JP2016069697A - Aluminum alloy member for heating cooker - Google Patents

Aluminum alloy member for heating cooker Download PDF

Info

Publication number
JP2016069697A
JP2016069697A JP2014201212A JP2014201212A JP2016069697A JP 2016069697 A JP2016069697 A JP 2016069697A JP 2014201212 A JP2014201212 A JP 2014201212A JP 2014201212 A JP2014201212 A JP 2014201212A JP 2016069697 A JP2016069697 A JP 2016069697A
Authority
JP
Japan
Prior art keywords
alloy member
phase
aluminum alloy
less
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014201212A
Other languages
Japanese (ja)
Other versions
JP6441013B2 (en
Inventor
享 新宮
Susumu Shingu
享 新宮
光成 大八木
Mitsunari Oyagi
光成 大八木
良明 久永
Yoshiaki Hisanaga
良明 久永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Toyo Aluminium Ekco Products Co Ltd
Original Assignee
Toyo Aluminum KK
Toyo Aluminium Ekco Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK, Toyo Aluminium Ekco Products Co Ltd filed Critical Toyo Aluminum KK
Priority to JP2014201212A priority Critical patent/JP6441013B2/en
Publication of JP2016069697A publication Critical patent/JP2016069697A/en
Application granted granted Critical
Publication of JP6441013B2 publication Critical patent/JP6441013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cookers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy member for heating cooker capable of achieving high heat generation property by electromagnetic induction heating.SOLUTION: There is provided an aluminum alloy member for heating cooker containing a first phase consisting of an intermetallic compound of a first element and a second element and a second phase consisting of the first element and the second element other than the intermetallic compound, the first element is aluminum, the second element is one or more selected from a group consisting of manganese, iron, silicon, magnesium, chromium and copper and the content of the second element in the aluminum alloy member for heating cooker is 18 mass% to 25 mass%.SELECTED DRAWING: Figure 1

Description

本発明は、加熱調理器具用アルミニウム合金部材に関する。   The present invention relates to an aluminum alloy member for a cooking device.

電磁誘電加熱調理器に用いられる加熱調理器具用部材には、アルミニウム(Al)と他の材料とを用いた部材が知られている。   A member using aluminum (Al) and another material is known as a member for a cooking device used in an electromagnetic heating cooker.

たとえば特開2004−249367号公報(特許文献1)には、オーステナイト系ステンレス鋼板材、アルミニウム(Al)を表面にコーティングした鉄または鉄合金部材、アルミニウムまたはアルミニウム合金部材、およびオーステナイト系ステンレス鋼板材をこの順に積層させた板材が記載されている。特開2007−144132号公報(特許文献2)には、Alからなる非磁性基材、磁性材料層、および金属材料層がこの順に積層された複合材が記載されている。   For example, JP 2004-249367 A (Patent Document 1) discloses an austenitic stainless steel plate material, an iron or iron alloy member coated with aluminum (Al) on its surface, an aluminum or aluminum alloy member, and an austenitic stainless steel plate material. The board | plate material laminated | stacked in this order is described. Japanese Unexamined Patent Application Publication No. 2007-144132 (Patent Document 2) describes a composite material in which a nonmagnetic substrate made of Al, a magnetic material layer, and a metal material layer are laminated in this order.

しかし、特許文献1に記載の板材および特許文献2に記載の複合材は、材料の異なる層が複数積層された構造を有するために、層の剥離による劣化が生じやすい。これに対し、たとえば特開2007−270351号公報(特許文献3)には、Alを主成分とし、Mg、Cr、Mn、Ti、Cu、SiおよびFeを含むアルミニウム合金からなるアルミニウム箔が記載されている。このアルミニウム箔によれば、上記の剥離の問題を解消することができる。   However, since the plate material described in Patent Document 1 and the composite material described in Patent Document 2 have a structure in which a plurality of layers of different materials are stacked, deterioration due to peeling of the layers is likely to occur. In contrast, for example, Japanese Patent Application Laid-Open No. 2007-270351 (Patent Document 3) describes an aluminum foil made of an aluminum alloy containing Al as a main component and containing Mg, Cr, Mn, Ti, Cu, Si, and Fe. ing. According to this aluminum foil, the above problem of peeling can be solved.

特開2004−249367号公報JP 2004-249367 A 特開2007−144132号公報JP 2007-144132 A 特開2007−270351号公報JP 2007-270351 A

しかし、特許文献3に記載のアルミニウム箔の比抵抗値は5〜10μΩcmであり、電磁誘導加熱による消費電力量は100Wに満たず、発熱量が低いという問題がある。このため、電磁誘導加熱による高い発熱量を発揮可能な加熱調理器具用部材の開発が求められている。   However, the specific resistance value of the aluminum foil described in Patent Document 3 is 5 to 10 μΩcm, and there is a problem that the amount of power consumed by electromagnetic induction heating is less than 100 W and the heat generation amount is low. For this reason, development of the member for heating cooking utensils which can exhibit the high calorific value by electromagnetic induction heating is calculated | required.

本発明は、上記のような現状に鑑みなされたものであって、その目的とするところは、電磁誘導加熱による高い発熱量を発揮可能な加熱調理器具用アルミニウム合金部材を提供することにある。   This invention is made | formed in view of the above present conditions, The place made into the objective is to provide the aluminum alloy member for heating cooking appliances which can exhibit the high emitted-heat amount by electromagnetic induction heating.

本発明の加熱調理器具用アルミニウム合金部材は、第1元素と第2元素との金属間化合物からなる第1相と、金属間化合物と異なり、かつ第1元素と第2元素とからなる第2相と、を含む加熱調理器具用アルミニウム合金部材であって、第1元素はアルミニウムであり、第2元素はマンガン、鉄、シリコン、マグネシウム、クロムおよび銅からなる群より選択された1つ以上であり、加熱調理器具用アルミニウム合金部材における第2元素の含有量は、18質量%以上25質量%以下である。   The aluminum alloy member for a cooking device according to the present invention is a first phase composed of an intermetallic compound of a first element and a second element, and a second phase composed of a first element and a second element, which is different from the intermetallic compound. An aluminum alloy member for a cooking device including a phase, wherein the first element is aluminum and the second element is one or more selected from the group consisting of manganese, iron, silicon, magnesium, chromium and copper Yes, the content of the second element in the aluminum alloy member for a cooking device is 18% by mass or more and 25% by mass or less.

上記加熱調理器具用アルミニウム合金部材において、174μm×134μmの大きさの1つの面に占める第1相の面積と、1つの面に垂直であり、かつ174μm×134μmの大きさの他の1つの面に占める第1相の面積とは、それぞれ60%以上90%以下であることが好ましい。   In the above-mentioned aluminum alloy member for cooking utensils, the area of the first phase occupying one surface having a size of 174 μm × 134 μm and the other surface perpendicular to one surface and having a size of 174 μm × 134 μm It is preferable that the area of the 1st phase to occupy is 60% or more and 90% or less.

上記加熱調理器具用アルミニウム合金部材において、174μm×134μmの大きさの1つの面に含まれる第2相の数と、1つの面に垂直であり、かつ174μm×134μmの大きさの他の1つの面に含まれる第2相の数とは、それぞれ200個以上1000個以下であるであることが好ましい。   In the aluminum alloy member for cooking utensils, the number of second phases included in one surface having a size of 174 μm × 134 μm and the other one perpendicular to one surface and having a size of 174 μm × 134 μm The number of second phases contained in the surface is preferably 200 or more and 1000 or less, respectively.

上記加熱調理器具用アルミニウム合金部材は、500μm以上5000μm以下の厚さを有する板状物であることが好ましい。   It is preferable that the aluminum alloy member for a cooking device is a plate having a thickness of 500 μm or more and 5000 μm or less.

本発明の加熱調理器具用アルミニウム合金部材によれば、電磁誘導加熱による高い発熱量を発揮するという効果を奏する。   According to the aluminum alloy member for a cooking device of the present invention, there is an effect that a high calorific value due to electromagnetic induction heating is exhibited.

なお、本発明でいう加熱調理器具用アルミニウム合金部材における面とは、光学顕微鏡によって確認され得る領域をいう。厳密には加熱調理器具用アルミニウム合金部材の表面には酸化皮膜が形成されているが、本発明でいう加熱調理器具用アルミニウム合金部材における面とは、この酸化皮膜を除いた面をいう。   In addition, the surface in the aluminum alloy member for heat cooking appliances as used in the field of this invention means the area | region which can be confirmed with an optical microscope. Strictly speaking, an oxide film is formed on the surface of the aluminum alloy member for cooking utensils, but the surface in the aluminum alloy member for cooking utensils referred to in the present invention means a surface excluding this oxide film.

本実施形態の加熱調理器具用アルミニウム合金部材を光学顕微鏡で撮影し、得られた画像を二値化処理した画像であり、かつ実施例2の加熱調理器具用アルミニウム合金部材より得られた試料における174μm×134μmの領域の二値化処理後の画像である。The aluminum alloy member for cooking utensils of the present embodiment is imaged with an optical microscope, the obtained image is a binarized image, and in the sample obtained from the aluminum alloy member for cooking utensils of Example 2 It is an image after binarization processing of an area of 174 μm × 134 μm. 比較例5の加熱調理器具用アルミニウム合金部材より得られた試料における174μm×134μmの領域の二値化処理後の画像である。It is the image after the binarization process of the area | region of 174 micrometers x 134 micrometers in the sample obtained from the aluminum alloy member for heating utensils of the comparative example 5.

本実施形態の加熱調理器具用アルミニウム合金部材(以下、「Al合金部材」ともいう)は、第1元素と第2元素との金属間化合物からなる第1相と、金属間化合物と異なり、かつ第1元素と第2元素とからなる第2相と、を含み、第1元素はアルミニウム(Al)であり、第2元素はマンガン(Mn)、鉄(Fe)、シリコン(Si)、マグネシウム(Mg)、クロム(Cr)および銅(Cu)からなる群より選択された1つ以上であり、Al合金部材における第2元素の含有量は、18質量%以上25質量%以下である。なお、複数の第2元素を含む場合には、複数の第2元素の総量が18質量%以上25質量%以下となる。   The aluminum alloy member for a cooking device of the present embodiment (hereinafter also referred to as “Al alloy member”) is different from the first phase composed of the intermetallic compound of the first element and the second element, and the intermetallic compound, and A second phase composed of a first element and a second element, wherein the first element is aluminum (Al), and the second element is manganese (Mn), iron (Fe), silicon (Si), magnesium ( One or more selected from the group consisting of Mg), chromium (Cr) and copper (Cu), and the content of the second element in the Al alloy member is 18% by mass or more and 25% by mass or less. When a plurality of second elements are included, the total amount of the plurality of second elements is 18% by mass or more and 25% by mass or less.

第1相を構成する金属間化合物としては、Al−Mn系、Al−Fe系などの2元系金属間化合物、Al−Mn−Fe系、Al−Fe−Si系などの3元系金属間化合物を挙げることができる。各金属間化合物の組成は1つとは限られず、たとえば、Al−Mn系金属間化合物には、MnAl6、MnAl4またはMnAl3などが含まれる。 Examples of intermetallic compounds constituting the first phase include binary intermetallic compounds such as Al-Mn and Al-Fe, and ternary metals such as Al-Mn-Fe and Al-Fe-Si. A compound can be mentioned. The composition of the intermetallic compound is not limited to one, For example, the Al-Mn intermetallic compound, and the like MnAl 6, MnAl 4 or MnAl 3.

第2相は、上述の金属間化合物とは異なり、かつ第1元素と第2元素とからなる相である。第2相において、第2元素は第1元素(Al)中に固溶している。   The second phase is different from the above-described intermetallic compound and is a phase composed of a first element and a second element. In the second phase, the second element is dissolved in the first element (Al).

なお、本実施形態のAl合金部材が意図しない不可避不純物を含んでもよいことはいうまでもない。不可避不純物としては、Fe、Si、Cu、Mn、Mg、Zn、Ti、Zr、Ga、Cr、Vなどを挙げることができる。不可避不純物としての各元素の含有量は、それぞれ0.05質量%以下である。不可避不純物は、第1相および第2相のいずれにも含まれ得る。   Needless to say, the Al alloy member of this embodiment may contain unintentional impurities. Inevitable impurities include Fe, Si, Cu, Mn, Mg, Zn, Ti, Zr, Ga, Cr, V, and the like. The content of each element as an inevitable impurity is 0.05% by mass or less. Inevitable impurities can be included in both the first phase and the second phase.

本実施形態のAl合金部材は、公知のDC(Direct Casting)鋳造法を用いて作製することができる。   The Al alloy member of this embodiment can be produced using a known DC (Direct Casting) casting method.

本実施形態のAl合金部材は、40μΩcm以上という高い比抵抗値を有することができ、これによって、電磁誘導加熱によって100W以上という高い消費電力量を発揮することができるため、もって高い発熱量を発揮することができる。   The Al alloy member of the present embodiment can have a high specific resistance value of 40 μΩcm or more, and thereby can exhibit a high power consumption of 100 W or more by electromagnetic induction heating, thereby exhibiting a high calorific value. can do.

図1は、本実施形態のAl合金部材を光学顕微鏡で撮影し、得られた画像を二値化処理した画像である。具体的には、後述する実施例2のAl合金部材の表面を500倍の倍率で撮影し、得られた画像を濃淡のコントラストに基づいて二値化処理した画像である。   FIG. 1 is an image obtained by photographing the Al alloy member of the present embodiment with an optical microscope and binarizing the obtained image. Specifically, it is an image obtained by photographing the surface of an Al alloy member of Example 2 described later at a magnification of 500 times and binarizing the obtained image based on the contrast of light and shade.

図1において、白色の領域がAl−Mn系金属間化合物からなる第1相であり、第1相に囲まれるように島状に点在する黒色の領域が第2相である。なお、第1相および第2相中には、不可避不純物が含まれ得る。第2相はAlにMnが固溶した相であるため、図1において、第1相と第2相とは明確に区別されて観察される。   In FIG. 1, a white area | region is a 1st phase which consists of an Al-Mn type intermetallic compound, and the black area | region dotted in island shape so that it may be enclosed by a 1st phase is a 2nd phase. In addition, inevitable impurities may be contained in the first phase and the second phase. Since the second phase is a phase in which Mn is dissolved in Al, the first phase and the second phase are clearly distinguished from each other in FIG.

図1に示されるように、第2相の周囲は第1相によって囲まれており、第1相はそれぞれ連続する(連なっている)ように存在している。このような組織構造により、第1相によって第2相間での電子の移動が抑制されるために、従来考えられていたよりも顕著に高い比抵抗を有することができ、これにより、高い発熱量の発揮が可能となるものと推察される。   As shown in FIG. 1, the periphery of the second phase is surrounded by the first phase, and the first phase exists so as to be continuous (continuous). With such a structure, since the movement of electrons between the second phases is suppressed by the first phase, it can have a remarkably higher specific resistance than previously considered, and thereby, a high calorific value can be obtained. It is presumed that this will be possible.

一方、本実施形態のAl合金部材において、第2元素の含有量が18質量%未満の場合には、上記のような高い発熱量を発揮できない。これは、第2元素の含有量が18質量%未満の場合には、Al合金部材中に占める第1相の割合が低いために、第2相間の連なりを第1相によって十分に排除できず、結果的に第2相間での電子の移動を十分に抑制できないためと推察される。なお、第2元素の含有量を25質量%超とした場合には、DC鋳造法によってAl合金部材を作製することはできなかった。   On the other hand, in the Al alloy member of the present embodiment, when the content of the second element is less than 18% by mass, the high heat generation amount as described above cannot be exhibited. This is because when the content of the second element is less than 18% by mass, the proportion of the first phase in the Al alloy member is low, so that the connection between the second phases cannot be sufficiently eliminated by the first phase. As a result, it is assumed that the movement of electrons between the second phases cannot be sufficiently suppressed. When the content of the second element was more than 25% by mass, an Al alloy member could not be produced by the DC casting method.

本実施形態のAl合金部材において、第2元素の含有量は、好ましくは22質量%以上25質量%以下であり、この場合、電磁誘導加熱によって140W以上という高い消費電力量を発揮することができる。   In the Al alloy member of the present embodiment, the content of the second element is preferably 22% by mass or more and 25% by mass or less. In this case, a high power consumption of 140 W or more can be exhibited by electromagnetic induction heating. .

また、本実施形態のAl合金部材は、174μm×134μmの大きさの任意の1つの面に占める第1相の面積と、この1つの面に垂直であり、かつ174μm×134μmの大きさの他の1つの面に占める第1相の面積とが、それぞれ60%以上90%以下であることが好ましい。この場合にも、電磁誘導加熱によって100W以上という高い消費電力量を発揮することができる。互いに垂直な上記2つの面に含まれる第1相の面積は、それぞれ70%以上90%以下であることがより好ましい。   In addition, the Al alloy member of the present embodiment has an area of the first phase occupying one arbitrary surface having a size of 174 μm × 134 μm, a size perpendicular to the one surface, and a size of 174 μm × 134 μm. It is preferable that the area of the first phase occupying one surface is 60% or more and 90% or less. Also in this case, high power consumption of 100 W or more can be exhibited by electromagnetic induction heating. The area of the first phase included in the two surfaces perpendicular to each other is more preferably 70% or more and 90% or less.

Al合金部材の互いに垂直な2つの面の各々における第1相の面積は、次のようにして求められる。まず、Al合金部材の表面を500倍の倍率で撮像して画像を得る。得られた画像中、Al合金部材の174μm×134μmの表面領域に一致する画像を、濃淡のコントラストに基づいて二値化処理する。そして、二値化処理後の画像中の第1相の占める面積の割合を算出し、これをAl合金部材の1つの面に占める第1相の面積とする。また、この1つの面に対し垂直な他の1つの面についても同様の処理を行い、算出された値を、Al合金部材の1つの面に垂直な他の面に占める第1相の面積とする。なお、1μm2以下の面積の第1相は計測数から除かれる。 The area of the first phase in each of the two mutually perpendicular surfaces of the Al alloy member is determined as follows. First, an image is obtained by imaging the surface of the Al alloy member at a magnification of 500 times. In the obtained image, an image corresponding to the surface region of 174 μm × 134 μm of the Al alloy member is binarized based on the contrast of light and shade. And the ratio of the area which the 1st phase occupies in the image after a binarization process is calculated, and let this be the area of the 1st phase which occupies one surface of an Al alloy member. In addition, the same processing is performed on the other surface perpendicular to the one surface, and the calculated value is calculated as the area of the first phase in the other surface perpendicular to the one surface of the Al alloy member. To do. The first phase with an area of 1 μm 2 or less is excluded from the number of measurements.

また、本実施形態のAl合金部材は、174μm×134μmの大きさの任意の1つの面に含まれる第2相の数と、1つの面に垂直であり、かつ174μm×134μmの大きさの他の1つの面に含まれる第2相の数とが、それぞれ200個以上1000個以下であることが好ましい。この場合にも、電磁誘導加熱によって100W以上という高い発熱量を発揮することができる。互いに垂直な上記2つの面に含まれる第2相の数は、それぞれ200個以上800個以下であることがより好ましい。   In addition, the Al alloy member of the present embodiment has a number of second phases included in any one surface having a size of 174 μm × 134 μm, a size perpendicular to one surface, and a size of 174 μm × 134 μm. It is preferable that the number of the second phases included in one surface is 200 or more and 1000 or less, respectively. Also in this case, a high heat generation amount of 100 W or more can be exhibited by electromagnetic induction heating. More preferably, the number of second phases contained in the two surfaces perpendicular to each other is 200 or more and 800 or less, respectively.

Al合金部材の互いに垂直な上記2つの面の各々における第2相の数は、第1相の面積の求め方と同様の方法により得られた二値化処理後の画像中に点在する第2相の数を計測することにより求められる。つまり、その周囲を第1相によって囲まれる第2相が、1つの第2相となる。なお、1μm2以下の面積の第2相は計測数から除かれる。 The number of second phases in each of the two surfaces perpendicular to each other of the Al alloy member is the number of second phases scattered in the image after binarization obtained by the same method as the method for obtaining the area of the first phase. It is obtained by measuring the number of two phases. That is, the second phase surrounded by the first phase becomes one second phase. The second phase having an area of 1 μm 2 or less is excluded from the number of measurements.

また、本実施形態のAl合金部材は、500μm以上5000μm以下の厚みを有する板状物であることが好ましい。板状物であるAl合金部材の厚みが500μm未満の場合、強度が弱くなる傾向があり、たとえばフライパン、鍋といった加熱調理器具として使用する際に、変形する恐れがある。板状物であるAl合金部材の厚みが5000μmを超える場合、発熱量が低下する傾向がある。   Moreover, it is preferable that the Al alloy member of this embodiment is a plate-shaped object having a thickness of 500 μm or more and 5000 μm or less. When the thickness of the Al alloy member, which is a plate-like material, is less than 500 μm, the strength tends to be weak, and there is a risk of deformation when used as a cooking device such as a frying pan or a pan. When the thickness of the Al alloy member, which is a plate-like material, exceeds 5000 μm, the calorific value tends to decrease.

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

(実施例1)
アルミニウム溶湯を準備し、Mnが溶解可能となるようにアルミニウム溶湯を加熱しながら、Al合金部材におけるMnの含有量が18質量%となるようにMnを投入した。Mn投入後のアルミニウム溶湯を銅製の鋳型に流し込み、これを固めることにより、縦100mm×横120mm×厚み3.5mmのAl合金部材を作製した。なお、得られたAl合金部材における不可避不純物の総量は0.01質量%以下であった。
Example 1
A molten aluminum was prepared, and Mn was added so that the Mn content in the Al alloy member was 18% by mass while heating the molten aluminum so that Mn could be dissolved. An aluminum alloy member having a length of 100 mm, a width of 120 mm and a thickness of 3.5 mm was produced by pouring the molten aluminum after Mn was poured into a copper mold and solidifying it. In addition, the total amount of inevitable impurities in the obtained Al alloy member was 0.01% by mass or less.

(実施例2〜4)
Al合金部材におけるMnの含有量が、それぞれ20質量%、22質量%、25質量%となるようにMnを投入した以外は、実施例1と同様にして、実施例2〜4のAl合金部材を作製した。実施例2〜4においても、得られたAl合金部材における不可避不純物の総量は0.01質量%以下であった。
(Examples 2 to 4)
The Al alloy members of Examples 2 to 4 were the same as Example 1 except that Mn was added so that the Mn content in the Al alloy member was 20% by mass, 22% by mass, and 25% by mass, respectively. Was made. Also in Examples 2 to 4, the total amount of inevitable impurities in the obtained Al alloy member was 0.01% by mass or less.

(比較例1〜5)
比較例1として、Mn含有量が0.01%以下、不可避不純物の総量が0.01%以下であるAl合金部材を用意した。また、Al合金部材におけるMnの含有量が、それぞれ0.8質量%、10質量%、15質量%、16質量%となるようにMnを投入した以外は、実施例1と同様にして、比較例2〜5のAl合金部材を作製した。比較例2〜5においても、得られたAl合金部材における不可避不純物の総量は0.01質量%以下であった。
(Comparative Examples 1-5)
As Comparative Example 1, an Al alloy member having a Mn content of 0.01% or less and a total amount of inevitable impurities of 0.01% or less was prepared. Further, a comparison was made in the same manner as in Example 1 except that Mn was added so that the content of Mn in the Al alloy member was 0.8% by mass, 10% by mass, 15% by mass, and 16% by mass, respectively. Al alloy members of Examples 2 to 5 were prepared. Also in Comparative Examples 2 to 5, the total amount of inevitable impurities in the obtained Al alloy member was 0.01% by mass or less.

(組織観察)
実施例1〜4および比較例1〜5の各Al合金部材について、以下の方法により、互いに垂直な2つの面における第1相(Al−Mn金属間化合物)の各面積の割合と、第2相(Al物質)の各数とを測定した。
(Tissue observation)
About each Al alloy member of Examples 1-4 and Comparative Examples 1-5, the ratio of each area of the 1st phase (Al-Mn intermetallic compound) in two mutually perpendicular | vertical surfaces according to the following method, and 2nd Each number of phases (Al material) was measured.

具体的には、まず、Al合金部材の一部を切り出して直方体の試料を作製した。次に、光学顕微鏡(ニコン株式会社製、製品名:「ECLIPSE L200」)を用いて、500倍の倍率で試料の1つの面Aを撮像して画像Aを得た。また、試料の1つの面Aに垂直な他の1つの面Bについても同様にして画像Bを得た。光学顕微鏡で明るく見える領域(図1および図2中での黒色の領域)が第2相で、暗く見える領域(図1および図2中で白色の領域)が第1相である。   Specifically, first, a part of the Al alloy member was cut out to prepare a rectangular parallelepiped sample. Next, using a light microscope (manufactured by Nikon Corporation, product name: “ECLIPSE L200”), one surface A of the sample was imaged at a magnification of 500 times to obtain an image A. Further, an image B was obtained in the same manner for another surface B perpendicular to one surface A of the sample. A region that appears bright with an optical microscope (black region in FIGS. 1 and 2) is the second phase, and a region that appears dark (white region in FIGS. 1 and 2) is the first phase.

次に、得られた各画像A,B(Al合金部材中の面における174μm×134μmの矩形領域に相当)を、株式会社キーエンス製デジタルマイクロスコープVHX200に読み込み、デジタルマイクロスコープの計測ツールを用いて二値化処理した。   Next, the obtained images A and B (corresponding to a rectangular area of 174 μm × 134 μm on the surface in the Al alloy member) are read into a digital microscope VHX200 manufactured by Keyence Corporation, and the measurement tool of the digital microscope is used. Binarization processing was performed.

そして、二値化処理後の画像A,B中に占める第1相の面積の割合をそれぞれデジタルマイクロスコープの計測ツールを用いて算出した。なお、1μm2以下の面積を有する第1相は除いた。さらに、二値化処理後の画像A,B中に含まれる第2相の数をそれぞれデジタルマイクロスコープの計測ツールを用いて測定した。なお、1μm2以下の面積を有する第2相は計測数から除いた。これらの結果を表1に示す。 Then, the ratio of the area of the first phase in the binarized images A and B was calculated using the measurement tool of the digital microscope. The first phase having an area of 1 μm 2 or less was excluded. Further, the number of second phases contained in the binarized images A and B was measured using a digital microscope measurement tool. The second phase having an area of 1 μm 2 or less was excluded from the number of measurements. These results are shown in Table 1.

(電気特性の測定)
実施例1〜4および比較例1〜5の各Al合金部材について、以下の方法により、比抵抗値と、消費電力量とを測定した。
(Measurement of electrical characteristics)
About each Al alloy member of Examples 1-4 and Comparative Examples 1-5, the specific resistance value and the power consumption were measured with the following method.

まず、Al合金部材の一部を切り出して、縦10mm×横75mm×厚み3mmの試料を作製した。そして、抵抗計(日置電機社製、型番3541)を用いて、直流四端子法により試料の比抵抗値(μΩcm)を測定した。また、Al合金部材の一部を切り出して、縦75mm×横75mmの試料を作製した。そして、IH湯沸かし器(タイガー魔法瓶社製、型番CIK−B030)に電力計(SANWA社製)を取り付け、試料を加熱した際の消費電力量(W)を測定した。   First, a part of the Al alloy member was cut out to prepare a sample having a length of 10 mm, a width of 75 mm, and a thickness of 3 mm. And the specific resistance value (microohm cm) of the sample was measured with the direct current | flow four-terminal method using the resistance meter (the Hioki Electric company make, model number 3541). Further, a part of the Al alloy member was cut out to prepare a sample of 75 mm length × 75 mm width. Then, a wattmeter (manufactured by SANWA) was attached to an IH water heater (manufactured by Tiger Thermos Co., Ltd., model number CIK-B030), and the power consumption (W) when the sample was heated was measured.

Figure 2016069697
Figure 2016069697

表1に示されるように、実施例1〜4のAl合金部材の比抵抗値は40以上であった。これに対し、比較例1〜5のAl合金部材の比抵抗値は31.8以下であった。   As shown in Table 1, the specific resistance values of the Al alloy members of Examples 1 to 4 were 40 or more. On the other hand, the specific resistance values of the Al alloy members of Comparative Examples 1 to 5 were 31.8 or less.

また、実施例1〜4のAl合金部材は、電磁誘導加熱により100W以上の消費電力量を発揮できることが確認された。これに対し、比較例3〜5のAl合金部材は98以下の消費電力量であった。なお、比較例1および比較例2のAl合金部材は、電磁誘導加熱に供しても加熱電力が得られず、消費電力量は測定できなかった。   Moreover, it was confirmed that the Al alloy members of Examples 1 to 4 can exhibit power consumption of 100 W or more by electromagnetic induction heating. In contrast, the Al alloy members of Comparative Examples 3 to 5 had a power consumption of 98 or less. In addition, even if the Al alloy member of Comparative Example 1 and Comparative Example 2 was subjected to electromagnetic induction heating, no heating power was obtained, and the power consumption could not be measured.

また、実施例1〜4のAl合金部材は、互いに垂直な2つの面(174μm×134μm)に占める第1相の面積が、それぞれ60%以上90%以下であるのに対し、比較例1〜5のAl合金部材は、それぞれ51%以下であることが確認された。   Further, in the Al alloy members of Examples 1 to 4, the area of the first phase occupying two mutually perpendicular surfaces (174 μm × 134 μm) is 60% or more and 90% or less, respectively. 5 Al alloy members were confirmed to be 51% or less, respectively.

また、実施例1〜4のAl合金部材は、互いに垂直な2つの面(174μm×134μm)に含まれる第2相の数が、それぞれ200個以上1000個以下であるのに対し、比較例1〜3のAl合金部材においては23個以下であった。また、比較例4および比較例5のAl合金部材においては、1つの面での第2相の数が200個以上であったものの、この1つの面に垂直な他の面での第2相の数は100個に満たなかった。   Further, in the Al alloy members of Examples 1 to 4, the number of second phases contained in two mutually perpendicular surfaces (174 μm × 134 μm) is 200 or more and 1000 or less, respectively. In the Al alloy member of ~ 3, it was 23 or less. Further, in the Al alloy members of Comparative Example 4 and Comparative Example 5, although the number of second phases on one surface was 200 or more, the second phase on the other surface perpendicular to this one surface. The number of was less than 100.

ここで、図1は、実施例2のAl合金部材より得られた試料における二値化処理後の画像であり、図2は、比較例5のAl合金部材より得られた試料における二値化処理後の画像である。   Here, FIG. 1 is an image after binarization processing in the sample obtained from the Al alloy member of Example 2, and FIG. 2 is binarization in the sample obtained from the Al alloy member of Comparative Example 5. It is an image after processing.

図1に示されるように、実施例2のAl合金部材においては、第2相(図中黒色の領域)が第1相(図中白色の領域)によって島状に分散されており、このために、表面中に点在する第2相の数も多いことがわかった。これに対し、図2に示されるように、比較例5のAl合金部材においては、第2相の多くが連なっており、第1相による第2相の連なりの分断ができていないことがわかった。   As shown in FIG. 1, in the Al alloy member of Example 2, the second phase (black area in the figure) is dispersed in islands by the first phase (white area in the figure). In addition, it was found that the number of second phases scattered on the surface was also large. On the other hand, as shown in FIG. 2, in the Al alloy member of Comparative Example 5, it is understood that many of the second phases are connected and the second phase is not divided by the first phase. It was.

また、各実施例において、1つの面と、この1つの面に垂直な他の1つの面とにおいて、同様の組織状態が観察されたことから、Al合金部材中において、第1相は縦方向にも横方向にも十分に分散されていることがわかった。なお、各実施例より切り出した試料について、1つの面中の50箇所の174μm×134μmの領域と、上記1つの表面に垂直な他の1つのの面中の50箇所の174μm×134μmの領域とのそれぞれについて組織状態を観察したところ、いずれの箇所においても、同様の組織状態を示すことが確認された。   Moreover, in each Example, since the same structure | tissue state was observed in one surface and the other one surface perpendicular | vertical to this one surface, in Al alloy member, a 1st phase is a vertical direction It was also found that they were well dispersed in the horizontal direction. In addition, about the sample cut out from each Example, 50 areas of 174 μm × 134 μm in one surface, and 50 areas of 174 μm × 134 μm in another surface perpendicular to the one surface, When the tissue state was observed for each of the above, it was confirmed that the same tissue state was exhibited at any location.

以上のことから、Al合金部材中のMnの含有量が18質量%以上25質量%以下の場合には、第2相の周囲が第1相に囲まれることによって第2相が好適に分散されるために、高い比抵抗値を示すことができ、これにより高い消費電力量を発揮でき、もって高い発熱量を発揮できることが推察された。また、第2相が縦方向にも横方向にも十分に分散されているため、熱伝導性にも優れるものと推察される。   From the above, when the content of Mn in the Al alloy member is 18% by mass or more and 25% by mass or less, the second phase is suitably dispersed by being surrounded by the first phase. Therefore, it was inferred that a high specific resistance value can be exhibited, whereby a high power consumption amount can be exhibited, and thus a high calorific value can be exhibited. Moreover, since the 2nd phase is fully disperse | distributed to the vertical direction and a horizontal direction, it is estimated that it is excellent also in thermal conductivity.

これに対し、Al合金部材中のMnの含有量が18質量%に満たない場合、Al−Mn金属間化合物の含有量が少ないために、Al合金部材中に占める第1相の面積の割合が低下し、このために第2相が好適に分散されず、結果的に、比抵抗値が低下するものと推察された。   On the other hand, when the content of Mn in the Al alloy member is less than 18% by mass, since the content of the Al—Mn intermetallic compound is small, the proportion of the area of the first phase in the Al alloy member is For this reason, the second phase was not suitably dispersed, and as a result, it was assumed that the specific resistance value was lowered.

以上のように本発明の実施形態および実施例について説明を行なったが、上述の実施形態および実施例の構成を適宜組み合わせることも当初から予定している。   Although the embodiments and examples of the present invention have been described as described above, it is also planned from the beginning to appropriately combine the configurations of the above-described embodiments and examples.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (4)

第1元素と第2元素との金属間化合物からなる第1相と、
前記金属間化合物と異なり、かつ前記第1元素と前記第2元素とからなる第2相と、を含む加熱調理器具用アルミニウム合金部材であって、
前記第1元素はアルミニウムであり、
前記第2元素はマンガン、鉄、シリコン、マグネシウム、クロムおよび銅からなる群より選択された1つ以上であり、
前記加熱調理器具用アルミニウム合金部材における前記第2元素の含有量は、18質量%以上25質量%以下である、加熱調理器具用アルミニウム合金部材。
A first phase composed of an intermetallic compound of a first element and a second element;
An aluminum alloy member for a cooking device comprising a second phase different from the intermetallic compound and comprising the first element and the second element,
The first element is aluminum;
The second element is one or more selected from the group consisting of manganese, iron, silicon, magnesium, chromium and copper;
Content of the said 2nd element in the said aluminum alloy member for cooking utensils is an aluminum alloy member for cooking utensils which is 18 mass% or more and 25 mass% or less.
174μm×134μmの大きさの1つの面に占める前記第1相の面積と、前記1つの面に垂直であり、かつ174μm×134μmの大きさの他の1つの面に占める前記第1相の面積とは、それぞれ60%以上90%以下である、請求項1に記載の加熱調理器具用アルミニウム合金部材。   The area of the first phase occupying one surface having a size of 174 μm × 134 μm, and the area of the first phase occupying one other surface perpendicular to the one surface and having a size of 174 μm × 134 μm The aluminum alloy member for a cooking device according to claim 1, which is 60% or more and 90% or less. 174μm×134μmの大きさの1つの面に含まれる前記第2相の数と、前記1つの面に垂直であり、かつ174μm×134μmの大きさの他の1つの面に含まれる前記第2相の数とは、それぞれ200個以上1000個以下である、請求項1または請求項2に記載の加熱調理器具用アルミニウム合金部材。   The number of the second phases included in one surface having a size of 174 μm × 134 μm, and the second phase included in another surface having a size of 174 μm × 134 μm that is perpendicular to the one surface The number of each is the aluminum alloy member for heating cooking appliances of Claim 1 or Claim 2 which are 200 or more and 1000 or less, respectively. 500μm以上5000μm以下の厚さを有する板状物である、請求項1〜請求項3のいずれか1項に記載の加熱調理器具用アルミニウム合金部材。   The aluminum alloy member for heating utensils according to any one of claims 1 to 3, wherein the aluminum alloy member is a plate having a thickness of 500 µm or more and 5000 µm or less.
JP2014201212A 2014-09-30 2014-09-30 Aluminum alloy parts for cooking utensils Active JP6441013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014201212A JP6441013B2 (en) 2014-09-30 2014-09-30 Aluminum alloy parts for cooking utensils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201212A JP6441013B2 (en) 2014-09-30 2014-09-30 Aluminum alloy parts for cooking utensils

Publications (2)

Publication Number Publication Date
JP2016069697A true JP2016069697A (en) 2016-05-09
JP6441013B2 JP6441013B2 (en) 2018-12-19

Family

ID=55866295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201212A Active JP6441013B2 (en) 2014-09-30 2014-09-30 Aluminum alloy parts for cooking utensils

Country Status (1)

Country Link
JP (1) JP6441013B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017039979A (en) * 2015-08-20 2017-02-23 Kmアルミニウム株式会社 Aluminum alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217648A (en) * 1998-01-29 1999-08-10 Nisshin Steel Co Ltd Al alloy hardware excellent in antibacterial activity
JP2000023837A (en) * 1998-07-08 2000-01-25 Me Gijutsu Kenkyusho:Kk Cooking container usable for electromagnetic cooker
JP2005253600A (en) * 2004-03-10 2005-09-22 Kansai Electric Power Co Inc:The Pot for electromagnetic cooker
JP2006274351A (en) * 2005-03-29 2006-10-12 Kobe Steel Ltd Al BASED ALLOY HAVING EXCELLENT WORKABILITY AND HEAT RESISTANCE
JP2007525596A (en) * 2004-02-16 2007-09-06 サン ゴバン ソントル ド ルシェルシュ エ デテュード ヨーロペアン Metal coating for cookware

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217648A (en) * 1998-01-29 1999-08-10 Nisshin Steel Co Ltd Al alloy hardware excellent in antibacterial activity
JP2000023837A (en) * 1998-07-08 2000-01-25 Me Gijutsu Kenkyusho:Kk Cooking container usable for electromagnetic cooker
JP2007525596A (en) * 2004-02-16 2007-09-06 サン ゴバン ソントル ド ルシェルシュ エ デテュード ヨーロペアン Metal coating for cookware
JP2005253600A (en) * 2004-03-10 2005-09-22 Kansai Electric Power Co Inc:The Pot for electromagnetic cooker
JP2006274351A (en) * 2005-03-29 2006-10-12 Kobe Steel Ltd Al BASED ALLOY HAVING EXCELLENT WORKABILITY AND HEAT RESISTANCE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017039979A (en) * 2015-08-20 2017-02-23 Kmアルミニウム株式会社 Aluminum alloy

Also Published As

Publication number Publication date
JP6441013B2 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
JP6860768B2 (en) Manufacturing method of aluminum alloy for casting, aluminum alloy member, and aluminum alloy member
Hayashi et al. α-NiPt (Al) and phase equilibria in the Ni–Al–Pt system at 1150 C
TWI373778B (en) Coil-type electronic component and its manufacturing method
JP3838521B1 (en) Copper alloy having high strength and excellent bending workability and method for producing the same
JP4006460B1 (en) Copper alloy excellent in high strength, high conductivity and bending workability, and method for producing the same
CN105229182B (en) There is the aluminium alloy material and its manufacture method of heating engagement function with individual layer and the aluminium conjugant of the aluminium alloy material has been used
JP5690170B2 (en) Copper alloy
JP2009097077A (en) Aluminum alloy foil
US10544495B2 (en) Casting mold material and Cu—Cr—Zr alloy material
EP2960351A1 (en) Low-lead bismuth-free silicone-free brass
JP2006083465A (en) Copper alloy sheet for electric and electronic parts having bendability
JP2013133489A (en) Cu ALLOY SPUTTERING TARGET, METHOD FOR PRODUCING THE SAME, AND METAL THIN FILM
JP6441013B2 (en) Aluminum alloy parts for cooking utensils
JP6879968B2 (en) Copper alloy plate, electronic parts for energization, electronic parts for heat dissipation
CN107429322B (en) Heat dissipation element copper alloy plate and heat dissipation element
JP2008075152A (en) Copper alloy having high strength, high electroconductivity and superior bendability
CN107109530A (en) Sliding contact material and its manufacture method
JP6210887B2 (en) Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability
AU2014202540B2 (en) Lead-free bismuth-free silicon-free brass
WO2015182589A1 (en) Aluminum foil, electronic component wiring board, and aluminum foil manufacturing method
TWI743392B (en) Copper alloy strip having high heat resistance and thermal dissipation properties
TW573026B (en) Nickel-free white copper alloy, and method of producing nickel-free white copper alloy
CN101784684A (en) High-strength high-electroconductivity copper alloy possessing excellent hot workability
JP6011700B2 (en) Cu alloy sputtering target and method for producing the same
Song et al. Design and characterization of new Cu alloys to substitute Cu–25% Ni for coinage applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181121

R150 Certificate of patent or registration of utility model

Ref document number: 6441013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250