JP6338419B2 - Metal particle composition, bonding material, and bonding method using the same - Google Patents

Metal particle composition, bonding material, and bonding method using the same Download PDF

Info

Publication number
JP6338419B2
JP6338419B2 JP2014067867A JP2014067867A JP6338419B2 JP 6338419 B2 JP6338419 B2 JP 6338419B2 JP 2014067867 A JP2014067867 A JP 2014067867A JP 2014067867 A JP2014067867 A JP 2014067867A JP 6338419 B2 JP6338419 B2 JP 6338419B2
Authority
JP
Japan
Prior art keywords
nickel
weight
range
fine particles
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014067867A
Other languages
Japanese (ja)
Other versions
JP2015190006A (en
Inventor
隆之 清水
隆之 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2014067867A priority Critical patent/JP6338419B2/en
Publication of JP2015190006A publication Critical patent/JP2015190006A/en
Application granted granted Critical
Publication of JP6338419B2 publication Critical patent/JP6338419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Die Bonding (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、電子部品の製造に利用可能な金属粒子組成物、接合材及びそれを用いた接合方法に関する。   The present invention relates to a metal particle composition that can be used for manufacturing electronic components, a bonding material, and a bonding method using the same.

金属微粒子は、バルク金属とは異なる物理的・化学的特性を有することから、様々な工業材料に利用されている。近年では、電子機器の小型化や薄型化に伴い、工業用の金属微粒子の粒子径も、数十〜数百nm程度まで微粒子化が進んでいる。例えば、比較的に安価で、高温での使用が可能なニッケル材料を利用した電子部品の接合材として、ニッケル又はニッケル合金により構成される金属微粒子と、該金属微粒子を被覆する酸素含有皮膜と、を備え、平均粒子径が100nm以下である金属ナノ粒子を含むものが提案されている(例えば、特許文献1)。   Metal fine particles have physical and chemical properties different from those of bulk metals, and are therefore used in various industrial materials. In recent years, with the downsizing and thinning of electronic devices, the particle diameter of industrial metal fine particles has been reduced to about several tens to several hundreds of nanometers. For example, as a bonding material for electronic parts using a nickel material that is relatively inexpensive and can be used at high temperatures, metal fine particles composed of nickel or a nickel alloy, and an oxygen-containing film that covers the metal fine particles, And a metal nanoparticle having an average particle diameter of 100 nm or less has been proposed (for example, Patent Document 1).

また、ニッケル粒子をはんだと組み合わせて接合材料に用いた例も提案されている。例えば特許文献2では平均粒径が20〜300μmのニッケル粒子をフォームはんだ中に分散させることにより、半導体素子の基板に対する傾斜を防止し、さらにニッケル粒子表面とはんだ間に金属間化合物を形成することで高接合強度を達成している。   An example in which nickel particles are used as a bonding material in combination with solder has also been proposed. For example, in Patent Document 2, nickel particles having an average particle diameter of 20 to 300 μm are dispersed in foam solder to prevent the inclination of the semiconductor element relative to the substrate, and further, an intermetallic compound is formed between the nickel particle surface and the solder. High joint strength is achieved.

近年、電力変換器用途をはじめとするパワーデバイスのさらなる高効率駆動を実現するため、高温駆動時の信頼性が求められるようになり、半導体実装材料における接合信頼性は重要な課題となっている。しかしながら、特許文献2のようなスズ系はんだによる接合材を用いた場合では、金属間化合物の形成は金属粒子の表面に限られているため、融点以上の温度で駆動する際に、当然ではあるが接合材の再融解が生じる、という問題があった。   In recent years, in order to realize further high-efficiency driving of power devices including power converter applications, reliability during high-temperature driving has been required, and bonding reliability in semiconductor mounting materials has become an important issue. . However, in the case of using a tin-based solder bonding material as in Patent Document 2, since the formation of intermetallic compounds is limited to the surface of the metal particles, it is natural when driving at a temperature above the melting point. However, there was a problem that remelting of the bonding material occurred.

国際公開WO2012/173187号International Publication No. WO2012 / 173187 特許第5369682号公報Japanese Patent No. 5369682

本発明の目的は、はんだの融点以上の温度でも、はんだが再融解せず、高い接合強度を発現する接合層を形成することが可能な接合材および接合方法を提供することである。   An object of the present invention is to provide a bonding material and a bonding method capable of forming a bonding layer that exhibits high bonding strength without remelting the solder even at a temperature equal to or higher than the melting point of the solder.

本発明者は、ナノサイズのニッケル微粒子を用いることにより、溶融したはんだとの間で金属間化合物形成が効率的に生じ、はんだの融点以上の温度であっても高い接合強度が得られることを見出した。   By using nano-sized nickel fine particles, the present inventor efficiently forms an intermetallic compound with molten solder, and a high bonding strength can be obtained even at a temperature higher than the melting point of the solder. I found it.

本発明の金属粒子組成物は、次の成分A及びB;
A)レーザー回折/散乱法による平均粒子径が0.5〜20μmの範囲内であり、スズ元素を95重量%以上含有するスズ粒子、
B)走査型電子顕微鏡観察による平均一次粒子径が30〜200nmの範囲内であり、ニッケル元素を90〜99.5重量%の範囲内で含有するニッケル微粒子、
からなる金属粒子組成物であって、前記成分A及び成分Bの重量比(成分A:成分B)が50:50〜10:90の範囲内である。
The metal particle composition of the present invention comprises the following components A and B;
A) a tin particle having an average particle diameter by laser diffraction / scattering method in the range of 0.5 to 20 μm and containing 95% by weight or more of tin element;
B) Nickel fine particles having an average primary particle diameter in a range of 30 to 200 nm by observation with a scanning electron microscope and containing nickel element in a range of 90 to 99.5% by weight,
The weight ratio of the component A and the component B (component A: component B) is in the range of 50:50 to 10:90.

本発明の接合材は、上記金属粒子組成物を含有する接合材であって、前記金属粒子組成物の含有量が70〜95重量%の範囲内である。   The joining material of this invention is a joining material containing the said metal particle composition, Comprising: Content of the said metal particle composition exists in the range of 70 to 95 weight%.

本発明の接合材は、さらに、沸点150〜260℃の範囲内にある有機溶媒を含有していてもよく、前記有機溶媒の含有量が5〜30重量%の範囲内であってもよい。   The bonding material of the present invention may further contain an organic solvent having a boiling point in the range of 150 to 260 ° C., and the content of the organic solvent may be in the range of 5 to 30% by weight.

本発明の接合方法は、上記接合材を、被接合部材の間に介在させて還元性ガスを含有する還元性ガス雰囲気下で250〜500℃の範囲内の温度で加熱することにより、被接合部材の間に接合層を形成する。   In the joining method of the present invention, the joining material is interposed between the members to be joined and heated at a temperature in the range of 250 to 500 ° C. in a reducing gas atmosphere containing a reducing gas. A bonding layer is formed between the members.

本発明の金属粒子組成物、接合材及び接合方法によれば、250℃以上の温度で、ニッケル微粒子とはんだとの間に金属間化合物を効率的に形成することが可能となり、はんだの融点以上の温度でも、はんだが再融解せず、高い接合強度を発現する接合層が得られる。   According to the metal particle composition, the bonding material, and the bonding method of the present invention, it becomes possible to efficiently form an intermetallic compound between the nickel fine particles and the solder at a temperature of 250 ° C. or higher, which is higher than the melting point of the solder. Even at this temperature, the solder does not remelt and a bonding layer that exhibits high bonding strength is obtained.

実施例4におけるペースト4のDTAカーブである。6 is a DTA curve of paste 4 in Example 4. 実施例4における接合層の断面SEM写真である。6 is a cross-sectional SEM photograph of a bonding layer in Example 4. 実施例5におけるペースト5のDTAカーブである。6 is a DTA curve of paste 5 in Example 5. 参考例1におけるスズ粒子のDTAカーブである。4 is a DTA curve of tin particles in Reference Example 1.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

[金属粒子組成物]
本発明の実施の形態の金属粒子組成物は、次の成分A及びB;
A)レーザー回折/散乱法による平均粒子径が0.5〜20μmの範囲内であり、スズ元素を95重量%以上含有するスズ粒子、
B)走査型電子顕微鏡観察による平均一次粒子径が30〜200nmの範囲内であり、ニッケル元素を90〜99.5質量%の範囲内で含有するニッケル微粒子、
からなる金属粒子組成物であって、前記成分A及び成分重量Bの重量比(A:B)が50:50〜10:90の範囲内である。
[Metal particle composition]
The metal particle composition of the embodiment of the present invention includes the following components A and B;
A) a tin particle having an average particle diameter by laser diffraction / scattering method in the range of 0.5 to 20 μm and containing 95% by weight or more of tin element;
B) Nickel fine particles having an average primary particle diameter in a range of 30 to 200 nm by observation with a scanning electron microscope and containing nickel element in a range of 90 to 99.5% by mass,
A weight ratio (A: B) of the component A and the component weight B is in the range of 50:50 to 10:90.

<成分A:スズ粒子>
成分Aのスズ粒子は、接合前の接合層に適度な厚みを持たせ、骨格を形成する観点から、レーザー回折/散乱法による平均粒子径が0.5〜20μmの範囲内とする。平均粒子径が0.5μm未満であると、焼結過程で成分Bのニッケル微粒子が動きやすくなり、成分Bの凝集体が生じやすくなる。一方、平均粒子径が20μmを超えると、ニッケル微粒子と効率良く金属間化合物が形成されず、スズの偏在箇所が多くなり、脆弱な接合層となる。
<Component A: Tin particles>
The tin particles of component A have an average particle diameter in the range of 0.5 to 20 μm by laser diffraction / scattering method from the viewpoint of giving an appropriate thickness to the bonding layer before bonding and forming a skeleton. When the average particle size is less than 0.5 μm, the nickel fine particles of component B are likely to move during the sintering process, and the aggregates of component B are liable to occur. On the other hand, when the average particle diameter exceeds 20 μm, the nickel fine particles and the intermetallic compound are not efficiently formed, and the unevenly distributed portions of tin increase, resulting in a fragile bonding layer.

また、スズ粒子は、スズ元素を95重量%以上含有する。スズ元素の含有率を95重量%以上とするのは、この含有率が融点200℃以上の鉛フリーはんだにおいて一般的な値であり、加熱時の溶融挙動を把握しやすいためである。   The tin particles contain 95% by weight or more of tin element. The reason why the content of tin element is 95% by weight or more is that this content is a common value for lead-free solder having a melting point of 200 ° C. or higher, and it is easy to grasp the melting behavior during heating.

成分Aのスズ粒子は、スズ以外の金属を含有していてもよい。スズ以外の金属としては、例えば、例えば、ニッケル、チタン、コバルト、銅、クロム、マンガン、鉄、ジルコニウム、タングステン、モリブデン、バナジウム等の卑金属、金、銀、白金、パラジウム、イリジウム、オスミウム、ルテニウム、ロジウム、レニウム等の貴金属などの金属元素を挙げることができる。これらは、単独で又は2種以上含有していてもよい。   The tin particles of component A may contain a metal other than tin. Examples of metals other than tin include, for example, base metals such as nickel, titanium, cobalt, copper, chromium, manganese, iron, zirconium, tungsten, molybdenum, vanadium, gold, silver, platinum, palladium, iridium, osmium, ruthenium, Examples of the metal element include noble metals such as rhodium and rhenium. These may be contained alone or in combination of two or more.

成分Aのスズ粒子は、その製造方法を問わず利用できる。成分Aのスズ粒子としては、例えば、株式会社日本フィラーメタルズ製(製品名:DS−10)、福田金属箔粉工業株式会社製(製品名:Sn−At−600)などの市販品を好ましく利用できる。   The tin particles of component A can be used regardless of the production method. As the tin particles of component A, for example, commercially available products such as those manufactured by Nippon Filler Metals Co., Ltd. (product name: DS-10) and Fukuda Metal Foil Powder Industry Co., Ltd. (product name: Sn-At-600) are preferably used. it can.

<成分B;ニッケル微粒子>
成分Bのニッケル微粒子は、走査型電子顕微鏡観察による平均一次粒子径が30〜200nmの範囲内である。ニッケル微粒子の平均一次粒子径が30nm未満であると、ニッケル微粒子が凝集しやすくなり、スズ粒子との均一な混合が困難となる。一方、ニッケル微粒子の平均一次粒子径が200nmを超えると、後述する比較例2のように、スズ粒子との間で効率良く金属間化合物が形成されず、ニッケル微粒子同士の焼結性も低下する。なお、本明細書において、ニッケル微粒子の一次粒子の平均粒子径は、実施例で用いた値を含めて、電界放出形走査電子顕微鏡(Field Emission−Scanning Electron Microscope:FE−SEM)により試料の写真を撮影して、その中から無作為に200個を抽出してそれぞれの面積を求め、真球に換算したときの粒子径を個数基準として算出した値である。
<Component B: Nickel fine particles>
The nickel fine particles of component B have an average primary particle diameter in the range of 30 to 200 nm as observed with a scanning electron microscope. When the average primary particle diameter of the nickel fine particles is less than 30 nm, the nickel fine particles are easily aggregated, and uniform mixing with the tin particles becomes difficult. On the other hand, when the average primary particle diameter of the nickel fine particles exceeds 200 nm, an intermetallic compound is not efficiently formed with the tin particles as in Comparative Example 2 described later, and the sinterability between the nickel fine particles also decreases. . In addition, in this specification, the average particle diameter of the primary particles of the nickel fine particles, including the values used in the examples, is a photograph of a sample by a field emission scanning electron microscope (FE-SEM). Is a value calculated based on the number of particles, which is obtained by randomly extracting 200 images from each of the images, obtaining the respective areas, and converting them into true spheres.

成分Bのニッケル微粒子は、ニッケル元素を90〜99.5重量%の範囲内で含有する。成分Bとして、湿式還元法で製造したニッケル微粒子や分散処理を行ったニッケル微粒子を使用する場合は、それらの平均一次粒子径が30〜200nmの範囲内であると、表面被覆の炭素や不動態酸素の存在で、ニッケル元素の含有量は上記の値となる。

The nickel fine particle of component B contains nickel element in the range of 90 to 99.5 % by weight. When using nickel fine particles produced by a wet reduction method or nickel fine particles that have been subjected to a dispersion treatment as component B, if the average primary particle diameter is within the range of 30 to 200 nm, the surface coating carbon and the passive state are used. In the presence of oxygen, the content of nickel element is the above value.

成分Bのニッケル微粒子は、ニッケル以外の金属を含有していてもよい。ニッケル以外の金属としては、例えば、スズ、チタン、コバルト、銅、クロム、マンガン、鉄、ジルコニウム、タングステン、モリブデン、バナジウム等の卑金属、金、銀、白金、パラジウム、イリジウム、オスミウム、ルテニウム、ロジウム、レニウム等の貴金属などの金属元素を挙げることができる。これらは、単独で又は2種以上含有していてもよい。   The nickel fine particles of component B may contain a metal other than nickel. Examples of metals other than nickel include, for example, base metals such as tin, titanium, cobalt, copper, chromium, manganese, iron, zirconium, tungsten, molybdenum, and vanadium, gold, silver, platinum, palladium, iridium, osmium, ruthenium, rhodium, A metal element such as a noble metal such as rhenium can be given. These may be contained alone or in combination of two or more.

また、成分Bとして、湿式還元法で製造したニッケル微粒子や分散処理を行ったニッケル微粒子を使用する場合は、例えば、酸素元素、炭素元素などの非金属元素を含有していてもよい。炭素元素を含有する場合、その含有率は、例えば0.3〜2.5重量%の範囲内、好ましくは0.5〜2.0重量%の範囲内である。炭素元素は、ニッケル微粒子の表面に存在する有機化合物に由来するものであり、ニッケル微粒子の分散性向上に寄与する。従って、炭素元素の含有量が0.3重量%未満では、十分な分散性が得られない場合があり、2.5重量%を超える場合は、焼成後に炭化して残炭となり、接合層の導電性を低下させる可能性がある。また、酸素元素を含有する場合、その含有率は、例えば0.7〜7.5重量%の範囲内、好ましくは1.0〜2.0重量%の範囲内である。酸素元素は、主に水酸化ニッケルの被膜に由来するものであり、水酸化ニッケルの被膜が還元されて存在しなくなると、ニッケル微粒子の焼結が開始される。酸素元素の含有率が7.5重量%を超えると、ニッケル微粒子の凝集が生じやすくなり、ペースト状態を保持できず、粉状になる傾向となる。   Moreover, when using the nickel fine particle manufactured by the wet reduction method or the nickel fine particle which performed the dispersion process as component B, nonmetallic elements, such as an oxygen element and a carbon element, may be contained, for example. When the carbon element is contained, the content thereof is, for example, in the range of 0.3 to 2.5% by weight, preferably in the range of 0.5 to 2.0% by weight. The carbon element is derived from an organic compound present on the surface of the nickel fine particles, and contributes to an improvement in the dispersibility of the nickel fine particles. Therefore, when the carbon element content is less than 0.3% by weight, sufficient dispersibility may not be obtained. When the carbon element content exceeds 2.5% by weight, carbonization is performed after firing to form residual charcoal. There is a possibility of reducing the conductivity. Moreover, when it contains an oxygen element, the content rate is in the range of 0.7 to 7.5 weight%, for example, Preferably it exists in the range of 1.0 to 2.0 weight%. The oxygen element is mainly derived from the nickel hydroxide coating, and when the nickel hydroxide coating is reduced and no longer exists, the sintering of the nickel fine particles is started. When the oxygen element content exceeds 7.5% by weight, the nickel fine particles are likely to aggregate, and the paste state cannot be maintained and tends to be powdery.

成分Bのニッケル微粒子は、その製造方法を問わず利用できるが、ニッケル塩及び有機アミンを含む混合物から、湿式還元法によりニッケルイオンを加熱還元して析出させる公知の方法によって得られたものが好ましい(例えば、特許文献1を参照)。ここでは、湿式還元法によるニッケル微粒子の製造方法の一例について説明する。   The nickel fine particles of component B can be used regardless of the production method, but those obtained by a known method in which nickel ions are heated and reduced by a wet reduction method from a mixture containing a nickel salt and an organic amine are preferable. (For example, see Patent Document 1). Here, an example of a method for producing nickel fine particles by a wet reduction method will be described.

湿式還元法によるニッケル微粒子の製造は、次の工程1及び2;
工程1)カルボン酸ニッケル及び1級アミンを含む混合物を、100℃〜165℃の範囲内の温度に加熱して錯化反応液を得る錯化反応液生成工程、
及び、
工程2)該錯化反応液を、マイクロ波照射によって170℃以上の温度に加熱して該錯化反応液中のニッケルイオンを還元し、1級アミンで被覆されたニッケル微粒子のスラリーを得るニッケル微粒子スラリー生成工程、
を含むことができる。
The production of nickel fine particles by the wet reduction method includes the following steps 1 and 2;
Step 1) A complexing reaction solution generating step of obtaining a complexing reaction solution by heating a mixture containing nickel carboxylate and a primary amine to a temperature within a range of 100 ° C. to 165 ° C.,
as well as,
Step 2) Nickel to obtain a slurry of nickel fine particles coated with primary amine by heating the complexing reaction liquid to a temperature of 170 ° C. or higher by microwave irradiation to reduce nickel ions in the complexing reaction liquid Fine particle slurry generation process,
Can be included.

工程1)錯化反応液生成工程:
(カルボン酸ニッケル)
カルボン酸ニッケル(カルボン酸のニッケル塩)は、カルボン酸の種類を限定するものではなく、例えば、カルボキシル基が1つのモノカルボン酸であってもよく、また、カルボキシル基が2つ以上のカルボン酸であってもよい。また、非環式カルボン酸であってもよく、環式カルボン酸であってもよい。このようなカルボン酸ニッケルとして、非環式モノカルボン酸ニッケルを好適に用いることができ、非環式モノカルボン酸ニッケルのなかでも、ギ酸ニッケル、酢酸ニッケル、プロピオン酸ニッケル、シュウ酸ニッケル、安息香酸ニッケル等を用いることがより好ましい。これらの非環式モノカルボン酸ニッケルを用いることによって、例えば、得られるニッケル微粒子は、その形状のばらつきが抑制され、均一な形状として形成されやすくなる。カルボン酸ニッケルは、無水物であってもよく、また水和物であってもよい。
Step 1) Complexation reaction solution generation step:
(Nickel carboxylate)
The nickel carboxylate (nickel salt of carboxylic acid) is not limited to the type of carboxylic acid. For example, the carboxyl group may be a monocarboxylic acid having one carboxyl group, or a carboxylic acid having two or more carboxyl groups. It may be. Moreover, acyclic carboxylic acid may be sufficient and cyclic carboxylic acid may be sufficient. As such nickel carboxylate, nickel acyclic monocarboxylate can be preferably used, and among nickel acyclic monocarboxylate, nickel formate, nickel acetate, nickel propionate, nickel oxalate, benzoic acid It is more preferable to use nickel or the like. By using these nickel acyclic monocarboxylates, for example, the resulting nickel fine particles are less likely to have a variation in shape and are easily formed as a uniform shape. The nickel carboxylate may be an anhydride or a hydrate.

(1級アミン)
1級アミンは、ニッケルイオンとの錯体を形成することができ、ニッケル錯体(又はニッケルイオン)に対する還元能を効果的に発揮する。一方、2級アミンは立体障害が大きいため、ニッケル錯体の良好な形成を阻害するおそれがあり、3級アミンはニッケルイオンの還元能を有しないため、いずれも単独では使用できないが、1級アミンを使用する上で、生成するニッケル微粒子の形状に支障を与えない範囲でこれらを併用することは差し支えない。1級アミンは、ニッケルイオンとの錯体を形成できるものであれば、特に限定するものではなく、常温で固体又は液体のものが使用できる。ここで、常温とは、20℃±15℃をいう。常温で液体の1級アミンは、ニッケル錯体を形成する際の有機溶媒としても機能する。なお、常温で固体の1級アミンであっても、100℃以上の加熱によって液体であるか、又は有機溶媒を用いて溶解するものであれば、特に問題はない。
(Primary amine)
The primary amine can form a complex with nickel ions, and effectively exhibits a reducing ability for nickel complexes (or nickel ions). On the other hand, secondary amines have great steric hindrance and may hinder the good formation of nickel complexes. Since tertiary amines do not have the ability to reduce nickel ions, none can be used alone. When these are used, these may be used in combination as long as the shape of the nickel fine particles to be produced is not hindered. The primary amine is not particularly limited as long as it can form a complex with nickel ions, and can be a solid or liquid at room temperature. Here, room temperature means 20 ° C. ± 15 ° C. The primary amine that is liquid at room temperature also functions as an organic solvent for forming the nickel complex. In addition, even if it is a primary amine solid at normal temperature, there is no particular problem as long as it is liquid by heating at 100 ° C. or higher, or can be dissolved using an organic solvent.

1級アミンは、芳香族1級アミンであってもよいが、反応液におけるニッケル錯体形成の容易性の観点からは脂肪族1級アミンが好適である。脂肪族1級アミンは、例えばその炭素鎖の長さを調整することによって生成するニッケル微粒子の粒径を制御することができ、特に平均一次粒子径が30nm〜200nmの範囲内にあるニッケル微粒子を製造する場合において有利である。ニッケル微粒子の粒径を制御する観点から、脂肪族1級アミンは、その炭素数が6〜20程度のものから選択して用いることが好適である。炭素数が多いほど得られるニッケル微粒子の粒径が小さくなる。このようなアミンとして、例えばオクチルアミン、トリオクチルアミン、ジオクチルアミン、ヘキサデシルアミン、ドデシルアミン、テトラデシルアミン、ステアリルアミン、オレイルアミン、ミリスチルアミン、ラウリルアミン等を挙げることができる。例えばオレイルアミンは、ニッケル微粒子生成過程に於ける温度条件下において液体状態として存在するため均一溶液で反応を効率的に進行できる。   The primary amine may be an aromatic primary amine, but an aliphatic primary amine is preferred from the viewpoint of easy nickel complex formation in the reaction solution. The aliphatic primary amine can control the particle diameter of the nickel fine particles produced by adjusting the length of the carbon chain, for example, especially the nickel fine particles having an average primary particle diameter in the range of 30 nm to 200 nm. This is advantageous when manufacturing. From the viewpoint of controlling the particle diameter of the nickel fine particles, the aliphatic primary amine is preferably selected from those having about 6 to 20 carbon atoms. The larger the carbon number, the smaller the particle size of the nickel fine particles obtained. Examples of such amines include octylamine, trioctylamine, dioctylamine, hexadecylamine, dodecylamine, tetradecylamine, stearylamine, oleylamine, myristylamine, and laurylamine. For example, oleylamine exists in a liquid state under the temperature conditions in the nickel fine particle production process, and therefore the reaction can proceed efficiently in a homogeneous solution.

1級アミンは、ニッケル微粒子の生成時に表面修飾剤として機能するため、1級アミンの除去後においても二次凝集を抑制できる。また、1級アミンは、還元反応後の生成したニッケル微粒子の固体成分と溶剤または未反応の1級アミン等を分離する洗浄工程における処理操作の容易性の観点からは室温で液体のものが好ましい。更に、1級アミンは、ニッケル錯体を還元してニッケル微粒子を得るときの反応制御の容易性の観点からは還元温度より沸点が高いものが好ましい。すなわち、脂肪族1級アミンにおいては沸点が180℃以上のものが好ましく、200℃以上のものがより好ましく、また、炭素数が9以上のものが好ましい。ここで、例えば炭素数が9である脂肪族アミンのC21N(ノニルアミン)の沸点は201℃である。1級アミンの量は、ニッケル1molに対して2mol以上用いることが好ましく、2.2mol以上用いることがより好ましく、4mol以上用いることが望ましい。1級アミンの量が2mol未満では、得られるニッケル微粒子の粒子径の制御が困難となり、粒子径がばらつきやすくなる。また、1級アミンの量の上限は特にはないが、例えば生産性の観点からは20mol以下とすることが好ましい。 Since the primary amine functions as a surface modifier during the production of the nickel fine particles, secondary aggregation can be suppressed even after removal of the primary amine. The primary amine is preferably liquid at room temperature from the viewpoint of ease of processing operation in the washing step of separating the solid component of the nickel fine particles produced after the reduction reaction and the solvent or unreacted primary amine. . Further, the primary amine is preferably one having a boiling point higher than the reduction temperature from the viewpoint of ease of reaction control when the nickel complex is reduced to obtain nickel fine particles. That is, the aliphatic primary amine preferably has a boiling point of 180 ° C. or higher, more preferably 200 ° C. or higher, and preferably has 9 or more carbon atoms. Here, for example, the boiling point of C 9 H 21 N (nonylamine) of an aliphatic amine having 9 carbon atoms is 201 ° C. The amount of primary amine is preferably 2 mol or more, more preferably 2.2 mol or more, and more preferably 4 mol or more with respect to 1 mol of nickel. When the amount of primary amine is less than 2 mol, it is difficult to control the particle diameter of the obtained nickel fine particles, and the particle diameter tends to vary. The upper limit of the amount of primary amine is not particularly limited, but is preferably 20 mol or less from the viewpoint of productivity, for example.

(有機溶媒)
工程1では、均一溶液での反応をより効率的に進行させるために、1級アミンとは別の有機溶媒を新たに添加してもよい。有機溶媒を用いる場合、有機溶媒をカルボン酸ニッケル及び1級アミンと同時に混合してもよいが、カルボン酸ニッケル及び1級アミンを先ず混合し錯形成した後に有機溶媒を加えると、1級アミンが効率的にニッケル原子に配位するので、より好ましい。使用できる有機溶媒としては、1級アミンとニッケルイオンとの錯形成を阻害しないものであれば、特に限定するものではなく、例えば炭素数4〜30のエーテル系有機溶媒、炭素数7〜30の飽和又は不飽和の炭化水素系有機溶媒、炭素数8〜18のアルコール系有機溶媒等を使用することができる。また、マイクロ波照射による加熱条件下でも使用を可能とする観点から、使用する有機溶媒は、沸点が170℃以上のものを選択することが好ましく、より好ましくは200〜300℃の範囲内にあるものを選択することがよい。このような有機溶媒の具体例としては、例えばテトラエチレングリコール、n−オクチルエーテル等が挙げられる。
(Organic solvent)
In step 1, an organic solvent different from the primary amine may be newly added in order to allow the reaction in the homogeneous solution to proceed more efficiently. When an organic solvent is used, the organic solvent may be mixed simultaneously with the nickel carboxylate and the primary amine. However, when the organic solvent is added after first mixing the nickel carboxylate and the primary amine to form a complex, It is more preferable because it efficiently coordinates to a nickel atom. The organic solvent that can be used is not particularly limited as long as it does not inhibit the complex formation between the primary amine and the nickel ion. For example, the organic solvent having 4 to 30 carbon atoms, 7 to 30 carbon atoms, and the like. A saturated or unsaturated hydrocarbon organic solvent, an alcohol organic solvent having 8 to 18 carbon atoms, or the like can be used. Moreover, from the viewpoint of enabling use even under heating conditions by microwave irradiation, it is preferable to select an organic solvent having a boiling point of 170 ° C. or higher, more preferably in the range of 200 to 300 ° C. It is better to choose one. Specific examples of such an organic solvent include tetraethylene glycol and n-octyl ether.

錯形成反応は室温に於いても進行することができるが、十分且つ、より効率の良い錯形成反応を行うために、100℃〜165℃の範囲内の温度に加熱して反応を行う。この加熱は、カルボン酸ニッケルとして、例えばギ酸ニッケル2水和物や酢酸ニッケル4水和物のようなカルボン酸ニッケルの水和物を用いた場合に特に有利である。加熱温度は、好ましくは100℃を超える温度とし、より好ましくは105℃以上の温度とすることで、カルボン酸ニッケルに配位した配位水と1級アミンとの配位子置換反応が効率よく行われ、この錯体配位子としての水分子を解離させることができ、さらにその水を系外に出すことができるので効率よく錯体を形成させることができる。例えば、ギ酸ニッケル2水和物は、室温では2個の配位水と2座配位子である2個のギ酸イオンが存在した錯体構造をとっているため、この2つの配位水と1級アミンの配位子置換により効率よく錯形成させるには、100℃より高い温度で加熱することでこの錯体配位子としての水分子を解離させることが好ましい。また、カルボン酸ニッケルと1級アミンとの錯形成反応における熱処理は、後に続くニッケル錯体(又はニッケルイオン)のマイクロ波照射による加熱還元の過程と確実に分離し、前記の錯形成反応を完結させるという観点から、上記の上限温度以下とし、好ましくは160℃以下、より好ましくは150℃以下とすることがよい。   Although the complex formation reaction can proceed even at room temperature, in order to perform a sufficient and more efficient complex formation reaction, the reaction is carried out by heating to a temperature in the range of 100 ° C. to 165 ° C. This heating is particularly advantageous when nickel carboxylate hydrate such as nickel formate dihydrate or nickel acetate tetrahydrate is used as nickel carboxylate. The heating temperature is preferably a temperature exceeding 100 ° C., more preferably a temperature of 105 ° C. or more, so that the ligand substitution reaction between the coordinating water coordinated with nickel carboxylate and the primary amine is efficient. The water molecule as the complex ligand can be dissociated, and the water can be discharged out of the system, so that the complex can be formed efficiently. For example, nickel formate dihydrate has a complex structure in which two coordination waters and two formate ions as bidentate ligands exist at room temperature. In order to efficiently form a complex by substituting a ligand for a primary amine, it is preferable to dissociate the water molecule as the complex ligand by heating at a temperature higher than 100 ° C. In addition, the heat treatment in the complex formation reaction between nickel carboxylate and primary amine is surely separated from the subsequent heat reduction process by microwave irradiation of the nickel complex (or nickel ion) to complete the complex formation reaction. In view of the above, the temperature is set to the upper limit temperature or lower, preferably 160 ° C. or lower, more preferably 150 ° C. or lower.

加熱時間は、加熱温度や、各原料の含有量に応じて適宜決定することができるが、錯形成反応を完結させるという観点から、10分以上とすることが好ましい。加熱時間の上限は特にないが、長時間熱処理することはエネルギー消費及び工程時間を節約する観点から無駄である。なお、この加熱の方法は、特に制限されず、例えばオイルバスなどの熱媒体による加熱であっても、マイクロ波照射による加熱であってもよい。   The heating time can be appropriately determined according to the heating temperature and the content of each raw material, but is preferably 10 minutes or more from the viewpoint of completing the complex formation reaction. There is no upper limit on the heating time, but heat treatment for a long time is useless from the viewpoint of saving energy consumption and process time. The heating method is not particularly limited, and may be heating by a heat medium such as an oil bath or heating by microwave irradiation.

カルボン酸ニッケルと1級アミンとの錯形成反応は、カルボン酸ニッケルと1級アミンとを有機溶媒中で混合して得られる溶液を加熱したときに、溶液の色の変化によって確認することができる。また、この錯形成反応は、例えば紫外・可視吸収スペクトル測定装置を用いて、300nm〜750nmの波長領域において観測される吸収スペクトルの吸収極大の波長を測定し、原料の極大吸収波長(例えばギ酸ニッケル2水和物ではその極大吸収波長は710nmであり、酢酸ニッケル4水和物ではその極大吸収波長は710nmである。)に対する錯化反応液のシフト(極大吸収波長が600nmにシフト)を観測することによって確認することができる。   The complex formation reaction between nickel carboxylate and primary amine can be confirmed by a change in the color of the solution when a solution obtained by mixing nickel carboxylate and primary amine in an organic solvent is heated. . In addition, this complex formation reaction is carried out by measuring the absorption maximum wavelength of the absorption spectrum observed in the wavelength region of 300 nm to 750 nm using, for example, an ultraviolet / visible absorption spectrum measuring apparatus, and measuring the maximum absorption wavelength of the raw material (for example, nickel formate). In dihydrate, the maximum absorption wavelength is 710 nm, and in nickel acetate tetrahydrate, the maximum absorption wavelength is 710 nm.) The shift of the complexing reaction solution (the maximum absorption wavelength shifts to 600 nm) is observed. Can be confirmed.

カルボン酸ニッケルと1級アミンとの錯形成が行われた後、得られる反応液を、次に説明するように、マイクロ波照射によって加熱することにより、ニッケル錯体のニッケルイオンが還元され、ニッケルイオンに配位しているカルボン酸イオンが同時に分解し、最終的に酸化数が0価のニッケルを含有するニッケル微粒子が生成する。一般にカルボン酸ニッケルは水を溶媒とする以外の条件では難溶性であり、マイクロ波照射による加熱還元反応の前段階として、カルボン酸ニッケルを含む溶液は均一反応溶液とする必要がある。これに対して、本実施の形態で使用される1級アミンは、使用温度条件で液体であり、かつそれがニッケルイオンに配位することで液化し、均一反応溶液を形成すると考えられる。   After the complex formation between nickel carboxylate and primary amine is performed, the resulting reaction solution is heated by microwave irradiation to reduce the nickel ions of the nickel complex as described below. At the same time, the carboxylate ions coordinated in the nuclei are decomposed, and finally nickel fine particles containing nickel having an oxidation number of 0 are generated. In general, nickel carboxylate is hardly soluble under conditions other than using water as a solvent, and a solution containing nickel carboxylate needs to be a homogeneous reaction solution as a pre-stage of the heat reduction reaction by microwave irradiation. On the other hand, the primary amine used in the present embodiment is liquid under the operating temperature conditions, and is considered to be liquefied by coordination with nickel ions to form a homogeneous reaction solution.

工程2)ニッケル微粒子スラリー生成工程:
本工程では、カルボン酸ニッケルと1級アミンとの錯形成反応によって得られた錯化反応液を、マイクロ波照射によって170℃以上の温度に加熱し、錯化反応液中のニッケルイオンを還元して1級アミンで被覆されたニッケル微粒子スラリーを得る。マイクロ波照射によって加熱する温度は、得られるニッケル微粒子の形状のばらつきを抑制するという観点から、好ましくは180℃以上、より好ましくは200℃以上とすることがよい。加熱温度の上限は特にないが、処理を能率的に行う観点からは例えば270℃以下とすることが好適である。なお、マイクロ波の使用波長は、特に限定するものではなく、例えば2.45GHzである。なお、加熱温度は、例えばカルボン酸ニッケルの種類やニッケル微粒子の核発生を促進させる添加剤の使用などによって、適宜調整することができる。
Step 2) Nickel fine particle slurry generation step:
In this step, the complexing reaction solution obtained by the complexation reaction between nickel carboxylate and primary amine is heated to a temperature of 170 ° C. or higher by microwave irradiation to reduce nickel ions in the complexing reaction solution. To obtain a nickel fine particle slurry coated with a primary amine. The temperature for heating by microwave irradiation is preferably 180 ° C. or higher, more preferably 200 ° C. or higher, from the viewpoint of suppressing variation in the shape of the obtained nickel fine particles. The upper limit of the heating temperature is not particularly limited, but is preferably set to 270 ° C. or less, for example, from the viewpoint of efficiently performing the treatment. In addition, the use wavelength of a microwave is not specifically limited, For example, it is 2.45 GHz. The heating temperature can be appropriately adjusted depending on, for example, the type of nickel carboxylate and the use of an additive that promotes the nucleation of nickel fine particles.

本工程では、マイクロ波が反応液内に浸透するため、均一加熱が行われ、かつ、エネルギーを媒体に直接与えることができるため、急速加熱を行うことができる。これにより、反応液全体を所望の温度に均一にすることができ、ニッケル錯体(又はニッケルイオン)の還元、核生成、核成長各々の過程を溶液全体において同時に生じさせ、結果として粒径分布の狭い単分散な粒子を短時間で容易に製造することができる。   In this step, since microwaves penetrate into the reaction solution, uniform heating is performed, and energy can be directly applied to the medium, so that rapid heating can be performed. As a result, the entire reaction solution can be made uniform at a desired temperature, and the processes of reduction, nucleation, and nucleation of the nickel complex (or nickel ions) can occur simultaneously in the entire solution. Narrow monodisperse particles can be easily produced in a short time.

均一な粒径を有するニッケル微粒子を生成させるには、工程1の錯化反応液生成工程(ニッケル錯体の生成が行われる工程)でニッケル錯体を均一にかつ十分に生成させることと、本工程2のニッケル微粒子スラリー生成工程で、ニッケル錯体(又はニッケルイオン)の還元により生成するニッケル(0価)の核の同時発生・成長を行う必要がある。すなわち、錯化反応液生成工程の加熱温度を上記の特定の範囲内で調整し、ニッケル微粒子スラリー生成工程におけるマイクロ波による加熱温度よりも確実に低くしておくことで、粒径・形状の整った粒子が生成し易い。例えば、錯化反応液生成工程で加熱温度が高すぎるとニッケル錯体の生成とニッケル(0価)への還元反応が同時に進行し異種の金属種が発生することで、ニッケル微粒子スラリー生成工程での粒子形状の整った粒子の生成が困難となるおそれがある。また、ニッケル微粒子スラリー生成工程の加熱温度が低すぎるとニッケル(0価)への還元反応速度が遅くなり核の発生が少なくなるため粒子が大きくなるだけでなく、ニッケル微粒子の収率の点からも好ましくはない。   In order to generate nickel fine particles having a uniform particle size, the nickel complex is uniformly and sufficiently generated in the complexing reaction liquid generating step (step in which the nickel complex is generated) in step 1; In the nickel fine particle slurry generation step, it is necessary to simultaneously generate and grow nickel (zero-valent) nuclei generated by reduction of the nickel complex (or nickel ions). In other words, by adjusting the heating temperature in the complexing reaction liquid production step within the above specific range and ensuring that it is lower than the microwave heating temperature in the nickel fine particle slurry production step, the particle size and shape are adjusted. Particles are easily generated. For example, if the heating temperature is too high in the complexing reaction liquid generation process, the formation of nickel complex and the reduction reaction to nickel (zero valence) proceed simultaneously, and different metal species are generated. There is a possibility that it is difficult to generate particles having a uniform particle shape. In addition, if the heating temperature of the nickel fine particle slurry generation process is too low, the reduction reaction rate to nickel (zero valence) is slowed and the generation of nuclei is reduced, so that not only the particles are enlarged, but also in terms of the yield of nickel fine particles. Is also not preferred.

マイクロ波照射によって加熱して得られるニッケル微粒子スラリーを、例えば、静置分離し、上澄み液を取り除いた後、適当な溶媒を用いて洗浄し、乾燥することで、ニッケル微粒子が得られる。ニッケル微粒子スラリー生成工程においては、必要に応じ、前述した有機溶媒を加えてもよい。なお、前記したように、錯形成反応に使用する1級アミンを有機溶媒としてそのまま用いることが好ましい。   The nickel fine particle slurry obtained by heating by microwave irradiation is, for example, left and separated, and after removing the supernatant liquid, washed with an appropriate solvent and dried to obtain nickel fine particles. In the nickel fine particle slurry production step, the organic solvent described above may be added as necessary. As described above, the primary amine used for the complex formation reaction is preferably used as it is as the organic solvent.

以上のようにして、平均一次粒子径が30〜200nmの範囲内のニッケル微粒子を調製することができる。ニッケル以外の原料金属微粒子についても、上記方法に準じて製造できる。   As described above, nickel fine particles having an average primary particle diameter in the range of 30 to 200 nm can be prepared. Raw metal fine particles other than nickel can also be produced according to the above method.

<配合比>
金属粒子組成物は、成分A及び成分Bの重量比(成分A:成分B)が50:50〜10:90の範囲内である。上記範囲よりもスズ粒子の割合が高くなると、金属化合物を形成していないスズ成分が再溶融するので、高温での接合層としての適用が困難となる。一方、上記範囲よりもスズ粒子の割合が低くなると、ニッケル微粒子どうしの焼結が支配的となり、無加圧による接合が困難となり、その結果として後述する比較例1に示したように接合層としての強度不足が生じる。
<Combination ratio>
In the metal particle composition, the weight ratio of component A and component B (component A: component B) is in the range of 50:50 to 10:90. When the ratio of the tin particles is higher than the above range, the tin component not forming the metal compound is remelted, so that application as a bonding layer at a high temperature becomes difficult. On the other hand, when the proportion of tin particles is lower than the above range, the sintering of the nickel fine particles becomes dominant, and it becomes difficult to perform bonding without pressure, and as a result, as shown in Comparative Example 1 described later, as a bonding layer Insufficient strength occurs.

[接合材]
本実施の形態の接合材は、上記金属粒子組成物を含有する。本実施の形態の接合材は、さらに、沸点150〜260℃の範囲内にある有機溶媒を含有することができる。接合材は、高沸点の有機溶媒を添加後、濃縮し、ペーストの形態とすることが好ましい。使用する有機溶媒の沸点が150℃未満であると、長期安定性に欠く傾向があり、260℃を超えると、焼成時に揮発せずに、接合層中に残炭が生じ、粒子同士の焼結や金属間化合物の形成を阻害する傾向がある。
[Bonding material]
The bonding material of the present embodiment contains the metal particle composition. The bonding material of the present embodiment can further contain an organic solvent having a boiling point in the range of 150 to 260 ° C. The joining material is preferably concentrated after adding a high-boiling organic solvent to form a paste. If the boiling point of the organic solvent used is less than 150 ° C., long-term stability tends to be lacking. If it exceeds 260 ° C., residual carbon is generated in the joining layer without volatilization during firing, and particles are sintered. And tends to inhibit the formation of intermetallic compounds.

接合材における金属粒子組成物の含有量は、例えば70〜95重量%の範囲内であり、85〜94重量%の範囲内が好ましい。金属粒子組成物の含有量が70重量%未満であると、接合層の厚みが薄くなる場合があり、例えば塗布などを複数回繰り返す必要が生じてムラの原因となり、また十分な接合強度が得られない場合がある。一方、金属粒子組成物の含有量が95重量%を超えると、ペーストとしての流動性が失われ、塗布が困難になるなど使用性が低下する場合がある。   The content of the metal particle composition in the bonding material is, for example, in the range of 70 to 95% by weight, and preferably in the range of 85 to 94% by weight. If the content of the metal particle composition is less than 70% by weight, the thickness of the bonding layer may be reduced, for example, it may be necessary to repeat coating several times, resulting in unevenness, and sufficient bonding strength is obtained. It may not be possible. On the other hand, when the content of the metal particle composition exceeds 95% by weight, the fluidity as a paste is lost, and the usability may be lowered, such as difficulty in coating.

沸点が150〜260℃の範囲内にある溶媒として、例えば、アルコール系、芳香族系、炭化水素系、エステル系、ケトン系、エーテル系の溶媒が使用できる。アルコール系溶媒の例としては、1−ヘプタノール、1−オクタノール、2−オクタノール、2−エチル−1−ヘキサノール、1−ノナノール、3,5,5−トリメチル−1−ヘキサノール、1−デカノールなどの炭素数7以上の脂肪族アルコール類、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、テトラメチレングリコール、メチルトリグリコール等の多価アルコール類、α−テルピネオール、β−テルピネオール、γ−テルピネオール等のテルピネオール類、さらにエチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、メチルメトキシブタノール、ジエチレングリコール、ジプロピレングリコール、2−フェノキシエタノール、1−フェノキシ−2−プロパノール等のエーテル基を有するアルコール類を挙げることができる。   As the solvent having a boiling point in the range of 150 to 260 ° C., for example, alcohol-based, aromatic-based, hydrocarbon-based, ester-based, ketone-based, and ether-based solvents can be used. Examples of alcohol solvents include carbons such as 1-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, 1-nonanol, 3,5,5-trimethyl-1-hexanol, and 1-decanol. 7 or more aliphatic alcohols, ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, tetramethylene glycol, methyltriglycol, etc. Terpineols such as α-terpineol, β-terpineol, γ-terpineol, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, methyl methoxybutanol, diethylene glycol, di- B propylene glycol, 2-phenoxyethanol, can be mentioned alcohols having an ether group such as 1-phenoxy-2-propanol.

本実施の形態の接合材における有機溶媒の含有量は、例えば、5〜30重量%の範囲内であり、6〜15重量%の範囲内が好ましい。接合材における有機溶媒の含有量が5重量%未満であると、流動性が低下して接合材としての使用性が低下する場合がある。一方、有機溶媒の含有量が30重量%を超えると、例えば塗布などを複数回繰り返す必要が生じてムラの原因となり、また十分な接合強度が得られない場合がある。   The content of the organic solvent in the bonding material of the present embodiment is, for example, in the range of 5 to 30% by weight, and preferably in the range of 6 to 15% by weight. When the content of the organic solvent in the bonding material is less than 5% by weight, the fluidity may be lowered and the usability as the bonding material may be lowered. On the other hand, when the content of the organic solvent exceeds 30% by weight, for example, it becomes necessary to repeat coating several times, which may cause unevenness, and sufficient bonding strength may not be obtained.

本実施の形態の接合材は、ニッケル−スズの金属間化合物の形成およびニッケル粒子間の焼結を阻害しない範囲で、上記成分以外に、各種添加剤を加えてもよい。添加剤としては、例えば、粘度調整剤、チキソ材、バインダー樹脂等を挙げることができる。   In the bonding material of the present embodiment, various additives may be added in addition to the above components as long as the formation of the nickel-tin intermetallic compound and the sintering between the nickel particles are not inhibited. Examples of the additive include a viscosity modifier, a thixo material, and a binder resin.

[接合方法]
本実施の形態の接合方法は、上記接合材を、被接合部材の間に介在させて還元性ガスを含有する還元性ガス雰囲気下で250〜500℃の範囲内、好ましくは300〜350℃の範囲内の温度で加熱することにより、被接合部材の間に接合層を形成する。スズとニッケルは、230℃程度で金属間化合物を形成する。従って、還元性ガス雰囲気下で加熱を行うことにより、ニッケル微粒子表面の不動態層を除去し、スズとの金属化合物の形成を進行させ、ニッケル微粒子間の焼結も進行させることができる。また、スズ系はんだを融解させるための加熱温度は230℃程度でよいが、ニッケル微粒子の表面が露出した状態になってから初めて焼結が進行すると考えられることから、ニッケル微粒子の表面に存在する有機物を揮発又は分解させるために、加熱温度を250℃以上とすることが好ましい。一方、加熱温度が500℃を超えると、被接合部材としての半導体デバイスなどにダメージを与える場合がある。
[Joint method]
In the joining method of the present embodiment, the joining material is interposed between the members to be joined, and the reducing gas is contained in a reducing gas atmosphere containing a reducing gas. By heating at a temperature within the range, a bonding layer is formed between the members to be bonded. Tin and nickel form an intermetallic compound at about 230 ° C. Therefore, by heating in a reducing gas atmosphere, the passive layer on the surface of the nickel fine particles can be removed, the formation of the metal compound with tin can be advanced, and the sintering between the nickel fine particles can also be advanced. Further, the heating temperature for melting the tin-based solder may be about 230 ° C., but since the sintering is considered to proceed only after the surface of the nickel fine particles is exposed, it exists on the surface of the nickel fine particles. In order to volatilize or decompose organic substances, the heating temperature is preferably 250 ° C. or higher. On the other hand, if the heating temperature exceeds 500 ° C., the semiconductor device or the like as the bonded member may be damaged.

本実施の形態の接合方法は、例えば、ペースト状の接合材を一対の被接合部品の片方又は両方の被接合面に塗布する工程(塗布工程)、被接合面どうしを貼り合せ、例えば温度250〜500℃の範囲内、好ましくは300〜350℃の範囲内で加熱することにより、接合材を焼結させる工程(焼成工程)、並びに、焼結した接合材を冷却することにより固化し、金属接合層を形成する工程(固化工程)、を含むことができる。   In the bonding method of the present embodiment, for example, a process of applying a paste-like bonding material to one or both bonded surfaces of a pair of bonded components (application process), the bonded surfaces are bonded together, for example, a temperature of 250 By heating within a range of ˜500 ° C., preferably within a range of 300 ° C. to 350 ° C., a step of sintering the bonding material (firing step), and solidifying by cooling the sintered bonding material, a metal A step of forming a bonding layer (solidification step).

接合材を塗布する塗布工程では、例えばスプレー塗布、インクジェット塗布、印刷等の方法を採用できる。接合材は、目的に応じて、例えばパターン状、アイランド状、メッシュ状、格子状、ストライプ状など任意の形状に塗布することができる。塗布工程では、塗布膜の厚みが50〜200μmの範囲内となるように、接合材を塗布することが好ましい。このような厚みで塗布をすることで、接合部分の欠陥を少なくできるため、電気抵抗の上昇や接合強度の低下を防止できる。   In the coating process for coating the bonding material, for example, methods such as spray coating, inkjet coating, and printing can be employed. The bonding material can be applied in an arbitrary shape such as a pattern shape, an island shape, a mesh shape, a lattice shape, or a stripe shape according to the purpose. In the coating step, it is preferable to apply the bonding material so that the thickness of the coating film is in the range of 50 to 200 μm. By applying with such a thickness, defects in the joint portion can be reduced, so that an increase in electrical resistance and a decrease in joint strength can be prevented.

また、焼成工程は、例えばHなどの還元性ガスが存在する雰囲気で行うことが好ましい。また、減圧することで、ボイド発生を抑制する効果が得られる。例えば大気圧の95%以下の圧力でその効果が確認できる。また、接合面を貼り合わせる際には、必要に応じて加圧することができる。 The firing step is preferably, for example, carried out in an atmosphere of reducing gas such as H 2 is present. Moreover, the effect which suppresses void generation | occurrence | production is acquired by decompressing. For example, the effect can be confirmed at a pressure of 95% or less of the atmospheric pressure. Moreover, when bonding a joint surface, it can be pressurized as needed.

焼成工程及び固化工程では、スズとニッケルが金属間化合物を形成するとともに、ニッケル微粒子どうしが焼結し、均一で強固な接着力を持つ金属接合層を形成することができる。また、金属接合層を形成することによって金属接合層の導電性が確保される。   In the firing step and the solidification step, tin and nickel form an intermetallic compound, and the nickel fine particles are sintered to form a metal bonding layer having a uniform and strong adhesive force. Moreover, the conductivity of the metal bonding layer is ensured by forming the metal bonding layer.

金属微粒子が焼結して形成される接合部分(金属接合層)の厚みは、例えば40〜100μmの範囲内が好ましい。接合部分の厚みがこれよりも薄い場合は、接合部分の欠陥が多くなり、電気抵抗の上昇や、強度の低下を引き起こす原因となる。   The thickness of the joining portion (metal joining layer) formed by sintering the metal fine particles is preferably in the range of 40 to 100 μm, for example. When the thickness of the joint portion is thinner than this, defects in the joint portion increase, which causes an increase in electrical resistance and a decrease in strength.

本実施の形態の接合方法は、例えば、Si、SiCの半導体材料の接合や、電子部品の製造過程で利用できる。ここで、電子部品としては、主に半導体装置、エネルギー変換モジュール部品などを例示できる。電子部品が半導体装置である場合、例えば、半導体素子の裏面と基板との間、半導体電極と基板電極との間、半導体電極と半導体電極との間、パワーデバイス若しくはパワーモジュールと放熱部材との間などの接合に適用できる。   The bonding method of the present embodiment can be used, for example, in the bonding of Si or SiC semiconductor materials or in the manufacturing process of electronic components. Here, examples of the electronic component mainly include a semiconductor device and an energy conversion module component. When the electronic component is a semiconductor device, for example, between the back surface of the semiconductor element and the substrate, between the semiconductor electrode and the substrate electrode, between the semiconductor electrode and the semiconductor electrode, between the power device or the power module and the heat dissipation member. It can be applied to joining.

電子部品を接合させる際は、接合強度を高めるため、予め被接合面の片方又は両方に、例えば、Au,Cu,Pd,Ni,Ag,Cr,Tiあるいはそれらの合金などの材質の接触金属層を設けておくことが好ましい。また、被接合面の材質が、SiCもしくはSiあるいはそれらの表面の酸化膜である場合は、例えばTi,TiW,TiN,Cr,Ni、Pd,Vあるいはそれらの合金などの材質の接触金属層を設けておくことが好ましい。接触金属層の膜厚は、それぞれ、例えば50nm以上2μm以下の範囲内であることが好ましい。接触金属層の厚みが50nm未満では、欠陥が生じやすく、2μm超では蒸着工程が長くなり、生産効率が低下することがある。   When bonding electronic components, in order to increase the bonding strength, for example, a contact metal layer made of a material such as Au, Cu, Pd, Ni, Ag, Cr, Ti or an alloy thereof is previously formed on one or both of the surfaces to be bonded. Is preferably provided. When the material of the surface to be joined is SiC or Si or an oxide film on the surface thereof, a contact metal layer made of a material such as Ti, TiW, TiN, Cr, Ni, Pd, V or an alloy thereof is used. It is preferable to provide it. The thickness of each contact metal layer is preferably in the range of, for example, 50 nm or more and 2 μm or less. If the thickness of the contact metal layer is less than 50 nm, defects are likely to occur, and if it exceeds 2 μm, the vapor deposition process becomes long, and the production efficiency may be reduced.

また、本実施の形態の接合方法は、金属材料などの接合にも利用できる。特に蝋材や溶接による接合で、熱影響部における母材の劣化がみられる場合に低温で接合することが好適である。また、本実施の形態の接合方法は、例えば、焼き入れ鋼、ステンレス鋼、加工硬化により強化された金属材料、熱酸化や熱ひずみにより劣化する無機材料や金属材料の接合にも適している。被接合体は管、板、継手、ロッド、ワイヤ、ボルトなどがあげられるが、これらに限定されるものではない。   Further, the bonding method of the present embodiment can also be used for bonding metal materials and the like. In particular, when the base material deteriorates in the heat-affected zone in joining by wax material or welding, it is preferable to join at a low temperature. The joining method of the present embodiment is also suitable for joining, for example, hardened steel, stainless steel, metal materials strengthened by work hardening, inorganic materials and metal materials that deteriorate due to thermal oxidation and thermal strain. Examples of the joined body include, but are not limited to, a pipe, a plate, a joint, a rod, a wire, and a bolt.

以下に実施例を示し、本発明の特徴をより具体的に説明する。ただし、本発明は、実施例によって制約されるものではない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。   The features of the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the examples. In the following examples, various measurements and evaluations are as follows unless otherwise specified.

[平均粒子径の測定]
成分A(スズ粒子)および比較例2で使用されるニッケル粒子の平均粒子径はレーザー回折/散乱法にて求めた。成分B(ニッケル微粒子)の平均粒子径の測定は、電界放出形走査電子顕微鏡(Field Emission−Scanning Electron Microscope:FE−SEM)により試料の写真を撮影して、その中から無作為に200個を抽出してそれぞれの面積を求め、真球に換算したときの粒子径を個数基準として一次粒子の平均粒子径を算出した。また、CV値(変動係数)は、(標準偏差)÷(平均粒子径)によって算出した。なお、CV値が小さいほど、粒子径がより均一であることを示す。
[Measurement of average particle size]
The average particle diameter of the nickel particles used in Component A (tin particles) and Comparative Example 2 was determined by a laser diffraction / scattering method. The average particle diameter of component B (nickel fine particles) was measured by taking a picture of a sample with a field emission scanning electron microscope (FE-SEM), and randomly 200 samples were taken. The respective areas were extracted and the average particle diameter of primary particles was calculated based on the number of particles when converted to a true sphere. The CV value (coefficient of variation) was calculated by (standard deviation) / (average particle diameter). In addition, it shows that a particle diameter is so uniform that a CV value is small.

[焼成方法]
焼結性試験用サンプルの焼成は、小型イナートガスオーブン(光洋サーモシステム社製、商品名;KLO−30NH)を使用し、昇温速度5℃/分で、常温から350℃まで昇温した後、350℃で1時間保持した。次いで、400分間かけて50℃まで降温した後、常温まで放置した。
[Baking method]
The sample for sinterability test was fired using a small inert gas oven (manufactured by Koyo Thermo Systems Co., Ltd., trade name: KLO-30NH) at a heating rate of 5 ° C./min. It was held at 350 ° C. for 1 hour. Next, the temperature was lowered to 50 ° C. over 400 minutes, and then left to room temperature.

[金属間化合物の定性分析]
熱分析)成分A(スズ粒子)中のSnの加熱溶融と、成分Bとの金属間化合物生成によって再溶融が生じないことを、示差熱熱重量同時測定装置(Thermogravimetry−Differential Thermal Analysis:TG−DTA、株式会社日立ハイテクサイエンス製、商品名;TG/DTA7220)を用いて確認した。測定は以下の条件を連続して実施した。
昇温1)
昇温条件 :30℃から325℃まで5℃/分の速度で昇温後10分保持
ガスフロー :窒素/水素=97/3体積比 混合ガス 200ml/分
降温)
降温条件 :325℃から100℃以下まで15℃/分の速度で降温後10分保持
ガスフロー :窒素/水素=97/3体積比 混合ガス 200ml/分
昇温2)
昇温条件 :30℃から300℃まで5℃/分の速度で昇温後10分保持
ガスフロー :窒素 200ml/分
[Qualitative analysis of intermetallic compounds]
Thermal analysis) The fact that remelting does not occur due to heat melting of Sn in component A (tin particles) and formation of an intermetallic compound with component B (Thermogravimetric-Differential Thermal Analysis: TG-) DTA, manufactured by Hitachi High-Tech Science Co., Ltd., trade name: TG / DTA7220). The measurement was performed continuously under the following conditions.
Temperature rise 1)
Temperature rising condition: Maintained for 10 minutes after heating at a rate of 5 ° C / min from 30 ° C to 325 ° C
Gas flow: Nitrogen / hydrogen = 97/3 volume ratio Mixed gas 200 ml / min.
Temperature drop condition: Holds for 10 minutes after temperature drop from 325 ° C to below 100 ° C at a rate of 15 ° C / min
Gas flow: Nitrogen / hydrogen = 97/3 volume ratio Mixed gas 200ml / min temperature rise 2)
Temperature rising condition: Maintained for 10 minutes after heating at a rate of 5 ° C / min from 30 ° C to 300 ° C
Gas flow: Nitrogen 200ml / min

[せん断強度(シェア強度)の評価]
ステンレス製マスク(マスク幅;2.0mm×長さ;2.0mm×厚さ;0.1mm)を用いて、試料を金めっき銅基板(幅;10mm×長さ;10mm×厚さ;1.0mm)上に塗布して塗布膜を形成した後、その塗布膜の上に、シリコンダイ(幅;2.0mm×長さ;2.0mm×厚さ;0.40mm)を搭載し、焼成を行った。得られた接合サンプル(接合層の厚さ;50μm程度)を接合強度試験機(デイジ・ジャパン社製、商品名;ボンドテスター4000)により、せん断強度を測定した。測定は常温または加熱ステージで銅基板を260℃に加熱しながら実施した。ダイ側面からボンドテスターツールを、基板からの高さ50μm、ツール速度100μm/秒で押圧し、接合部がせん断破壊したときの荷重をせん断強度(シェア強度)とした。なお、金めっき銅基板は、Cu基板(厚さ;1.0mm)の表面に、Ni/Auをそれぞれ4μm/40〜50nmの厚みでめっきしたものであり、シリコンダイは、Si基板(厚さ;0.40mm)の接合面に、Auを15〜20nmの厚みで蒸着したものである。
[Evaluation of shear strength (shear strength)]
Using a stainless steel mask (mask width; 2.0 mm × length; 2.0 mm × thickness; 0.1 mm), the sample was gold-plated copper substrate (width; 10 mm × length; 10 mm × thickness; 0 mm) is applied to form a coating film, and then a silicon die (width: 2.0 mm × length; 2.0 mm × thickness: 0.40 mm) is mounted on the coating film and firing is performed. went. The shear strength of the obtained joined sample (joint layer thickness; about 50 μm) was measured with a joint strength tester (manufactured by Daisy Japan, trade name: Bond Tester 4000). The measurement was performed while heating the copper substrate to 260 ° C. at room temperature or a heating stage. A bond tester tool was pressed from the side of the die at a height of 50 μm from the substrate and a tool speed of 100 μm / second, and the load when the joint was sheared was determined as shear strength (shear strength). The gold-plated copper substrate is obtained by plating Ni / Au with a thickness of 4 μm / 40 to 50 nm on the surface of a Cu substrate (thickness: 1.0 mm), and the silicon die is a Si substrate (thickness). ; 0.40 mm), and Au is deposited in a thickness of 15 to 20 nm on the joint surface.

[接合サンプルの断面SEM観察]
上記せん断強度評価と同様に作製した接合サンプルを、エポキシ樹脂により包埋後、断面加工を施し、電界放出形走査電子顕微鏡(FE−SEM)にて観察した。
[Cross-sectional SEM observation of bonded sample]
A bonded sample prepared in the same manner as in the above-described shear strength evaluation was embedded with an epoxy resin, subjected to cross-section processing, and observed with a field emission scanning electron microscope (FE-SEM).

(合成例1)
642重量部のオレイルアミンに100.1重量部の酢酸ニッケル四水和物を加え、窒素フロー下、150℃で20分加熱することによって酢酸ニッケルを溶解させて錯化反応液を得た。次いで、その錯化反応液に、492重量部のオレイルアミンを加え、マイクロ波を用いて250℃で5分加熱することによって、ニッケル微粒子スラリーを得た。
(Synthesis Example 1)
To 642 parts by weight of oleylamine, 100.1 parts by weight of nickel acetate tetrahydrate was added and heated at 150 ° C. for 20 minutes under a nitrogen flow to dissolve nickel acetate to obtain a complexing reaction solution. Next, 492 parts by weight of oleylamine was added to the complexing reaction solution, and the mixture was heated at 250 ° C. for 5 minutes using a microwave to obtain a nickel fine particle slurry.

ニッケル微粒子スラリーを静置分離し、上澄み液を取り除いた後、トルエンとメタノールを用いて洗浄した後、60℃に維持される真空乾燥機で6時間乾燥してニッケル微粒子(平均一次粒子径;92nm、CV値;0.19)を得た。   The nickel fine particle slurry was allowed to stand and separated, the supernatant was removed, washed with toluene and methanol, and then dried in a vacuum dryer maintained at 60 ° C. for 6 hours to obtain nickel fine particles (average primary particle size; 92 nm CV value; 0.19) was obtained.

<スラリー溶液の調製>
合成例1で得られたニッケル微粒子を100重量部分取し、これに20重量部のオクタン酸を加え、15分間撹拌した後、トルエンで洗浄し、スラリー溶液1(固形分濃度68.1重量%)を調製した。
<Preparation of slurry solution>
100 parts by weight of the nickel fine particles obtained in Synthesis Example 1 were taken, 20 parts by weight of octanoic acid was added thereto, and the mixture was stirred for 15 minutes and then washed with toluene to obtain slurry solution 1 (solid content concentration 68.1% by weight). ) Was prepared.

(実施例1)
<ペースト1の調製>
スラリー溶液1の152重量部を分取し、これに10.3重量部のSn粒子(重量比Sn/Ag/Cu=96.5/2.9/0.51、製品名DS−10 株式会社日本フィラーメタルズ製 平均粒径12.8μm)、12.4重量部のα−テルピネオール(和光純薬工業株式会社製 沸点;220℃)、4.6重量部のテトラデカン(和光純薬工業株式会社製 沸点254℃)、0.06重量部のバインダー樹脂(製品名エスレックSV−05 積水化学工業株式会社製)を混合し、エバポレータにて60℃、100hPaで濃縮を行い、130.9重量部のペースト1(固形分濃度87.0wt%)を調製した。
Example 1
<Preparation of paste 1>
152 parts by weight of the slurry solution 1 was collected, and 10.3 parts by weight of Sn particles (weight ratio Sn / Ag / Cu = 96.5 / 2.9 / 0.51, product name DS-10 Co., Ltd.) Nippon Filler Metals average particle size 12.8 μm), 12.4 parts by weight of α-terpineol (Wako Pure Chemical Industries, Ltd., boiling point; 220 ° C.), 4.6 parts by weight of tetradecane (Wako Pure Chemical Industries, Ltd.) (Boiling point: 254 ° C.), 0.06 part by weight of binder resin (product name: S-LEC SV-05 manufactured by Sekisui Chemical Co., Ltd.) is mixed, and concentrated at 60 ° C. and 100 hPa using an evaporator, and 130.9 parts by weight of paste 1 (solid content concentration 87.0 wt%) was prepared.

実施例1のペースト1を用いて、上記方法にて接合サンプルを作製し、測定したせん断強度は、0.1kgf/mmであった。結果を表1に示す。 A joining sample was prepared by the above method using the paste 1 of Example 1, and the measured shear strength was 0.1 kgf / mm 2 . The results are shown in Table 1.

(実施例2)
<ペースト2の調製>
スラリー溶液1の104重量部を分取し、これに18.0重量部のはんだ粒子(重量比Sn/Ag/Cu=96.5/2.9/0.51、製品名DS−10 株式会社日本フィラーメタルズ製 平均粒径12.8μm)、7.2重量部のα−テルピネオール(和光純薬工業株式会社製 沸点;220℃)、2.7重量部のテトラデカン(和光純薬工業株式会社製 沸点254℃)、0.05重量部のバインダー樹脂(製品名エスレックSV−05 積水化学工業株式会社製)を混合し、エバポレータにて60℃、100hPaで濃縮を行い、98.8重量部のペースト2(固形分濃度89.9重量%)を調製した。
(Example 2)
<Preparation of paste 2>
104 parts by weight of the slurry solution 1 was collected, and 18.0 parts by weight of solder particles (weight ratio Sn / Ag / Cu = 96.5 / 2.9 / 0.51, product name DS-10 Co., Ltd.) Nippon Filler Metals average particle size 12.8 μm), 7.2 parts by weight of α-terpineol (manufactured by Wako Pure Chemical Industries, Ltd., boiling point; 220 ° C.), 2.7 parts by weight of tetradecane (manufactured by Wako Pure Chemical Industries, Ltd.) (Boiling point 254 ° C.), 0.05 parts by weight of binder resin (product name: S-LEC SV-05, manufactured by Sekisui Chemical Co., Ltd.), concentrated at 60 ° C. and 100 hPa with an evaporator, and 98.8 parts by weight of paste 2 (solid content concentration 89.9% by weight) was prepared.

実施例2のペースト2を用いて、上記方法にて接合サンプルを作製し、測定したせん断強度は、1.1kgf/mmであった。結果を表1に示す。 A joining sample was prepared by the above method using the paste 2 of Example 2, and the measured shear strength was 1.1 kgf / mm 2 . The results are shown in Table 1.

(実施例3)
<ペースト3の調製>
スラリー溶液1の121重量部を分取し、これに20.6重量部のはんだ粒子(重量比Sn/Ag/Cu=96.5/2.9/0.51、製品名DS−10 株式会社日本フィラーメタルズ製 平均粒径12.8μm)、6.7重量部のα−テルピネオール(和光純薬工業株式会社製 沸点;220℃)、1.4重量部のテトラデカン(和光純薬工業株式会社製 沸点254℃)、0.48重量部のバインダー樹脂(製品名エスレックBH−A 積水化学工業株式会社製)を混合し、エバポレータにて60℃、100hPaで濃縮を行い、95.3重量部のペースト3(固形分濃度91.0重量%)を調製した。
(Example 3)
<Preparation of paste 3>
121 parts by weight of the slurry solution 1 was collected, and 20.6 parts by weight of solder particles (weight ratio Sn / Ag / Cu = 96.5 / 2.9 / 0.51, product name DS-10 Co., Ltd.) Nippon Filler Metals average particle size 12.8 μm), 6.7 parts by weight of α-terpineol (Wako Pure Chemical Industries, Ltd., boiling point; 220 ° C.), 1.4 parts by weight of tetradecane (Wako Pure Chemical Industries, Ltd.) (Boiling point: 254 ° C.), 0.48 parts by weight of binder resin (product name: S-REC BH-A manufactured by Sekisui Chemical Co., Ltd.), concentrated at 60 ° C. and 100 hPa with an evaporator, and 95.3 parts by weight of paste 3 (solid content concentration 91.0% by weight) was prepared.

実施例3のペースト3を用いて、上記方法にて接合サンプルを作製し、測定したせん断強度は、3.0kgf/mmであった。また、260℃加熱ステージを用いて測定したせん断強度は2.9kgf/mmであった。結果を表1に示す。 A joining sample was prepared by the above method using the paste 3 of Example 3, and the measured shear strength was 3.0 kgf / mm 2 . The shear strength measured using a 260 ° C. heating stage was 2.9 kgf / mm 2 . The results are shown in Table 1.

(実施例4)
<ペースト4の調製>
スラリー溶液1の133重量部を分取し、これに22.8重量部のスズ粒子(製品名Sn−At−600 福田金属箔粉工業株式会社製 平均粒径7.3μm)、8.3重量部のα−テルピネオール(和光純薬工業株式会社製 沸点;220℃)、1.8重量部のテトラデカン(和光純薬工業株式会社製 沸点254℃)、0.6重量部のバインダー樹脂(製品名エスレックBH−A 積水化学工業株式会社製)を混合し、エバポレータにて60℃、100hPaで濃縮を行い、124重量部のペースト4(固形分濃度91.4重量%)を調製した。
Example 4
<Preparation of paste 4>
133 parts by weight of the slurry solution 1 was collected, and 22.8 parts by weight of tin particles (product name: Sn-At-600, Fukuda Metal Foil Powder Co., Ltd. average particle size: 7.3 μm), 8.3 parts by weight. Part of α-terpineol (Wako Pure Chemical Industries, Ltd., boiling point; 220 ° C.), 1.8 parts by weight of tetradecane (Wako Pure Chemical Industries, Ltd., boiling point: 254 ° C.), 0.6 parts by weight of binder resin (product name) ESREC BH-A manufactured by Sekisui Chemical Co., Ltd.) was mixed and concentrated with an evaporator at 60 ° C. and 100 hPa to prepare 124 parts by weight of paste 4 (solid content concentration 91.4 wt%).

実施例4のペースト4を用いて、上記方法にて接合サンプルを作製し、測定したせん断強度は、3.3kgf/mmであった。また、260℃加熱ステージを用いて測定したせん断強度は3.7kgf/mmであった。結果を表1に示す。 A joining sample was prepared by the above method using the paste 4 of Example 4, and the measured shear strength was 3.3 kgf / mm 2 . The shear strength measured using a 260 ° C. heating stage was 3.7 kgf / mm 2 . The results are shown in Table 1.

実施例4のペースト4を上記方法にてTG−DTAを測定した。その結果を図1に示す。図1より、昇温1における230℃の吸熱ピークから、スズ粒子の溶融が確認できる。さらに、昇温2において発熱ピーク、吸熱ピークが検出されないことから、スズは昇温1の段階にてニッケルとの金属間化合物が生成したと推定できる。   TG-DTA of the paste 4 of Example 4 was measured by the above method. The result is shown in FIG. From FIG. 1, melting of the tin particles can be confirmed from the endothermic peak at 230 ° C. at the temperature rise 1. Further, since no exothermic peak or endothermic peak is detected at the temperature rise 2, it can be estimated that tin produced an intermetallic compound with nickel at the stage of the temperature rise 1.

ペースト4を用いて、上記方法にて断面SEM観察を実施した。その結果を図2に示す。図2より、良好な接合層の形成が確認される。   Using paste 4, cross-sectional SEM observation was carried out by the above method. The result is shown in FIG. FIG. 2 confirms the formation of a good bonding layer.

(実施例5)
<ペースト5の調製>
スラリー溶液1の126重量部を分取し、これに57.3重量部のスズ粒子(製品名Sn−At−600 福田金属箔粉工業株式会社製 平均粒径7.3μm)、9.8重量部のα−テルピネオール(和光純薬工業株式会社製 沸点;220℃)、2.1重量部のテトラデカン(和光純薬工業株式会社製 沸点254℃)、0.8重量部のバインダー樹脂(製品名エスレックBH−A 積水化学工業株式会社製)を混合し、エバポレータにて60℃、100hPaで濃縮を行い、155重量部のペースト5(固形分濃度91.8重量%)を調製した。
(Example 5)
<Preparation of paste 5>
126 parts by weight of the slurry solution 1 was collected, and 57.3 parts by weight of tin particles (product name: Sn-At-600, Fukuda Metal Foil Powder Co., Ltd. average particle size: 7.3 μm), 9.8% by weight Part of α-terpineol (Wako Pure Chemical Industries, Ltd., boiling point: 220 ° C.), 2.1 parts by weight of tetradecane (Wako Pure Chemical Industries, Ltd., boiling point: 254 ° C.), 0.8 parts by weight of binder resin (product name) ESREC BH-A manufactured by Sekisui Chemical Co., Ltd.) was mixed and concentrated at 60 ° C. and 100 hPa using an evaporator to prepare 155 parts by weight of paste 5 (solid content concentration 91.8% by weight).

実施例5のペースト5を上記方法にて接合サンプルを作製し、測定したせん断強度は、2.9kgf/mmであった。また、260℃加熱ステージを用いて測定したせん断強度は4.2kgf/mmであった。結果を表1に示す。 A joining sample of the paste 5 of Example 5 was prepared by the above method, and the measured shear strength was 2.9 kgf / mm 2 . The shear strength measured using a 260 ° C. heating stage was 4.2 kgf / mm 2 . The results are shown in Table 1.

実施例5のペースト5を上記方法にてTG−DTAを測定した。その結果を図3に示す。図3より、昇温1における230℃の吸熱ピークから、スズ粒子の溶融が確認できる。さらに、昇温2において発熱ピーク、吸熱ピークが検出されないことから、スズは昇温1の段階にてニッケルとの金属間化合物が生成したと推定できる。   TG-DTA was measured for the paste 5 of Example 5 by the above method. The result is shown in FIG. From FIG. 3, the melting of the tin particles can be confirmed from the endothermic peak at 230.degree. Further, since no exothermic peak or endothermic peak is detected at the temperature rise 2, it can be estimated that tin produced an intermetallic compound with nickel at the stage of the temperature rise 1.

(比較例1)
<ペースト6の調製>
スラリー溶液1の166重量部を分取し、これに、20.7重量部のα−テルピネオール(和光純薬工業株式会社製 沸点;220℃)、7.6重量部のテトラデカン(和光純薬工業株式会社製 沸点254℃)、0.7重量部のバインダー樹脂(製品名エスレックBH−A 積水化学工業株式会社製)を混合し、エバポレータにて60℃、100hPaで濃縮を行い、142重量部のペースト6(固形分濃度80.0重量%)を調製した。
(Comparative Example 1)
<Preparation of paste 6>
166 parts by weight of the slurry solution 1 was collected, and 20.7 parts by weight of α-terpineol (boiling point; 220 ° C., manufactured by Wako Pure Chemical Industries, Ltd.) and 7.6 parts by weight of tetradecane (Wako Pure Chemical Industries, Ltd.). Co., Ltd., boiling point 254 ° C.), 0.7 part by weight of a binder resin (product name: S-REC BH-A manufactured by Sekisui Chemical Co., Ltd.) is mixed and concentrated at 60 ° C. and 100 hPa using an evaporator. Paste 6 (solid content concentration 80.0% by weight) was prepared.

比較例1のペースト6を上記方法にて接合サンプルを作製し、測定したせん断強度は、0kgf/mmであった。結果を表1に示す。 A joining sample of the paste 6 of Comparative Example 1 was prepared by the above method, and the measured shear strength was 0 kgf / mm 2 . The results are shown in Table 1.

(比較例2)
<ペースト7の調製>
ニッケル粉(関東化学工業株式会社製 平均粒径3.2μm)の79.2重量部を分取し、これに19.7重量部のスズ粒子(製品名Sn−At−600 福田金属箔粉工業株式会社製 平均粒径7.3μm)、9.3重量部のα−テルピネオール(和光純薬工業株式会社製 沸点;220℃)、2.0重量部のテトラデカン(和光純薬工業株式会社製 沸点254℃)、0.6重量部のバインダー樹脂(製品名エスレックBH−A 積水化学工業株式会社製)を混合し、エバポレータにて60℃、100hPaで濃縮を行い、111重量部のペースト7(固形分濃度89.1重量%)を調製した。
(Comparative Example 2)
<Preparation of paste 7>
79.2 parts by weight of nickel powder (average particle size 3.2 μm manufactured by Kanto Chemical Co., Ltd.) was collected, and 19.7 parts by weight of tin particles (product name: Sn-At-600 Fukuda Metal Foil Powder Industry) Co., Ltd. average particle size 7.3 μm), 9.3 parts by weight of α-terpineol (Wako Pure Chemical Industries, Ltd., boiling point; 220 ° C.), 2.0 parts by weight of tetradecane (Wako Pure Chemical Industries, Ltd., boiling point) 254 ° C.) and 0.6 parts by weight of a binder resin (product name: S-REC BH-A manufactured by Sekisui Chemical Co., Ltd.), concentrated at 60 ° C. and 100 hPa with an evaporator, and 111 parts by weight of paste 7 (solid A partial concentration of 89.1% by weight) was prepared.

比較例2のペースト7を上記方法にて接合サンプルを作製し、測定したせん断強度は、0kgf/mmであった。結果を表1に示す。 A bonding sample was prepared from the paste 7 of Comparative Example 2 by the above method, and the measured shear strength was 0 kgf / mm 2 . The results are shown in Table 1.

(参考例1)
スズ粒子(製品名Sn−At−600 福田金属箔粉工業株式会社製 平均粒径7.3μm)のTG−DTA測定を下記条件で行った。その結果を図4に示す。図4より、昇温2における再融解のピークの発生を確認した。
昇温1)
昇温条件 :30℃から300℃まで5℃/分の速度で昇温
ガスフロー :窒素/水素=97/3体積比 混合ガス 200ml/分
降温)
降温条件 :300℃から100℃以下まで15℃/分の速度で降温後10分保持
ガスフロー :窒素/水素=97/3体積比 混合ガス 200ml/分
昇温2)
昇温条件 :30℃から300℃まで5℃/分の速度で昇温
ガスフロー :大気 200ml/分
(Reference Example 1)
TG-DTA measurement of tin particles (product name Sn-At-600, Fukuda Metal Foil Powder Co., Ltd. average particle size 7.3 μm) was performed under the following conditions. The result is shown in FIG. From FIG. 4, the occurrence of a remelting peak at a temperature rise of 2 was confirmed.
Temperature rise 1)
Temperature rising condition: Temperature rising from 30 ° C to 300 ° C at a rate of 5 ° C / min
Gas flow: Nitrogen / hydrogen = 97/3 volume ratio Mixed gas 200 ml / min.
Temperature drop condition: Hold for 10 minutes after temperature drop from 300 ° C to below 100 ° C at a rate of 15 ° C / min
Gas flow: Nitrogen / hydrogen = 97/3 volume ratio Mixed gas 200ml / min temperature rise 2)
Temperature rising condition: Temperature rising from 30 ° C to 300 ° C at a rate of 5 ° C / min
Gas flow: Atmosphere 200ml / min

以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはない。   As mentioned above, although embodiment of this invention was described in detail for the purpose of illustration, this invention is not restrict | limited to the said embodiment.

Claims (4)

次の成分A及びB;
A)レーザー回折/散乱法による平均粒子径が0.5〜20μmの範囲内であり、スズ元素を95重量%以上含有するスズ粒子、
B)走査型電子顕微鏡観察による平均一次粒子径が30〜200nmの範囲内であり、ニッケル元素を90〜99.5重量%の範囲内で含有するニッケル微粒子、
からなる金属粒子組成物であって、前記成分A及び成分Bの重量比(成分A:成分B)が20:80〜40:60の範囲内である金属粒子組成物。
The following components A and B;
A) a tin particle having an average particle diameter by laser diffraction / scattering method in the range of 0.5 to 20 μm and containing 95% by weight or more of tin element;
B) Nickel fine particles having an average primary particle diameter in a range of 30 to 200 nm by observation with a scanning electron microscope and containing nickel element in a range of 90 to 99.5% by weight,
A metal particle composition comprising a weight ratio of the component A and the component B (component A: component B) in the range of 20:80 to 40:60 .
請求項1に記載の金属粒子組成物を含有する接合材であって、前記金属粒子組成物の含有量が70〜95重量%の範囲内である接合材。   It is a joining material containing the metal particle composition of Claim 1, Comprising: The joining material whose content of the said metal particle composition exists in the range of 70 to 95 weight%. さらに、沸点150〜260℃の範囲内にある有機溶媒を含有し、前記有機溶媒の含有量が5〜30重量%の範囲内である請求項2に記載の接合材。   Furthermore, the joining material of Claim 2 which contains the organic solvent which exists in the range of 150-260 degreeC of boiling points, and content of the said organic solvent exists in the range of 5-30 weight%. 請求項2又は3に記載の接合材を、被接合部材の間に介在させて還元性ガスを含有する還元性ガス雰囲気下で250〜500℃の範囲内の温度で加熱することにより、被接合部材の間に接合層を形成する接合方法。   The bonding material according to claim 2 or 3 is interposed between the members to be bonded and heated at a temperature in the range of 250 to 500 ° C in a reducing gas atmosphere containing a reducing gas. A joining method for forming a joining layer between members.
JP2014067867A 2014-03-28 2014-03-28 Metal particle composition, bonding material, and bonding method using the same Active JP6338419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014067867A JP6338419B2 (en) 2014-03-28 2014-03-28 Metal particle composition, bonding material, and bonding method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014067867A JP6338419B2 (en) 2014-03-28 2014-03-28 Metal particle composition, bonding material, and bonding method using the same

Publications (2)

Publication Number Publication Date
JP2015190006A JP2015190006A (en) 2015-11-02
JP6338419B2 true JP6338419B2 (en) 2018-06-06

Family

ID=54424776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014067867A Active JP6338419B2 (en) 2014-03-28 2014-03-28 Metal particle composition, bonding material, and bonding method using the same

Country Status (1)

Country Link
JP (1) JP6338419B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825581B (en) * 2016-12-30 2019-03-01 青岛卓思三维智造技术有限公司 Metal surface remelting method and device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3763520B2 (en) * 2000-12-25 2006-04-05 Tdk株式会社 Soldering composition
KR100795987B1 (en) * 2006-04-11 2008-01-21 삼성전기주식회사 Method for Manufacturing Nickel Nano Particle
CN101432095B (en) * 2006-04-28 2013-01-16 株式会社电装 Foam solder and electronic component
JP4563506B1 (en) * 2010-01-13 2010-10-13 有限会社ナプラ Electrode material
EP3766631A3 (en) * 2011-08-02 2021-03-24 Alpha Assembly Solutions Inc. Solder compositions

Also Published As

Publication number Publication date
JP2015190006A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
JP6061427B2 (en) Electronic component bonding material, bonding composition, bonding method, and electronic component
JP5667191B2 (en) Metal paste containing CO precursor
JP6422289B2 (en) Nickel particle composition, bonding material and bonding method
CN107848077B (en) Composition containing metal particles
JP4928639B2 (en) Bonding material and bonding method using the same
WO2016002741A1 (en) Nickel particle composition, bonding material, and bonding method in which said material is used
JP5824201B2 (en) Bonding material and bonding method using the same
TWI651149B (en) Metal bonding composition
KR101664991B1 (en) Bonding material and bonding method using same
JP6042747B2 (en) Nickel fine particles, method of using the same, and method of producing nickel fine particles
KR20180004853A (en) Binding material, binding body, and binding method
JP6463195B2 (en) Nickel particle composition, bonding material, and bonding method using the same
WO2018030173A1 (en) Bonding composition and method for preparing same
JP6338419B2 (en) Metal particle composition, bonding material, and bonding method using the same
JP6126426B2 (en) Joining method
JP6938125B2 (en) Bonds and their manufacturing methods, as well as semiconductor modules
JP6861073B2 (en) Nickel-coated copper particles, bonding materials and bonding methods
JP6267835B1 (en) Bonding composition and method for producing the same
JPWO2019066081A1 (en) Composite particles and methods for producing them, composite particle compositions, bonding materials and bonding methods, and bonded products.
JP2021050412A (en) Joint material, joint material paste containing the same, and joining method and semiconductor device using the same
JP2015194415A (en) Nickel fine particle
JPWO2019065965A1 (en) Conductive paste
JP2020164926A (en) Metallic paste for joining and joining method therewith
JP2020122175A (en) Joint material using nano-silver particles and joint method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180508

R150 Certificate of patent or registration of utility model

Ref document number: 6338419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250