媒の含有量が30重量%を超えると、例えば塗布などを複数回繰り返す必要が生じてムラの原因となり、また十分な接合強度が得られない場合がある。   The content of the organic solvent in the bonding material of the present embodiment is, for example, in the range of 4 to 30% by weight, and preferably in the range of 5 to 15% by weight. When the content of the organic solvent in the bonding material is less than 4% by weight, the fluidity may be lowered and the usability as the bonding material may be reduced. On the other hand, when the content of the organic solvent exceeds 30% by weight, for example, it becomes necessary to repeat coating several times, which may cause unevenness, and sufficient bonding strength may not be obtained.

本実施の形態の接合材は、有機バインダーを含有することが好ましい。有機バインダーは、成分Aのニッケル粒子と成分Bのニッケル微粒子とを連結させ、両者を近接した状態に置くことによって、接合層を塊状にする作用を有する。本実施の形態のニッケル粒子組成物では、マイクロメートルサイズの粒子とナノメートルサイズの微粒子を含むことから、粒子サイズの相違によって、均一粒子に比べて凝集が生じにくく、粒子どうしの接点が少ない。そこに有機バインダーを添加すると、粒子どうしの連結が広範囲にわたって形成される。そして、有機バインダーによって成分Aのニッケル粒子と成分Bのニッケル微粒子との広範囲の連結状態を維持したまま、焼成を行うことによって、高い接合強度を有する塊状の接合層が得られる。   The bonding material of this embodiment preferably contains an organic binder. The organic binder has the effect of connecting the nickel particles of component A and the nickel fine particles of component B and placing them in close proximity to make the bonding layer agglomerated. Since the nickel particle composition of the present embodiment includes micrometer-sized particles and nanometer-sized fine particles, due to the difference in particle size, aggregation is less likely to occur compared to uniform particles, and there are few contacts between the particles. When an organic binder is added thereto, the connection between the particles is formed over a wide range. And a massive joint layer having high joint strength can be obtained by firing while maintaining a wide range of connection between the nickel particles of component A and the nickel fine particles of component B by the organic binder.

有機バインダーとしては、有機溶媒に溶解可能なバインダーであれば特に制限なく使用できるが、例えば、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ユリア樹脂、メラミン樹脂等の熱硬化性樹脂や、ポリエチレン樹脂、アクリル樹脂、メタクリル樹脂、ナイロン樹脂、アセタール樹脂、ポリビニルアセタール樹脂等の熱可塑性樹脂を挙げることができる。これらの中でも、ポリビニルアセタール樹脂が好ましく、特に、分子内に、アセタール基のユニットと、アセチル基のユニットと、水酸基のユニットとを有するポリビニルアセタール樹脂がより好ましい。   As the organic binder, any binder that can be dissolved in an organic solvent can be used without particular limitation. For example, a thermosetting resin such as a phenol resin, an epoxy resin, an unsaturated polyester resin, a urea resin, or a melamine resin, or a polyethylene resin. And thermoplastic resins such as acrylic resin, methacrylic resin, nylon resin, acetal resin, and polyvinyl acetal resin. Among these, a polyvinyl acetal resin is preferable, and a polyvinyl acetal resin having an acetal group unit, an acetyl group unit, and a hydroxyl unit in the molecule is more preferable.

有機バインダーは、成分Aのニッケル粒子及び成分Bのニッケル微粒子の沈降を抑制し、十分な分散状態に維持するため、例えば、分子量が30000以上のものが好ましく、100000以上のものがより好ましい。   For example, the organic binder preferably has a molecular weight of 30000 or more, more preferably 100000 or more in order to suppress sedimentation of the nickel particles of component A and the nickel fine particles of component B and maintain a sufficiently dispersed state.

有機バインダーとしては、例えば、積水化学工業社製ポリビニルアセタール樹脂(エスレックBH−A;商品名)などの市販品を好ましく用いることができる。   As the organic binder, for example, commercially available products such as Sekisui Chemical Co., Ltd. polyvinyl acetal resin (ESREC BH-A; trade name) can be preferably used.

本実施の形態の接合材は、上記成分以外に、任意成分として、例えば増粘剤、チキソ剤、レベリング剤、界面活性剤などを含むことができる。   In addition to the above components, the bonding material of the present embodiment can contain, for example, a thickener, a thixotropic agent, a leveling agent, a surfactant, and the like as optional components.

(接合方法)
本実施の形態の接合方法は、上記接合材を、被接合部材の間に介在させて還元性ガスを含有する還元性ガス雰囲気下で250〜350℃の範囲内の温度で加熱することにより、被接合部材の間に接合層を形成する。ニッケル微粒子どうし、ニッケル微粒子とニッケル粒子との間に焼結を進行させるためには、ニッケル微粒子およびニッケル粒子の金属表面を露出させることが必要であると考えられる。ニッケル微粒子表面に存在する有機物を揮発又は分解させる加熱温度は250℃以上が好ましく、さらには、還元性ガス雰囲気下で加熱を行うことにより、ニッケル微粒子、ニッケル粒子の両粒子表面の不動態層を除去することができる。一方、加熱温度が400℃を超えると、被接合部材としての半導体デバイス周辺にダメージを与える場合がある。
(Joining method)
In the joining method of the present embodiment, the joining material is interposed between the members to be joined and heated at a temperature in the range of 250 to 350 ° C. in a reducing gas atmosphere containing a reducing gas. A bonding layer is formed between the members to be bonded. In order to advance the sintering between the nickel fine particles and between the nickel fine particles and the nickel particles, it is considered necessary to expose the nickel fine particles and the metal surfaces of the nickel particles. The heating temperature for volatilizing or decomposing organic substances present on the surface of the nickel fine particles is preferably 250 ° C. or higher. Furthermore, by heating in a reducing gas atmosphere, the passive layers on the surfaces of both the nickel fine particles and the nickel particles are formed. Can be removed. On the other hand, if the heating temperature exceeds 400 ° C., the periphery of the semiconductor device as the bonded member may be damaged.

本実施の形態の接合方法は、例えば、ペースト状の接合材を一対の被接合部材の片方又は両方の被接合面に塗布する工程(塗布工程)、被接合面どうしを貼り合せ、例えば温度250〜350℃の範囲内で加熱することにより、接合材を焼結させる工程(焼成工程)を含むことができる。   In the bonding method of the present embodiment, for example, a step of applying a paste-like bonding material to one or both bonded surfaces of a pair of bonded members (application step), the bonded surfaces are bonded together, for example, a temperature of 250 By heating within the range of -350 degreeC, the process (baking process) of sintering a joining material can be included.

接合材を塗布する塗布工程では、例えばスプレー塗布、インクジェット塗布、印刷等の方法を採用できる。接合材は、目的に応じて、例えばパターン状、アイランド状、メッシュ状、格子状、ストライプ状など任意の形状に塗布することができる。塗布工程では、塗布膜の厚みが50〜200μmの範囲内となるように、接合材を塗布することが好ましい。このような厚みで塗布をすることで、接合部分の欠陥を少なくできるため、電気抵抗の上昇や接合強度の低下を防止できる。   In the coating process for coating the bonding material, for example, methods such as spray coating, inkjet coating, and printing can be employed. The bonding material can be applied in an arbitrary shape such as a pattern shape, an island shape, a mesh shape, a lattice shape, or a stripe shape according to the purpose. In the coating step, it is preferable to apply the bonding material so that the thickness of the coating film is in the range of 50 to 200 μm. By applying with such a thickness, defects in the joint portion can be reduced, so that an increase in electrical resistance and a decrease in joint strength can be prevented.

また、焼成工程は、被接合部材どうしを、例えば10MPa以下、好ましくは1MPa以下で加圧するか、より好ましくは無加圧状態で行うことができる。焼成工程を簡略化でき、さらには被接合部材の加圧によるダメージを減らすことができる。   Further, the firing step can be performed by pressing the members to be joined at, for example, 10 MPa or less, preferably 1 MPa or less, or more preferably without applying pressure. The firing process can be simplified, and further damage due to pressurization of the members to be joined can be reduced.

本実施の形態の接合方法は、例えば、Si、SiCの半導体材料の接合や、電子部品の製造過程で利用できる。ここで、電子部品としては、主に半導体装置、エネルギー変換モジュール部品などを例示できる。電子部品が半導体装置である場合、例えば、半導体素子の裏面と基板との間、半導体電極と基板電極との間、半導体電極と半導体電極との間、パワーデバイス若しくはパワーモジュールと放熱部材との間などの接合に適用できる。   The bonding method of the present embodiment can be used, for example, in the bonding of Si or SiC semiconductor materials or in the manufacturing process of electronic components. Here, examples of the electronic component mainly include a semiconductor device and an energy conversion module component. When the electronic component is a semiconductor device, for example, between the back surface of the semiconductor element and the substrate, between the semiconductor electrode and the substrate electrode, between the semiconductor electrode and the semiconductor electrode, between the power device or the power module and the heat dissipation member. It can be applied to joining.

電子部品を接合させる際は、接合強度を高めるため、予め被接合面の片方又は両方に、例えば、Au,Cu,Pd,Ni,Ag,Cr,Tiあるいはそれらの合金などの材質の接触金属層を設けておくことが好ましい。また、被接合面の材質が、SiCもしくはSiあるいはそれらの表面の酸化膜である場合は、例えばTi,TiW,TiN,Cr,Ni、Pd,Vあるいはそれらの合金などの材質の接触金属層を設けておくことが好ましい。   When bonding electronic components, in order to increase the bonding strength, for example, a contact metal layer made of a material such as Au, Cu, Pd, Ni, Ag, Cr, Ti or an alloy thereof is previously formed on one or both of the surfaces to be bonded. Is preferably provided. When the material of the surface to be joined is SiC or Si or an oxide film on the surface thereof, a contact metal layer made of a material such as Ti, TiW, TiN, Cr, Ni, Pd, V or an alloy thereof is used. It is preferable to provide it.

以下に実施例を示し、本発明の特徴をより具体的に説明する。ただし、本発明は、実施例によって制約されるものではない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。   The features of the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the examples. In the following examples, various measurements and evaluations are as follows unless otherwise specified.

[成分Aの平均粒子径の測定]
成分Aとして使用されるニッケル粒子の平均粒子径の測定は、レーザー回折/散乱法によって行った。装置は株式会社セイシン企業製LMS−30を用い、水を分散媒としてフローセル中で測定した。
[Measurement of average particle diameter of component A]
The average particle diameter of the nickel particles used as component A was measured by a laser diffraction / scattering method. The apparatus used was LMS-30 manufactured by Seishin Co., Ltd., and measurement was performed in a flow cell using water as a dispersion medium.

[成分Bの平均粒子径の測定]
成分B(ニッケル微粒子)の平均粒子径の測定は、電界放出形走査電子顕微鏡(Field Emission−Scanning Electron Microscope:FE−SEM)により試料の写真を撮影して、その中から無作為に200個を抽出してそれぞれの面積を求め、真球に換算したときの粒子径を個数基準として一次粒子の平均粒子径を算出した。
[Measurement of Average Particle Size of Component B]
The average particle diameter of component B (nickel fine particles) was measured by taking a picture of a sample with a field emission scanning electron microscope (FE-SEM), and randomly 200 samples were taken. The respective areas were extracted and the average particle diameter of primary particles was calculated based on the number of particles when converted to a true sphere.

[成分Bのニッケル微粒子の熱分析]
示差熱・熱重量同時測定装置(Thermogravimetry−Differential Thermal Analysis:TG−DTA、株式会社日立ハイテクサイエンス製、商品名;TG/DTA7220)を用いて確認した。測定条件は、昇温条件:5℃/分、ガスフロー:窒素/水素=97/3体積比 混合ガス 200ml/分にて実施した。
[Thermal analysis of nickel fine particles of component B]
It confirmed using the differential-thermal / thermogravimetric simultaneous measuring apparatus (Thermogravimetry-Differential Thermal Analysis: TG-DTA, Hitachi High-Tech Science Co., Ltd. make, brand name; TG / DTA7220). Measurement conditions were as follows: temperature rising condition: 5 ° C./min, gas flow: nitrogen / hydrogen = 97/3 volume ratio, mixed gas 200 ml / min.

[焼成方法]
焼結性試験用サンプルの焼成は、小型イナートガスオーブン(光洋サーモシステム社製、商品名;KLO−30NH)を使用し、3%水素及び97%窒素の混合ガスを流量5L/分でフローしながら、昇温速度5℃/分で、常温から300℃もしくは350℃まで昇温した後、1時間所定温度を保持した。次いで、400分間かけて50℃まで降温した後、常温まで放置した。
[Baking method]
The sinterability test sample is fired using a small inert gas oven (trade name: KLO-30NH, manufactured by Koyo Thermo Systems Co., Ltd.) while flowing a mixed gas of 3% hydrogen and 97% nitrogen at a flow rate of 5 L / min. The temperature was raised from room temperature to 300 ° C. or 350 ° C. at a rate of temperature rise of 5 ° C./min, and then the predetermined temperature was maintained for 1 hour. Next, the temperature was lowered to 50 ° C. over 400 minutes, and then left to room temperature.

[焼結性の評価]
各実施例で作製したペーストの3mgをガラス板に挟み、約10mmφとなるまで潰して焼結性試験用サンプルとした。このサンプルを所定の条件で加熱し、冷却後のガラス基板に付着した焼成後のサンプルの周辺部を電界放出形走査電子顕微鏡(FE−SEM)にて観察した。焼結性の評価は、全てのニッケル微粒子において、各々の粒子界面が全て確認される状態を「不可」、各々のニッケル微粒子において、粒子界面が部分的に確認できる状態を「可」、ニッケル粒子の少なくとも1つは、粒子界面が全く確認されない状態を「良」、全てのニッケル微粒子において、粒子界面が全く確認されない状態を「最良」とした。
[Evaluation of sinterability]
3 mg of the paste prepared in each example was sandwiched between glass plates and crushed to about 10 mmφ to obtain a sample for sinterability test. This sample was heated under predetermined conditions, and the periphery of the fired sample attached to the cooled glass substrate was observed with a field emission scanning electron microscope (FE-SEM). The evaluation of sinterability is "impossible" when all the nickel fine particles are confirmed to have all the particle interfaces confirmed, and "possible" when the nickel particle is partially visible at each nickel fine particle. In at least one of the cases, the state in which no particle interface was confirmed was defined as “good”, and the state in which no particle interface was confirmed in all nickel fine particles was defined as “best”.

[せん断強度(シェア強度)の評価]
ステンレス製マスク(マスク幅;2.0mm×長さ;2.0mm×厚さ;0.1mm)を用いて、試料を金めっき銅基板(幅;10mm×長さ;10mm×厚さ;1.0mm)上に塗布して塗布膜を形成した後、その塗布膜の上に、シリコンダイ(幅;2.0mm×長さ;2.0mm×厚さ;0.40mm)を搭載し、焼成を行った。得られた接合サンプル(接合層の厚さ;50μm程度)を接合強度試験機(デイジ・ジャパン社製、商品名;ボンドテスター4000)により、せん断強度を測定した。ダイ側面からボンドテスターツールを、基板からの高さ50μm、ツール速度100μm/秒で押圧し、接合部がせん断破壊したときの荷重をせん断強度(シェア強度)とした。なお、金めっき銅基板は、Cu基板(厚さ;1.0mm)の表面に、Ni/Auをそれぞれ4μm/40〜50nmの厚みでめっきしたものであり、シリコンダイは、Si基板(厚さ;0.40mm)の接合面に、Auをスパッタしたものである。
[Evaluation of shear strength (shear strength)]
Using a stainless steel mask (mask width; 2.0 mm × length; 2.0 mm × thickness; 0.1 mm), the sample was gold-plated copper substrate (width; 10 mm × length; 10 mm × thickness; 0 mm) is applied to form a coating film, and then a silicon die (width: 2.0 mm × length; 2.0 mm × thickness: 0.40 mm) is mounted on the coating film and firing is performed. went. The shear strength of the obtained joined sample (joint layer thickness; about 50 μm) was measured with a joint strength tester (manufactured by Daisy Japan, trade name: Bond Tester 4000). A bond tester tool was pressed from the side of the die at a height of 50 μm from the substrate and a tool speed of 100 μm / second, and the load when the joint was sheared was determined as shear strength (shear strength). The gold-plated copper substrate is obtained by plating Ni / Au with a thickness of 4 μm / 40 to 50 nm on the surface of a Cu substrate (thickness: 1.0 mm), and the silicon die is a Si substrate (thickness). ; 0.40 mm) on the bonding surface, Au was sputtered.

(合成例1)
642重量部のオレイルアミンに100.1重量部の酢酸ニッケル四水和物を加え、窒素フロー下、150℃で20分加熱することによって酢酸ニッケルを溶解させて錯化反応液を得た。次いで、その錯化反応液に、492重量部のオレイルアミンを加え、マイクロ波を用いて250℃で5分加熱することによって、ニッケル微粒子スラリー1を得た。
(Synthesis Example 1)
To 642 parts by weight of oleylamine, 100.1 parts by weight of nickel acetate tetrahydrate was added and heated at 150 ° C. for 20 minutes under a nitrogen flow to dissolve nickel acetate to obtain a complexing reaction solution. Next, 492 parts by weight of oleylamine was added to the complexing reaction solution, and the mixture was heated at 250 ° C. for 5 minutes using a microwave to obtain a nickel fine particle slurry 1.

合成例1で得られたニッケル微粒子スラリー1を静置分離し、上澄み液を取り除いた後、トルエンとメタノールを用いて洗浄した後、60℃に維持される真空乾燥機で6時間乾燥して得られたニッケル微粒子の平均一次粒子径は90nmであった。   The nickel fine particle slurry 1 obtained in Synthesis Example 1 was allowed to stand and separated, the supernatant was removed, washed with toluene and methanol, and then dried for 6 hours in a vacuum dryer maintained at 60 ° C. The average primary particle diameter of the obtained nickel fine particles was 90 nm.

(合成例2)
182重量部のオレイルアミンに18.5重量部のギ酸ニッケル二水和物を加え、窒素フロー下、120℃で10分間加熱することによって、ギ酸ニッケルを溶解させて錯化反応液を得た。次いで、その錯化反応液に、121重量部のオレイルアミンを加え、マイクロ波を用いて180℃で10分間加熱することによって、ニッケル微粒子スラリー2を得た。
(Synthesis Example 2)
18.5 parts by weight of nickel formate dihydrate was added to 182 parts by weight of oleylamine and heated at 120 ° C. for 10 minutes under a nitrogen flow to dissolve nickel formate to obtain a complexing reaction solution. Next, 121 parts by weight of oleylamine was added to the complexing reaction solution, and the mixture was heated at 180 ° C. for 10 minutes using a microwave to obtain a nickel fine particle slurry 2.

合成例2で得られたニッケル微粒子スラリー2を静置分離し、上澄み液を取り除いた後、トルエンとメタノールを用いて洗浄した後、60℃に維持される真空乾燥機で6時間乾燥して得られたニッケル微粒子の平均一次粒子径は40nmであった。   The nickel fine particle slurry 2 obtained in Synthesis Example 2 was allowed to stand and separated, the supernatant was removed, washed with toluene and methanol, and then dried for 6 hours in a vacuum dryer maintained at 60 ° C. The average primary particle diameter of the obtained nickel fine particles was 40 nm.

(合成例3)
642重量部のオレイルアミンに263.7重量部の酢酸ニッケル四水和物を加え、窒素フロー下、140℃で20分間加熱することによって酢酸ニッケルを溶解させて錯化反応液を得た。次いで、その錯化反応液に、492重量部のオレイルアミンを加え、マイクロ波を用いて250℃で12分間加熱することによって、ニッケル微粒子スラリー3を得た。
(Synthesis Example 3)
To 642 parts by weight of oleylamine, 263.7 parts by weight of nickel acetate tetrahydrate was added, and the mixture was heated at 140 ° C. for 20 minutes under a nitrogen flow to dissolve nickel acetate to obtain a complexing reaction solution. Next, 492 parts by weight of oleylamine was added to the complexing reaction solution, and the mixture was heated at 250 ° C. for 12 minutes using a microwave to obtain a nickel fine particle slurry 3.

合成例3で得られたニッケル微粒子スラリー3を静置分離し、上澄み液を取り除いた後、トルエンとメタノールを用いて洗浄した後、60℃に維持される真空乾燥機で6時間乾燥して得られたニッケル微粒子の平均一次粒子径は170nmであった。   The nickel fine particle slurry 3 obtained in Synthesis Example 3 was allowed to stand and separated, the supernatant was removed, washed with toluene and methanol, and then dried for 6 hours in a vacuum dryer maintained at 60 ° C. The average primary particle diameter of the obtained nickel fine particles was 170 nm.

(実施例1)
<ニッケル微粒子1、ペースト1の調製と熱分析、焼結性評価および接合評価>
合成例1で得られたニッケル微粒子スラリー1を100重量部分取し、これに20重量部のオクタン酸(和光純薬工業株式会社製)、100重量部のトルエンを加え、15分間超音波処理をした後、トルエンで洗浄し、ニッケル分散液1(固形分濃度68.1重量%)を調製した。さらに、この一部を60℃に維持される真空乾燥機で1時間乾燥し、ニッケル微粒子1を得た。
Example 1
<Preparation and thermal analysis of nickel fine particles 1 and paste 1, evaluation of sinterability and evaluation of bonding>
100 parts by weight of the nickel fine particle slurry 1 obtained in Synthesis Example 1 is taken, 20 parts by weight of octanoic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 100 parts by weight of toluene are added thereto, and subjected to ultrasonic treatment for 15 minutes. Then, it was washed with toluene to prepare a nickel dispersion 1 (solid content concentration 68.1% by weight). Furthermore, a part of this was dried for 1 hour by a vacuum dryer maintained at 60 ° C. to obtain nickel fine particles 1.

ニッケル分散液1の193重量部を分取し、これに、131重量部のニッケル粒子1(関東化学工業株式会社製、商品名;ニッケル(粉末)、レーザー回折/散乱法による平均粒子径;9.8μm、ニッケル元素の含有量;ニッケル粒子1の全体に対して99重量%以上)、6.9重量部のα−テルピネオール(和光純薬工業株式会社製、沸点;220℃)、6.9重量部の1−ウンデカノール(和光純薬工業株式会社製、沸点;243℃)、1.4重量部のバインダー樹脂1(積水化学工業株式会社製、商品名;エスレックBH−A)を混合し、エバポレータにて60℃、100hPaで濃縮を行い、278重量部のペースト1(固形分濃度94.5重量%)を調製した。   193 parts by weight of the nickel dispersion 1 was fractionated, and 131 parts by weight of nickel particles 1 (manufactured by Kanto Chemical Co., Ltd., trade name: nickel (powder), average particle diameter by laser diffraction / scattering method; 9 0.8 μm, content of nickel element: 99 wt% or more based on the whole nickel particle 1, 6.9 parts by weight of α-terpineol (manufactured by Wako Pure Chemical Industries, Ltd., boiling point: 220 ° C.), 6.9 1 part by weight of 1-undecanol (manufactured by Wako Pure Chemical Industries, Ltd., boiling point: 243 ° C.), 1.4 parts by weight of binder resin 1 (manufactured by Sekisui Chemical Co., Ltd., trade name: ESREC BH-A) Concentration was carried out at 60 ° C. and 100 hPa in an evaporator to prepare 278 parts by weight of paste 1 (solid content concentration 94.5% by weight).

ニッケル微粒子1を用いて上記[成分Bのニッケル微粒子の熱分析]に従い、TG−DTAを測定した。200〜250℃の重量減は0.187%/分、発熱ピーク温度は210℃であった。結果を図1および表1に示す。   TG-DTA was measured using the nickel fine particles 1 according to [Thermal analysis of nickel fine particles of component B]. The weight loss from 200 to 250 ° C. was 0.187% / min, and the exothermic peak temperature was 210 ° C. The results are shown in FIG.

ペースト1を用いて上記[焼成方法][焼結性の評価]に従い、焼結性の評価を行った。300℃では「良」、350℃では「最良」の結果が得られた。SEM観察結果を図2に示す。   Using paste 1, the sinterability was evaluated according to the above [Baking method] and [Sinterability evaluation]. The result was “good” at 300 ° C. and “best” at 350 ° C. The SEM observation results are shown in FIG.

ペースト1を用いて上記[焼成方法]、[せん断強度の評価]に従い、接合試験サンプルを300℃で作製し、せん断強度を評価した結果、39.2MPaと良好な強度が得られた。結果を表1に示す。   According to the above [Baking method] and [Evaluation of shear strength] using paste 1, a joining test sample was prepared at 300 ° C. and the shear strength was evaluated. As a result, a good strength of 39.2 MPa was obtained. The results are shown in Table 1.

(実施例2)
<ニッケル微粒子2、ペースト2の調製と熱分析および接合評価>
合成例1で得られたニッケル微粒子スラリー1を100重量部分取し、これに20重量部のラウリン酸、100重量部のトルエンを加え、15分間超音波処理をした後、トルエンで洗浄し、ニッケル分散液2(固形分濃度65.2重量%)を調製した。さらに、この一部を60℃に維持される真空乾燥機で1時間乾燥し、ニッケル微粒子2を得た。
(Example 2)
<Preparation and thermal analysis of nickel fine particles 2 and paste 2 and bonding evaluation>
100 parts by weight of the nickel fine particle slurry 1 obtained in Synthesis Example 1 was taken, and 20 parts by weight of lauric acid and 100 parts by weight of toluene were added thereto, followed by sonication for 15 minutes, followed by washing with toluene. Dispersion 2 (solid content concentration 65.2% by weight) was prepared. Further, a part of this was dried for 1 hour with a vacuum dryer maintained at 60 ° C. to obtain nickel fine particles 2.

ニッケル分散液2の184重量部を分取し、これに、120重量部のニッケル粒子1、6.3重量部のα−テルピネオール、6.3重量部の1−ウンデカノール、1.3重量部のバインダー樹脂1を混合し、エバポレータにて60℃、100hPaで濃縮を行い、253重量部のペースト2(固形分濃度94.5重量%)を調製した。   184 parts by weight of Nickel Dispersion 2 was collected, and 120 parts by weight of nickel particles 1, 6.3 parts by weight of α-terpineol, 6.3 parts by weight of 1-undecanol, 1.3 parts by weight of Binder resin 1 was mixed and concentrated by an evaporator at 60 ° C. and 100 hPa to prepare 253 parts by weight of paste 2 (solid content concentration 94.5% by weight).

ニッケル微粒子2を用いて上記[成分Bのニッケル微粒子の熱分析]に従い、TG−DTAを測定した。200〜250℃の重量減は0.526%/分、発熱ピーク温度は237℃であった。結果を図3および表1に示す。   TG-DTA was measured using the nickel fine particles 2 in accordance with [Thermal analysis of nickel fine particles of component B]. The weight loss from 200 to 250 ° C. was 0.526% / min, and the exothermic peak temperature was 237 ° C. The results are shown in FIG.

ペースト2を用いて上記[焼成方法]、[せん断強度の評価]に従い、接合試験サンプルを300℃で作製し、せん断強度を評価した結果、21.8MPaと十分な強度が得られた。結果を表1に示す。   According to the above [Baking method] and [Evaluation of shear strength] using the paste 2, a joining test sample was prepared at 300 ° C., and the shear strength was evaluated. As a result, a sufficient strength of 21.8 MPa was obtained. The results are shown in Table 1.

(実施例3)
<ニッケル微粒子3、ペースト3の調製と熱分析および接合評価>
合成例2で得られたニッケル微粒子スラリー2を100重量部分取し、これに20重量部のオクタン酸、100重量部のトルエンを加え、15分間超音波処理をした後、トルエンで洗浄し、ニッケル分散液3(固形分濃度70.0重量%)を調製した。さらに、この一部を60℃に維持される真空乾燥機で1時間乾燥し、ニッケル微粒子3を得た。
(Example 3)
<Preparation and thermal analysis of nickel fine particles 3 and paste 3 and bonding evaluation>
100 parts by weight of the nickel fine particle slurry 2 obtained in Synthesis Example 2 was taken, and 20 parts by weight of octanoic acid and 100 parts by weight of toluene were added thereto, followed by sonication for 15 minutes, and then washed with toluene. Dispersion 3 (solid content concentration 70.0% by weight) was prepared. Further, a part of this was dried for 1 hour by a vacuum dryer maintained at 60 ° C. to obtain nickel fine particles 3.

ニッケル分散液3の108重量部を分取し、これに、75.6重量部のニッケル粒子1、4.0重量部のα−テルピネオール、6.3重量部の1−ウンデカノール、0.79重量部のバインダー樹脂1を混合し、エバポレータにて60℃、100hPaで濃縮を行い、160重量部のペースト3(固形分濃度94.5重量%)を調製した。   108 parts by weight of Nickel Dispersion 3 was collected, and 75.6 parts by weight of nickel particles 1, 4.0 parts by weight of α-terpineol, 6.3 parts by weight of 1-undecanol, 0.79 parts by weight. Part of binder resin 1 was mixed and concentrated by an evaporator at 60 ° C. and 100 hPa to prepare 160 parts by weight of paste 3 (solid content concentration 94.5% by weight).

ニッケル微粒子3を用いて上記[成分Bのニッケル微粒子の熱分析]に従い、TG−DTAを測定した。200〜250℃の重量減は0.340%/分、発熱ピーク温度は231℃であった。結果を図4および表1に示す。   TG-DTA was measured using the nickel fine particles 3 according to [Thermal analysis of nickel fine particles of component B]. The weight loss from 200 to 250 ° C. was 0.340% / min, and the exothermic peak temperature was 231 ° C. The results are shown in FIG.

ペースト3を用いて上記[焼成方法]、[せん断強度の評価]に従い、接合試験サンプルを300℃で作製し、せん断強度を評価した結果、15.5MPaと十分な強度が得られた。結果を表1に示す。   According to the above [Baking method] and [Evaluation of shear strength] using the paste 3, a joining test sample was prepared at 300 ° C. and the shear strength was evaluated. As a result, a sufficient strength of 15.5 MPa was obtained. The results are shown in Table 1.

(比較例1)
<ニッケル微粒子4、ペースト4の調製と熱分析および接合評価>
合成例1で得られたニッケル微粒子スラリー1を100重量部分取し、これに20重量部のジ−p−トルオイル−L−酒石酸(東京化成工業株式会社製)、100重量部のトルエンを加え、15分間超音波処理をした後、トルエンで洗浄し、ニッケル分散液4(固形分濃度71.5重量%)を調製した。さらに、この一部を60℃に維持される真空乾燥機で1時間乾燥し、ニッケル微粒子4を得た。
(Comparative Example 1)
<Preparation and thermal analysis of nickel fine particles 4 and paste 4 and bonding evaluation>
Take 100 parts by weight of the nickel fine particle slurry 1 obtained in Synthesis Example 1, add 20 parts by weight of di-p-toluoyl-L-tartaric acid (manufactured by Tokyo Chemical Industry Co., Ltd.), 100 parts by weight of toluene, After ultrasonic treatment for 15 minutes, the mixture was washed with toluene to prepare a nickel dispersion 4 (solid content concentration: 71.5% by weight). Further, a part of this was dried for 1 hour by a vacuum dryer maintained at 60 ° C. to obtain nickel fine particles 4.

ニッケル分散液4の122重量部を分取し、これに、87.3重量部のニッケル粒子1、4.8重量部のα−テルピネオール、4.8重量部の1−ウンデカノール、0.92重量部のバインダー樹脂1を混合し、エバポレータにて60℃、100hPaで濃縮を行い、185重量部のペースト4(固形分濃度94.5重量%)を調製した。   122 parts by weight of Nickel Dispersion 4 was fractionated, and 87.3 parts by weight of nickel particles 1, 4.8 parts by weight of α-terpineol, 4.8 parts by weight of 1-undecanol, 0.92 parts by weight. Part of the binder resin 1 was mixed and concentrated with an evaporator at 60 ° C. and 100 hPa to prepare 185 parts by weight of paste 4 (solid content concentration 94.5% by weight).

ニッケル微粒子4を用いて上記[成分Bのニッケル微粒子の熱分析]に従い、TG−DTAを測定した。200〜250℃の重量減は0.112%/分、発熱ピーク温度は263℃であった。結果を図5および表1に示す。   TG-DTA was measured using the nickel fine particles 4 in accordance with [Thermal analysis of nickel fine particles of component B]. The weight loss from 200 to 250 ° C. was 0.112% / min, and the exothermic peak temperature was 263 ° C. The results are shown in FIG.

ペースト4を用いて上記[焼成方法][焼結性の評価]に従い、焼結性の評価を行った。300℃では「不可」、350℃では「良」の結果が得られた。SEM観察結果を図6に示す。   The paste 4 was used to evaluate the sinterability according to the above [Baking method] [Sinterability evaluation]. A result of “impossible” was obtained at 300 ° C., and “good” was obtained at 350 ° C. The SEM observation result is shown in FIG.

ペースト4を用いて上記[焼成方法]、[せん断強度の評価]に従い、接合試験サンプルを300℃で作製し、せん断強度を評価した結果、0MPaと全く強度が得られなかった。結果を表1に示す。   According to the above [Baking method] and [Evaluation of shear strength] using paste 4, a joining test sample was prepared at 300 ° C. and the shear strength was evaluated. As a result, no strength was obtained at 0 MPa. The results are shown in Table 1.

(比較例2)
<ニッケル微粒子5、ペースト5の調製と熱分析および接合評価>
合成例1で得られたニッケル微粒子スラリー1を100重量部分取し、これに20重量部のプロピオン酸(和光純薬工業株式会社製)、100重量部のトルエンを加え、15分間超音波処理をした後、トルエンで洗浄し、ニッケル分散液5(固形分濃度73.1重量%)を調製した。さらに、この一部を60℃に維持される真空乾燥機で1時間乾燥し、ニッケル微粒子5を得た。
(Comparative Example 2)
<Preparation and thermal analysis of nickel fine particles 5 and paste 5 and bonding evaluation>
100 parts by weight of the nickel fine particle slurry 1 obtained in Synthesis Example 1 is taken, and 20 parts by weight of propionic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 100 parts by weight of toluene are added thereto, and subjected to ultrasonic treatment for 15 minutes. Then, it was washed with toluene to prepare a nickel dispersion 5 (solid content concentration: 73.1% by weight). Further, a part of this was dried for 1 hour with a vacuum dryer maintained at 60 ° C. to obtain nickel fine particles 5.

ニッケル分散液5の116重量部を分取し、これに、85.0重量部のニッケル粒子1、4.5重量部のα−テルピネオール、4.5重量部の1−ウンデカノール、0.90重量部のバインダー樹脂1を混合し、エバポレータにて60℃、100hPaで濃縮を行い、185重量部のペースト5(固形分濃度94.5重量%)を調製した。   116 parts by weight of the nickel dispersion 5 was fractionated, and 85.0 parts by weight of nickel particles 1, 4.5 parts by weight of α-terpineol, 4.5 parts by weight of 1-undecanol, 0.90 parts by weight Part of the binder resin 1 was mixed, and concentrated with an evaporator at 60 ° C. and 100 hPa to prepare 185 parts by weight of paste 5 (solid content concentration 94.5% by weight).

ニッケル微粒子5を用いて上記[成分Bのニッケル微粒子の熱分析]に従い、TG−DTAを測定した。200〜250℃の重量減は0.165%/分、発熱ピーク温度は221℃であった。結果を図7および表1に示す。   TG-DTA was measured using the nickel fine particles 5 in accordance with [Thermal analysis of nickel fine particles of component B]. The weight loss from 200 to 250 ° C. was 0.165% / min, and the exothermic peak temperature was 221 ° C. The results are shown in FIG.

ペースト5を用いて上記[焼成方法]、[せん断強度の評価]に従い、接合試験サンプルを300℃で作製し、せん断強度を評価した結果、0MPaと全く強度が得られなかった。結果を表1に示す。   According to the above [Baking method] and [Evaluation of shear strength] using paste 5, a joining test sample was prepared at 300 ° C., and the shear strength was evaluated. As a result, no strength of 0 MPa was obtained. The results are shown in Table 1.

(比較例3)
<ニッケル微粒子6、ペースト6の調製と熱分析および接合評価>
合成例3で得られたニッケル微粒子スラリー3を100重量部分取し、これに20重量部のオクタン酸、100重量部のトルエンを加え、15分間超音波処理をした後、トルエンで洗浄し、ニッケル分散液6(固形分濃度72.6重量%)を調製した。さらに、この一部を60℃に維持される真空乾燥機で1時間乾燥し、ニッケル微粒子6を得た。
(Comparative Example 3)
<Preparation and thermal analysis of nickel fine particles 6 and paste 6 and bonding evaluation>
100 parts by weight of the nickel fine particle slurry 3 obtained in Synthesis Example 3 was taken, and 20 parts by weight of octanoic acid and 100 parts by weight of toluene were added thereto, followed by ultrasonic treatment for 15 minutes, and then washed with toluene. Dispersion 6 (solid content concentration 72.6% by weight) was prepared. Further, a part of this was dried for 1 hour by a vacuum dryer maintained at 60 ° C. to obtain nickel fine particles 6.

ニッケル分散液6の131重量部を分取し、これに、95.1重量部のニッケル粒子1、5.0重量部のα−テルピネオール、5.0重量部の1−ウンデカノール、1.0重量部のバインダー樹脂1を混合し、エバポレータにて60℃、100hPaで濃縮を行い、201重量部のペースト6(固形分濃度94.5重量%)を調製した。   131 parts by weight of the nickel dispersion 6 was fractionated, and 95.1 parts by weight of nickel particles 1, 5.0 parts by weight of α-terpineol, 5.0 parts by weight of 1-undecanol, 1.0 parts by weight. Part of binder resin 1 was mixed and concentrated by an evaporator at 60 ° C. and 100 hPa to prepare 201 parts by weight of paste 6 (solid content concentration 94.5% by weight).

ニッケル微粒子6を用いて上記[成分Bのニッケル微粒子の熱分析]に従い、TG−DTAを測定した。200〜250℃の重量減は0.098%/分、発熱ピーク温度は198℃であった。結果を図8および表1に示す。   TG-DTA was measured using the nickel fine particles 6 in accordance with the above [thermal analysis of nickel fine particles of component B]. The weight loss from 200 to 250 ° C. was 0.098% / min, and the exothermic peak temperature was 198 ° C. The results are shown in FIG.

ペースト6を用いて上記[焼成方法]、[せん断強度の評価]に従い、接合試験サンプルを300℃で作製し、せん断強度を評価した結果、0.5MPaと十分な強度は得られなかった。結果を表1に示す。   According to the above [Baking method] and [Evaluation of shear strength] using paste 6, a joining test sample was prepared at 300 ° C. and the shear strength was evaluated. As a result, a sufficient strength of 0.5 MPa was not obtained. The results are shown in Table 1.

以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはない。

As mentioned above, although embodiment of this invention was described in detail for the purpose of illustration, this invention is not restrict | limited to the said embodiment.

Claims (8)

次の成分A及びB;
A)レーザー回折/散乱法による平均粒子径が0.5〜20μmの範囲内であり、ニッケル元素を99重量%以上含有するニッケル粒子、
B)走査型電子顕微鏡観察による平均一次粒子径が30〜150nmの範囲内であり、ニッケル元素を90〜99重量%の範囲内で含有し、粒子表面が有機化合物で被覆され、3%の体積割合で水素ガスを含有する水素ガス及び窒素ガスの混合ガスからなる雰囲気中で、5℃/分の昇温速度の示差熱・熱重量同時測定によって、200℃から250℃まで加熱したときに、0.15%/分以上の重量減少及び発熱ピークが観測されるニッケル微粒子、
を含有し、前記成分A及び成分Bの重量比(成分A:成分B)が30:70〜70:30の範囲内であるニッケル粒子組成物。
The following components A and B;
A) Nickel particles having an average particle diameter by laser diffraction / scattering in the range of 0.5 to 20 μm and containing 99% by weight or more of nickel element,
B) The average primary particle diameter by scanning electron microscope observation is in the range of 30 to 150 nm, the nickel element is contained in the range of 90 to 99% by weight, the particle surface is coated with an organic compound, and the volume is 3%. When heated from 200 ° C. to 250 ° C. by simultaneous differential heat / thermogravimetric measurement at a heating rate of 5 ° C./min in an atmosphere consisting of a mixture of hydrogen gas and nitrogen gas containing hydrogen gas at a rate of Nickel fine particles in which a weight loss of 0.15% / min or more and an exothermic peak are observed,
And a weight ratio of component A and component B (component A: component B) in the range of 30:70 to 70:30.
前記有機化合物が、炭素数6〜17の範囲内にある脂肪酸である請求項1記載のニッケル粒子組成物。   The nickel particle composition according to claim 1, wherein the organic compound is a fatty acid having a carbon number of 6 to 17. 前記ニッケル微粒子が、3%の体積割合で水素ガスを含有する水素ガス及び窒素ガスの混合ガスからなる雰囲気中で、5℃/分の昇温速度の示差熱・熱重量同時測定によって、250℃を超える温度で加熱したとき、重量減少が観測されない請求項1又は2記載のニッケル粒子組成物。   The nickel fine particles are 250 ° C. by simultaneous differential heat and thermogravimetric measurement at a heating rate of 5 ° C./min in an atmosphere composed of a mixed gas of hydrogen gas and nitrogen gas containing hydrogen gas at a volume ratio of 3%. The nickel particle composition according to claim 1 or 2, wherein weight loss is not observed when heated at a temperature exceeding. 請求項1〜3のいずれか1項に記載のニッケル粒子組成物を含有する接合材であって、前記ニッケル粒子組成物の含有量が70〜96重量%の範囲内である接合材。   It is a joining material containing the nickel particle composition of any one of Claims 1-3, Comprising: Content of the said nickel particle composition exists in the range of 70 to 96 weight%. 沸点が100〜300℃の範囲内にある有機溶媒を含有し、前記有機溶媒の含有量が4〜30重量%の範囲内である請求項4に記載の接合材。   The bonding material according to claim 4, comprising an organic solvent having a boiling point in the range of 100 to 300 ° C., and the content of the organic solvent being in the range of 4 to 30% by weight. 前記有機溶媒が1−ウンデカノール、テトラデカンからなる群より選ばれる少なくとも1種を全有機溶媒に対して15重量%以上含む請求項5に記載の接合材。   The bonding material according to claim 5, wherein the organic solvent contains at least one selected from the group consisting of 1-undecanol and tetradecane in an amount of 15% by weight or more based on the total organic solvent. 更に、有機バインダー成分を含有する請求項4〜6のいずれか1項に記載の接合材。   Furthermore, the bonding | jointing material of any one of Claims 4-6 containing an organic binder component. 請求項4〜7のいずれか1項に記載の接合材を、被接合部材の間に介在させて還元性ガスを含有する還元性ガス雰囲気下で250〜350℃の範囲内の温度で加熱することにより、被接合部材の間に接合層を形成する接合方法。
The joining material according to any one of claims 4 to 7 is interposed between members to be joined and heated at a temperature in a range of 250 to 350 ° C in a reducing gas atmosphere containing a reducing gas. By this, the joining method which forms a joining layer between to-be-joined members.
JP2014202480A 2014-09-30 2014-09-30 Nickel particle composition, bonding material and bonding method Active JP6422289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014202480A JP6422289B2 (en) 2014-09-30 2014-09-30 Nickel particle composition, bonding material and bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014202480A JP6422289B2 (en) 2014-09-30 2014-09-30 Nickel particle composition, bonding material and bonding method

Publications (2)

Publication Number Publication Date
JP2016069710A true JP2016069710A (en) 2016-05-09
JP6422289B2 JP6422289B2 (en) 2018-11-14

Family

ID=55864076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014202480A Active JP6422289B2 (en) 2014-09-30 2014-09-30 Nickel particle composition, bonding material and bonding method

Country Status (1)

Country Link
JP (1) JP6422289B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017008633A1 (en) 2016-09-15 2018-03-15 E.I. Du Pont De Nemours And Company Conductive paste for bonding
WO2018055848A1 (en) * 2016-09-21 2018-03-29 矢崎総業株式会社 Electrically conductive paste, and wiring board using same
JP2018060941A (en) * 2016-10-06 2018-04-12 デュポンエレクトロニクスマテリアル株式会社 Conductive paste for joining
JP2018125360A (en) * 2017-01-30 2018-08-09 株式会社日本スペリア社 Thermoelectric conversion module and method of manufacturing the same
JP2018172792A (en) * 2017-03-31 2018-11-08 新日鉄住金化学株式会社 Nickel fine particle composition, joint structure, and jointing method
JP2020161424A (en) * 2019-03-28 2020-10-01 石川県 Metal paste, electronic component, and electronic component manufacturing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255709A (en) * 1992-03-11 1993-10-05 Mitsuboshi Belting Ltd Joining method for material to be joined selected from metals or ceramics and joining agent used therein
JP2000331534A (en) * 1999-05-18 2000-11-30 Matsushita Electric Ind Co Ltd Electrode ink for electronic component, its manufacture, and manufacture of electronic component
JP2003328003A (en) * 2002-05-17 2003-11-19 Sakai Chem Ind Co Ltd Nickel fine powder
JP2007277709A (en) * 2006-04-11 2007-10-25 Samsung Electro-Mechanics Co Ltd Method for manufacturing nickel nanoparticle
JP2008195974A (en) * 2007-02-08 2008-08-28 Toyota Motor Corp Joining method
WO2012169076A1 (en) * 2011-06-10 2012-12-13 Dowaエレクトロニクス株式会社 Bonding material and bonded object produced using same
JP2013069475A (en) * 2011-09-21 2013-04-18 Furukawa Electric Co Ltd:The Conductive paste, and conjugate obtained by burning conductive paste
JP2014088516A (en) * 2012-10-31 2014-05-15 Mitsuboshi Belting Ltd Electroconductive adhesive for screen printing and bonded body of inorganic material and method for manufacturing the same
JP2014162966A (en) * 2013-02-26 2014-09-08 Nippon Steel & Sumikin Chemical Co Ltd Metal fine particle composition, joining material, electronic component, formation method of junction layer, formation method of conductor layer, and ink composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255709A (en) * 1992-03-11 1993-10-05 Mitsuboshi Belting Ltd Joining method for material to be joined selected from metals or ceramics and joining agent used therein
JP2000331534A (en) * 1999-05-18 2000-11-30 Matsushita Electric Ind Co Ltd Electrode ink for electronic component, its manufacture, and manufacture of electronic component
JP2003328003A (en) * 2002-05-17 2003-11-19 Sakai Chem Ind Co Ltd Nickel fine powder
JP2007277709A (en) * 2006-04-11 2007-10-25 Samsung Electro-Mechanics Co Ltd Method for manufacturing nickel nanoparticle
JP2008195974A (en) * 2007-02-08 2008-08-28 Toyota Motor Corp Joining method
WO2012169076A1 (en) * 2011-06-10 2012-12-13 Dowaエレクトロニクス株式会社 Bonding material and bonded object produced using same
JP2013069475A (en) * 2011-09-21 2013-04-18 Furukawa Electric Co Ltd:The Conductive paste, and conjugate obtained by burning conductive paste
JP2014088516A (en) * 2012-10-31 2014-05-15 Mitsuboshi Belting Ltd Electroconductive adhesive for screen printing and bonded body of inorganic material and method for manufacturing the same
JP2014162966A (en) * 2013-02-26 2014-09-08 Nippon Steel & Sumikin Chemical Co Ltd Metal fine particle composition, joining material, electronic component, formation method of junction layer, formation method of conductor layer, and ink composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017008633A1 (en) 2016-09-15 2018-03-15 E.I. Du Pont De Nemours And Company Conductive paste for bonding
DE102017008633B4 (en) 2016-09-15 2021-12-23 E.I. Du Pont De Nemours And Company Conductive paste for bonding and method using them
WO2018055848A1 (en) * 2016-09-21 2018-03-29 矢崎総業株式会社 Electrically conductive paste, and wiring board using same
JP2018049735A (en) * 2016-09-21 2018-03-29 矢崎総業株式会社 Conductive paste and wiring board using the same
JP2018060941A (en) * 2016-10-06 2018-04-12 デュポンエレクトロニクスマテリアル株式会社 Conductive paste for joining
DE102017009293A1 (en) 2016-10-06 2018-04-12 E.I. Du Pont De Nemours And Company Conductive paste for bonding
JP2018125360A (en) * 2017-01-30 2018-08-09 株式会社日本スペリア社 Thermoelectric conversion module and method of manufacturing the same
JP2018172792A (en) * 2017-03-31 2018-11-08 新日鉄住金化学株式会社 Nickel fine particle composition, joint structure, and jointing method
JP7164313B2 (en) 2017-03-31 2022-11-01 日鉄ケミカル&マテリアル株式会社 Nickel fine particle composition, bonded structure and bonding method
JP2020161424A (en) * 2019-03-28 2020-10-01 石川県 Metal paste, electronic component, and electronic component manufacturing method
JP7355313B2 (en) 2019-03-28 2023-10-03 石川県 Metal paste, electronic components, and electronic component manufacturing method

Also Published As

Publication number Publication date
JP6422289B2 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
JP6422289B2 (en) Nickel particle composition, bonding material and bonding method
JP5667191B2 (en) Metal paste containing CO precursor
JP6061427B2 (en) Electronic component bonding material, bonding composition, bonding method, and electronic component
JP6037893B2 (en) Metal fine particle composition, bonding material, electronic component, method for forming bonding layer, method for forming conductor layer, and ink composition
CN107848077B (en) Composition containing metal particles
TWI651149B (en) Metal bonding composition
JP6734775B2 (en) Nickel particle composition, bonding material and bonding method using the same
JP6042747B2 (en) Nickel fine particles, method of using the same, and method of producing nickel fine particles
KR20140014328A (en) Contacting means and method for contacting electrical components
JP7139590B2 (en) COMPOSITION FOR CONDUCTOR-FORMING, JOINT AND METHOD FOR MANUFACTURING THE SAME
JP6463195B2 (en) Nickel particle composition, bonding material, and bonding method using the same
JP5468885B2 (en) Conductive aluminum paste
JP2018172792A (en) Nickel fine particle composition, joint structure, and jointing method
JP6126426B2 (en) Joining method
JP6938125B2 (en) Bonds and their manufacturing methods, as well as semiconductor modules
JP6338419B2 (en) Metal particle composition, bonding material, and bonding method using the same
JP6861073B2 (en) Nickel-coated copper particles, bonding materials and bonding methods
JP6267835B1 (en) Bonding composition and method for producing the same
JP6209666B1 (en) Conductive bonding material and method for manufacturing semiconductor device
WO2019066081A1 (en) Composite particles and manufacturing method therefor, composite particle composition, joining material, joining method, and joint body
JP2017128782A (en) Nickel fine particle-containing composition and joining material
JP2019164908A (en) Conductive paste composition, conductor, method for applying conductive paste composition, and method for producing conductor
JP2019151908A (en) Metal particle aggregate and manufacturing method therefor, and pasty metal particle aggregate composition and manufacturing method of composite using the same
JP2019139843A (en) Conductive composition, porous conductor and method for producing the same, method for producing element bonded body, method for producing laminate, precoat bare chip and method for producing the same, and electronic device
JP2015194415A (en) Nickel fine particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181016

R150 Certificate of patent or registration of utility model

Ref document number: 6422289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250